线性代数知识框架041019155408
线性代数知识点归纳
线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。
线性代数知识结构框架
第一章:行列式考试内容:行列式的概念和基本性质行列式按行(列)展开定理考试要求:1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.第二章:矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵等价分块矩阵及其运算考试要求:1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.第三章:向量考试内容:向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间以及相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求:1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解n维向星空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.第四章:线性方程组考试内容:线性方程组的克莱姆(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.第五章:矩阵的特征值及特征向量考试内容:矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. 2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.第六章:二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求:1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率与统计第一章:随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求:1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系与运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.第二章:随机变量及其分布考试内容:随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求:1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>0)的指数分布的概率密度为5.会求随机变量函数的分布.第三章:多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续性随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求:1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布;理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件. 3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布。
线性代数+高数基础知识框架
文案大全线性代数-知识框架()000,nT A r A n A A Ax x Ax A Ax A A A E ββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 注:全体n 维实向量构成的集合n R 叫做n 维向量空间.()0A r A n A A A Ax A λ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量注:()()0a b r aE bA n aE bA aE bA x λ+<⎧⎪+=⇔+=⎨⎪⎩0有非零解=-文案大全⎫⎪≅⎪−−−→⎬⎪⎪⎭:;具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n¡的标准基,n¡中的自然基,单位坐标向量152p 教材;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑LL L LL M M M L1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.文案大全推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-K NN 1⑤范德蒙德行列式:()1222212111112n i j nn i j n n n nx x x x x x x x x x x ≥≥≥---=-∏L L L M M M L111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L 称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m n A ⨯()1121112222*12nT nijn n nnA A AA A AA AA A A⎛⎫⎪⎪==⎪⎪⎝⎭LLM M ML,ijA为A中各个元素的代数余子式.√逆矩阵的求法:①1AAA*-=注:1a b d bc d c aad bc--⎛⎫⎛⎫=⎪ ⎪--⎝⎭⎝⎭1②1()()A E E A-−−−−→M M初等行变换③1231111213aaaaaa-⎛⎫⎛⎫⎪⎪=⎪⎪⎪⎪ ⎪⎝⎭⎝⎭3211111213aaaaaa-⎛⎫⎛⎫⎪⎪=⎪⎪⎪⎪ ⎪⎝⎭⎝⎭√方阵的幂的性质:m n m nA A A+=()()m n mnA A=√设,,m n n sA B⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B的列向量为12,,,sβββ⋅⋅⋅,则m sAB C⨯=⇔()()1112121222121212,,,,,,ssn sn n nsb b bb b bc c cb b bααα⎛⎫⎪⎪⋅⋅⋅=⎪⎪⎝⎭LLLM M ML⇔i iA cβ=,(,,)i s=L1,2⇔iβ为iAx c=的解⇔()()()121212,,,,,,,,,s s sA A A A c c cββββββ⋅⋅⋅=⋅⋅⋅=L⇔12,,,sc c cL可由12,,,nααα⋅⋅⋅线性表示. 同理:C的行向量能由B的行向量线性表示,T A为系数矩阵.文案大全√ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A O C B B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭11112222A B AB A B ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→MM 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得√ 0Ax =与0Bx =同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组0Ax =与0Bx =同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔PQ B =(右乘可逆矩阵Q ). √ 判断12,,,s ηηηL 是0Ax =的基础解系的条件: ① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 都是0Ax =的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交.② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()r A A O =⇔=0.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑪ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等行变换得到的矩阵,等于用相应的初等矩阵左乘A ; 对A 施行一次初等列变换得到的矩阵,等于用相应的初等矩阵右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n αααL 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααLA 经过有限次初等变换化为B . 记作:A B =%12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅%⑬ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10 ⑰ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑱ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.√ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 0≤()m n r A ⨯≤min(,)m n ②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑤ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭⑥()r AB ≤{}min (),()r A r B⑦ ,,()()()m n n s A B r AB r A r B ⨯⨯=⇒+若且0≤n ⑧()()A r AB r B ⇒=若可逆()()B r AB r A ⇒=若可逆⑨若0()()()m n Ax r A n r AB r B ⨯⇔=⎧=⇒⎨=⎩ 只有零解且A 在矩阵乘法中有左消去律0AB B AB AC B C=O ⇒=⎧⎨=⇒=⎩;若()()()n s r B n r AB r B ⨯=⇒= 且B 在矩阵乘法中有右消去律.√ 初等矩阵的性质:1212,,,0,,,()()A n n Ax n Ax A Ax r A r A Ax n βαααβαααβββ⇔=<⇔⇒⇔=−−−−−→=⇔=⇔=⇔==L L M 当为方阵时有无穷多解 表示法不唯一线性相关有非零解0 可由线性表示有解有唯一组解 1212,,,0()(),,,()(A n n Ax A r A r A Ax r A r αααββαααβ⎧⎪⎪⎪⎪⎨⎪⎪⇔⎪⇒⇔=−−−−−→≠⇒⎪⎩⇔≠⇔=⇔<L ML 当为方阵时表示法唯一 线性无关只有零解0克莱姆法则 不可由线性表示无解)()1()A r A r A ββ⎧⎪⎨⎪⇔+=⎩M M注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M M L 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭L M 11212(,,,)n n x x x αααβ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解是的两个解是其导出组的解211212112212112212),0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解 √ 设A 为m n ⨯矩阵,若()r A m =,⇒()()r A r A β=M⇒Ax β=一定有解, 当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM和的上限.n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+1212(,)(,)(,)ααβαβαβ+=+(,)(,)(,)c c c αβαβαβ==E A λ-.()E A f λλ-=.√ ()f λ是矩阵A 的特征多项式⇒()f A O =E A λ-=0. Ax x Ax x λ=→ 与线性相关√12n A λλλ=L 1ni A λ=∑tr ,A tr 称为矩阵A √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则λ=0为A 的特征值,且0Ax =的基础解系即为属于λ=0的线性无关的特征向量.√ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L M 、21122()n n A a b a b a b A =+++L ,从而A 的特征值为:11122n n A a b a b a b λ==+++L tr , 23n λλλ====L 0 p 指南358.√ 若A 的全部特征值12,,,n λλλL ,()f A 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλL ;12()()()()n f A f f f λλλ=L② 若A 满足()0f A =,则A 的任何一个特征值必满足()i f λ=0.√ 设1110()m m m m f x a x a x a x a --=++++L ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++L 为A 的一个多项式.√ 1231122,T A m m k kA a b aA bEA A A A A Aλλλλλλλλλλλ-*⎧⎪++⎪⎪⎨=L 是的特征值则:分别有特征值 .⎪⎪⎪⎪⎪⎩√ 1231122,A m m k kA a b aA bEA x A x A A A λλλλλλλλλλ-*⎧⎪++⎪⎪⎪⎨=⎪⎪⎪⎪⎩L 是关于的特征向量则也是关于的特征向量. √ 2,mA A 的特征向量不一定是A 的特征向量.√ A 与T A 有相同的特征值,但特征向量不一定相同.1B P AP -= (P 为可逆矩阵) 记为:A B :1B P AP -= (P 为正交矩阵)A 与对角阵Λ相似. 记为:A Λ: (称Λ是A √ A 可相似对角化⇔()i i n r E A k λ--= i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值.设i α为对应于i λ的线性无关的特征向量,则有:121212112212(,,,)(,,,)(,,,)(,,,)n n n n n n P PA A A A λλααααααλαλαλααααλΛ⎛⎫ ⎪ ⎪=== ⎪ ⎪⎝⎭L L L L O14424431442443144424443. 注:当i λ=0为A 的特征值时,A 可相似对角化⇔i λ的重数()n r A =-= 0Ax =基础解系的个数. √ 若A 可相似对角化,则其非零特征值的个数(重数重复计算)()r A =.√ 若n 阶矩阵A 有n 个互异的特征值,则A 可相似对角化.√ 若A Λ:⇒k A =1k P P -Λ=,1211()()()()()n A P P P P ϕλϕλϕϕϕλ--⎛⎫ ⎪ ⎪=Λ= ⎪ ⎪⎝⎭O √ 相似矩阵的性质:① A B =tr tr② A B = 从而,A B 同时可逆或不可逆③ ()()r A r B =④T T A B :;11A B --: (若,A B 均可逆);**A B :⑤k k A B : (k 为整数);()()f A f B :,()()f A f B =⑥,AB A BCD C D ⎛⎫⎛⎫⇒ ⎪ ⎪⎝⎭⎝⎭::: ⑦E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.注:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. √ 数量矩阵只与自己相似.√ 对称矩阵的性质: ① 特征值全是实数,特征向量是实向量;② 不同特征值对应的特征向量必定正交;注:对于普通方阵,不同特征值对应的特征向量线性无关;③ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;④ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑤ 一定有n 个线性无关的特征向量,A 可能有重的特征值,该特征值i λ的重数=()i n r E A λ--).T AA E =√ A 为正交矩阵⇔A 的n 个行(列)向量构成n ¡的一组标准正交基.√ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则T A ,1A -也是正交阵;⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.1211(,,,)n n T n ij ij i j f x x x x Ax a x x ====∑∑L ij ji a a =,即A 为对称矩阵,12(,,,)T n x x x x =LT B C AC =. 记作:A B ; (,,A B C 为对称阵为可逆阵)二次型的规范形中正项项数p r p -;2p r -. (r 为二次型的秩)√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√ 两个矩阵合同的充分条件是:A B :√ 两个矩阵合同的必要条件是:()()r A r B =√ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由{()r A +正惯性指数负惯性指数 唯一确定的.√ 当标准形中的系数i d 为-1或0或1时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 惯性定理:任一实对称矩阵A 与唯一对角阵111100⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭OOO 合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量;② 对n 个特征向量正交化、单位化;③ 构造C (正交矩阵),作变换x Cy =,则1112221()()T T T T T n n n y d y y d y Cy A Cy y C ACY y C ACY y d y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪=== ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭M O M 新的二次型为21n i i f d y =∑,Λ的主对角上的元素i d 即为A 的特征值.123,,ααα线性无关, 112122111313233121122()()()()()()T T T T T T βααββαβββαβαββαββββββ=⎧⎪⎪⎪⎪=-⎨⎪⎪=--⎪⎪⎩正交化 单位化:111βηβ= 222βηβ= 333βηβ= 技巧:取正交的基础解系,跳过施密特正交化。
线代必备资料:线性代数知识框架(word版)
分块对角阵相乘: A
A11
B11 , B A22
*
B22 AB*
A B AB 11 11
A22 B22
A BA* 分块对角阵的伴随矩阵: B
√ 矩阵方程的解法( A 0 ):设法化成(I)AX B
1 , 2 , , s 线性无关; 1 , 2 , , s 都是 Ax 0 的解;
③ s n r ( A) 每个解向量中自由未知量的个数 .
5
√ 一个齐次线性方程组的基础解系不唯一.
1 2 3 4 5
零向量是任何向量的线性组合,零向量与任何同维实向量正交. 单个零向量线性相关;单个非零向量线性无关. 部分相关,整体必相关;整体无关,部分必无关. 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. 两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关 p教材114 . 向量组 1 , 2 , , n 中任一向量 i (1 ≤ i ≤ n) 都是此向量组的线性组合. 向量组 1 , 2 , , n 线性相关 向量组中至少有一个向量可由其余 n 1 个向量线性表示. 向量组 1 , 2 , , n 线性无关 向量组中每一个向量 i 都不能由其余 n 1 个向量线性表示.
T
CT Dห้องสมุดไป่ตู้
A1 A 分块矩阵的逆矩阵: B A1 A C O B O
1
1
1 B A1CB 1 B
B
A 1 A
1
1
B 1
A1 O A O 1 1 B C B B CA
线性代数高等代数知识点总结
证|A|=0
AX=0有非零解; 反证法;
R(A)<n; A可逆; |A|= - |A|; A的列向量组线性相关; 0是A的特征值;
应用
AX=0有非零解; 伴随矩阵求逆法;
克拉姆法则; A可逆的证明; 线性相关(无关)的判定; 特征值计算。
二、特殊行列式的值
1.三角行列式
a11 a22
* a11
向量组等价:
对于向量组S,T,下列条件等价 1. S和T等价,即S,T可以互相表示 2. S,T的极大无关组等价 3. S,T的秩数相等,且其中之一可由另一表示
23
线性相关与线性表示:
• 1,...,r线性相关当且仅当其中之一可由其余的线性 表示
• 若,1,...,r线性相关,而1,...,r线性无关,则 可由1,...,r线性表示,且表法唯一
线性无关:对于向量组1,...,r下列条件等价 • 1,...,r线性无关
• 当c1,...,cr不全为0时,必有c11+...+crr0 • 当c11+...+crr=0时,必有c1=...=cr=0 • 1,...,r的秩数等于r • (1,...,r)是列满秩矩阵
24
a22
0 a11a22 ann
0
ann *
ann
0
a1n *
a1n
a2(n1)
a2(n1)
n(n1)
(1) 2 a a1n 2(n1) an1
an1
* an1
0
2.范氏行列式
111
x1 x2 x3
x12
x22
x32
x x x n1
n1
n1
1
《线性代数》知识点归纳整理
《线性代数》知识点归纳整理线性代数是一门重要的数学学科,在许多领域都有广泛的应用,如计算机科学、物理学、工程学等。
下面将对线性代数的一些关键知识点进行归纳整理。
一、行列式行列式是线性代数中的一个基本概念。
它是一个数值,可以通过特定的计算规则得到。
对于二阶行列式,其计算公式为:\\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc \对于三阶行列式,计算相对复杂些,可通过按行(列)展开来计算。
行列式具有一些重要的性质,例如:1、行列式转置后其值不变。
2、某行(列)元素乘以一个数加到另一行(列)的对应元素上,行列式的值不变。
行列式的应用包括求解线性方程组、判断矩阵是否可逆等。
二、矩阵矩阵是线性代数中的核心概念之一。
矩阵的定义:由\(m×n\)个数排成的\(m\)行\(n\)列的数表称为\(m×n\)矩阵。
矩阵的运算包括加法、减法、数乘、乘法等。
1、矩阵加法和减法要求两个矩阵具有相同的行数和列数,对应元素相加减。
2、数乘矩阵是将矩阵中的每个元素乘以一个数。
3、矩阵乘法需要前一个矩阵的列数等于后一个矩阵的行数,乘法运算不满足交换律。
矩阵的转置是将矩阵的行和列互换得到的新矩阵。
逆矩阵是一个重要概念,若矩阵\(A\)可逆,则存在矩阵\(B\),使得\(AB = BA = I\),其中\(I\)为单位矩阵。
三、向量向量可以看作是一组有序的数。
行向量是一行数,列向量是一列数。
向量的运算包括加法、减法、数乘。
向量组的线性相关性是一个重要内容。
如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称该向量组线性相关;否则称线性无关。
四、线性方程组线性方程组可以表示为矩阵形式\(Ax = b\)。
线性方程组的解分为有解和无解的情况。
1、有解时,可能有唯一解或无穷多解。
2、无解时,方程组矛盾。
通过高斯消元法可以求解线性方程组。
五、特征值与特征向量对于矩阵\(A\),如果存在非零向量\(x\)和数\(\lambda\),使得\(Ax =\lambda x\),则\(\lambda\)称为矩阵\(A\)的特征值,\(x\)称为对应于特征值\(\lambda\)的特征向量。
《线性代数》知识点归纳整理-大学线代基础知识.docx
《线性代数》知识点归纳整理-⼤学线代基础知识.docx 《线性代数》知识点归纳整理诚毅学⽣编01、余⼦式与代数余⼦式................................................................... - 2 -02、主对⾓线............................................................................. - 2 -03、转置⾏列式........................................................................... - 2 -04、⾏列式的性质......................................................................... - 3 -05、计算⾏列式........................................................................... - 3 -06、矩阵中未写出的元素................................................................... - 4 -07、⼏类特殊的⽅阵....................................................................... - 4 -08、矩阵的运算规则....................................................................... - 4 -09、矩阵多项式........................................................................... - 6 -10、对称矩阵............................................................................. - 6 -11、矩阵的分块........................................................................... - 6 -12、矩阵的初等变换....................................................................... - 6 -13、矩阵等价............................................................................. - 6 -14、初等矩阵............................................................................. - 7 -15、⾏阶梯形矩阵与⾏最简形矩阵......................................................... - 7 -16、逆矩阵............................................................................... - 7 -17、充分性与必要性的证明题............................................................... - 8 -18、伴随矩阵............................................................................. - 8 -19、矩阵的标准形:....................................................................... - 9 -20、矩阵的秩:........................................................................... - 9 -21、矩阵的秩的⼀些定理、推论............................................................. - 9 -22、线性⽅程组概念....................................................................... - 10 -23、齐次线性⽅程组与⾮齐次线性⽅程组(不含向量)......................................... - 10 -24、⾏向量、列向量、零向量、负向量的概念................................................. - 11 -25、线性⽅程组的向量形式................................................................. - 11 -26、线性相关与线性⽆关的概念.......................................................... - 12 -27、向量个数⼤于向量维数的向量组必然线性相关............................................ - 12 -28、线性相关、线性⽆关;齐次线性⽅程组的解;矩阵的秩这三者的关系及其例题................. - 12 -29、线性表⽰与线性组合的概念.......................................................... - 12 -30、线性表⽰;⾮齐次线性⽅程组的解;矩阵的秩这三者的关系其例题.......................... - 12 -31、线性相关(⽆关)与线性表⽰的3个定理................................................. - 12 -32、最⼤线性⽆关组与向量组的秩........................................................... - 12 -33、线性⽅程组解的结构................................................................... - 12 -01、余⼦式与代数余⼦式a 22 a 23对M ii 的解释:划掉第1⾏、第1列,剩下的就是⼀个⼆阶⾏列式a a ,这个 a 32 a 33⾏列式即元素an 的余⼦式M ii 。
线性代数各章知识及脉络图
M M
0 0
0
,n 3
Dn
A
B
a1
b1
,n 1
a1 a2 b1 b2 , n 2
-5-
○2 加边法专辑
加边法的应用:通过升阶获得一些特殊的元素值,从而消去某些元素,使得行列式形式更加简单且特殊,
从而实现计算的简化。
此种方法其实是反向利用 Laplace 展开定理,看似复杂化,其实阶数的增加反倒可以将行列式简单化,更 易发现规律。同时应当注意加边的类型及加边后行列式值不能改变。
1 n2
○3 爪型行列式专辑
爪型行列式形如:
方法:将 D 的第 i+1 列乘以 ci i 1, 2,L , n都加到第 1 列,得
ai
有些行列式经过适当的变化可以化为行列式,再采用上述方法计算。
a1 x x L x a2 x L 【例】: Dn x x a3 L M M MO
x x xL
【例】:计算行列式
令 Dn C C AB ,
a2 1 0 L
a2 1 0 L
C
M
MM
a2 1 0 L
a2 1 0 L
0 1 1 L 0b1 b2 L M 0 0 L 0 M M 0 0 0 L
1 1
bn1 bn
0
0
【例】:
1、设行列式 det A 的元素为 aij ,行列式
n
试证: det D det A x Aij ,其中 Aij 为 aij 在 det A 中的代数余子式。 i, j1
证明:把 det D 升阶得到
n
n
n
线代知识框架
n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。
矩阵与向量通义它的一个线性组合。线性表出定义的是一个向量和另外一组向量之间的相互关系。
利用矩阵的列向量组,我们可以把一个线性方程组有没有解的问题转化为一个向量能否由另外一组向量线性表出的问题。同时要注意这个结论的双向作用。
在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r<n,则方程组有无穷多解。
利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
线性代数知识点
考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量 ① A ② ( A③c( + + A 1.线性运算与转置B B + =) B 反对称矩阵B +A +C = A + ( B + C ) 初等变换分 ) =cA + cB ( c + d ) A = cA +dAA T= 三.矩阵的初等变换,阶梯形矩阵 ⎧ ⎨−A 。
初等行变换初等列变换⎩ 三类初等行变换 ④c ( dA ) = ( cd )A ①交换两行的上下位置⑤ cA = 0 ⇔ c = 0 或 A = 0 。
A → B向量组的线性组合 ②用非零常数 c 乘某一行。
③把一行的倍数加到另一行上(倍加变换)α ,α , Λ ,α ,1 2 s 阶梯形矩阵⎛4 1 0 2 0 ⎞c α + c α + Λ + c α 。
1 12 2 s s ⎜ ⎟ 1 0⎜ 0 − 1 2 5 1 ⎟转置2 1⎜ ⎟0 0 0 2 3 ⎜ ⎟ 4 3 ⎜ ⎟ A 的转置 A T (或 A ′ )0 0 0 0 0 ⎝ ⎠T ①如果有零行,则都在下面。
T ( A ) = A ②各非零行的第一个非 0 元素的列号自上而下严格 单调上升。
TT T ( A ± B ) = A ± B或各行左边连续出现的 0 的个数自上而下严格单调 T T 上升,直到全为 0 。
( c A ) = c ( A ) 。
台角:各非零行第一个非 0 元素所在位置。
简单阶梯形矩阵:3. n 阶矩阵3.台角位置的元素都为 1n 行、 n 列的矩阵。
4.台角正上方的元素都为 0。
对角线,其上元素的行标、列标相等 a , a ,Λ 11 22 每个矩阵都可用初等行变换化为阶梯形矩阵和简单 ⎛ * 0 0 ⎞ ⎜ ⎟ 阶梯形矩阵。
对角矩阵 ⎜ 0 * 0 ⎟ 如果 A 是一个 n 阶矩阵⎜ ⎟ 0 0 * ⎝ ⎠ A 是阶梯形矩阵 ⇒ A 是上三角矩阵,反之不一定,如⎛ 3 0 0 ⎞ ⎜ ⎟ 数量矩阵 0 3 0 = 3E ⎛ 0 0 1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 0 1 0 是上三角,但非阶梯形 0 0 3 ⎜ ⎟ ⎝ ⎠ ⎜ ⎟ 0 0 1 ⎝ ⎠⎛ 1 0 0 ⎞ ⎜ ⎟ 单位矩阵 ⎜ 0 1 0 ⎟ E 或I 四.线性方程组的矩阵消元法 ⎜ ⎟ 0 0 1 ⎝ ⎠ 用同解变换化简方程再求解三种同解变换:⎛ * * * ⎞⎜ ⎟ ①交换两个方程的上下位置。
线代必备资料:线性代数知识框架word版.pdf
a1
a2
a3
1
1 a1
1 a2
1 a3
a3
a2
a1
1
1 a1
1 a2
1 a3
√ 方阵的幂的性质: Am An Amn
( Am )n ( A)mn
√ 设 Amn , Bns , A 的列向量为1,2 ,,n , B 的列向量为 1, 2 , , s ,
b11 b12 b1s
√ 矩阵 Amn 与 Bln 的行向量组等价 齐次方程组 Ax 0 与 Bx 0 同解 PA B (左乘可逆矩阵 P ); p教材101 矩阵 Amn 与 Bln 的列向量组等价 PQ B (右乘可逆矩阵 Q ).
√ 判断1,2 ,,s 是 Ax 0 的基础解系的条件: ① 1,2 ,,s 线性无关; ② 1,2 ,,s 都是 Ax 0 的解; ③ s n r( A) 每个解向量中自由未知量的个数 .
A
B
1
A1
B
1
B
A 1
A1
B1
A
O
C B
1
A1 O
A1CB1
B
A
C
O 1
B
A1 B 1CA1
O
B
4
分块对角阵相乘:
A
A11
A22
,
B
B11
B22
AB
A11B11
A22
B22
分块对角阵的伴随矩阵:
A
*
B
BA*
AB*
√ 矩阵方程的解法( A 0 ):设法化成(I)AX B 或 (II)XA B
A O ②若 A与B 都是方阵(不必同阶),则 O B
OA =
线性代数总结知识点
线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
线性代数知识点归纳
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
线性代数知识点全面总结PPT课件
一、向量组的线性相关性主要知识网络图
运算
概念
n 线性表示
维
判定
向 量 组 的 线
向 量 线性相关
概念
判定 概念
充要条件 充分条件
性 相
线性无关
判定
充要条件
6、n阶方阵的行列式 (1) |AT| = |A|;
(3) |AB| = |A||B| ; (5) |A*| = |A|n-1 .
(2) |kA| = kn|A| ; (4) |A-1| = |A|-1 ;
第6页/共61页
四、典型例题
1、方阵的幂运算 2、求逆矩阵 3、解矩阵方程 4、A*题
第7页/共61页
2.对A经过有限次初等变换得到B, 则A等价B.
~ ~ 求逆,
行
A E E
A1
A E E 列 A1
用途
求矩阵A的秩、最简型、标准形. 求线第性20方页/程共6组1页的解.
概念 性质
初等方阵
对单位矩阵实施一次初等变换而得到的 矩阵称为初等方阵.
三种初等变换对应三种初等方阵.
初等方阵都是可逆矩阵,其逆仍然是同 种的初等矩阵.
4、若AB = E( 或BA =E ), 则B = A-1 。 5、若A为对称矩阵,则AT =A 。 6、若A为反对称矩阵,则AT=-A 。
第4页/共61页
三、重要公式、法则。
1、矩阵的加法与数乘
(1) A + B = B + A ; (2) (A + B ) + C = A + ( B + C ); (3) A + O = O + A = A; (4) A + (-A) = O; (5) k(lA) = (kl)A ; (6) (k+l)A = kA+ lA ; (7) k( A + B )= kA + kB ; (8) 1A = A, OA = O 。
线性代数知识点总结
线性代数知识点总结线性代数是数学中的一个重要分支,研究向量、向量空间、线性变换、矩阵等概念及其性质。
它是许多学科领域的基础,包括物理学、工程学、计算机科学等。
本文将对线性代数的主要知识点进行总结。
1.向量:向量是有方向和大小的量,用箭头表示。
一个向量可以表示一个物体的位移、速度、加速度等。
向量有加法和标量乘法两种运算。
在数学中,一般用坐标表示一个向量,如n维向量可以表示为(x1,x2,...,xn)。
2.向量空间:向量空间是指由一组向量及其运算构成的集合。
它有以下特点:-任意两个向量的加法运算仍为向量空间中的向量。
-向量与标量的乘法运算仍为向量空间中的向量。
-加法运算满足交换律和结合律。
-标量乘法运算满足结合律和分配律。
-向量空间中存在零向量,即加法运算的单位元。
-每一个向量都存在相反向量,即加法运算的逆元。
3.线性变换:线性变换是指将一个向量空间的向量映射到另一个向量空间的向量,并保持向量的线性组合关系。
线性变换有以下特点:-保持向量加法:T(u+v)=T(u)+T(v)。
-保持标量乘法:T(λv)=λT(v)。
-保持零向量:T(0)=0。
4.矩阵:矩阵是一个由元素排列成矩形阵列的数学结构。
矩阵可以表示线性方程组,其中每个方程可以看作是一个向量的线性组合。
矩阵有以下运算:-矩阵加法:对应位置元素相加。
-矩阵数乘:将矩阵的每个元素乘以一个标量。
-矩阵乘法:行乘以列的方式进行运算。
5.矩阵的性质:-矩阵的转置:将矩阵的行转换为列,列转换为行。
-矩阵的逆:若矩阵A与矩阵A的逆矩阵相乘结果为单位矩阵,则称矩阵A可逆。
-矩阵的秩:矩阵的秩是指矩阵中的线性无关行或列的最大数目。
- 矩阵的特征值和特征向量: 矩阵A的特征值是指满足方程det(A-λI)=0的λ值,而对应于特征值的特征向量是指满足方程(A-λI)x=0的非零向量。
6.行列式:行列式是一个将矩阵映射到一个实数的函数。
它用来描述矩阵的面积或体积的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ r(A B)≤ r(A) r(B)
maxr(A),r(B) ≤r(A, B) ≤ r(A) r(B) p教材70
⑤
r
A O
O B
OA B O
r(A) r(B)
r
A O
C B
r(A)
r(B)
⑥ r(AB) ≤ min r(A),r(B)
则
AB Cms
1, 2, , 2n1
bb11
b b12
22
b
b1s
2s
12
s A i ci
b b n1 n2
b
ns
c ,c , ,c
,
(i 1, 2, ,s) i 为
Ax 解
c
的
i
A1, 2,, A,sA, ,A 1 2
向量组的秩 向量组 , , , 的极大无关组所含向量的个数,称为这个向量组的秩.记作 r( , , , )
12
n
12
n
矩阵等价 A 经过有限次初等变换化为 B . 记作: A B
向量组等价 ,1 ,2, 和 n 1 ,,, 可以n 相互线性表示. 记作: 2
④ trE=n;
⑤任意一个 n 维向量都可以用 e 1,e ,2,e 线n性表示.
a
行列式的定义
a11 D 21
aa12 22
a a
n
a n1
an2
ann
1n
2n
(1) ( j1j j2) a na
j1j 2 j n
a1 j 2njj2
1
n
√ 行列式的计算:
①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.
AA
A
注:
a b c d
1
nn
1
d b a d bc c a
② (A E) 初等行变换(EA1
)
或
mn
A aij
A
mn
3
③
a
1
a 2
1 a3
1 a1
1 a2
1 a3
m 维列向量组 ,1 ,2, 线n性无关 r(A) n.
⑨ r(A) 0 A O .
⑩
若
,1
,2,
线性n 无关,而
,
,1,2
,
线性相关,则
n
可由
,
,,1
线性表示,且表示法唯一.
2
n
⑪ 矩阵的行向量组的秩 列向量组的秩 矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.
推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.
②若 A与B 都是方阵(不必同阶),则
A O
O B
A O
=B
A
O
B AB
O B
O
A B
=O
A (1)mn A B
③上三角、下三角、主对角行列式等于主对角线上元素的乘积.
2
④关于副对角线:
an1
a1n O
B
A1
A1
B 1
A O C B
1
A1 B1CA1 B
O
4
分块对角阵相乘:
A
A11
A
,
B
B11
B
22
22
AB
AB
11 11
AB
22 22
A 分块对角阵的伴随矩阵:
√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.
A B T A T CT
√ 分块矩阵的转置矩阵:
C D
B
T
DT
A 分块矩阵的逆矩阵:
1 A1 B
B1
AC O B
1
A1 O
A 1CB1
B
√ 判断 ,1 ,2 , 是s Ax 0的基础解系的条件: ① ,1 ,2 , 线s 性无关; ② ,1 ,2 , 都s 是 Ax 0的解; ③ s n r(A) 每个解向量中自由未知量的个数.
5
√ 一个齐次线性方程组的基础解系不唯一.
① 零向量是任何向量的线性组合,零向量与任何同维实向量正交.
a
21
aa12 22
a a
m1
m2
a
a1n 2n 称为 mn 矩阵.记作:
a
mn
伴随矩阵
A Aij
T
A11 A12
*
A
1n
A 22
A21 A
An1 n2 ,
A
ij
A
2n
为 中各个元素的代数余子式.
A
√ 逆矩阵的求法:
①
1
A
线性代数-知识框架
A可逆
r(A)
n
A的列(行)向量线性无关
A的特征值全不为0
A
0
Ax 0只有零解 x 0,Ax R n , Ax 总有唯一解
0
AA是正定矩阵
A
T
E
A
p
1p
2
p
p
是初等阵
s
i
n
AB E
② 单个零向量线性相关;单个非零向量线性无关.
③ 部分相关,整体必相关;整体无关,部分必无关.
④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.
⑤ 两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关 p
.
教材114
⑥ 向量组 ,1 ,2, 中任n 一向量 (1≤ii ≤ n) 都是此向量组的线性组合.
=-
a b
向量组等价
矩阵等价(
)
矩阵相似(
)
矩阵合同( )
具有
反身性、对称性、传递性
1
√ 关于 e 1,e ,2,e :n
①称为 n 的标准基, n 中的自然基,单位坐标向量 p教材152 ;
② e1,e2,,e 线n 性无关;
③ e1,e 2,,e n1;
⑦ 若Amn , B n,且s r(AB) 0 r(A) r(B) ≤ n ⑧若A可逆 r(AB) r(B) 若B可逆 r(AB) r(A)
⑨若
r(Amn
)
n
Ax r(AB)
0 只有零解 r(B)
AB 且ABA
B0 ; A在C矩阵乘法B 中 C有左消
阵.
s
1 2 s c1,c 2, ,c 可由s
1, 2 , , 线性表示. 同理:C 的行向量能由 B 的行向量线性表示, A 为系数T矩
c ,c , ,c
√ 用对角矩阵 左乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的行向量; n
用对角矩阵 右乘一个矩阵,相当于用 的对角线上的各元素依次乘此矩阵的列向量.
行阶梯形矩阵 可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元
为 1,且这些非零元所在列的其他元素都是0时,称为行最简形矩阵
⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;
矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.
即:矩阵的初等变换不改变矩阵的秩.
6
√ 矩阵的初等变换和初等矩阵的关系:
对 A 施行一次初等行变换得到的矩阵,等于用相应的初等矩阵左乘 A ;
对 A 施行一次初等列变换得到的矩阵,等于用相应的初等矩阵右乘 A .
矩阵的秩 如果矩阵 A 存在不为零的 r 阶子式,且任意 r 1阶子式均为零,则称矩阵 A的秩为 r .记作 r(A) r
1,
2, , , ,n
, 12
n
⑬ 矩阵 A 与 B 等价 PAQ B , P,Q 可逆 r(A) r(B) A, B 作为向量组等价,即:秩相等的向量组不一定等价.
矩阵 A 与 B 作为向量组等价 r( ,1 ,2, ) n r( , 1,,2 ) rn( , ,1 ,2 , ,n,1 ) 2 n 矩阵 A 与 B 等价.
a
2n1
O an1
a1n
a
2n1
( 1)n(n1) 2 a a
an1
1n 2n
O
11
x1
x2
⑤范德蒙德行列式: x12
x22
1
xn
x2n
xi x
ni j1
j
x1n1
xn21
xn1 n
矩阵的定义 由 mn 个数排成的 m 行 n 列的表
A
a11
去律
若 r(Bn)s n r(AB) r(B)
且 B 在矩阵乘法中有右消去律.
√ 初等矩阵的性质: 8
E(i, j) 1 E(i, j) T E(i, j) E(i, j) 1 E(i, j) E(i, j) * E(i, j)