2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲机械波(含解析) 新人教版选修3-4

合集下载

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲力的合成和分解 受力分析新人教版

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲力的合成和分解 受力分析新人教版

第2讲力的合成和分解受力分析对应学生用书P28力的合成Ⅱ(考纲要求)【思维驱动】(单选)(2013·阜宁模拟)图2-2-1一物体受到三个共面共点力F1、F2、F3的作用,三力的矢量关系如图2-2-1所示(小方格边长相等),则下列说法正确的是( ).A.三力的合力有最大值F1+F2+F3,方向不确定B.三力的合力有唯一值3F3,方向与F3同向C.三力的合力有唯一值2F3,方向与F3同向D.由题给条件无法求出合力大小解析考查力的平行四边形定则.对于给定的三个共点力,其大小、方向均确定,则合力的大小唯一、方向确定.排除A、C;根据图表,可先作出F1、F2的合力,不难发现F1、F2的合力方向与F3同向,大小等于2F3,根据几何关系可求出合力大小等于3F3,B对.答案 B【知识存盘】1.合力与分力(1)定义:如果一个力产生的效果跟几个共点力共同作用产生的效果相同,这一个力就叫做那几个力的合力,原来的几个力叫做分力.(2)关系:合力和分力是等效替代的关系.2.共点力:作用在物体的同一点,或作用线的延长线交于一点的力,如图2-2-2所示均是共点力.图2-2-23.力的合成(1)定义:求几个力的合力的过程.(2)运算法则①平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向.②三角形定则:把两个矢量首尾相接,从而求出合矢量的方法.力的分解Ⅱ(考纲要求)【思维驱动】一个竖直向下的180 N的力分解为两个分力,一个分力在水平方向上且等于240 N,求另一个分力的大小.解析根据平行四边形定则作图,如图所示.则F2=F2+F21=300 N.答案300 N【知识存盘】1.定义:求一个已知力的分力的过程.2.遵循原则:平行四边形定则或三角形定则.3.分解方法:①按力产生的效果分解;②正交分解.对应学生用书P28考点一 共点力的合成及合力范围的确定 1.两力合成的几种特殊情况F =F 21+F 22 F =2F 1cos θ2 F =F 1=F 22.合力范围的确定(1)两个共点力的合力范围:|F 1-F 2|≤F ≤F 1+F 2. (2)三个共点力的合成范围①最大值:三个力同向时,其合力最大,为F max =F 1+F 2+F 3.②最小值:以这三个力的大小为边,如果能组成封闭的三角形,则其合力的最小值为零,即F min=0;如果不能,则合力的最小值为F min=F1-|F2+F3|(F1为三个力中最大的力).【典例1】 (单选)图2-2-3如图2-2-3所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P在F1、F2和F3三力作用下保持静止,下列判断正确的是( ).A.F1>F2>F3 B.F3>F1>F2C.F2>F3>F1 D.F3>F2>F1解析由连接点P在三个力作用下静止知,三个力的合力为零,即F1、F2二力的合力F3′与F3等大反向,三力构成的平行四边形如图所示.由数学知识可知F3>F1>F2,B正确.答案 B【变式跟踪1】 (单选)三个共点力大小分别是F1、F2、F3,关于它们的合力F的大小,下列说法中正确的是( ).A.F大小的取值范围一定是0≤F≤F1+F2+F3B.F至少比F1、F2、F3中的某一个大C.若F1∶F2∶F3=3∶6∶8,只要适当调整它们之间的夹角,一定能使合力为零D.若F1∶F2∶F3=3∶6∶2,只要适当调整它们之间的夹角,一定能使合力为零解析合力不一定大于分力,B错,三个共点力的合力的最小值能否为零,取决于任何一个力是否都在其余两个力的合力范围内,由于三个力大小未知,所以三个力的合力的最小值不一定为零,A错;当三个力的大小分别为3a,6a,8a,其中任何一个力都在其余两个力的合力范围内,故C正确,当三个力的大小分别为3a,6a,2a时,不满足上述情况,故D错.答案C,以题说法共点力合成的方法1.作图法2.计算法根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力. 考点二 力的分解 力的效果分解的实例分析【典例2】 (单选)如图2-2-4所示,斜劈静止在水平地面上,有一物体沿斜劈表面向下运动,重力做的功与克服力F 做的功相等.则下列判断中正确的是( ).图2-2-4A.物体可能加速下滑B.物体可能受三个力作用,且合力为零C.斜劈受到地面的摩擦力方向一定水平向左D.撤去F后斜劈一定受到地面的摩擦力解析对物体受力分析如图,由重力做的功与克服力F做的功相等可知,重力的分力G1=F1,若斜劈表面光滑,则物体匀速运动,若斜劈表面粗糙,则物体减速运动,故A错误,B正确.若F N与F f的合力方向竖直向上,则斜劈与地面间无摩擦力,C错误.撤去F后,若F N与F f的合力方向竖直向上,则斜劈与地面间无摩擦力,故D错误.答案 B【变式跟踪2】 (单选)(2013·广州测试)如图2-2-5所示,力F垂直作用在倾角为α的三角滑块上,滑块没被推动,则滑块受到地面的静摩擦力的大小为( ).图2-2-5A.0 B.F cos αC.F sin α D.F tan α解析滑块受力如图.将力F正交分解,由水平方向合力为零可知F f=F sin α,所以C 正确.答案C,以题说法力的分解方法1.效果分解把力按实际效果分解的一般思路2.正交分解 (1)分解原则:以少分解力和容易分解力为原则(2)分解方法:物体受到多个力作用F 1、F 2、F 3……,求合力F 时,可把各力沿相互垂直的x 轴、y 轴分解.x 轴上的合力 F x =F x 1+F x 2+F x 3+… y 轴上的合力 F y =F y 1+F y 2+F y 3+…合力大小:F =F 2x +F 2y合力方向:与x 轴夹角为θ,则tan θ=F y F x. 考点三 受力分析1.定义:把指定物体(研究对象)在特定的物理环境中受到的所有外力都找出来,并画出受力图,这个过程就是受力分析.2.受力分析的一般顺序:先分析场力(重力、电场力、磁场力),再分析接触力(弹力、摩擦力),最后分析其他力.【典例3】 (多选)如图2-2-6所示,在恒力F 作用下,a 、b 两物体一起沿粗糙竖直墙面匀速向上运动,则关于它们受力情况的说法正确的是( ).图2-2-6A.a一定受到4个力B.b可能受到4个力C.a与墙壁之间一定有弹力和摩擦力D.a与b之间一定有摩擦力解析将a、b看成整体,其受力图如图甲所示,说明a与墙壁之间没有弹力和摩擦力作用;对物体b进行受力分析,如图乙所示,b受到3个力作用,所以a受到4个力作用.甲乙答案AD【变式跟踪3】 (单选)(2012·上海卷,8)图2-2-7如图2-2-7所示,光滑斜面固定于水平面,滑块A、B叠放后一起冲上斜面,且始终保持相对静止,A上表面水平,则在斜面上运动时,B受力的示意图为( ).解析以A、B为整体,A、B整体沿斜面向下的加速度a可沿水平方向和竖直方向分解为加速度a∥和a⊥,如图所示,以B为研究对象,B滑块必须受到水平向左的力来产生加速度a∥.因此B受到三个力的作用,即:重力、A对B的支持力、A对B的水平向左的静摩擦力,故只有选项A正确.答案 A,借题发挥1.受力分析的顺序和方法2.对于受力分析的三点提醒(1)只分析研究对象所受的力,不分析研究对象对其他物体所施的力.(2)只分析性质力,不分析效果力.(3)每分析一个力,都应找出施力物体.3.受力分析的基本思路对应学生用书P30物理建模1 绳上的“死结”和“活结”模型物理模型概述物理模型是一种理想化的物理形态,所谓“建模”就是将较复杂的研究对象或物理过程,通过用理想化、简单化、抽象化、类比化等手段,突出事物的本质特征和规律形成样板式的概念、实物体系或情境过程,即物理建模.实际问题模型化是高中阶段处理物理问题的基本思路和方法,当我们遇到实际的运动问。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲动能 动能定理(含解析) 新人教版

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲动能 动能定理(含解析) 新人教版

第2讲 动能 动能定理对应学生用书P66动能 Ⅱ(考纲要求) 【思维驱动】(多选)关于动能,下列说法中正确的是( ).A .动能是普遍存在的机械能中的一种基本形式,凡是运动的物体都有动能B .公式E k =12mv 2中,速度v 是物体相对于地面的速度,且动能总是正值C .一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D .动能不变的物体,一定处于平衡状态 解析答案 AC 【知识存盘】 动能(1)定义:物体由于运动而具有的能叫动能. (2)公式:E k =12mv 2.(3)单位:焦耳,1 J =1 N ·m =1 kg ·m 2/s 2. (4)矢标性:动能是标量,只有正值.(5)状态量:动能是状态量,因为v 是瞬时速度.动能定理 Ⅱ(考纲要求) 【思维驱动】(单选)两辆汽车在同一平直路面上行驶,它们的质量之比m 1∶m 2=1∶2,速度之比v 1∶v 2=2∶1.当两车急刹车后,甲车滑行的最大距离为l 1,乙车滑行的最大距离为l 2,设两车与路面间的动摩擦因数相等,不计空气阻力,则( ). A .l 1∶l 2=1∶2 B .l 1∶l 2=1∶1 C .l 1∶l 2=2∶1 D .l 1∶l 2=4∶1解析 由动能定理,对两车分别列式-F 1l 1=0-12m 1v 21,-F 2l 2=0-12m 2v 22,F 1=μm 1g ,F 2=μm 2g .由以上四式联立得l 1∶l 2=4∶1,故选项D 是正确的. 答案 D 【知识存盘】1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:W =12mv 22-12mv 21.3.物理意义:合外力的功是物体动能变化的量度. 4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.对应学生用书P67考点一 动能定理的简单应用【典例1】 (多选)如图4-2-1所示,图4-2-1电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为H 时,电梯的速度达到v ,则在这个过程中,以下说法中正确的是( ).A .电梯地板对物体的支持力所做的功等于mv 22 B .电梯地板对物体的支持力所做的功大于mv 22C .钢索的拉力所做的功等于mv 22+MgH D .钢索的拉力所做的功大于mv 22+MgH解析 以物体为研究对象,由动能定理W N -mgH =12mv 2,即W N =mgH +12mv 2,选项B 正确、选项A 错误.以系统为研究对象,由动能定理得:W T -(m +M )gH =12(M +m )v 2,即W T =12(M+m )v 2+(M +m )gH >mv 22+MgH ,选项D 正确、选项C 错误.答案 BD【变式跟踪1】 (多选)(2013·启东模拟)图4-2-2人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图4-2-2所示,则在此过程中( ). A .物体所受的合外力做功为mgh +12mv 2 B .物体所受的合外力做功为12mv 2C .人对物体做的功为mghD .人对物体做的功大于mgh解析 物体沿斜面做匀加速运动,根据动能定理:W 合=W F -W f -mgh =12mv 2,其中W f 为物体克服摩擦力做的功.人对物体做的功即是人对物体的拉力做的功,所以W 人=W F =W f +mgh +12mv 2,A 、C 错误,B 、D 正确.答案 BD , 借题发挥1.动能定理公式中“=”的意义(1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功. (2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因. 2.对动能定理的理解(1)动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.(2)利用动能定理可以讨论合力做功或某一个力做功的情况. 考点二 动能定理在多过程中的应用 【典例2】 如图4-2-3所示,图4-2-3竖直面内有一粗糙斜面AB ,BCD 部分是一个光滑的圆弧面,C 为圆弧的最低点,AB 正好是圆弧在B 点的切线,圆心O 与A 、D 点在同一高度,∠OAB =37°,圆弧面的半径R =3.6 m ,一滑块质量m =5 kg ,与AB 斜面间的动摩擦因数μ=0.45,将滑块由A 点静止释放.求在以后的运动中:(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2) (1)滑块在AB 段上运动的总路程;(2)在滑块运动过程中,C 点受到的压力的最大值和最小值.规范解答 (1)由于滑块在AB 段受摩擦力作用,则滑块做往复运动的高度将越来越低,最终以B 点为最高点在光滑的圆弧面往复运动.设滑块在AB 段上运动的总路程为x .滑块在AB 段上受摩擦力,F f =μF N =μmg cos θ① 从A 点出发到最终以B 点为最高点做往复运动,根据动能定理有:mgR cos θ-F f x =0② 联立①②式解得x =Rμ=8 m.(2)滑块第一次过C 点时,速度最大,设为v 1,分析受力知此时滑块受轨道支持力最大,设为F max ,从A 到C ,根据动能定理有mgR -F f l AB =12mv 21③斜面AB 的长度l AB =R cot θ④根据受力分析以及向心力公式知F max -mg =mv 21R⑤代入数据可得F max =102 N.当滑块以B 为最高点做往复运动的过程中过C 点时速度最小,设为v 2,此时滑块受轨道支持力也最小,设为F min从B 到C ,根据动能定理有:mgR (1-cos θ)=12mv 22⑥根据受力分析及向心力公式有:F min -mg =mv 22R⑦代入数据可得:F min =70 N.根据牛顿第三定律可知C 点受到的压力最大值为102 N ,最小值为70 N. 答案 (1)8 m (2)102 N 70 N【变式跟踪2】 如图4-2-4所示,粗糙水平地面AB 与半径R =0.4 m 的光滑半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量m =2 kg的小物块在9 N 的水平恒力F 的作用下,从A 点由静止开始做匀加速直线运动.图4-2-4已知AB =5 m ,小物块与水平地面间的动摩擦因数为μ=0.2.当小物块运动到B 点时撤去力F .取重力加速度g =10 m/s 2.求: (1)小物块到达B 点时速度的大小;(2)小物块运动到D 点时,轨道对小物块作用力的大小;(3)小物块离开D 点落到水平地面上的点与B 点之间的距离. 解析 (1)从A 到B ,根据动能定理有(F -μmg )x AB =12mv 2B得v B =2(F -μmg )x ABm=5 m/s(2)从B 到D ,根据动能定理有 -mg ·2R =12mv 2D -12mv 2B得v D =v 2B -4Rg =3 m/s在D 点,根据牛顿运动定律有F N +mg =mv 2DR得F N =m v 2DR-mg =25 N(3)由D 点到落点小物块做平抛运动,在竖直方向上有 2R =12gt 2得t =4R g=4×0.410s =0.4 s 水平地面上落点与B 点之间的距离为x =v D t =3×0.4 m =1.2 m.答案 (1)5 m/s (2)25 N (3)1.2 m ,借题发挥1.应用动能定理的技巧(1)动能定理虽然是在恒力作用、直线运动中推导出来的,但也适用于变力作用、曲线运动的情况.(2)动能定理是标量式,不涉及方向问题.在不涉及加速度和时间的问题时,可优先考虑动能定理.(3)对于求解多个过程的问题可全过程考虑,从而避开考虑每个运动过程的具体细节,具有过程简明、运算量小等优点. 2.应用动能定理的解题步骤考点三 用动能定理求变力的功【典例3】 如图4-2-5甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始物块受到如图乙所示规律变化的水平力F 的作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,(g =10 m/s 2)求:图4-2-5(1)A 与B 间的距离.(2)水平力F 在前5 s 内对物块做的功.解析 (1)A 、B 间的距离与物块在后2 s 内的位移大小相等,在后2 s 内物块在水平恒力作用下由B 点匀加速运动到A 点,由牛顿第二定律知F -μmg =ma ,代入数值得a =2 m/s 2,所以A 与B 间的距离为s =12at 2=4 m.(2)前3 s 内物块所受力F 是变力,设整个过程中力F 做的功为W ,物体回到A 点时速度为v ,则v 2=2as ,由动能定理知W -2μmgs =12mv 2,所以W =2μmgs +mas =24 J.答案 (1)4 m (2)24 J【变式跟踪3】 (单选)如图4-2-6所示,图4-2-6质量为m 的物块与转台之间的最大静摩擦力为物块重力的k 倍,物块与转轴OO ′相距R ,物块随转台由静止开始转动,转速缓慢增大,当转速增加到一定值时,物块即将在转台上滑动,在物块由静止到滑动前的这一过程中,转台的摩擦力对物块做的功最接近( ).A .0B .2πkmgRC .2kmgR D.12kmgR解析 在转速增加的过程中,转台对物块的摩擦力是不断变化的,当转速增加到一定值时,物块在转台上即将滑动,说明此时静摩擦力F f 达到最大,其指向圆心的分量F 1提供向心力,即F 1=m v 2R①由于转台缓慢加速,使物块加速的分力F 2很小,因此可近似认为F 1=F f =kmg ② 在这一过程中对物块由动能定理,有W f =12mv 2③由①②③知,转台对物块所做的功W 1=12kmgR .答案 D,借题发挥应用动能定理求变力做功时应注意的问题1.所求的变力的功不一定为总功,故所求的变力的功不一定等于ΔE k . 2.合外力对物体所做的功对应物体动能的变化,而不是对应物体的动能.3.若有多个力做功时,必须明确各力做功的正负,待求的变力的功若为负功,可以设克服该力做功为W,则表达式中应用-W;也可以设变力的功为W,则字母W本身含有负号.对应学生用书P69命题热点3 动能定理的应用命题专家评述考情分析:近三年我省高考试题对牛顿第二定律与动能定理的综合应用的考查是高频考点,3年3考.高考题型:即有选择题也有计算题.命题趋势:2014年高考将既有对动能定理单独考查,也可能有与曲线运动、电磁学等内容相结合的综合考查,对单独考查的题目多为选择题,动能定理与其他知识的综合,与生产、生活实际和现代科技相结合进行命题多为计算题,难度较大.阅卷教师叮咛易失分点(1)动能定理中的功是合力做的功,易误将某个力的功当作合力的功或者将研究对象对外做的功也算入总功之中;(2)不明确各力做正、负功的情况.(3)易错误地将动能定理当成矢量式,列分方向的动能定理;(4)利用动能定理解决多过程问题时,常常使合力做功对应的过程和初末动能对应的过程不统一造成错误.应对策略运用动能定理规范答题模板解:设……为……对……过程由动能定理得:……(具体问题的原始方程)联立以上各式(或联立①②式)得:……(由已知量符号表示)=……=“结果”(代入数据得结果,并注意待求量的数值及单位,需要时加以讨论)。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲磁场对运动电荷的作用含解析) 新人教版

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲磁场对运动电荷的作用含解析) 新人教版

第2讲磁场对运动电荷的作用对应学生用书P149洛伦兹力Ⅱ(考纲要求)【思维驱动】(单选)(2013·黄山检测)下列各图中,运动电荷的速度方向、磁感应强度方向和电荷的受力方向之间的关系正确的是( ).解析根据左手定则,A中F方向应向上,B中F方向应向下,故A错、B对.C、D中都是v∥B,F=0,故C、D都错.答案 B【知识存盘】1.洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力.2.洛伦兹力的方向(1)判定方法:左手定则:掌心——磁感线垂直穿入掌心;四指——指向正电荷运动的方向或负电荷运动的反方向;拇指——指向洛伦兹力的方向.(2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面.3.洛伦兹力的大小(1)ν∥B时,洛伦兹力F=0.(θ=0°或180°)(2)ν⊥B时,洛伦兹力F=qvB.(θ=90°)(3)ν=0时,洛伦兹力F=0.带电粒子在匀强磁场中的运动Ⅱ (考纲要求)【思维驱动】试画出下图中几种情况下带电粒子的运动轨迹,并说出其运动性质.答案【知识存盘】1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)质谱仪和回旋加速器的基本原理 Ⅰ (考纲要求) 【思维驱动】(多选)如图8-2-1所示,图8-2-1一个质量为m 、电荷量为e 的粒子从容器A 下方的小孔S ,无初速度地飘入电势差为U 的加速电场,然后垂直进入磁感应强度为B 的匀强磁场中,最后打在照相底片M 上.下列说法正确的是( ). A .粒子进入磁场时的速率v =2eUmB .粒子在磁场中运动的时间t =2πmeBC .粒子在磁场中运动的轨道半径r =1B2mUeD .若容器A 中的粒子有初速度,则粒子仍将打在照相底片上的同一位置 解析 在加速电场中由动能定理得eU =12mv 2,所以粒子进入磁场时的速度v =2eUm,A 正确;由evB =m v 2r 得粒子的半径r =mv eB =1B 2mUe,C 正确;粒子在磁场中运动了半个周期t =T 2=πmeB,B 错误;若容器A 中的粒子有初速度,则粒子在磁场中做匀速圆周运动的半径发生变化,不能打在底片上的同一位置,D 错误. 答案 AC 【知识存盘】 1.质谱仪图8-2-2(1)构造:如图8-2-2所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB=mv 2r. 由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B__m =qr 2B 22U ,q m =2U B 2r2.图8-2-32.回旋加速器(1)构造:如图8-2-3所示,D 1、D 2是半圆金属盒,D 形盒的缝隙处接交流电源.D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2R ,得E km =q 2B 2R 22m,可见粒子获得的最大动能由磁感应强度和D 形盒半径决定,与加速电压无关.记一记1.运动电荷在磁场中不一定受洛伦兹力作用. 2.左手判断洛伦兹力方向,但一定分正、负电荷. 3.洛伦兹力一定不做功.4.当v ⊥B 时粒子做匀速圆周运动.5.回旋加速器⎩⎪⎨⎪⎧原理:电场中加速、磁场中偏转T 电=T 磁=2πm qB qU =12mv 22-12mv21特点:可在同一电场中多次被加速而不受电压限制对应学生用书P151考点一 洛伦兹力的特点及应用 【典例1】 (单选)如图8-2-4所示,图8-2-4在竖直绝缘的平台上,一个带正电的小球以水平速度v 0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点( ). A .仍在A 点 B .在A 点左侧 C .在A 点右侧 D .无法确定解析 洛伦兹力虽不做功,但可以改变小球的运动状态(改变速度的方向),小球做曲线运动,在运动中任一位置受力如图所示,小球受到了斜向上的洛伦兹力的作用,小球在竖直方向的加速度a y =mg -qvB cos θm<g ,故小球平抛的时间将增加,落点应在A 点的右侧.答案 C【变式跟踪1】 (多选)如图8-2-5所示,图8-2-5ABC 为竖直平面内的光滑绝缘轨道,其中AB 为倾斜直轨道,BC 为与AB 相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则( ). A .经过最高点时,三个小球的速度相等 B .经过最高点时,甲球的速度最小 C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变解析 设磁感应强度为B ,圆形轨道半径为r ,三个小球质量均为m ,它们恰好通过最高点时的速度分别为v 甲、v 乙和v 丙,则mg +Bvq 甲=mv 2甲r ,mg -Bvq 乙=mv 2乙r ,mg =mv 2丙r,显然,v 甲>v 丙>v 乙,选项A 、B 错误;三个小球在运动过程中,只有重力做功,即它们的机械能守恒,选项D 正确;甲球在最高点处的动能最大,因为势能相等,所以甲球的机械能最大,甲球的释放位置最高,选项C 正确.答案 CD ,借题发挥1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面. (2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)用左手定则判断负电荷在磁场中运动所受的洛伦兹力方向时,要注意判断结果与正电荷恰好相反.(4)洛伦兹力对运动电荷(或带电体)不做功,不改变速度的大小,但它可改变运动电荷(或带电体)速度的方向,影响带电体所受其他力的大小,影响带电体的运动时间等. 2.洛伦兹力与安培力的联系及区别(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力. (2)安培力可以做功,而洛伦兹力对运动电荷不做功.考点二 带电粒子在匀强磁场中的运动 【典例2】 (单选)(2012·安徽卷,19)图8-2-6如图8-2-6所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( ).A.12Δt B .2Δt C.13Δt D .3Δt解析 设带电粒子以速度v 进入磁场做圆周运动,圆心为O 1,半径为r 1,则根据qvB =mv 2r ,得r 1=mv qB ,根据几何关系得R r 1=tan φ12,且φ1=60°.当带电粒子以13v 的速度进入时,轨道半径r 2=m ·13vqB =mv 3qB =13r 1,圆心在O 2,则R r 2=tan φ22,即tan φ22=R r 2=3Rr 1=3tan φ12= 3.故φ22=60°,φ2=120°;带电粒子在磁场中运动的时间t =φ360°T ,所以Δt 2Δt 1=φ2φ1=21,即Δt 2=2Δt 1=2Δt ,故选项B 正确,选项A 、C 、D 错误. 答案 B【变式跟踪2】 如图8-2-7(a)所示,图8-2-7在以直角坐标系xOy 的坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直xOy 所在平面向里的匀强磁场.一带电粒子由磁场边界与x 轴的交点A 处,以速度v 0沿x 轴负方向射入磁场,粒子恰好能从磁场边界与y 轴正半轴的交点C 处,沿y 轴正方向射出磁场,不计带电粒子所受重力. (1)①粒子带何种电荷;②求粒子的比荷qm.(2)若磁场的方向和所在空间的范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,粒子射出磁场时速度的方向相对于入射方向改变了θ角,如图(b)所示,求磁感应强度B ′的大小. 解析 (1)①粒子带负电;②由几何关系可知,粒子的运动轨迹如图甲所示,其半径R =r ,粒子所受的洛伦兹力等于它做匀速圆周运动时所受的向心力即qv 0B =m v 20R ,则q m =v 0Br.(2)粒子的运动轨迹如图乙所示,设其半径为R ′,粒子所受的洛伦兹力提供它做匀速圆周运动的向心力,即qv 0B ′=mv 20R ′,又因为tan θ2=r R ′,解得B ′=B tan θ2.答案 (1)①负电 ②v 0Br (2)B tan θ2,以题说法1.带电粒子在磁场中做匀速圆周运动的分析方法2.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点. (2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍.考点三 有界磁场中的临界问题 【典例3】 如图8-2-8所示,图8-2-8在0≤x ≤a 、0≤y ≤a2范围内垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0°~90°范围内.已知粒子在磁场中做圆周运动的半径介于a2到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的 (1)速度的大小.(2)速度方向与y 轴正方向夹角的正弦. 教你审题。

2014届高考物理一轮复习课件(考纲解读+考点探究+高分技巧):选修3-4 第2讲 机械波(78张ppt,含详解)

2014届高考物理一轮复习课件(考纲解读+考点探究+高分技巧):选修3-4 第2讲 机械波(78张ppt,含详解)

活页限时训练
横波的图象 Ⅱ(考纲要求)
【思维驱动】
如图12-2-1所示为一列沿x轴 负方向传播的简谐横波在t=0时 的波形图,当Q点在t=0时的振动 状态传到P点时,则 图12-2-1 ( A.1 cm<x<3 cm范围内的质点正在向y轴的负方向运动 ).
B.Q处的质点此时的加速度沿y轴的正方向
C.Q处的质点此时正在波峰位置 D.Q处的质点此时运动到P处
考纲自主研读 考点互动探究 随堂基础演练 活页限时训练
Байду номын сангаас析
由波沿x轴负方向传播知,
当Q点在t=0时的振动状态传到
P点时,波形如图中虚线所示, 所以此时1 cm<x<2 cm范围内的质点正在向y轴正方向运动, 因此选项A错误;Q处质点此时正在波谷位臵,加速度沿y轴 的正方向,故选项B正确、选项C错误;波传播的是振动的
考纲自主研读 考点互动探究 随堂基础演练 活页限时训练
4A 位移为
3.机械波的分类 (1)横波:质点的振动方向与波的传播方向相互 波,有 波峰 (凸部)和 波谷 (凹部). 同一直线 的波, 垂直 的
(2)纵波:质点的振动方向与波的传播方向在
有 密部 和 疏部 .
考纲自主研读
考点互动探究
随堂基础演练
【知识存盘】
1.波长:在波动中,振动相位总是
的距离,用λ表示.
相同
的两个相邻质点间
2.波速:波在介质中的传播速度.由 介质 3.频率:由 波源
λ ②v=T
本身的性质决定.
决定,等于
波源
的振动频率.
4.波长、波速和频率的关系
①v=λf
考纲自主研读
考点互动探究

2014届高考物理一轮 考纲自主研读+命题探究+高考全程解密 第2讲法拉第电磁感应定律互感自感含解析 新人教版

2014届高考物理一轮 考纲自主研读+命题探究+高考全程解密 第2讲法拉第电磁感应定律互感自感含解析 新人教版

第2讲 法拉第电磁感应定律 互感 自感对应学生用书P170法拉第电磁感应定律 Ⅱ(考纲要求) 【思维驱动】(单选)将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( ). A .感应电动势的大小与线圈的匝数无关 B .穿过线圈的磁通量越大,感应电动势越大 C .穿过线圈的磁通量变化越快,感应电动势越大 D .感应电流产生的磁场方向与原磁场方向始终相同解析 由法拉第电磁感应定律E =n ΔΦΔt 知,感应电动势的大小与线圈匝数有关,A 错.感应电动势正比于ΔΦΔt ,与磁通量的大小无直接关系,B 错误、C 正确.根据楞次定律知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即“增反减同”,D 错误. 答案 C 【知识存盘】 1.感应电动势(1)概念:在电磁感应现象中产生的电动势;(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关. (3)方向判断:感应电动势的方向用楞次定律或右手定则判断.2.法拉第电磁感应定律(1)内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即I =ER +r.3.导体切割磁感线时的感应电动势(1)导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度.(2)导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E =Blv -=12Bl 2ω(平均速度等于中点位置的线速度12l ω).互感、自感 Ⅰ(考纲要求) 【思维驱动】(多选)在如图9-2-1所示的电路中,图9-2-1A 1和A 2是两个相同的灯泡,线圈L 的自感系数足够大,电阻可以忽略不计.下列说法中正确的是( ).A .合上开关S 时,A 2先亮,A 1后亮,最后一样亮B .断开开关S 时,A 1和A 2都要过一会儿才熄灭C .断开开关S 时,A 2闪亮一下再熄灭D .断开开关S 时,流过A 2的电流方向向右解析 合上开关S 时,线圈L 中产生的自感电动势阻碍电流增大,并且阻碍作用逐渐变小直至为零,故A 2先亮,A 1后亮,最后一样亮.选项A 正确.断开开关S 时,线圈L 中产生的自感电动势阻碍电流减小,因电路稳定时通过A 1和A 2的电流大小相等,故断开开关S 时,A 1和A 2都逐渐熄灭,流过A 2的电流方向向左.选项B 正确,C 、D 错误. 答案 AB 【知识存盘】 1.互感现象(1)互感:两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫互感.(2)应用;利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器、收音机的磁性天线.(3)危害;互感现象能发生在任何两个相互靠近的电路之间,电力工程和电子电路中,有时会影响电路正常工作.2.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感.(2)自感电动势①定义:在自感现象中产生的感应电动势叫做自感电动势. ②表达式:E =L ΔIΔt .(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关. ②单位:亨利(H),1 mH =10-3H ,1 μH =10-6H.1.对公式E =n ΔΦΔt的理解2.公式E =BLv 与公式E =n ΔΦΔt的比较对应学生用书P171考点一 法拉第电磁感应定律E =n ΔΦΔt 的应用【典例1】 (单选)(2012·课标全国卷,19)图9-2-2如图9-2-2所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔBΔt的大小应为( ). A.4ωB 0π B.2ωB 0π C.ωB 0π D.ωB 02π解析 当线框绕过圆心O 的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r ,导线框的电阻为R ,即I 1=E R =ΔΦR Δt =B 0ΔSR Δt=12πr 2B 0R πω=B 0r 2ω2R .当线圈不动,磁感应强度变化时,I 2=E R =ΔΦR Δt =ΔBS R Δt =ΔB πr 2Δt 2R ,因I 1=I 2,可得ΔB Δt =ωB 0π,C 选项正确. 答案 C【变式跟踪1】 (单选)一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为( ). A.12B .1C .2D .4 解析 设原磁感应强度是B ,线框面积是S .第1 s 内ΔΦ1=2BS -BS =BS ,第2 s 内ΔΦ2=2B ·S 2-2BS =-BS .因为E =n ΔΦΔt,所以两次电动势大小相等,B 正确.答案 B ,借题发挥1.磁通量变化通常有两种方式(1)磁感应强度B 不变,垂直于磁场的回路面积发生变化,此时E =nB ΔSΔt;(2)垂直于磁场的回路面积不变,磁感应强度发生变化,此时E =n ΔB Δt S ,其中ΔBΔt 是B -t图象的斜率.2.决定感应电动势E 大小的因素 (1)E 的大小决定于ΔΦΔt(2)E 的大小决定于线圈的匝数. 特别提醒(1)E 的大小与Φ、ΔΦ的大小无必然联系. (2)Φ=0时,ΔΦΔt不一定为零.3.应用法拉第电磁感应定律求解问题的一般步骤 (1)分析穿过闭合电路的磁场方向及磁通量的变化情况; (2)利用楞次定律确定感应电流的方向;(3)灵活选择法拉第电磁感应定律的不同表达形式列方程求解. 考点二 导体切割磁感线产生感应电动势的计算 【典例2】 (多选)(2012·四川卷,20)图9-2-3半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图9-2-3所示.则( ). A .θ=0时,杆产生的电动势为2Bav B .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0解析 当θ=0时,杆切割磁感线的有效长度l 1=2a ,所以杆产生的电动势E 1=Bl 1v =2Bav ,选项A 正确.此时杆上的电流I 1=E 1(πa +2a )R 0=2Bv(π+2)R 0,杆受的安培力大小F 1=BI 1l 1=4B 2av(π+2)R 0,选项C 错误.当θ=π3时,杆切割磁感线的有效长度l 2=2a cos π3=a ,杆产生的电动势E 2=Bl 2v =Bav ,选项B 错误.此时杆上的电流I 2=E 2⎝ ⎛⎭⎪⎫2πa -2πa 6+a R=3Bv(5π+3)R 0,杆受的安培力大小F 2=BI 2l 2=3B 2av(5π+3)R 0,选项D 正确.答案 AD 【变式跟踪2】图9-2-4(多选)如图9-2-4所示,水平放置的U 形框架上接一个阻值为R 0的电阻,放在垂直纸面向里的、磁感应强度大小为B 的匀强磁场中,一个半径为L 、质量为m 的半圆形硬导体AC 在水平向右的恒定拉力F 作用下,由静止开始运动距离d 后速度达到v ,半圆形硬导体AC 的电阻为r ,其余电阻不计.下列说法正确的是( ). A .此时AC 两端电压为U AC =2BLv B .此时AC 两端电压为U AC =2BLvR 0R 0+rC .此过程中电路产生的电热为Q =Fd -12mv 2D .此过程中通过电阻R 0的电荷量为q =2BLdR 0+r解析 AC 的感应电动势为E =2BLv ,两端电压为U AC =ER 0R 0+r =2BLvR 0R 0+r,A 错、B 对;由功能关系得Fd =12mv 2+Q +Q μ,C 错;此过程中平均感应电流为I -=2BLd(R 0+r )Δt,通过电阻R 0的电荷量为q =I -Δt =2BLdR 0+r,D 对. 答案 BD ,借题发挥1.理解E =Blv 的“四性”(1)正交性:本公式是在一定条件下得出的,除磁场为匀强磁场外,还需B 、l 、v 三者互相垂直.(2)瞬时性:若v 为瞬时速度,则E 为相应的瞬时感应电动势. (3)有效性:公式中的l 为导体切割磁感线的有效长度.(4)相对性:E =Blv 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系. 2.电荷量的计算计算通过导线横截面的电荷量一定要用平均电流乘以时间.即由q =I -Δt ,I -=E -R 总,E -=nΔΦΔt ,可导出电荷量q =n ΔΦR 总.对应学生用书P173疑难突破6 电磁感应中的图象问题 常考类型1.由给定的电磁感应过程选出或画出正确的图象;2.由给定的有关图象分析电磁感应过程,求解相应的物理量. 易失分点1.由于疏忽把物理量的正负判断错误; 2.把物理量的关系分析错误;3.忽视了图象的横轴表示的物理量而错选答案,如有些题目横轴表示位移x ,仍当作时间t 导致出错. 突破策略1.电磁感应图象问题的求解的关键弄清初始条件,正、负方向的对应,变化范围,所研究物理量的函数表达式,进出磁场的转折点是解题的关键. 2.一般解题步骤(1)明确图象的种类,即是B -t 图还是Φ-t 图,或者是E -t 图、I -t 图等. (2)分析电磁感应的具体过程判断对应的图象是否分段,共分几段. (3)用右手定则或楞次定律确定感应电流的方向.(4)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律写出函数关系式.(5)根据函数关系式,进行数学分析.(6)画图象或判断图象.典例(单选)(2012·课标全国卷,20)如图9-2-5所示,图9-2-5一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是( ).审题流程解析因通电导线周围的磁场离导线越近磁场越强,而线框中左右两边的电流大小相等,方向相反,所以受到的安培力方向相反,导线框的左边受到的安培力大于导线框的右边受到的安培力,所以合力与左边框受力的方向相同.因为线框受到的安培力的合力先水平向左,后水平向右,根据左手定则,导线框处的磁场方向先垂直纸面向里,后垂直纸面向外,根据安培定则,导线中的电流先为正,后为负,所以选项A正确,选项B、C、D错误.答案 A。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲理想变压器 电能的输送 传感器(含解析

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲理想变压器 电能的输送 传感器(含解析

第2讲 理想变压器 电能的输送 传感器对应学生用书P189理想变压器 Ⅱ(考纲要求) 【思维驱动】图10-2-1(单选)一输入电压为220 V , 输出电压为36 V 的变压器副线圈烧坏.为获知此变压器原、副线圈匝数,某同学拆下烧坏的副线圈,用绝缘导线在铁芯上新绕了5匝线圈,如图10-2-1所示,然后将原线圈接到220 V 交流电源上,测得新绕线圈的端电压为1 V .按理想变压器分析,该变压器烧坏前的原、副线圈匝数分别为( ). A .1 100,360 B .1 100,180 C .2 200,180 D .2 200,360解析 根据U 1U 2=n 1n 2可得2201=n 15,可知n 1=1 100.排除C 、D 两项.再由22036=n 1n 2可知n 2=180,故A 错、B 对. 答案 B 【知识存盘】1.构造:如图10-2-2所示,变压器是由闭合铁芯和绕在铁芯上的两个线圈组成的.图10-2-2(1)原线圈:与交流电源连接的线圈,也叫初级线圈. (2)副线圈:与负载连接的线圈,也叫次级线圈.2.原理:电流磁效应、电磁感应. 3.基本关系式(1)功率关系:P 入=P 出.(2)电压关系:U 1n 1=U 2n 2;有多个副线圈时,U 1n 1=U 2n 2=U 3n 3=…. (3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1.由P 入=P 出及P =UI 推出有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n . 4.几种常用的变压器 (1)自耦变压器——调压变压器(2)互感器⎩⎪⎨⎪⎧电压互感器:用来把高电压变成低电压W.电流互感器:用来把大电流变成小电流W.电能的输送 Ⅰ(考纲要求) 【思维驱动】(单选)(2013·江西重点中学联考)照明供电线路的路端电压基本上是保持不变的.可是我们在晚上七、八点钟用电高峰时开灯,电灯比深夜时要显得暗些.这是因为用电高峰时( ).A .总电阻比深夜时大,供电线路上的电流小,每盏灯两端的电压较低B .总电阻比深夜时大,供电线路上的电流小,通过每盏灯的电流较小C .总电阻比深夜时小,供电线路上的电流大,输电线上损失的电压较大D .供电线路上的电流恒定,但开的灯比深夜时多,通过每盏灯的电流小解析 照明供电线路的用电器是并联的,晚上七、八点钟用电高峰时,用电器越多,总电阻越小,供电线路上的电流越大,输电线上损失的电压较大,用户得到的电压较小,所以C 正确. 答案 C 【知识存盘】1.输电过程(如图10-2-3所示)图10-2-32.输电导线上的能量损失:主要是由输电线的电阻发热产生的,表达式为Q =I 2Rt . 3.电压损失(1)ΔU =U -U ′;(2)ΔU =IR . 4.功率损失(1)ΔP =P -P ′;(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R . 5.输送电流 (1)I =P U ;(2)I =U -U ′R.传感器 Ⅰ(考纲要求) 【思维驱动】(多选)(2011·江苏卷,6)美国科学家Willard S .Boyle 与George E .Smith 因电荷耦合器件(CCD)的重要发明荣获2009年度诺贝尔物理学奖.CCD 是将光学量转变成电学量的传感器.下列器件可作为传感器的有( ). A .发光二极管 B .热敏电阻 C .霍尔元件 D .干电池解析 发光二极管有单向导电性,A 错;热敏电阻和霍尔元件都可作为传感器,B 、C 对;干电池是电源,D 错. 答案 BC 【知识存盘】 1.传感器(1)定义:感受非电学量,并能把它们按照一定的规律转换为电学量,或转换为电路的通断的一类元件. (2)工作原理2.传感器的基本元件 (1)光敏电阻①特点:电阻值随光照增强而减小.②原理:光敏电阻由半导体材料制成,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好.③作用:把光照强弱这个光学量转换为电阻这个电学量. (2)热敏电阻和金属热电阻(3)霍尔元件①组成:在一个很小的矩形半导体薄片上,制作4个电极E 、F 、M 、N ,就成为一个霍尔元件.图10-2-4②原理:E 、F 间通入恒定的电流I ,同时外加与薄片垂直的磁场B 时,薄片中的载流子就在洛伦兹力作用下,向着与电流和磁场都垂直的方向漂移,使M 、N 间出现电压(如图10-2-4所示).③霍尔电压:U H =k IB d,d 为薄片厚度,k 为霍尔系数.一个霍尔元件的d 、k 为定值,若保持I 恒定,则U H 的变化就与B 成正比.④作用:把磁感应强度这个磁学量转换为电压这个电学量. 3.传感器的原理分析 (1)感受量分析要明确传感器所感受的物理量,如力、热、光、磁、声等. (2)输出信号分析明确传感器的敏感元件,分析它的输入信号及输出信号,以及输入信号与输出信号间的变化规律.(3)电路结构分析认真分析传感器所在的电路结构,在熟悉常用电子元件工作特点基础上,分析电路输出信号与输入信号间的规律.远距离高压输电的几个基本关系对应学生用书P191考点一 理想变压器基本规律的应用图10-2-5【典例1】 (单选)(2012·海南卷,4)如图10-2-5所示,理想变压器原、副线圈匝数比为20∶1,两个标有“12 V ,6 W ”的小灯泡并联在 副线圈的两端.当两灯泡都正常工作时,原线圈电路中电压表和电流表(可视为理想的)的示数分别是( ). A .120 V ,0.10 A B .240 V ,0.025 A C .120 V ,0.05 A D .240 V ,0.05 A解析 副线圈电压U 2=12 V ,由U 1U 2=n 1n 2得U 1=240 V ,副线圈中电流I 2=2×P U =1 A ,由I 1I 2=n 2n 1得I 1=0.05 A. 答案 D【变式跟踪1】 (单选)如图10-2-6所示为一理想变压器,图10-2-6原副线圈的匝数之比为1∶n ,副线圈接一定值电阻R ( ). A .若a 、b 之间接直流电压U ,则R 中的电流为nU RB .若a 、b 之间接直流电压U ,则原副线圈中的电流均为零C .若a 、b 之间接交流电压U ,则原线圈中的电流为n 2URD .若a 、b 之间接交流电压U ,则副线圈中的电流为U nR解析 根据变压器原理可知,接直流电时,R 中没有电流,A 错误;但在原线圈中能形成闭合回路,有电流,B 错误;在a 、b 间接交流电压U 时,由公式U 1U 2=n 1n 2,I 1I 2=n 2n 1得U 2=nU ,I 2=nU R ,I 1=n 2UR,所以C 正确,D 错误.答案 C ,借题发挥1.对理想变压器的理解 (1)没有能量损失 (2)没有磁通量损失 (3)基本量的制约关系2.变压器问题的解题思路考点二 变压器的动态分析【典例2】 (单选)(2012·福建卷,14)图10-2-7如图10-2-7所示,理想变压器原线圈输入电压u =U m sin ωt ,副线圈电路中R 0为定值电阻,R 是滑动变阻器.和是理想交流电压表,示数分别用U 1和U 2表示;和是理想交流电流表,示数分别用I 1和I 2表示.下列说法正确的是( ). A .I 1和I 2表示电流的瞬时值 B .U 1和U 2表示电压的最大值C .滑片P 向下滑动过程中,U 2不变、I 1变大D .滑片P 向下滑动过程中,U 2变小、I 1变小解析 交流电表的示数为有效值,故A 、B 两项均错误;P 向下滑动过程中,R 变小,由于交流电源、原副线圈匝数不变,U 1、U 2均不变,所以I 2=U 2R 0+R变大,由I 1I 2=n 2n 1,得I 1=n 2n 1I 2变大,故C 项正确、D 项错误. 答案 C【变式跟踪2】 (多选)为探究理想变压器原、图10-2-8副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L 1、L 2,电路中分别接了理想交流电压表V 1、V 2和理想交流电流表A 1、A 2,导线电阻不计,如图10-2-8所示.当开关S 闭合后( ). A .A 1示数变大,A 1与A 2示数的比值不变 B .A 1示数变大,A 1与A 2示数的比值变大 C .V 2示数变小,V 1与V 2示数的比值变大 D .V 2示数不变,V 1与V 2示数的比值不变解析 交流电源电压有效值不变,即V 1示数不变,因U 1U 2=n 1n 2,故V 2示数不变,V 1与V 2示数的比值不变,D 对.S 闭合使负载总电阻减小,I 2=U 2R,所以I 2增大.因I 1I 2=n 2n 1,所以A 1示数增大,A 1与A 2示数比值不变,A 对.答案 AD ,借题发挥变压器的动态分析1.根据题意弄清变量与不变量. 2.弄清变压器动态变化的决定关系. (1)原线圈与副线圈电压的决定关系. (2)输入功率与输出功率的决定关系. (3)原线圈与副线圈电流的决定关系. 3.基本思路程序U 1错误!U 2错误! I 2――→P 1=P 2(I 1U 1=I 2U 2)决定I 1――→P 1=I 1U 1决定P 1 考点三 远距离输电问题【典例3】 (单选)(2012·天津卷,4)通过一理想变压器,经同一线路输送相同的电功率P ,原线圈的电压U 保持不变,输电线路的总电阻为R .当副线圈与原线圈的匝数比为k 时,线路损耗的电功率为P 1,若将副线圈与原线圈的匝数比提高到nk ,线路损耗的电功率为P 2,则P 1和P 2P 1分别为( ).A.PR kU ,1nB.⎝ ⎛⎭⎪⎫P kU 2R ,1nC.PR kU ,1n 2D.⎝ ⎛⎭⎪⎫P kU 2R ,1n 2解析 根据变压器的变压规律,得U 1U =k ,U 2U=nk ,所以U 1=kU ,U 2=nkU .根据P =UI ,知匝数比为k 和nk 的变压器副线圈的电流分别为I 1=P U 1=P kU ,I 2=P U 2=P nkU.根据P =I 2R ,输电线路损耗的电功率分别为P 1=I 21R =⎝ ⎛⎭⎪⎫P kU 2R ,P 2=I 22R =⎝ ⎛⎭⎪⎫P nkU 2R ,所以P 2P 1=1n 2.选项D正确,A 、B 、C 错误. 答案 D【变式跟踪3】 (单选)2012年入春以来,图10-2-10云南省部分地区出现严重旱情,导致大面积农作物受灾,大量群众饮水困难.目前旱情仍在继续.为帮助灾区抗旱,电力部门加大了对灾区的电力供应.如图10-2-10所示,发电厂的输出电压和输电线的电阻、变压器不变,若发电厂增大输出功率,则下列说法正确的是( ).A .升压变压器的输出电压增大B .降压变压器的输出电压增大C .输电线上损耗的功率增大D .输电线上损耗的功率占总功率的比例减小解析 发电厂的输出电压不变,则升压变压器的输出电压不变,A 项错;发电厂输出功率增大,则输电线中电流增大,导线上损耗功率和损耗电压增大,降压变压器的输入、。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲电场的力的性质(含解析) 新人教版

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲电场的力的性质(含解析) 新人教版

选修3-1 第六章静电场第1讲电场的力的性质对应学生用书P103电荷、电荷守恒定律、点电荷Ⅰ (考纲要求)【思维驱动】(多选)关于元电荷的下列说法中正确的是( ).A.元电荷实质上是指电子和质子本身B.所有带电体的电荷量一定等于元电荷的整数倍C.元电荷的值通常取e=1.60×10-19 CD.电荷量e的数值最早是由美国科学家密立根通过实验测得的解析元电荷只是一个电荷量单位,没有正、负,不是物质,电子、质子是实实在在的粒子,不是元电荷,其带电荷量为一个元电荷,A错误;实验得出,所有带电体的电荷量或者等于e,或者是e的整数倍,这就是说,电荷量是不能连续变化的物理量,B正确;电荷量e的数值最早是由美国物理学家密立根测得的,D正确.答案BCD【知识存盘】1.物质的电结构(1)原子是由带正电的原子核和带负电的电子构成,原子核的正电荷数与电子的负电荷数相等.(2)金属中离原子核最远的电子往往会脱离原子核的束缚而在金属中自由活动,这种电子叫做自由电子.2.点电荷、元电荷(1)元电荷:把最小的电荷量叫做元电荷,用e 表示,e =1.60×10-19C .所有带电体的电荷量或者等于e ,或者等于e 的整数倍.(2)点电荷:①本身的线度比相互之间的距离小得多的带电体. ②点电荷是理想化模型.3.电荷守恒定律(1)内容:电荷既不能创生,也不能消失,只能从物体的一部分转移到另一部分,或者从一个物体转移到另一个物体,在转移的过程中电荷的总量保持不变. (2)起电方法:摩擦起电、感应起电、接触起电. (3)带电实质:物体带电的实质是得失电子.库仑定律 Ⅰ (考纲要求) 【思维驱动】图6-1-1(单选)如图6-1-1所示,两个质量均为m 的完全相同的金属球壳a 与b ,壳层的厚度和质量分布均匀,将它们分别固定于绝缘支座上,两球心间的距离为l ,为球半径的3倍.若使它们带上等量异种电荷,两球电量的绝对值均为Q ,那么,a 、b 两球之间的万有引力F 引、库仑力F 库分别为( ).A .F 引=G m 2l 2,F 库=k Q 2l 2B .F 引≠G m 2l 2,F 库≠k Q 2l 2C .F 引≠G m 2l 2,F 库=k Q 2l 2D .F 引=G m 2l 2,F 库≠k Q 2l2解析 万有引力定律适用于两个可看成质点的物体,虽然两球心间的距离l 只有半径的3倍,但由于壳层的厚度和质量分布均匀,两球壳可看做质量集中于球心的质点.因此,可以应用万有引力定律.对于a 、b 两带电球壳,由于两球心间的距离l 只有半径的3倍,不能看成点电荷,不满足库仑定律的适用条件,故D 正确. 答案 D【知识存盘】1.内容:真空中两个静止点电荷之间的相互作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比.作用力的方向在它们的连线上. 2.表达式:F =kq 1q 2r,式中k =9.0×109 N ·m 2/C 2,叫静电力常量. 3.适用条件:真空中的点电荷.静电场 Ⅰ 电场强度、点电荷的电场强度 Ⅱ (考纲要求) 【思维驱动】(单选)下列说法中正确的是( ).A .由E =F q知,电场中某点的电场强度与检验电荷在该点所受的电场力成正比 B .电场中某点的电场强度等于F q,但与检验电荷的受力大小及带电量无关 C .电场中某点的电场强度方向即检验电荷在该点的受力方向 D .公式E =F q 和E =kQ r2对于任何静电场都是适用的解析 E =F q只是电场强度的定义式,不能由此得出电场中某点的场强与检验电荷在该点所受的电场力成正比、与电荷量成反比,因为电场中某点的电场强度只与电场本身的性质有关,与检验电荷的电量及受力无关,A 错,B 对;电场中某点的电场强度方向为正电荷在该点的受力方向,C 错;公式E =F q 对于任何静电场都是适用的,E =kQ r2只适用于点电荷的电场,D 错. 答案 B 【知识存盘】 1.静电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质. (2)基本性质:对放入其中的电荷有力的作用. 2.电场强度(1)定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值. (2)定义式:E =Fq.单位:N/C 或V/m (3)点电荷形成电场中某点的电场强度 真空中点电荷形成的电场:E =k Q r2.(4)方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向. (5)电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和.电场线 Ⅰ(考纲要求) 【思维驱动】图6-1-2(多选)如图6-1-2所示为电场中的一条电场线,在该电场线上有a 、b 两点,用E a 、E b 分别表示两点电场强度的大小,则( ). A .a 、b 两点的场强方向相同 B .因为电场线由a 指向b ,所以E a >E b C .因为电场线是直线,所以E a =E bD .不知道a 、b 附近电场线的分布情况,E a 、E b 的大小不能确定解析 电场线上某点的切线方向表示该点电场强度的方向,本题中的电场线是直线,因此a 、b 两点的电场强度方向相同;电场线的疏密表示电场强度的大小,一条电场线不能确定a 、b 两点的电场强度的大小关系. 答案 AD 【知识存盘】1.定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱.2.3.几种典型电场的电场线(如图6-1-3所示).3图6-1-对应学生用书P104考点一电场强度的理解与应用电场强度三个表达式的比较图6-1-4【典例1】 (单选)如图6-1-4所示,在某一点电荷Q产生的电场中,有a、b两点,其中a点的场强大小为E a,方向与ab连线成30°角;b点的场强大小为E b,方向与ab连线成60°角.则关于a、b两点场强大小及电势高低,下列说法中正确的是( ).。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲运动的描述(含解析) 新人教版

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲运动的描述(含解析) 新人教版

物理1 第一章运动的描述匀变速直线运动的研究第1讲运动的描述对应学生用书P1质点、参考系和坐标系Ⅰ(考纲要求)【思维驱动】(单选)(2012·南京一模)下列说法正确的是( ).A.参考系必须是固定不动的物体B.参考系可以是变速运动的物体C.地球很大,又有自转,研究地球公转时,地球不可视为质点D.研究跳水运动员转体动作时,运动员可视为质点解析参考系可以是固定不动的物体,也可以是变速运动的物体,选项A错误,B正确;研究地球公转时,地球可视为质点,选项C错误;研究跳水运动员转体动作时,运动员不可视为质点,选项D错误.答案 B【知识存盘】1.质点(1)定义:忽略物体的大小和形状,把物体简化为一个有质量的物质点,叫质点.(2)把物体看做质点的条件:物体的大小和形状对研究问题的影响可以忽略.2.参考系(1)定义:要描述一个物体的运动,首先要选定某个其它的物体做参考,这个被选作参考的物体叫参考系.(2)选取:可任意选取,但对同一物体的运动,所选的参考系不同,运动的描述可能会不同,通常以地面为参考系.3.坐标系为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系.路程和位移、速度和速率Ⅱ(考纲要求)【思维驱动】图1-1-1(多选)如图1-1-1所示,一个人沿着一个圆形轨道运动,由A点开始运动,经过半个圆周到达B点.下列说法正确的是( ).A.人从A到B的平均速度方向由A指向BB.人从A到B的平均速度方向沿B点的切线方向C.人在B点瞬时速度方向由A指向BD.人在B点瞬时速度方向沿B点的切线方向解析物体在某段时间内平均速度的方向与位移的方向相同,所以人从A到B的平均速度方向由A指向B,A正确、B错误.物体在某一点的瞬时速度的方向就是物体在该点的运动方向,人在B点时的运动方向为沿B点的切线方向,所以人在B点瞬时速度方向沿B点的切线方向,C错误、D正确.答案AD【知识存盘】1.时刻和时间间隔(1)时刻:指的是某一瞬时,在时间轴上用点来表示,对应的是位置、速度等状态量.(2)时间间隔:是两个时刻间的间隔,在时间轴上用线段来表示,对应的是位移、路程等过程量.2.位移和路程(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程:是物体运动轨迹的长度,是标量. 3.速度(1)速度:用位移与发生这个位移所用时间的比值,表示物体运动的快慢,这个就是速度. (2)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v -=xt,是矢量.(3)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 4.速率和平均速率(1)速率:瞬时速度的大小,是标量.(2)平均速率:路程与时间的比值,不一定等于平均速度的大小.加速度 Ⅱ(考纲要求) 【思维驱动】(单选)甲、乙两个物体在同一直线上沿正方向运动,a 甲=4 m/s 2,a乙=-4 m/s 2,那么对甲、乙两物体判断正确的是( ). A .甲的加速度大于乙的加速度B .甲做加速直线运动,乙做减速直线运动C .甲的速度比乙的速度变化快D .甲、乙在相等时间内速度变化可能相等解析 加速度的正、负表示方向,绝对值表示大小,甲、乙加速度大小相等,A 错.甲的加速度与速度同向,所以做加速运动,乙的加速度与速度方向相反,所以做减速运动,B 对.加速度大小表示速度变化的快慢,甲、乙速度变化一样快,C 错.由Δv =a Δt 可知在相等时间内,甲、乙速度变化大小相等,方向相反,D 错. 答案 B【知识存盘】 加速度1.物理意义:描述物体速度变化快慢的物理量. 2.定义式:a =ΔvΔt .3.单位:m/s 2.4.方向:是矢量,方向与Δv 的方向相同.质点与几何“点”:质点是对实际物体进行科学抽象的模型,有质量,只是忽略了物体的大小和形状;几何中的“点”仅仅表示空间中的某一位置.对应学生用书P2考点一 对质点的进一步理解【典例1】 (多选)在研究物体的运动时,下列物体中可以当作质点处理的是( ). A .中国乒乓球队队员马林在第29届北京奥运会上获得男单的金牌,在研究他发出的乒乓球时B .北京奥运会男子50米步枪三种姿势射击中,研究美国名将埃蒙斯最后一枪仅打了 4.4环的子弹时C.研究哈雷彗星绕太阳公转时D.用GPS定位系统研究汽车位置时解析乒乓球比赛中运动员发出的乒乓球有转动,这种转动不能忽略,所以不能把乒乓球看做质点;研究美国名将埃蒙斯最后一枪仅打了4.4环的子弹的运动时,由于子弹各部分的运动情况都相同,所以可以看做质点;研究哈雷彗星绕太阳公转时,可以忽略哈雷彗星的自转,也可以看做质点;用GPS定位系统研究汽车位置时,不需要考虑汽车各部分运动的差异,汽车可以看做质点,所以选项B、C、D正确.答案BCD图1-1-2【变式跟踪1】 (多选)2012年6月16日18时37分,“神舟九号”飞船在酒泉卫星发射中心发射升空.2012年6月18日约11时左右转入自主控制飞行,14时左右与“天宫一号”实施自动交会对接,如图1-1-2所示.这是中国实施的首次载人空间交会对接.“神舟九号”并于2012年6月29日10点00分安全返回.关于以上消息,下列说法正确的是( ).A.“18时37分”表示是时刻B.“神舟九号”飞船绕地球飞行一周,位移和路程都为零C.在“神舟九号”与“天宫一号”实施自动交会对接的过程中,不可以把“神舟九号”看成质点D.“神舟九号”飞船绕地球飞行一周的过程中,每一时刻的瞬时速度都不为零,平均速度也不为零解析“18时37分”是“神舟九号”发射的瞬间,指时刻,A对;“神舟九号”飞船绕地球飞行一周,路程不为零,B错;在交会对接的过程中,对“神舟九号”姿态调整,涉及到转动,所以不能将“神舟九号”看成质点,C对;据平均速度的定义可判断D错.答案AC,借题发挥1.对质点的理解(1)物体可被看做质点的几种情况:①平动的物体通常可视为质点;②有转动但可以忽略时,也可以把物体视为质点. (2)不以“大小”论质点,同一物体看“情况”. 2.对“理想化模型”的理解(1)理想化模型是分析、解决物理问题常用的方法,它是对实际问题的科学抽象,可以使一些复杂的物理问题简单化.(2)物理学中理想化的模型有很多, 如“质点”、“轻杆”、“光滑平面”、“自由落体运动”、“点电荷”、“纯电阻电路”等,都是突出主要因素,忽略次要因素而建立的物理模型.考点二 平均速度与瞬时速度图1-1-3【典例2】 (多选)如图1-1-3所示,物体沿曲线轨迹的箭头方向运动,在AB 、ABC 、ABCD 、ABCDE 四段轨迹上运动所用的时间分别是:1 s ,2 s ,3 s, 4 s .下列说法正确的是( ).A .物体在AB 段的平均速度为1 m/s B .物体在ABC 段的平均速度为52m/s C .AB 段的平均速度比ABC 段的平均速度更能反映物体处于A 点时的瞬时速度 D .物体在B 点的速度等于AC 段的平均速度 审题流程解析 由v -=x t 可得:v -AB =11 m/s =1 m/s ,v -AC =52m/s ,故A 、B 均正确;所选取的过程离A点越近,其阶段的平均速度越接近A 点的瞬时速度,故C 正确;由A 经B 到C 的过程不是匀变速直线运动过程,故B 点虽为中间时刻,但其速度不等于AC 段的平均速度,D 错误. 答案 ABC【变式跟踪2】 (单选)一质点沿直线Ox 方向做减速直线运动,它离开O 点的距离x 随时间变化的关系为x =6t -2t 3(m),它的速度v 随时间t 变化的关系为v =6-6t 2(m/s),则该质点在t =2 s 时的瞬时速度、从t =0到t =2 s 间的平均速度、平均速率分别为( ). A .-18 m/s 、-2 m/s 、6 m/s B .-18 m/s 、-2 m/s 、2 m/s C .-2 m/s 、-2 m/s 、-18 m/s D .-18 m/s 、6 m/s 、6 m/s解析 由瞬时速度公式可得t =2 s 时的瞬时速度为v =6-6×22m/s =-18 m/s ,物体经时间1 s 速度减为0,由x 随时间t 变化关系可知在t =0到t =2 s 内发生的位移为Δx =-4m ,所以t =0到t =2 s 间的平均速度为v -=ΔxΔt=-2 m/s ,由x 随时间t 变化的关系可知在t =0到t =1 s 内发生的位移为x 1=4 m ,所以从t =0到t =2 s 内通过的路程为s =12 m ,所以t =0到t =2 s 间的平均速率为v -=sΔt=6 m/s ,A 对.答案 A ,借题发挥1.平均速度反映的是物体在整个运动过程中的粗略运动情况,而瞬时速度反映的是物体在运动过程的某一时刻或某一位置的运动情况.2.瞬时速度的粗略计算方法:用很短时间内的平均速度来求某时刻的瞬时速度. 3.平均速度的两个计算公式4.两个公式的灵活应用(1)在解决匀变速直线运动问题时,可根据题目给出的条件灵活选取公式,进而求得中间时刻的瞬时速度.(2)在处理纸带问题时,灵活应用公式可求得纸带中某一点的瞬时速度. 考点三 速度、速度的变化量和加速度 速度、速度的变化量和加速度的对比决定因素【典例3】 (多选)下述几种运动情况,实际上不可能存在的是( ).A.物体的速度不变,但加速度不为零B.物体的速度越来越小,加速度越来越大C.物体的加速度越来越小,速度越来越大D.物体的加速度不变(不为零),速度也保持不变解析只要有加速度,速度一定变化,但是速率可能不变(匀速圆周运动).加速度只表示速度变化快慢,和速度大小、变化量都没有直接关系.答案AD【变式跟踪3】 (单选)关于速度和加速度的关系,下列说法中正确的是( ).A.物体加速度的方向为正方向,则速度一定增加B.物体的速度变化越快,则加速度就越大C.物体加速度的方向保持不变,则速度方向也保持不变D.物体加速度的大小不断变小,则速度大小也不断变小解析速度和加速度都是矢量,它们的正负表示与选取的正方向间的关系,即相同为正,相反为负.若速度和加速度的方向相同,即同为正或同为负,则速度一定增加,反之,方向相反即一正一负,则速度一定减小,选项A错误;加速度是描述速度变化快慢的物理量,所以速度变化越快,加速度就越大,选项B正确;物体加速度的方向保持不变,速度方向可能变化(如平抛运动),也可能不变(如自由落体运动),选项C错误;若加速度的方向和速度方向相同,尽管加速度在变小,速度仍在增大,只是增加得越来越慢,选项D错误.答案 B ,借题发挥速度与加速度的关系1.a 与v 在同一直线上时物体速度的变化情况2.速度“增加”或“减小”的快慢――→决定加速度的大小3.加速度虽然由a =Δv Δt 定义,但a 与Δv 及Δt 无关,根据牛顿第二定律a =Fm 可知,物体的加速度是由物体所受的合外力及质量决定的.对应学生用书P4命题热点1 对直线运动基本概念的考查命题专家评述题型:以选择题为主能力:以学生对知识点的理解和数学在物理中的应用为主,试题难度小. 命题趋势在2014高考中,着力点仍有可能是位移、平均速度、加速度、匀速或匀变速直线运动.运动图象和公式的应用等,题目可能情景新颖、结合实际以选择题的形式出现,分值较少、难度较小,为考生必得分数.阅卷教师揭秘错因检索1.不能充分理解概念的内涵与外延;2.分不清矢量与标量,没能正确理解矢量正负号的含义; 3.不能正确理解速度、速度变化量及加速度的关系. 应对策略大家在复习过程中,不但要知道知识结论,还要了解知识的形成过程,深刻体会物理思想和物理概念,这样才能灵活地驾驭知识,取胜高考. 高考佐证。

【创新设计】2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲动量 动量守恒定

【创新设计】2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲动量 动量守恒定

选修3-5 动量守恒定律波粒二象性原子结构与原子核第1讲动量动量守恒定律与其应用对应学生用书P230动量、动量守恒定律Ⅰ(考纲要求)【思维驱动】(多项选择)如下四幅图所反映的物理过程中,系统动量守恒的是( ).解析A中子弹和木块的系统在水平方向不受外力,竖直方向所受合力为零,系统动量守恒;B中在弹簧恢复原长过程中,系统在水平方向始终受墙的作用力,系统动量不守恒;C中木球与铁球的系统所受合力为零,系统动量守恒;D中木块下滑过程中,斜面始终受挡板作用力,系统动量不守恒.答案AC【知识存盘】1.动量(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示.(2)表达式:p=mv.(3)单位:kg·m/s.(4)标矢性:动量是矢量,其方向和速度方向一样.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律.(2)表达式①p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.②m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.③Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.④Δp=0,系统总动量的增量为零.3.动量守恒定律的适用条件(1)理想守恒:系统不受外力或所受外力的合力为零,如此系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.动量守恒定律的“五性〞条件性首先判断系统是否满足守恒条件相对性公式中v1、v2、v1′、v2′必须相对于同一个惯性系公式中v1、v2是在相互作用前同一时刻速度,v1′、v2′是相互作用后同一同时性时刻的速度矢量性应先选取正方向,但凡与选取的正方向一致的动量为正值,相反为负值普适性不仅适用低速宏观系统,也适用于高速微观系统弹性碰撞和非弹性碰撞 Ⅰ(考纲要求) 【思维驱动】(单项选择)A 球的质量是m ,B 球的质量是2m ,它们在光滑的水平面上以一样的动量运动.B 在前,A 在后,发生正碰后,A 球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比v A ′∶v B ′为( ).A .1∶2B .1∶3C .2∶1D .2∶3解析 设碰前A 球的速率为v ,根据题意,p A =p B ,即mv =2mv B ,得碰前v B =v2,碰后v A ′=v2,由动量守恒定律,有 mv +2m ×v 2=m ×v 2+2mv B ′,解得v B ′=34v所以v A ′v B ′=v234v=23.选项D 正确. 答案 D 【知识存盘】 1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. (2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒. (3)分类动量是否守恒机械能是否守恒弹性碰撞 守恒 守恒 非弹性碰撞 守恒 有损失 完全非弹性碰撞守恒损失最大2.反冲现象(1)在某些情况下,原来系统内物体具有一样的速度,发生相互作用后各局部的末速度不再一样而分开.这类问题相互作用的过程中系统的动能增大,且常伴有其他形式能向动能的转化.(2)反冲运动的过程中,如果合外力为零或外力的作用远小于物体间的相互作用力,可利用动量守恒定律来处理.3.爆炸问题爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动.实验:验证动量守恒定律Ⅰ(考纲要求)【思维驱动】(单项选择)在做“验证动量守恒定律〞实验时,入射球a的质量为m1,被碰球b的质量为m2,小球的半径为r,各小球的落地点如图1-1-1所示,如下关于这个实验的说法正确的答案是( ).图1-1-1A.入射球与被碰球最好采用大小一样、质量相等的小球B.让入射球与被碰球连续10次相碰,每次都要使入射小球从斜槽上不同的位置滚下C.要验证的表达式是m1·ON=m1·OM+m2·OPD.要验证的表达式是m1·OP=m1·OM+m2·ONE.要验证的表达式是m1(OP-2r)=m1(OM-2r)+m2·ON解析在此装置中,应使入射球的质量大于被碰球的质量,防止入射球反弹或静止,故A错;入射球每次必须从斜槽的同一位置由静止滚下,保证每次碰撞都具有一样的初动量,故B错;两球做平抛运动时都具有一样的起点,故应验证的关系式为:m1·OP=m1·OM +m2·ON,D对,C、E错.答案 D【知识存盘】1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速度v、v′,找出碰撞前的动量p =m1v1+m2v2与碰撞后的动量p′=m1v1′+m2v2′,看碰撞前后动量是否守恒.2.实验器材方案一:气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等.方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等.方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥.方案四:斜槽、小球(两个)、天平、复写纸、白纸等.3.实验步骤方案一:利用气垫导轨完成一维碰撞实验(如图1-1-2所示)图1-1-2(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.图1-1-3方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如图1-1-3所示)(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如图1-1-4所示)图1-1-4(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离与时间由v =ΔxΔt 算出速度.(5)改变条件:改变碰撞条件,重复实验. (6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(如图1-1-5所示)图1-1-5(1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球. (2)安装:按照图1-1-5所示安装实验装置.调整固定斜槽使斜槽底端水平. (3)铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O . (4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P 就是小球落点的平均位置.(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤4的方法,标出碰后入射小球落点的平均位置M 和被撞小球落点的平均位置N .如图1-1-6所示.图1-1-6(6)验证:连接ON ,测量线段OP 、OM 、ON 的长度.将测量数据填入表中.最后代入m 1·OP =m 1·OM +m 2·ON ,看在误差允许的范围内是否成立. (7)完毕:整理好实验器材放回原处.对应学生用书P232考点一 动量守恒定律的应用 【典例1】 (2012·山东卷,38(2))图1-1-7如图1-1-7所示,光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时,B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小. 解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得 对A 、B 木块:m A v 0=m A v A +m B v B ① 对B 、C 木块:m B v B =(m B +m C )v ② 由A 与B 间的距离保持不变可知v A =v ③ 联立①②③式,代入数据得v B =65v 0.④答案 65v 0【变式跟踪1】 如图1-1-8所示,图1-1-8一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,M =5m ,A 、B 间存在摩擦,现给A 和B 以大小相等、方向相反的初速度v 0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求A 、B 最后的速度大小和方向.解析 由动量守恒可知:Mv 0-mv 0=(M +m )v ,得:v =M -mM +mv 0 将M =5m 代入上式可得:v =23v 0,方向向右.答案 23v 0 方向向右,借题发挥1.动量守恒定律的适用条件(1)前提条件:存在相互作用的物体系. (2)理想条件:系统不受外力. (3)实际条件:系统所受合外力为0.(4)近似条件:系统内各物体间相互作用的内力远大于系统所受外力. 2.动量守恒定律的解题步骤考点二 动量守恒和能量守恒的综合应用 【典例2】 (2012·课标全国卷,35)图1-1-9如图1-1-9所示,小球a 、b 用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求: (1)两球a 、b 的质量之比;(2)两球在碰撞过程中损失的机械能与球b 在碰前的最大动能之比.规范解答 (1)设球b 的质量为m 2,细线长为L ,球b 下落至最低点,但未与球a 相碰时的速率为v ,由机械能守恒定律得m 2gL =12m 2v 2①式中g 为重力加速度的大小.设球a 的质量为m 1,在两球碰后的瞬间,两球的共同速度为v ′,以向左为正方向,由动量守恒定律得m 2v =(m 1+m 2)v ′②设两球共同向左运动到最高处时,细线与竖直方向的夹角为θ,由机械能守恒定律得 12(m 1+m 2)v ′2=(m 1+m 2)gL (1-cos θ)③ 联立①②③式得m 1m 2=1 1-cos θ-1④ 代入题给数据得m 1m 2= 2-1.⑤(2)两球在碰撞过程中的机械能损失为Q =m 2gL -(m 1+m 2)gL (1-cos θ)⑥联立①⑥式,Q 与碰前球b 的最大动能E k ⎝⎛⎭⎪⎫E k =12m 2v 2之比为 Q E k =1-m 1+m 2m 2(1-cos θ)⑦ 联立⑤⑦式,并代入题给数据得Q E k =1- 22.⑧ 答案 (1) 2-1 (2)1- 22【变式跟踪2】 如图1-1-10所示,一水平面上P 点左侧光滑,右侧粗糙,质量为m 的劈A 在水平面上静止,上外表光滑,A 右端与水平面平滑连接,质量为M 的物块B 恰好放在水平面上P 点,物块B 与水平面间的动摩擦因数为μ.图1-1-10一质量为m 的小球C 位于劈A 的斜面上,距水平面的高度为h .小球C 从静止开始滑下,然后与B 发生正碰(碰撞时间极短,且无机械能损失).M =2m ,求: (1)小球C 与劈A 别离时,A 的速度; (2)小球C 的最后速度和物块B 的运动时间.解析 (1)设小球C 与劈A 别离时速度大小为v 0,此时劈A 速度大小为v A小球C 运动到劈A 最低点的过程中,规定向右为正方向,由水平方向动量守恒、机械能守恒有mv 0-mv A =0mgh =12mv 20+12mv 2A得v 0=gh ,v A =gh ,之后A 向左匀速运动(2)小球C 与B 发生正碰后速度分别为v C 和v B ,规定向右为正方向,由动量守恒得mv 0=mv C +Mv B机械能不损失有12mv 20=12mv 2C +12Mv 2B代入M =2m 得v B =23ghv C =-13gh (负号说明小球C 最后向左运动) 物块B 减速至停止时,运动时间设为t ,由动量定理有 -μMgt =0-Mv B ,得t =2gh3μg答案 (1)gh (2)-13gh ,方向向左 2gh3μg,借题发挥1.动量守恒定律的三个表达式:(1)作用前后都运动的两个物体组成的系统:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′. (2)原来静止的两物体(爆炸、反冲等):0=m 1v 1+m 2v 2. (3)作用后两物体共速:m 1v 1+m 2v 2=(m 1+m 2)v . 2.动量、能量问题解题思路考点三 碰撞模型的规律与应用【典例3】 (单项选择)质量为m 、速度为v 的A 球与质量为3m 的静止B 球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B 球的速度可能有不同的值.碰撞后B 球的速度大小可能是( ). A .0.6v B .0.4v C .0.2v D .v解析 根据动量守恒得:mv =mv 1+3mv 2,如此当v 2=0.6v 时,v 1=-0.8v ,如此碰撞后的总动能E ′=12m (-0.8v )2+12×3m (0.6v )2=1.72×12mv 2,大于碰撞前的总动能,由于碰撞过程中能量不增加,应当选项A 错误;当v 2=0.4v 时,v 1=-0.2v ,如此碰撞后的总动能为E ′=12m (-0.2v )2+12×3m (0.4v )2=0.52×12mv 2,小于碰撞前的总动能,故可能发生的是非弹性碰撞,选项B 正确;当v 2=0.2v 时,v 1=0.4v ,如此碰撞后的A 球的速度大于B 球的速度,而两球碰撞,A 球不可能穿越B 球,应当选项C 错误;当v 2=v 时,v 1=-2v ,如此显然碰撞后的总动能远大于碰撞前的总动能,应当选项D 错误. 答案 B【变式跟踪3】 (单项选择)在光滑的水平面上,图1-1-11有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球在碰撞前后的速度图象如图1-1-11所示,如下关系正确的答案是( ).A .m a >m bB .m a <m bC .m a =m bD .无法判断解析 由动量守恒定律得m a v a =m a v a ′+m b v b ′,由于v a ′<0,如此b 球获得的动量大于a 球最初的动量.假设m a =mb ,如此两球交换速度,与图象不符;由E k =p 22m,假设m a >m b ,如此b 球的动能将会大于a 球最初的动能,违背能量守恒定律,如此必然满足m a <m b ,应当选项B 正确.答案 B ,借题发挥1.碰撞现象满足的规律 (1)动量守恒定律. (2)机械能不增加. (3)速度要合理.①假设碰前两物体同向运动,如此应有v 后>v 前,碰后原来在前的物体速度一定增大,假设碰后两物体同向运动,如此应有v 前′≥v 后′.②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变. 2.碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.(2)可熟记一些公式,如“一动一静〞模型中,两物体发生弹性正碰后的速度满足:v 1=m 1-m 2m 1+m 2v 0、v 2=2m 1m 1+m 2v 0. (3)熟记一些结论,如质量相等的两物体发生完全弹性碰撞后交换速度;发生完全非弹性碰撞后两物体共速等.对应学生用书P234一、动量是否守恒的判断 1.(单项选择)(2013·常州模拟)图1-1-12一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A \,B 用一根弹性良好的轻质弹簧连在一起,如图1-1-12所示.如此在子弹打击木块A与弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( ).A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒解析动量守恒的条件是系统不受外力或所受外力之和为零,此题中子弹、木块、弹簧组成的系统,水平方向上不受外力,竖直方向上受合外力之和为零,所以动量守恒.机械能守恒的条件是系统除重力、弹力做功外,其他力对系统不做功,此题中子弹穿入木块瞬间有局部机械能转化为内能(发热),所以系统的机械能不守恒.故C选项正确.A、B、D错误.答案 C2.(多项选择)(2013·淮安月考)图1-1-13如图1-1-13所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆槽相切并从A点进入槽内,如此如下说法正确的答案是( ).A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向上的动量不守恒解析小球从下落到最低点的过程中,槽没有动,与竖直墙之间存在挤压,动量不守恒;小球经过最低点往上运动的过程中,斜槽与竖直墙别离,水平方向动量守恒;全过程中有一段时间系统受竖直墙弹力的作用,故全过程系统水平方向动量不守恒,选项D正确;小球离开右侧槽口时,水平方向有速度,将做斜抛运动,选项A错误;小球经过最低点往上运动的过程中,斜槽往右运动,斜槽对小球的支持力对小球做负功,小球对斜槽的压力对斜槽做正功,系统机械能守恒,选项B错而C对.答案 CD二、动量守恒定律的应用 3.如图1-1-14所示,图1-1-14在水平光滑直导轨上,静止着三个质量均为m =1 kg 的小球A 、B 、C .现让A 球以v A =4 m/s 的速度向右、B 球以v B =2 m/s 的速度向左同时相向运动,A 、B 两球碰撞后粘合在一起继续向右运动,再跟C 球碰撞,C 球的最终速度为v C =1 m/s.求: (1)A 、B 两球跟C 球相碰前的共同速度; (2)A 、B 两球跟C 球相碰后的速度.解析 (1)对A 、B 两球由动量守恒定律得m A v A -m B v B =(m A +m B )v ,v =m A v A -m B v B m A +m B =1×4-1×21+1m/s =1 m/s.(2)对AB 和C 由动量守恒定律得m AB v =m AB v 1+m C v Cv 1=m AB v -m C v C m AB =2×1-1×12m/s =0.5 m/s.答案 (1)1 m/s (2)0.5 m/s4.如图1-1-15所示,甲、乙两船的总质量(包括船、人和货物)分别为10m 、12m ,两船沿同一直线同一方向运动,速度分别为2v 0\,v 0.为防止两船相撞.乙船 上的人将一质量为m 的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图1-1-15解析 设乙船上的人抛出货物的最小速度大小为v min ,抛出货物后船的速度为v 1,甲船上的人接到货物后船的速度为v 2,由动量守恒定律得 12mv 0=11mv 1-mv min ① 10m ×2v 0-mv min =11mv 2②为防止两船相撞应满足v 1=v 2③ 联立①②③式得v min =4v 0④答案 4v 0三、碰撞规律的应用5.(多项选择)质量为m 的小球A 以速度v 0在光滑水平面上运动,与质量为2m 的静止小球B 发生对心碰撞,如此碰撞后小球A 的速度大小v A 和小球B 的速度大小v B 可能为( ). A .v A =13v 0v B =23v 0B .v A =25v 0v B =710v 0C .v A =14v 0v B =58v 0D .v A =38v 0v B =516v 0解析 两球发生对心碰撞,应满足动量守恒与能量不增加,且后面的小球不能与前面的小球有二次碰撞,故D 错误.根据动量守恒定律可得,四个选项都满足.但碰撞前总动能为12mv 20,而碰撞后B 选项能量增加,B 错误,故A 、C 正确.答案 AC四、动量守恒和能量守恒的综合应用6.如图1-1-16所示,光滑水平面上有A 、B 两个物体,A 物体的质量m A =1 kg ,B 物体的质量m B =4 kg ,A 、B 两个物体分别与一个轻弹簧拴接,B 物体的左端紧靠竖直固定墙壁,开始时弹簧处于自然长度,A 、B 两物体均处于静止状态,现用大小为F =10 N 的水平恒力向左推A ,将弹簧压缩了20 cm 时,A 的速度恰好为0,然后撤去水平恒力,求:图1-1-16(1)运动过程中A 物体的最大速度; (2)运动过程中B 物体的最大速度. 解析 (1)恒力做的功为:W =Fx =2 J ,弹簧具有的最大弹性势能为:E p =W =2 J , 弹簧完全弹开达到原长时,A 速度达到最大E p =12m A v 2A m ,v A m =2E pm A=2 m/s.(2)当弹簧再次达到原长时,B 物体的速度最大,m A v A m =m A v A ′+m B v B m ,12m A v 2A m =12m A v A ′2+12m B v 2B m , 所以v B m =0.8 m/s.答案 (1)2 m/s (2)0.8 m/s7.(2012·某某卷,10)如图1-1-17所示,水平地面上固定有高为h 的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h ,坡道底端与台面相切.小球A 从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B 发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半.两球均可视为质点,忽略空气阻力,重力加速度为g ,求:图1-1-17(1)小球A 刚滑至水平台面的速度v A ; (2)A 、B 两球的质量之比m A ∶m B .解析 (1)小球从坡道顶端滑至水平台面的过程中,由机械能守恒定律得:m A gh =12m A v 2A ,解得v A =2gh .(2)设两球碰撞后共同的速度为v ,由动量守恒定律得m A v A =(m A +m B )v粘在一起的两球飞出台面后做平抛运动,设运动的时间为t ,由运动学公式,在竖直方向上有:h =12gt 2,在水平方向上有h2=vt ,联立上述各式得m A ∶m B =1∶3.答案 (1)2gh (2)1∶3 五、验证动量守恒定律8.气垫导轨(如图1-1-18所示)图1-1-18工作时,空气从导轨外表的小孔喷出,在导轨外表和滑块内外表之间形成一层薄薄的空气层,使滑块不与导轨外表直接接触,大大减小了滑块运动时的阻力.为了验证动量守恒定律,在水平气垫导轨上放置两个质量均为a 的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打点计时器所用电源的频率均为b .气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.图1-1-19为某次实验打出的点迹清晰的纸带的一局部,在纸带上以一样间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度s 1、s 2和s 3.假设题中各物理量的单位均为国际单位,那么,碰撞前两滑块的动量大小分别为______、______,两滑块的总动量大小为________;碰撞后两滑块的总动量大小为________.重复上述实验,多做几次.假设碰撞前、后两滑块的总动量在实验误差允许的范围内相等,如此动量守恒定律得到验证.图1-1-19解析 打点周期T =1b ,打s 1、s 2、s 3均用时5b .碰前其中一滑块的动量p 1=mv 1=m s 1t =abs 15=0.2 abs 1. 碰前另一滑块的动量p 2=mv 2=m s 3t =a bs 35=0.2 abs 3,故碰前总动量p =p 1-p 2=0.2ab (s 1-s 3), 同理碰后总动量p ′=2m s 2t=0.4abs 2.答案 0.2abs 1 0.2abs 3 0.2ab (s 1-s 3) 0.4abs 2。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密)第1讲交变电流的产生和描述含解析) 新人教版

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密)第1讲交变电流的产生和描述含解析) 新人教版

选修3-2 第十章交变电流传感器第1讲交变电流的产生和描述对应学生用书P185交变电流、描述交变电流的图象Ⅰ (考纲要求)【思维驱动】(多选)关于线圈在匀强磁场中转动产生的交流电,以下说法中正确的是( ).A.线圈平面每经过中性面一次,感应电流方向就改变一次,感应电动势方向不变B.线圈每转动一周,感应电流方向就改变一次C.线圈在中性面位置时,磁通量最大,磁通量的变化率为零D.线圈在与中性面垂直的位置时,磁通量为零,感应电动势最大答案CD【知识存盘】1.交变电流(1)定义:大小和方向都随时间做周期性变化的电流.(2)图象:如图(a)、(b)、(c)、(d)所示都属于交变电流.其中按正弦规律变化的交变电流叫正弦交流电,如图(a)所示.2.正弦交流电的产生和图象(1)中性面①中性面:与磁场方向垂直的平面.②中性面与峰值面的比较(2)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动.(3)图象:用以描述交流电随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.如图(e)、(f)所示.正弦交变电流的函数表达式、描述交变电流的 物理量 Ⅰ(考纲要求) 【思维驱动】(多选)一个单匝矩形线框的面积为S ,在磁感应强度为B 的匀强磁场中,从线圈平面与磁场垂直的位置开始计时,转速为n 转/秒,则( ). A .线框交变电动势的最大值为n πBS B .线框交变电动势的有效值为2n πBSC .从开始转动经过14周期,线框中的平均感应电动势为2nBSD .感应电动势瞬时值为e =2n πBS sin 2n πt解析 线框交变电动势的最大值为E m =BS ω=2n πBS ,产生的感应电动势瞬时值为e =2n πBS sin 2n πt ,A 错、D 对;该线框交变电动势的有效值为E =E m2=2n πBS ,B 对;线框中的平均感应电动势E =ΔΦΔt =4nBS ,C 错.答案 BD 【知识存盘】 1.周期和频率(1)周期(T ):交变电流完成一次周期性变化(线圈转一周)所需的时间,单位是秒(s),公式T =2πω.(2)频率(f ):交变电流在1 s 内完成周期性变化的次数.单位是赫兹(Hz). (3)周期和频率的关系:T =1f 或f =1T.2.正弦式交变电流的函数表达式(线圈在中性面位置开始计时) (1)电动势e 随时间变化的规律:e =E m sin__ωt . (2)负载两端的电压u 随时间变化的规律:u =U m sin__ωt .(3)电流i 随时间变化的规律:i =I m sin__ωt .其中ω等于线圈转动的角速度,E m =nBS ω. 3.交变电流的瞬时值、峰值、有效值(1)瞬时值:交变电流某一时刻的值,是时间的函数.(2)峰值:交变电流(电流、电压或电动势)所能达到的最大的值,也叫最大值. (3)有效值:跟交变电流的热效应等效的恒定电流的值叫做交变电流的有效值.对正弦交流电,其有效值和峰值的关系为:EU I电感和电容对交变电流的影响 Ⅰ (考纲要求) 【思维驱动】(单选)如图10-1-1所示,在电路两端加上正弦交流电,保持电压有效值不变,使频率增大,发现各灯的亮暗情况是:灯1变亮,灯2变暗,灯3不变,则M 、N 、L 中所接元件可能是( ).图10-1-1A .M 为电阻,N 为电容器,L 为电感线圈B .M 为电感线圈,N 为电容器,L 为电阻C .M 为电容器,N 为电感线圈,L 为电阻D .M 为电阻,N 为电感线圈,L 为电容器解析 当交变电流的频率增大时,线圈的感抗变大,电容器的容抗变小,由灯1变亮,灯2变暗可知M 为电容器,N 为电感线圈,而电阻与交变电流的频率无关,故L 为电阻,C 正确. 答案 C 【知识存盘】1.电感对交变电流的阻碍作用电感线圈对交变电流有阻碍作用,电感对交变电流的阻碍作用的大小用感抗表示,线圈的自感系数越大,交变电流的频率越高,阻碍作用越大,感抗也就越大. 2.电容器对交变电流的阻碍作用交变电流能够“通过”电容器,电容器对交变电流有阻碍作用,电容器对交变电流的阻碍作用用容抗表示.电容器的电容越大.电容器对交变电流的阻碍作用就越小,也就是说,电容器的容抗就越小,电容器在交流电路中起的作用是通交流,隔直流,通高频、阻低频.交变电流的有效值是根据电流的热效应定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.若图象部分是正弦(或余弦)交流电,其中的14和12周期部分可直接用I =I m 2和U =U m2的关系.对应学生用书P186考点一 正弦交变电流的产生及变化规律【典例1】 (2012·安徽卷,23)图10-1-2甲所示是交流发电机模型示意图.在磁感应强度为B 的匀强磁场中,有一矩形线圈abcd 可绕线圈平面内垂直于磁感线的轴OO ′转动,由线圈引出的导线ae 和df 分别与两个跟线圈一起绕OO ′转动的金属圆环相连接,金属圆环又分别与两个固定的电刷保持滑动接触,这样矩形线圈在转动中就可以保持和外电路电阻R 形成闭合电路.图乙是线圈的主视图,导线ab 和cd 分别用它们的横截面来表示.已知ab 长度为L 1,bc 长度为L 2,线圈以恒定角速度ω逆时针转动.(只考虑单匝线圈)图10-1-2(1)线圈平面处于中性面位置时开始计时,试推导t 时刻整个线圈中的感应电动势e 1的表达式;(2)线圈平面处于与中性面成φ0夹角位置时开始计时,如图丙所示,试写出t 时刻整个线圈中的感应电动势e 2的表达式;(3)若线圈电阻为r ,求线圈每转动一周电阻R 上产生的焦耳热.(其它电阻均不计)解析 (1)矩形线圈abcd 在磁场中转动时,ab 、cd 切割磁感线,且转动的半径为r =L 22,转动时ab 、cd 的线速度v =ωr =ωL 22,且与磁场方向的夹角为ωt ,所以,整个线圈中的感应电动势e 1=2BL 1v sin ωt =BL 1L 2ωsin ωt .(2)当t =0时,线圈平面与中性面的夹角为φ0,则某时刻t 时,线圈平面与中性面 的夹角为(ωt +φ0),故此时感应电动势的瞬时值e 2=2BL 1v sin(ωt +φ0)=BL 1L 2ωsin(ωt +φ0).(3)线圈匀速转动时感应电动势的最大值E m =BL 1L 2ω,故有效值E =E m2=BL 1L 2ω2回路中电流的有效值I =ER +r=B ωL 1L 22(R +r ),根据焦耳定律知转动一周电阻R 上的焦耳热为Q =I 2RT =⎣⎢⎡⎦⎥⎤B ωL 1L 22(R +r )2R ·2πω=πωRB 2L 21L 22(R +r )2.答案 (1)e 1=BL 1L 2ωsin ωt (2)e 2=BL 1L 2ωsin(ωt +φ0) (3)πωRB 2L 21L 22(R +r )2【变式跟踪1】 (多选)如图10-1-3所示,图10-1-3单匝矩形线圈放置在磁感应强度为B 的匀强磁场中,以恒定的角速度ω绕ab 边转动,磁场方向垂直于纸面向里,线圈所围面积为S ,线圈导线的总电阻为R .t =0时刻线圈平面与纸面重合,且cd 边正在向纸面外转动.则( ). A .线圈中电流t 时刻瞬时值表达式为i =BS ωRcos ωt B .线圈中电流的有效值为I =BS ωRC .线圈中电流的有效值为I =2BS ω2RD .线圈中消耗的电功率为P =(BS ω)22R解析 回路中感应电动势最大值E m =BS ω,电流最大值I m =E m R =BS ωR,t =0时为中性面,故瞬时值表达式i =BS ωR sin ωt .电流有效值I =I m 2=2BS ω2R ,P =I 2R =B 2ω2S 22R ,故A 、B 错误,C 、D 正确.答案 CD ,借题发挥1.对中性面的理解(1)中性面是与磁场方向垂直的平面,是假想的一个参考面.(2)线圈平面位于中性面时,穿过线圈平面的磁通量最大,而磁通量的变化率为零,产生的感应电动势为零.(3)线圈平面与中性面垂直时,穿过线圈平面的磁通量为零,但磁通量的变化率最大,产生的感应电动势最大.(4)线圈每经过中性面一次,电流方向就改变一次,线圈转动一周,两次经过中性面,所以电流的方向改变两次.2.对交变电流的“四值”的比较和理解=R3.交变电流的瞬时值表达式当线圈平面转到中性面(与磁场垂直的平面)时开始计时,交流电的瞬时值表达式是e=E m sin ωt,u=U m sin ωt,i=I m sin ωt.当线圈平面转到与磁感线平行时开始计时,瞬时值表达式是e=E m cos ωt,u=U m cos ωt,i=I m cos ωt.4.最大值:E m=nBSω,且E m与转轴的所在位置和线圈形状无关.考点二交变电流的图象【典例2】 (单选)在匀强磁场中,图10-1-4一矩形金属框绕与磁感线垂直的转轴匀速转动,如图10-1-4甲所示,产生的交变电动势的图象如图乙所示,则( ).A.t=0.005 s时线框的磁通量变化率为零B.t=0.01 s时线框平面与中性面重合C.线框产生的交变电动势有效值为311 VD.线框产生的交变电动势频率为100 Hz解析由图象知,该交变电流电动势峰值为311 V,交变电动势频率为f=50 Hz,C、D 错;t=0.005时,e=311 V,磁通量变化最快,t=0.01 s时,e=0,磁通量最大,线圈处于中性面位置,A错,B对.答案 B【变式跟踪2】 (多选)矩形线框在匀强磁场内匀速转动过程中,图10-1-6线框输出的交流电压随时间变化的图象如图10-1-6所示,下列说法中正确的是( ).A.交流电压的有效值为36 2 VB.交流电压的最大值为36 2 V,频率为0.25 HzC.2 s末线框平面垂直于磁场,通过线框的磁通量最大D.1 s末线框平面垂直于磁场,通过线框的磁通量变化最快解析由线框输出的交流电压随时间变化图象可知,交流电压的最大值为36 2 V,频率为0.25 Hz,B正确;有效值则为36 V,A错误;2 s末,线框产生的感应电动势为零,所以此时线框平面垂直于磁场,C正确;1 s末,线框产生的感应电动势最大,此时线框。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲光电效应 波粒二象性(含解析) 3-5

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲光电效应 波粒二象性(含解析) 3-5

第2讲光电效应波粒二象性对应学生用书P236普朗克能量子假说黑体和黑体辐射Ⅰ(考纲要求)【思维驱动】判断下列说法的正误:(1)一般物体辐射电磁波的情况与温度无关,只与材料的种类及表面情况有关( )(2)黑体能完全吸收入射的各种波长的电磁波,不反射( )(3)带电微粒辐射和吸收的能量,只能是某一最小能量值的整数倍( )(4)普朗克最先提出了能量子的概念( )答案(1)×(2)√(3)√(4)√【知识存盘】1.黑体(1)黑体:完全吸收入射的电磁波而不发生反射的物体,简称黑体.(2)黑体辐射的特性:辐射电磁波的强度按波长的分布只与黑体的温度有关.图1-2-1(3)黑体辐射的实验规律①一般材料的物体,辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关.②黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,如图1-2-1所示.a.随着温度的升高,各种波长的辐射强度都增加.b.随着温度的升高,辐射强度的极大值向波长较短的方向移动.2.能量子(1)不可再分的能量的最小值叫能量子.(2)能量子公式:E=hν,其中普朗克常量h=6.63×10-34J·s.光电效应Ⅰ(考纲要求)【思维驱动】(多选)(2013·汕头模拟)图1-2-2如图1-2-2所示,用导线把验电器与锌板相连接,当用紫外线照射锌板时,发生的现象是( ).A.有光子从锌板逸出B.有电子从锌板逸出C.验电器指针张开一个角度D.锌板带负电解析用紫外线照射锌板是能够发生光电效应的,锌板上的电子吸收紫外线的能量从锌板表面逸出,称之为光电子,故A错误、B正确;锌板与验电器相连,带有相同电性的电荷,锌板失去电子应该带正电,且失去电子越多,带正电的电荷量越多,验电器指针张角越大,故C正确、D错误.答案BC【知识存盘】1.光电效应现象光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做光电子.2.光电效应规律(1)每种金属都有一个极限频率.(2)光子的最大初动能与入射光的强度无关.只随入射光的频率增大而增大.(3)光照射到金属表面时,光电子的发射几乎是瞬时的.(4)光电流的强度与入射光的强度成正比.3.爱因斯坦光电效应方程(1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34J·s.(2)光电效应方程:E k=hν-W0其中hν为入射光的能量,E k为光电子的最大初动能,W0是金属的逸出功.4.遏止电压与截止频率(1)遏止电压:使光电流减小到零的反向电压U c.(2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率.(3)逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功.光的波粒二象性、物质波Ⅰ(考纲要求)【思维驱动】判断下列说法的正误:(1)光电效应反映了光的粒子性( )(2)大量光子产生的效果往往显示出粒子性,个别光子产生的效果往往显示出波动性( )(3)光的干涉、衍射、偏振现象证明了光具有波动性( )(4)只有运动着的小物体才有一种波和它相对应,大的物体运动是没有波和它对应的( )答案(1)√(2)×(3)√(4)×【知识存盘】1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性.(2)光电效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.2.物质波(1)概率波光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波. (2)物质波任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=hp,p 为运动物体的动量,h 为普朗克常量.对应学生用书P237考点一 对光电效应规律的理解【典例1】 (多选)(2011·广东卷,18)光电效应实验中,下列表述正确的是( ). A .光照时间越长光电流越大 B .入射光足够强就可以有光电流 C .遏止电压与入射光的频率有关D .入射光频率大于极限频率才能产生光电子解析 光电流的大小与光照时间无关,A 项错误;如果入射光的频率小于金属的极限频率,入射光再强也不会发生光电效应,B 项错误;遏止电压U c 满足eU c =h ν-h ν0,从表达式可知,遏止电压与入射光的频率有关,C 项正确;只有当入射光的频率大于极限频率,才会有光电子逸出,D 项正确. 答案 CD【变式跟踪1】 (多选)光电效应的实验结论是:对某种金属( ). A .无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B .无论光的频率多低,只要光照时间足够长就能产生光电效应C .超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小D .超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大解析 每种金属都有它的极限频率ν0,只有入射光子的频率大于极限频率ν0时,才会发生光电效应,选项A 正确、B 错误;光电子的初动能与入射光的强度无关,随入射光频率的增大而增大,选项D 正确、C 错误.答案 AD ,借题发挥1.用光子说解释光电效应及其规律(1)光照射金属时,电子吸收一个光子(形成光电子)的能量后,动能立即增大,不需要积累能量的过程.(2)电子从金属表面逸出,首先需克服金属表面原子核的引力做功(逸出功W ).要使入射光子的能量不小于W ,对应频率ν0=W h为极限频率. (3)光电子的最大初动能只随入射光频率的增大而增大.(4)入射光越强,单位时间内入射到金属表面的光子数越多,产生的光电子越多,射出的光电子做定向移动时形成的光电流越大. 2.概念辨析考点二 光电效应方程的应用【典例2】 (2012·江苏卷,12C)A 、B 两种光子的能量之比为2∶1,它们都能使某种金属发生光电效应,且所产生的光电子最大初动能分别为E A 、E B .求A 、B 两种光子的动量之比和该金属的逸出功.解析 光子能量ε=h ν,动量p =h λ,且ν=cλ,得p =εc,则p A ∶p B =2∶1,A 照射时,光电子的最大初动能E A =εA -W 0,同理,EB =εB -W 0,又εA ∶εB =2∶1, 联立解得W 0=E A -2E B . 答案 2∶1 E A -2E B【变式跟踪2】 (多选)如图1-2-3所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5).由图可知( ).图1-2-3A .该金属的截止频率为4.27×1014Hz B .该金属的截止频率为5.5×1014Hz C .该图线的斜率表示普朗克常量 D .该金属的逸出功为0.5 eV解析 图线在横轴上的截距为截止频率,A 正确、B 错误; 由光电效应方程E k =h ν-W 0,可知图线的斜率为普朗克常量,C 正确; 金属的逸出功为:W 0=h ν0=6.4×10-34×4.27×10141.6×10-19eV =1.71 eV ,D 错误. 答案 AC ,借题发挥1.解光电效应问题 应抓住三个关系式:(1)爱因斯坦光电效应方程:E k =h ν-W 0. (2)最大初动能与遏止电压的关系:E k =eU c . (3)逸出功与极限频率的关系:W 0=h ν0. 2.用图象表示光电效应方程(1)最大初动能E k 与入射光频率ν的关系图线如图1-2-4所示.图1-2-4(2)由曲线可以得到的物理量①极限频率:图线与ν轴交点的横坐标ν0. ②逸出功:图线与E k 轴交点的纵坐标的值W 0=E . ③普朗克常量:图线的斜率k =h .对应学生用书P238一、对波粒二象性的理解1.(多选)用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图1-2-5(a)、(b)、(c)所示的图象,则( ).图1-2-5A.图象(a)表明光具有粒子性B.图象(c)表明光具有波动性C.用紫外光观察不到类似的图象D.实验表明光是一种概率波解析图象(a)曝光时间短,通过光子数很少,呈现粒子性.图象(c)曝光时间长,通过了大量光子,呈现波动性,故A、B正确;同时也表明光波是一种概率波,故D也正确;紫外光本质和可见光本质相同.也可以发生上述现象,故C错误.答案ABD2.(单选)根据爱因斯坦光子说,光子能量ε等于(h为普朗克常量,c、λ为真空中的光速和波长)( ).A.h cλ B.hλcC.hλ D.hλ解析本题考查爱因斯坦光子说理论.意在考查考生对爱因斯坦光子说理论的理解.根据E=hν和c=λν得:E=h cλ,A正确.答案 A二、对光电效应规律的理解3.(单选)用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是( ).A.改用频率更小的紫外线照射B.改用X射线照射C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间解析金属发生光电效应必须使光的频率大于极限频率,X射线的频率大于紫外线的频率.答案 B4.(单选)关于光电效应,下列说法正确的是( ).A.极限频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能产生光电效应C.从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多解析逸出功W0=hν0,W0∝ν0,A正确;只有照射光的频率ν大于金属极限频率ν0,才能产生光电效应现象,B错;由光电效应方程E km=hν-W0知,因ν不确定时,无法确定E km与W0的关系,C错;光强E=nhν,ν越大,E一定,则光子数n越小,单位时间内逸出的光电子数就越少,D错.答案 A。

2014届高考物理一轮复习课件(考纲解读+考点探究+高分技巧):10.2变压器 远距离输电(60张ppt,含详解)

2014届高考物理一轮复习课件(考纲解读+考点探究+高分技巧):10.2变压器 远距离输电(60张ppt,含详解)

考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
活页限时训练
10-2-5
解析 根据变压器原理可知,接直流电时,R 中没有电流,A
错误;但在原线圈中能形成闭合回路,有电流,B 错误;在 a、
b
间接交流电压
U
时,由公式U1=n1,I1=n2得 U2 n2 I2 n1
U2=nU,I2=nRU,
I1=nR2U,所以 C 正确,D 错误.
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
活页限时训练
4.几种常用的变压器 (1)自耦变压器——调压变压器 (2)互感器电电压流互互感感器器::用用来来把把大高电电流压变变成成小电低流电压 . .
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
活页限时训练
远距离输电 Ⅰ(考纲要求)
功率,则下列说法正确的是
( ).
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
活页限时训练
A.升压变压器的输出电压增大 B.降压变压器的输出电压增大 C.输电线上损耗的功率增大 D.输电线上损耗的功率占总功率的比例减小
解析 发电厂的输出电压不变,则升压变压器的输出电压不
变,A 项错;发电厂输出功率增大,则输电线中电流增大,导 线上损耗功率和损耗电压增大,降压变压器的输入、输出电压 减小,B 错、C 对;输电线上损耗的功率与总功率的比值为II2UR
载总电阻减小,I2=UR2,所以 I2 增大.因II12=nn21,所以 A1 示数 增大,A1 与 A2 示数比值不变,A 对. 答案 AD
考纲自主研读
考点互动探究
高考全程解密

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲电磁感应现象 楞次定律(含解析)

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲电磁感应现象 楞次定律(含解析)

选修3-2 第九章电磁感应第1讲电磁感应现象楞次定律对应学生用书P166磁通量Ⅰ(考纲要求)【思维驱动】(单选)如图9-1-1所示,图9-1-1在条形磁铁外套有A、B两个大小不同的圆环,穿过A环的磁通量ΦA与穿过B环的磁通量ΦB相比较( ).A.ΦA>ΦB B.ΦA<ΦBC.ΦA=ΦB D.不能确定解析磁通量Φ=Φ内-Φ外.对A、B两环,Φ内相同;而对于Φ外,B的大于A的,所以ΦA>ΦB.故正确答案为A.答案 A【知识存盘】1.概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B的乘积.2.公式:Φ=BS.3.单位:1 Wb=1__T·m2.4.公式的适用条件①匀强磁场;②磁感线的方向与平面垂直,即B⊥S.电磁感应现象Ⅰ感应电流的产生条件Ⅱ(考纲要求)【思维驱动】(多选)如图9-1-2所示,图9-1-2一个矩形线框从匀强磁场的上方自由落下,进入匀强磁场中,然后再从磁场中穿出.已知匀强磁场区域的宽度L大于线框的高度h,下列说法正确的是( ).A.线框只在进入和穿出磁场的过程中,才有感应电流产生B.线框从进入到穿出磁场的整个过程中,都有感应电流产生C.线框在进入和穿出磁场的过程中,都是机械能转化成电能D.整个线框都在磁场中运动时,机械能转化成电能解析产生感应电流的条件是穿过闭合回路的磁通量发生变化,线框全部在磁场中时,磁通量不变,不产生感应电流,故选项B、D错误.线框进入和穿出磁场的过程中磁通量发生变化,产生了感应电流,故选项A正确.在产生感应电流的过程中线框消耗了机械能,故选项C正确.答案AC【知识存盘】1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象.2.产生感应电流的条件(1)条件:穿过闭合电路的磁通量发生变化.(2)特例:闭合电路的一部分导体在磁场内做切割磁感线运动.3.产生电磁感应现象的实质:电磁感应现象的实质是产生感应电动势,如果回路闭合则产生感应电流;如果回路不闭合,则只有感应电动势,而无感应电流.楞次定律Ⅱ(考纲要求)【思维驱动】(单选)如图9-1-3所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是( ).图9-1-3A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地 D.乙、丙同时落地,甲后落地解析甲是铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙没有闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,故D正确.答案 D【知识存盘】楞次定律三定则一定律闭合回路的磁通量变化对应学生用书P167考点一电磁感应现象是否发生的判断【典例1】 (单图9-1-4选)如图9-1-4所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心轴线恰和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有( ).A.使通电螺线管中的电流发生变化B.使螺线管绕垂直于线圈平面且过线圈圆心的轴转动C.使线圈a以MN为轴转动D.使线圈绕垂直于MN的直径转动解析题中图示位置无论螺线管中的电流怎样发生变化,均无磁感线穿过线圈平面,磁通量始终为零,故无感应电流产生,选项A错误.若螺线管绕垂直于线圈平面且过线圈圆心的轴转动,穿过线圈的磁通量始终为零,故无感应电流产生,选项B错误.若线圈a以MN为轴转动,穿过线圈的磁通量始终为零,故无感应电流产生,选项C错误.若线圈绕垂直于MN的直径转动,穿过线圈的磁通量会发生变化,故有感应电流产生,选项D 正确.答案 D【变式跟踪1】 (单图9-1-5选)如图9-1-5所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是( ).A.线圈中通以恒定的电流B.通电时,使滑动变阻器的滑片P匀速移动C.通电时,使滑动变阻器的滑片P加速移动D.将电键突然断开的瞬间解析当线圈中通恒定电流时,产生的磁场为稳恒磁场,通过铜环A的磁通量不发生变化,不会产生感应电流.答案A,借题发挥电磁感应现象是否发生判断流程:考点二楞次定律的理解及应用楞次定律中“阻碍”的含义【典例2】 (单选)某实验小组用如图9-1-6所示的实验装置来验证楞次定律.图9-1-6当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( ).A.a→G→b B.先a→G→b,后b→G→aC.b→G→a D.先b→G→a,后a→G→b解析①确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.②明确回路中磁通量的变化情况:线圈中向下的磁通量增加.③由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.④应用右手定则可以判断感应电流的方向为逆时针(俯视)即:b→G→a.同理可以判断:条形磁铁穿出线圈的过程中,向下的磁通量减小,由楞次定律可得线圈中将产生顺时针方向的感应电流(俯视),电流从a→G→b.答案 D【变式跟踪2】 (单选)如图9-1-7所示,图9-1-7通电螺线管左侧和内部分别静止吊一导体环a和b,当滑动变阻器R的滑动触头c向左滑动时( ).A.a向左摆,b向右摆B.a向右摆,b向左摆C.a向左摆,b不动 D.a向右摆,b不动解析当滑动变阻器R的滑动触头c向左滑动时,电路中的电流变大,螺线管产生的磁场逐渐增强,穿过a的磁通量变大,根据楞次定律可知,a向左摆动;b处于螺线管内部,其周围的磁场为匀强磁场,方向水平向左,圆环中虽然也产生感应电流,但根据左手定则可判断出,安培力与b在同一个平面内,产生的效果是使圆环面积缩小,并不使其摆动,所以C项正确.答案C,借题发挥1.应用“程序法”解题的注意事项“程序法”是分析、解决物理问题的一种常见方法,在使用“程序法”处理问题时,需注意以下两点:(1)根据题目类型制定一个严谨、简洁的解题程序;(2)在分析和解决问题时,要严格按照解题程序进行,这样可以规范解题过程、减少失误、节约解题时间.2.判断感应电流方向的“四步法”考点三楞次定律、右手定则、左手定则、安培定则的综合应用【典例3】 (多选)如图9-1-8所示,图9-1-8水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动.则PQ所做的运动可能是( ).A.向右加速运动 B.向左加速运动C.向右减速运动 D.向左减速运动解析 MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里――→左手定则MN 中的感应电流由M →N ――→安培定则L 1中感应电流的磁场方向向上――→楞次定律⎩⎪⎨⎪⎧L 2中磁场方向向上减弱L 2中磁场方向向下增强;若L 2中磁场方向向上减弱――→安培定则PQ 中电流为Q →P 且减小――→右手定则向右减速运动;若L 2中磁场方向向下增强――→安培定则PQ 中电流为P →Q 且增大――→右手定则向左加速运动. 答案 BC【变式跟踪3】 (单选)如图9-1-9所示,图9-1-9导轨间的磁场方向垂直于纸面向里,当导线MN 在导轨上向右加速滑动时,正对电磁铁A 的圆形金属环B 中( ). A .有感应电流,且B 被A 吸引 B .无感应电流C .可能有,也可能没有感应电流D .有感应电流,且B 被A 排斥解析 MN 向右加速滑动,根据右手定则,MN 中的电流方向从N →M ,且大小在逐渐变大,根据安培定则知,电磁铁A 的左端为N 极,且磁场强度逐渐增强,根据楞次定律知,B 环中的感应电流产生的内部磁场方向向右,B 被A 排斥.故D 正确.答案 D ,借题发挥•“三个定则与一个定律”的规范应用 1.一般解题步骤(1)分析题干条件,找出闭合电路或切割磁感线的导体棒. (2)结合题中的已知条件和待求量的关系选择恰当的规律. (3)正确地利用所选择的规律进行分析和判断. 2.应用区别 关键是抓住因果关系(1)因电而生磁(I →B )→安培定则;。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲重力 弹力 摩擦力(含解析) 新人教版

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲重力 弹力 摩擦力(含解析) 新人教版

物理1 第二章相互作用第1讲重力弹力摩擦力对应学生用书P23重力Ⅰ(考纲要求)【思维驱动】(单选)(2013·蚌埠高三检测)小明对重力有以下四种认识,其中正确的是( ).A.重力方向总是垂直于物体的表面B.重力方向总是竖直向下C.物体的重心一定在物体上D.在同一地点,同一物体静止时所受的重力与其运动时所受的重力不一样答案 B【知识存盘】1.产生:由于地球对物体的吸引而使物体受到的力.2.大小:G=mg.3.g的特点(1)在地球上同一地点g值是一个不变的常数.(2)g值随着纬度的增大而增大.(3)g值随着高度的增大而减小.4.方向:竖直向下5.重心(1)相关因素①物体的几何形状.②物体的质量分布.(2)位置确定①质量分布均匀的规则物体,重心在其几何中心;②对于形状不规则或者质量分布不均匀的薄板,重心可用悬挂法确定.形变和弹力、胡克定律Ⅰ(考纲要求)【思维驱动】(单选)在图中,A、B均处于静止状态,则A、B之间一定有弹力的是( ).解析假设将与研究对象接触的物体逐一移走,如果研究对象的状态发生变化,则表示它们之间有弹力;如果状态无变化,则表示它们之间无弹力.四个选项中当B选项中的B物体移走后,A物体一定会摆动,所以B选项中A、B间一定有弹力.答案 B【知识存盘】1.形变:物体在力的作用下形状或体积的变化叫形变.2.弹性(1)弹性形变:有些物体在形变后撤去作用力时能够恢复原状的形变.(2)弹性限度:当形变超过一定限度时,撤去作用力后,物体不能完全恢复原来的形状,这个限度叫弹性限度.3.弹力(1)定义:发生弹性形变的物体,由于要恢复原状,会对与它接触的物体产生力的作用.(2)产生条件①物体相互接触;②物体发生弹性形变.(3)方向:弹力的方向总是与施力物体形变的方向相反.4.胡克定律(1)内容:弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.(2)表达式:F=kx.①k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.②x是弹簧长度的变化量,不是弹簧形变以后的长度.静摩擦、滑动摩擦、摩擦力、动摩擦因数Ⅰ (考纲要求)【思维驱动】(单选)下列关于摩擦力的说法正确的是( ).A.摩擦力的方向总与物体的运动方向相反B.摩擦力的大小与相应的正压力成正比C.运动着的物体不可能受静摩擦力作用,只能受滑动摩擦力作用D.静摩擦力的方向与接触物体相对运动趋势的方向相反解析摩擦力的方向与物体的运动方向可以相同也可以相反,故A错;静摩擦力的方向总是与物体间相对运动趋势的方向相反,故D对;静摩擦力存在于相对静止的物体间,物体可以是静止的,也可以是运动的,故C错;滑动摩擦力大小与正压力成正比,静摩擦力与正压力无关,最大静摩擦力与正压力成正比,故B错.答案 D【知识存盘】1.静摩擦力和滑动摩擦力(1)静摩擦力:两个有相对运动趋势的物体间在接触面上产生的阻碍相对运动趋势的力叫静摩擦力.(2)滑动摩擦力:两个有相对滑动的物体间在接触面上产生的阻碍相对运动的力叫滑动摩擦力.2.两种摩擦力的对比F1.2.三个方向⎩⎪⎨⎪⎧运动方向相对运动方向相对运动趋势的方向3.两个“相对”⎩⎪⎨⎪⎧相对静止相对运动对应学生用书P24考点一 弹力方向的判断及大小计算图2-1-1【典例1】 (单选)如图2-1-1所示,一重为10 N的球固定在支杆AB的上端,今用一段绳子水平拉球,使杆发生弯曲,已知绳的拉力为7.5 N,则AB杆对球的作用力( ).A.大小为7.5 NB.大小为10 NC.方向与水平方向成53°角斜向右下方D.方向与水平方向成53°角斜向左上方解析对小球进行受力分析可得,AB杆对球的作用力和绳的拉力的合力与小球重力等值反向,令AB杆对小球的作用力与水平方向夹角为α,可得:tan α=GF拉=43,α=53°,故D项正确.答案 D【变式跟踪1】 (单选)小车上固定一根弹性直杆A,图2-1-2杆顶固定一个小球B(如图2-1-2所示),现让小车从光滑斜面上自由下滑,在下图的情况中杆发生了不同的形变,其中正确的是( ).解析小车在光滑斜面上自由下滑,则加速度a=g sin θ(θ为斜面的倾角),由牛顿第二定律可知小球所受重力和杆的弹力的合力沿斜面向下,且小球的加速度等于g sin θ,则杆的弹力方向垂直于斜面向上,杆不会发生弯曲,C正确.答案C,以题说法1.判断弹力有无的常用方法(1)“条件法”:根据弹力产生的两个条件——接触和发生弹性形变直接判断.(2)“状态法”:根据研究对象的运动状态进行分析,判断物体是否需要弹力,才能保持现在的运动状态.2.弹力方向的判断方法(1)根据物体所受弹力方向与施力物体形变的方向相反,与自身(受力物体)形变方向相同判断.注:几种常见接触面间的弹力见“状元微博”.(2)根据共点力的平衡条件或牛顿第二定律进行判断.3.弹力大小的计算方法(1)根据力的平衡条件进行求解.(2)根据胡克定律进行求解.(3)根据牛顿第二定律进行求解.4.杆的弹力:杆既可以产生拉力,也可以产生支持力,弹力的方向可能沿着杆,也可能不沿杆.考点二静摩擦力方向的判断1.受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的.2.摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.【典例2】 (单选)如图2-1-3所示,物体P、Q在力F作用下一起以相同速度沿F方向匀速运动,关于物体P所受的摩擦力,下列说法正确的是( ).图2-1-3A.甲、乙两图中物体P均受摩擦力,且方向均与F相同B.甲、乙两图中物体P均受摩擦力,且方向均与F相反C.甲、乙两图中物体P均不受摩擦力D.甲图中物体P不受摩擦力,乙图中物体P受摩擦力,方向和F方向相同解析用假设法分析:甲图中,假设P受摩擦力,与P做匀速运动在水平方向合力为零不符,所以P不受摩擦力;乙图中,假设P不受摩擦力,P将相对Q沿斜面向下运动,从而P受沿F方向的摩擦力.正确选项是D.答案 D【变式跟踪2】 (单选)图2-1-4如图2-1-4所示,A、B两物体叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力( ).A.方向向左,大小不变 B.方向向左,逐渐减小C.方向向右,大小不变 D.方向向右,逐渐减小解析物体B具有水平向左的恒定加速度,由牛顿第二定律知,物体B受到的合外力水平向左且恒定,对物体B受力分析可知,物体B在水平方向的合外力就是物体A施加的静摩擦力,因此,物体B受到的摩擦力方向向左,且大小不变,故A正确.答案 A【变式跟踪3】 (多选)如图2-1-5所示,图2-1-5用一水平力F把A、B两个物体挤压在竖直的墙上,A、B两物体均处于静止状态,下列判断正确的是( ).A.B物体对A物体的静摩擦力方向向下B.F增大时,A和墙之间的摩擦力也增大C.若B的重力大于A的重力,则B受到的摩擦力大于墙对A的摩擦力D.不论A、B的重力哪个大,B受到的摩擦力一定小于墙对A的摩擦力解析将A、B视为整体,可以看出A物体受到墙的摩擦力方向竖直向上.对B受力分析可知B受到的摩擦力方向向上,由牛顿第三定律可知B对A的摩擦力方向向下,A正确;由于A、B两物体受到的重力不变,根据平衡条件可知B错误;A和墙之间的摩擦力与A、B两物体重力平衡,故C错误、D正确.答案AD,以题说法判断静摩擦力的有无及方向的常用方法1.假设法:利用假设法判断的思维程序如下:2.状态法:(如变式跟踪2)明确物体的运动状态,分析物体的受力情况,根据平衡方程或牛顿第二定律求解静摩擦力的大小和方向.3.牛顿第三定律法:(如变式跟踪3)此法的关键是抓住“力是成对出现的”,先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.考点三 摩擦力的大小计算图2-1-6【典例3】 在粗糙的水平面上放一物体A ,A 上再放一质量为m 的物体B ,A 、B 间的动摩擦因数为μ,施加一水平力F 作用于A (如图2-1-6所示),计算下列情况下A 对B 的摩擦力.(1)当A 、B 一起做匀速运动时;(2)当A 、B 一起以加速度a 向右匀加速运动时; (3)当力F 足够大而使A 、B 发生相对滑动时;(4)当A 、B 发生相对滑动,且B 物体的15伸到A 的外面时.解析 (1)因A 、B 一起向右匀速运动,B 物体受到的合力为零,所以B 物体受到的摩擦力为零.(2)因A 、B 无相对滑动,所以B 受到的摩擦力是静摩擦力,此时不能用F f =μF N 来计算,对B 物体受力分析,由牛顿第二定律得F 合=ma ,所以F f =ma ,方向水平向右. (3)因A 、B 发生相对滑动,所以B 受到的摩擦力是滑动摩擦力,即F f =μF N =μmg ,方。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲固体 液体与气体(含解析) 选修3-3

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲固体 液体与气体(含解析) 选修3-3

第2讲固体液体与气体对应学生用书P202晶体和非晶体晶体的微观结构Ⅰ(考纲要求)【思维驱动】在甲、乙、丙三种固体薄片上涂上石蜡,用烧热的针接触其上一点,石蜡熔化的范围如图1-2-1中(1)、(2)、(3)所示,而甲、乙、丙三种固体在熔化过程中温度随加热时间变化的关系如图(4)所示.则由此可判断出甲为________,乙为________,丙为________(填“单晶体”、“多晶体”、“非晶体”)。

图1-2-1答案多晶体非晶体单晶体【知识存盘】1.晶体与非晶体熔点2.晶体的微观结构(1)晶体的微观结构特点:组成晶体的物质微粒有规则地、周期性地在空间排列.(2)用晶体的微观结构解释晶体的特点1.单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性. 2.只要是具有各向异性的物体必定是晶体,且是单晶体. 3.只要是具有确定熔点的物体必定是晶体,反之,必是非晶体. 4.晶体和非晶体在一定条件下可以相互转化.固体⎩⎪⎨⎪⎧晶体⎩⎪⎨⎪⎧单晶体——物理性质的各向异性多晶体——物理性质的各向同性非晶体——物理性质的各向同性液体的表面张力 液晶 Ⅰ (考纲要求) 【思维驱动】(单选)(2013·徐州质量测评)图1-2-2如图1-2-2所示,先把一个棉线圈拴在铁丝环上,再把环在肥皂液里浸一下,使环上布满肥皂液薄膜。

如果用热针刺破棉线圈里那部分薄膜,则棉线圈将成为圆形,主要原因是( ).A .液体表面层分子间的斥力作用B .液体表面受重力作用C .液体表面张力作用D .棉线圈的张力作用解析 由于液体表层内分子间距离比较大,液体表面张力使得液体表面具有收缩的趋势,故松弛的棉线圈变为圆形,C 正确. 答案 C 【知识存盘】 1.液体的表面张力(1)作用:液体的表面张力使液面具有收缩的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的边界线垂直.(3)大小:液体的温度越高,表面张力越小,液体中溶有杂质时,表面张力变小,液体的密度越大,表面张力越大. 2.液晶 (1)液晶的产生晶体――→加热液晶――→加热液体(2)物理性质⎩⎪⎨⎪⎧具有液体的流动性具有晶体的光学各向异性在某个方向上看其分子排列比较整齐,但 从另一方向看,分子的排列是杂乱无章的气体实验定律 Ⅰ 理想气体 Ⅰ (考纲要求) 【思维驱动】(双选)(2013·无锡测试)图1-2-3一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度变化如图1-2-3所示,则此过程 ( ).A.气体的密度增大B.外界对气体做功C.气体从外界吸收了热量D.气体分子的平均动能增大解析气体由状态A变化到状态B为等温变化,由玻意耳定律p A V A=p B V B,p B>p A,所以V A>V B,气体体积减小,外界对气体做功,气体密度增加,A、B正确.由于温度不变.气体的分子平均动能不变,D错误.温度不变,气体的内能不变,外界对气体做功,由ΔU =W+Q.气体放出热量,C错.答案AB【知识存盘】1.气体和气体分子运动的特点2.三个实验定律比较3.理想气体(1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体.①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在;②实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可当做理想气体来处理.(2)一定质量的理想气体状态方程:pV T =C (恒量),即p 1V 1T 1=p 2V 2T 2.气体的压强对应学生用书P204考点一 气体实验定律和理想气体状态方程的应用 【典例1】 (2012·课标全国卷)图1-2-4如图1-2-4所示,由U 形管和细管连接的玻璃泡A 、B 和C 浸泡在温度均在0 ℃的水槽中,B 的容积是A 的3倍.阀门S 将A 和B 两部分隔开.A 内为真空,B 和C 内都充有气体.U 形管内左边水银柱比右边的低60 mm.打开阀门S ,整个系统稳定后,U 形管内左右水银柱高度相等,假设U 形管和细管中的气体体积远小于玻璃泡的容积. (1)求玻璃泡C 中气体的压强(以mmHg 为单位);(2)将右侧水槽的水从0 ℃加热到一定温度时,U 形管内左右水银柱高度差又为60 mm ,求加热后右侧水槽的水温.规范解答 (1)在打开阀门S 前,两水槽水温均为T 0=273 K .设玻璃泡B 中气体的压强为p 1,体积为V B ,玻璃泡C 中气体的压强为p C ,依题意有p 1=p C +Δp ① 式中Δp =60 mmHg.打开阀门S 后,两水槽水温仍为T 0, 设玻璃泡B 中气体的压强为p B .依题意有,p B =p C ② 玻璃泡A 和B 中气体的体积为V 2=V A +V B ③ 根据玻意耳定律得p 1V B =p B V 2④联立①②③④式,并代入题给数据得p C =V BV AΔp =180 mmHg ⑤ (2)当右侧水槽的水温加热到T ′时,U 形管左右水银柱高度差为Δp . 玻璃泡C 中气体的压强为p C ′=p B +Δp ⑥ 玻璃泡C 中的气体体积不变,根据查理定律得p C T 0=p C ′T ′⑦联立②⑤⑥⑦式,并代入题给数据得T ′=364 K .⑧ 答案 (1)180 mmHg (2)364 K【变式跟踪1】 一活塞将一定质量的理想气体封闭在汽缸内,初始时气体体积为3.0×10-3m 3.用DIS 实验系统测得此时气体的温度和压强分别为300 K 和1.0×105Pa.推动活塞压缩气体,稳定后测得气体的温度和压强分别为320 K 和1.6×105Pa. (1)求此时气体的体积.(2)保持温度不变,缓慢改变作用在活塞上的力,使气体压强变为8.0×104Pa ,求此时气体的体积.解析 (1)对缸内封闭气体初态:p 1=1×105Pa ,V 1=3.0×10-3m 3,T 1=300 K , 末态:p 2=1.6×105 Pa ,V 2=?,T 2=320 K 由理想气体状态方程可知p 1V 1T 1=p 2V 2T 2,所以V 2=p 1V 1T 2T 1p 2=2×10-3 m 3,即末态时气体体积为2×10-3m 3.(2)当气体保持T 2不变,变到状态3时最后状态:p 3=0.8×105Pa ,V 3=?,T 3=T 2=320 K所以p 2V 2=p 3V 3,即V 3=p 2V 2p 3=1.6×105×2×10-30.8×105m 3=4×10-3 m 3. 答案 (1)2.0×10-3m 3(2)4.0×10-3m 3,借题发挥1.分析气体状态变化的问题要抓住三点: (1)阶段性:即弄清一个物理过程分为哪几个阶段.(2)联系性:即找出几个阶段之间是由什么物理量联系起来的. (3)规律性:即明确哪个阶段应遵循什么实验定律. 2.利用气体实验定律及气态方程解决问题的基本思路 错误!考点二 气体状态变化的图象分析 【典例2】 (2012·浙江自选,13)图1-2-5一定质量的理想气体,状态从A ―→B ―→C ―→D ―→A 的变化过程可用如图1-2-5所示的p -V 图线描述,图中p 1、p 2、V 1、V 2和V 3为已知量.(1)气体状态从A 到B 是________过程(填“等容”“等压”或“等温”);(2)状态从B 到C 的变化过程中,气体的温度________(填“升高”“不变”或“降低”); (3)状态从C 到D 的变化过程中,气体________(填“吸热”或“放热”); (4)状态从A ―→B ―→C ―→D 的变化过程中,气体对外界所做的总功为________. 解析 (1)由题图可知,气体状态从A 到B 的过程为等压过程.(2)状态从B 到C 的过程中,气体发生等容变化,且压强减小,根据pT=C (常量),则气体的温度降低.(3)状态从C 到D 的过程中,气体发生等压变化,且体积减小,外界对气体做功,即W >0,根据V T=C (常量),则气体的温度T 降低,气体的内能减小,由ΔU =Q +W ,则Q =ΔU -W <0,所以气体放热.(4)状态从A ―→B ―→C ―→D 的变化过程中气体对外界所做的总功W =p 2(V 3-V 1)-p 1(V 3-V 2).答案 (1)等压 (2)降低 (3)放热 (4)p 2(V 3-V 1)-p 1(V 3-V 2) 【变式跟踪2】 一定质量的理想气体从状态A 变化到状态B ,图1-2-6再变化到状态C ,其状态变化过程的p -V 图象如图1-2-6所示.已知该气体在状态A 时的温度为27 ℃.则:(1)该气体在状态B 、C 时的温度分别为多少 ℃?(2)该气体从状态A 到状态C 的过程中内能的变化量是多大?(3)该气体从状态A 到状态C 的过程中是吸热,还是放热?传递的热量是多少? 解析 (1)对于理想气体:A →B ,由p A T A =p BT B得:T B =100 K ,所以t B =-173 ℃B →C 由V B T B =V CT C得:T C =300 K ,所以t C =27 ℃.(2)A →C 由温度相等得:ΔU =0. (3)A →C 的过程中是吸热.吸收的热量Q =W =p ΔV =1×105×(3×10-3-1×10-3) J =200 J.答案 (1)-173 ℃ 27 ℃ (2)0 (3)吸热;200 J ,借题发挥应用气体状态变化的图象 分析问题的基本思路考点三 热力学第一定律与气体实验定律的综合问题【典例3】 (2012·江苏卷,12A(2)(3))(1)密闭在钢瓶中的理想气体,温度升高时压强增大.从分子动理论的角度分析,这是由于分子热运动的________增大了.该气体在温度T 1、T 2时的分子速率分布图象如图1-2-7所示,则T 1________(选填“大于”或“小于”)T 2.(2)如图1-2-8所示,一定质量的理想气体从状态A 经等压过程到状态B .此过程中,气体压强p =1.0×105Pa ,吸收的热量Q =7.0×102J ,求此过程中气体内能的增量.图1-2-7 图1-2-8解析 (1)温度升高时,气体分子平均速率变大,平均动能增大,即分子的速率较大的分子占总分子数比例较大,所以T 1<T 2. (2)等压变化V A T A =V B T B,对外做的功W =p (V B -V A )根据热力学第一定律ΔU =Q -W ,解得ΔU =5.0×102J.。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲牛顿第二定律 两类动力学问题(含解析)

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲牛顿第二定律 两类动力学问题(含解析)

第2讲牛顿第二定律两类动力学问题对应学生用书P45牛顿第二定律Ⅱ(考纲要求)【思维驱动】(多选)关于力和运动的关系,下列说法正确的是( ).A.物体的速度不断增大,表示物体必受力的作用B.物体的位移不断增大,表示物体必受力的作用C.若物体的位移与时间的平方成正比,表示物体必受力的作用D.物体的速率不变,则其所受合力必为0解析物体的速度不断增大,一定有加速度,由牛顿第二定律知,物体所受合力一定不为0,物体必受力的作用,A正确;位移与运动时间的平方成正比,说明物体做匀加速直线运动,合力不为0,C正确;做匀速直线运动的物体的位移也是逐渐增大的,但其所受合力为0,故B错误;当物体的速率不变,速度的方向变化时,物体具有加速度,合力不为0,D错误.答案AC【知识存盘】1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.单位制【思维驱动】(多选)在牛顿第二定律公式F=kma中,比例系数k的数值( ).A.在任何情况下都等于1B.是由质量m、加速度a和力F三者的大小所决定的C.是由质量m、加速度a和力F三者的单位所决定的D.在国际单位制中一定等于1解析物理公式在确定物理量的数量关系的同时也确定了物理量单位的关系.课本上牛顿第二定律的公式F=ma是根据实验结论导出的,其过程简要如下:实验结论一:a∝F;实验结论二:a∝1 m .综合两个结论,得a∝Fm或F∝ma.上式写成等式为F=kma,其中k为比例常数.如果选用合适的单位,可使k=1.为此,对力的单位“N”做了定义:使质量是1 kg的物体产生1 m/s2的加速度的力,叫做1 N,即1 N=1 kg·m/s2.据此,公式F=kma中,如果各物理量都用国际单位(即F用N作单位、m用kg作单位、a用m/s2作单位),则k=1.由此可见,公式F=kma中的比例常数k的数值,是由质量m、加速度a和力F三者的单位所决定的,在国际单位制中k=1,并不是在任何情况下k都等于1,故选项A、B错,选项C、D正确.答案CD【知识存盘】1.力学单位制:单位制由基本单位和导出单位共同组成.2.力学中的基本单位:力学单位制中的基本单位有千克(kg)、米(m)和秒(s).3.导出单位:导出单位有N、m/s、m/s2等.牛顿运动定律的应用Ⅱ(考纲要求)【思维驱动】如图3-2-1所示,图3-2-1楼梯口一倾斜的天花板与水平面成θ=37°角,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m =0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L=4 m.sin 37°=0.6,cos 37°=0.8,g取10 m/s2.试求:(1)刷子沿天花板向上的加速度.(2)工人把刷子从天花板底端推到顶端所用的时间.解析(1)刷子受力如图所示,对刷子沿斜面方向由牛顿第二定律得:F sin θ-mg sin θ-F f=ma垂直斜面方向上受力平衡,有:F cos θ=mg cos θ+F N其中F f=μF N由以上三式得:a=2 m/s2.(2)由L=12at2得:t=2 s.答案(1)2 m/s2(2)2 s【知识存盘】1.动力学的两类基本问题(1)由受力情况分析判断物体的运动情况;(2)由运动情况分析判断物体的受力情况.2.解决两类基本问题的方法:以加速度为桥梁,由运动学公式和牛顿第二定律列方程求解.国际单位制中的基本单位有:千克(kg)、米(m)、秒(s)、安培(A)、开尔文(K)(高中阶段所学)对应学生用书P46考点一 对牛顿第二定律的理解 牛顿第二定律的“五”性【典例1】 (单选)如图3-2-2所示,图3-2-2物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,2、4质量为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( ).A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +MMg D .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +MMg 解析 在抽出木板的瞬时,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +mMg ,所以C 对. 答案 C【变式跟踪1】 (单选)(2013·常州联考)如图3-2-3所示,图3-2-3质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( ). A .0 B.233g C .gD.33g解析 平衡时,小球受到三个力:重力mg 、木板AB 的支持力F N 和弹簧拉力F T ,受力情况如图所示.突然撤离木板时,F N 突然消失而其他力不变,因此F T 与重力mg 的合力F =mgcos 30°=233mg ,产生的加速度a =F m =233g ,B 正确. 答案 B,借题发挥1.分析物体在某一时刻瞬时加速度的关键: (1)先分析该时刻物体的受力情况及运动状态. (2)再由牛顿第二定律求出瞬时加速度. 2.几种常见模型:考点二 整体法、隔离法的灵活应用选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度.对于连接体问题,通常用隔离法,但有时也可采用整体法. 【典例2】 (单选)(2012·江苏卷,5)图3-2-4如图3-2-4所示,一夹子夹住木块,在力F 作用下向上提升.夹子和木块的质量分别为m 、M ,夹子与木块两侧间的最大静摩擦力均为f .若木块不滑动,力F 的最大值是( ). A.2f (m +M )MB.2f (m +M )mC.2f (m +M )M-(m +M )g D.2f (m +M )m+(m +M )g解析 对木块M ,受到两个静摩擦力f 和重力Mg 三个力而向上运动,由牛顿第二定律得木块不滑动的最大加速度大小为a m =2f -Mg M①.对整体,受到两个力,即力F 和整体重力(m +M )g ,由牛顿第二定律得F -(m +M )g =(m +M )a ②,代入最大加速度即得力F 的最大值F m =2f (m +M )MA 项正确.答案 A【变式跟踪2】 (单选)如图3-2-5所示,图3-2-550个大小相同、质量均为m 的小物块,在平行于斜面向上的恒力F 作用下一起沿斜面向上运动.已知斜面足够长,倾角为30°,各物块与斜面的动摩擦因数相同,重力加速度为g ,则第3个小物块对第2个小物块的作用力大小为( ). A.125F B.2425F C .24mg +F2D .因为动摩擦因数未知,所以不能确定解析 设题中50个小物块组成的整体沿斜面向上的加速度大小为a ,由牛顿第二定律可得F -50μmg cos 30°-50mg sin 30°=50ma ;从整体中将第3、4、…、50共48个小物块隔离出来进行受力分析,设第2个小物块对第3个小物块的作用力大小为F N ,由牛顿第二定律得F N -48μmg cos 30°-48mg sin 30°=48ma ;联立以上两式解得F N =2425F ,由牛顿第三定律可知,第3个小块对第2个小物块作用力大小为2425F ,故选项B 正确.答案 B,阅卷老师叮咛•考情报告牛顿运动定律是高频考点,甚至同一年同一试卷都有多处考查. •易失分点1.不能灵活运用整体法和隔离法选取研究对象.2.不理解力F 有最大值的条件―→M 、m 不相对滑动―→夹子与木块间达到最大静摩擦力.以题说法1.整体法与隔离法的应用技巧对于连接体各部分加速度相同时,一般的思维方法是2.使用隔离法时应注意两个原则(1)选出的隔离体应包含所求的未知量;(2)在独立方程的个数等于未知量的个数前提下,隔离体的数目应尽可能地少.考点三 动力学的两类基本问题 【典例3】 (2012·浙江卷,23)图3-2-6为了研究鱼所受水的阻力与其形状的关系.小明同学用石蜡做成两条质量均为m 、形状不同的“A 鱼”和“B 鱼”,如图3-2-6所示.在高出水面H 处分别静止释放“A 鱼”和“B 鱼”,“A 鱼”竖直下潜h A 后速度减为零,“B 鱼”竖直下潜h B 后速度减为零.“鱼”在水中运动时,除受重力外,还受浮力和水的阻力.已知“鱼”在水中所受浮力是其重力的109倍,重力加速度为g ,“鱼”运动的位移值远大于“鱼”的长度.假设“鱼”运动时所受水的阻力恒定,空气阻力不计.求: (1)“A 鱼”入水瞬间的速度v A 1; (2)“A 鱼”在水中运动时所受阻力f A ;(3)“A 鱼”与“B 鱼”在水中运动时所受阻力之比f A ∶f B . 规范解答 (1)“A 鱼”在入水前做自由落体运动,有v 2A 1-0=2gH ①得:v A 1=2gH ②(2)“A 鱼”在水中运动时受重力、浮力和阻力的作用,做匀减速运动,设加速度为a A ,有F 浮+f A -mg =ma A ③ 0-v 2A 1=-2a A h A ④ 由题意:F 浮=109mg 由②③④式得f A =mg⎝⎛⎭⎫H h A -19⑤ (3)考虑到“B 鱼”的受力、运动情况与“A 鱼”相似,有f B =mg ⎝⎛⎫Hh B -19⑥综合⑤、⑥两式,得。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲圆周运动的规律及其应用(含解析)

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第2讲圆周运动的规律及其应用(含解析)

第2讲 圆周运动的规律及其应用对应学生用书P90圆周运动、角速度、线速度、向心加速度 Ⅰ (考纲要求) 【思维驱动】(单选)关于质点做匀速圆周运动的下列说法正确的是( ).A .由a =v 2r知,a 与r 成反比B .由a =ω2r 知,a 与r 成正比 C .由ω=v r知,ω与r 成反比 D .由ω=2πn 知,ω与转速n 成正比解析 由a =v 2r知,只有在v 一定时,a 才与r 成反比,如果v 不一定,则a 与r 不成反比,同理,只有当ω一定时,a 才与r 成正比;v 一定时,ω与r 成反比;因2π是定值,故ω与n 成正比. 答案 D 【知识存盘】 1.圆周运动质点沿着圆周的运动称为圆周运动.其轨迹为一圆弧,故圆周运动是曲线运动. 2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:续表匀速圆周运动 向心力 Ⅱ(考纲要求) 【思维驱动】(单选)如图5-2-1所示,水平转台上放着一枚硬币,当转台匀速转动时,硬币没有滑动,关于这种情况下硬币的受力情况,下列说法正确的是( ).图5-2-1A .受重力和台面的支持力B .受重力、台面的支持力和向心力C .受重力、台面的支持力、向心力和静摩擦力D .受重力、台面的支持力和静摩擦力解析 重力与支持力平衡,静摩擦力提供向心力,方向指向转轴. 答案 D 【知识存盘】 1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动. (2)特点:加速度大小不变,方向始终指向圆心,是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.向心力(1)作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小.(2)大小:F =m v 2r =m ω2r =m 4π2r T2=m ωv =4π2mf 2r .(3)方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 3.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.对应学生用书P91考点一 描述圆周运动的各物理量间的关系线速度v 与角速度ω、周期T 、转速n 的关系:v =r ω=2πTr =2πnr由上式和向心加速度公式a =v 2/r 可推出:a =ω2r =ωv =⎝ ⎛⎭⎪⎫2πT 2r =4π2n 2r由上面的公式和向心力公式F =ma 可推出:F =mv 2/r =m ω2r =m ⎝ ⎛⎭⎪⎫2πT 2r =4m π2n 2r .图5-2-2【典例1】 (多选)如图5-2-2所示为皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径是4r ,小轮的半径是2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中皮带不打滑,则( ).A .a 点和b 点的线速度大小相等B .a 点和b 点的角速度大小相等C .a 点和c 点的线速度大小相等D .a 点和d 点的向心加速度大小相等解析 皮带不打滑表示轮子边缘在某段时间内转过的弧长总是跟皮带移动的距离相等,即a 、c 两点的线速度大小相等,选项A 错、C 对;b 、c 、d 三点同轴转动,角速度大小相等,故ωc =ωb ,又v a =v c ,r c =2r a ,且v =r ω,故ωa =2ωc ,故ωa =2ωb ,选项B错;设a 点线速度大小为v ,c 点线速度也为v ,而d 点线速度则为2v ,所以a a =v 2r,a d=(2v )24r =v 2r ,选项D 对.答案 CD图5-2-5【变式跟踪1】 (多选)如图5-2-5所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( ).A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2r 1n解析 因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,A 错误、B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度大小相等,所以由2πnr 1=2πn 2r 2,得从动轮的转速为n 2=nr 1r 2,C 正确、D 错误. 答案 BC , 借题发挥常见的三种传动方式及特点1.皮带传动:如图5-2-3甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .图5-2-32.摩擦传动:如图5-2-4甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .图5-2-43.同轴传动:如图5-2-4乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB . 考点二 匀速圆周运动的实例分析【典例2】 (多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关.还与火车在弯道上的行驶速度v 有关.下列说法正确的是( ).A .速率v 一定时,r 越小,要求h 越大B .速率v 一定时,r 越大,要求h 越大C .半径r 一定时,v 越小,要求h 越大D .半径r 一定时,v 越大,要求h 越大解析 火车转弯时,圆周平面在水平面内,火车以设计速率行驶时,向心力刚好由重力G 与轨道支持力F N 的合力来提供,如图所示,则有mg tan θ=mv 2r,且tan θ≈sin θ=h L,其中L 为轨间距,是定值,有mg h L =mv 2r,通过分析可知A 、D 正确. 答案 AD图5-2-6【变式跟踪2】 (多选)“飞车走壁”是一种传统的杂技艺术,演员骑车在倾角很大的桶面上做圆周运动而不掉下来.如图5-2-6所示,已知桶壁的倾角为θ,车和人的总质量为m ,做圆周运动的半径为r .若使演员骑车做圆周运动时不受桶壁的摩擦力,下列说法正确的是( ).A .人和车的速度为gr tan θB .人和车的速度为gr sin θC .桶面对车的弹力为mg cos θD .桶面对车的弹力为mgsin θ解析 对人和车进行受力分析如图所示.根据直角三角形的边角关系和向心力公式可列方程:F N cos θ=mg ,mg tan θ=m v 2r,解得v =gr tan θ,F N =mgcos θ.答案 AC , 借题发挥从动力学角度解决圆周运动问题1.解题思想:凡是做匀速圆周运动的物体一定需要向心力.而物体所受外力的合力充当向心力,这是处理该类问题的理论基础. 2.解题步骤:考点三水平面内圆周运动的临界问题图5-2-7【典例3】如图5-2-7所示,质量为m的木块,用一轻绳拴着,置于很大的水平转盘上,细绳穿过转盘中央的细管,与质量也为m的小球相连,木块与转盘间的最大静摩擦力为其重力的μ倍(μ=0.2),当转盘以角速度ω=4 rad/s匀速转动时,要保持木块与转盘相对静止,木块转动半径的范围是多少?(g取10 m/s2)解析由于转盘以角速度ω=4 rad/s匀速转动,因此木块做匀速圆周运动所需向心力为F=mrω2.当木块做匀速圆周运动的半径取最小值时,其所受最大静摩擦力与拉力方向相反,则有mg-μmg=mr minω2,解得r min=0.5 m;当木块做匀速圆周运动的半径取最大值时,其所受最大静摩擦力与拉力方向相同,则有mg+μmg=mr maxω2,解得r max=0.75 m.因此,要保持木块与转盘相对静止,木块转动半径的范围是:0.5 m≤r≤0.75 m. 答案0.5 m≤r≤0.75 m【变式跟踪3】对于典例3,若木块转动的半径保持r=0.5 m不变,则转盘转动的角速度范围是多少?答案 4 rad/s≤ω≤2 6 rad/s,借题发挥求解水平面内圆周运动的临界问题的一般思路1.判断临界状态:认真审题,找出临界状态.2.确定临界条件.3.选择物理规律:临界状态是一个“分水岭”,“岭”的两边连接着物理过程的不同阶段,各阶段物体的运动形式以及遵循的物理规律往往不同.4.列方程求解.对应学生用书P93物理建模6 “竖直平面内圆周运动的绳、杆”模型模型特点在竖直平面内做圆周运动的物体,按运动至轨道最高点时的受力情况可分为两类.一是无支撑(如球与绳连接,沿内轨道的“过山车”等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接,在弯管内的运动等),称为“杆(管道)约束模型”.物体在竖直平面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并伴有“最大”“最小”“刚好”等词语,现就两种模型分析比较如下:时,。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第3讲光的折射 全反射(含解析)

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第3讲光的折射 全反射(含解析)

第3讲 光的折射 全反射对应学生用书P219光的折射定律 折射率 Ⅰ (考纲要求) 【思维驱动】(单选)(2012²北京卷,14)一束单色光由空气射入玻璃,这束光的( ). A .速度变慢,波长变短 B .速度不变,波长变短 C .频率增高,波长变长 D .频率不变,波长变长解析 单色光由空气射入玻璃时,根据v =c n知,光的速度v 变慢,光从一种介质进入另一种介质时,光的频率不变,根据v =λν知光从空气射入玻璃时,波长变短,故选项A 正确,选项B 、C 、D 错误. 答案 A 【知识存盘】图1-3-11.折射现象光从一种介质斜射进入另一种介质时传播方向发生改变的现象. 2.折射定律(1)内容:折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比. (2)表达式:sin θ1sin θ2=n 12,式中n 12是比例常数.3.折射率(1)物理意义:折射率反映介质的光学特性,折射率大,说明光从真空射入到该介质时偏折大,反之偏折小.(2)定义式:n =sin θ1sin θ2,不能说n 与sin θ1成正比,与sin θ2成反比.折射率由介质本身的光学性质和光的频率决定.(3)计算公式:n =c v,因v <c ,故任何介质的折射率总大于1.1.玻璃三棱镜对光路的控制(如图1-3-2所示)图1-3-2光线两次折射均向底面偏折.2.各种色光的比较3.光路可逆在光的折射现象中,遵循光的折射定律,光路是可逆的.光的全反射、光导纤维 Ⅰ(考纲要求) 【思维驱动】(单选)很多公园的水池底都装有彩灯,当一细束由红、蓝两色组成的灯光从水中斜射向空气时,关于光在水面可能发生的反射和折射现象,下列光路图中正确的是( ).解析 红光、蓝光都要发生反射,红光的折射率较小,所以红光发生全反射的临界角较蓝光大,蓝光发生全反射时,红光不一定发生,故C 正确. 答案 C 【知识存盘】 1.全反射(1)定义:光从光密介质射入光疏介质,当入射角增大到某一角度时,折射光线将消失,只剩下反射光线的现象.(2)条件:①光从光密介质射向光疏介质.②入射角大于等于临界角.(3)临界角:折射角等于90°时的入射角.若光从光密介质(折射率为n )射向真空或空气时,发生全反射的临界角为C ,则sin C =1n.介质的折射率越大,发生全反射的临界角越小. 2.光导纤维光导纤维的原理是利用光的全反射.实验:测定玻璃的折射率 Ⅰ (考纲要求) 【思维驱动】如图1-3-3把玻璃砖放在木板上,图1-3-3下面垫一白纸,在白纸上描出玻璃砖的两个边a 和a ′.然后在玻璃砖的一侧插两个大头针A 、B ,AB 的延长线与直线a 的交点为O .眼睛在另一侧透过玻璃砖看两个大头针,使B 把A 挡住.如果在眼睛这一侧再插第三个大头针C ,使它把A 、B 都挡住,插第四个大头针D ,使它把前三个大头针都挡住,那么后两个大头针就确定了从玻璃砖射出的光线.在白纸上描出光线的径迹,要计算玻璃砖的折射率需要测量的物理量是图中的________;为了减小实验误差,入射角应________(填“大些”或“小些”).解析 根据n =sin αsin β分析可知,要计算玻璃砖的折射率需要测量α和β;因角度大一些,测量误差就会小一些,故入射角应大些. 答案 α和β 大些 【知识存盘】注意事项1.玻璃砖应选用厚度\,宽度较大的.2.大头针要插得竖直,且间隔要大些.3.入射角不宜过大或过小,一般在15°~75°之间.4.玻璃砖的折射面要画准,不能用玻璃砖界面代替直尺画界线.5.实验过程中,玻璃砖和白纸的相对位置不能改变.对应学生用书P221考点一 光的折射定律及折射率的理解及应用【典例1】 (单选)高速公路上的标志牌常用“回归反光膜”制成,图1-3-6夜间行车时,它能将车灯照射出去的光逆向返回,标志牌上的字特别醒目.这种“回归反光膜”是用球体反射元件制成的.如图1-3-6所示,反光膜内均匀分布着直径为10 μm 的细玻璃珠,所用玻璃的折射率为3,为使入射的车灯光线经玻璃珠的折射、反射、再折射后恰好和入射光线平行,那么第一次入射时的入射角是( ). A .60° B .45° C .30° D .15°解析 设入射角为i ,折射角为θ,作出光路图如图所示.因为出射光线恰好和入射光线平行,所以i =2θ,根据折射定律有sin i sin θ=sin 2θsin θ=3,所以θ=30°,i =2θ=60°. 答案 A【变式跟踪1】 一组平行的细激光束,图1-3-7垂直于半圆柱玻璃的平面射到半圆柱玻璃上,如图1-3-7所示.已知光线Ⅰ沿直线穿过玻璃,它的入射点为O ,光线Ⅱ的入射点为A ,穿过玻璃后两条光线交于一点.已知玻璃截面的圆半径为R ,OA =R2,玻璃的折射率n = 3.求两条光线射出玻璃后的交点与O点的距离.解析 两条光线的光路如图所示,设射出玻璃后的交点是P ,光线Ⅱ从玻璃射出时的入射角为i ,折射角为r ,根据折射定律得:n =sin rsin i由几何关系可得i =30° 代入得r =60°由几何关系可得OP =2R cos 30°OP =3R .答案3R,借题发挥1.光的折射问题的一般解题步骤2.应注意的问题(1)根据折射定律和入射光线画出折射光线,找到入射角和折射角,要注意入射角、折射角是入射光线、折射光线与法线的夹角.(2)应用公式n =sin θ1sin θ2时,一定要确定准哪个角在分子上,哪个角在分母上.(3)注意在折射现象中,光路是可逆的. 考点二 光的折射、全反射的综合应用图1-3-8【典例2】 (2012²海南卷,18) 一玻璃三棱镜,其横截面为等腰三角形,顶角θ为锐角,折射率为 2.现在横截面内有一光线从其左侧面上半部射入棱镜.不考虑棱镜内部的反射.若保持入射线在过入射点的法线的下方一侧(如图1-3-8所示),且要求入射角为任何值的光线都会从棱镜的右侧面射出,则顶角θ可在什么范围内取值? 规范解答 设入射光线经玻璃折射时,入射角为i ,折射角为r ,射至棱镜右侧面的入射角为α,根据折射定律有sin i =n sin r ① 由几何关系得 θ=α+r ②当i =0时,由①式知r =0,α有最大值αm (如图),由②式得 θ=αm ③同时αm 应小于玻璃对空气的全反射临界角,即sin αm <1n④由①②③④式和题给条件可得,棱镜顶角θ的取值范围为 0<θ<45°⑤ 答案 0<θ<45°图1-3-9【变式跟踪2】 (单选)如图1-3-9所示, 空气中有一折射率为2的玻璃柱体,其横截面是圆心角为90°、半径为R 的扇形OAB ,一束平行光平行于横截面,以45°入射角照射到OA 上,OB 不透光,若只考虑首次入射到圆弧AB 上的光,则圆弧AB 上有光透出部分的弧长为( ).A.16πRB.14πRC.13πRD.512πR解析 作出如图所示的几何光路图,其中N 点为从O 点入射的折射光线,故圆弧NB 段没有光线从AB 圆弧射出,由折射定律sin i sin r =n 可知sin 45°sin ∠BON =2,即∠BON =30°.若在圆弧AB 上的M 点,折射光线发生了全反射,由sin C =1n可得C =45°,由几何关系则有∠AOM =90°-45°-30°=15°,所以圆弧AB 上有光透出的长度为s =45°360°³2πR =14πR ,正确选项为B. 答案 B ,借题发挥1.光的折射、全反射中的三个“一” 一个规律:光的折射定律 一个概念:折射率 一个条件:全反射的条件 2.解答全反射类问题的技巧解答全反射类问题时,要抓住发生全反射的两个条件:一是光必须从光密介质射入光疏介质,二是入射角大于或等于临界角.利用好光路图中的临界光线,准确地判断出恰好发生全反射的光路图是解题的关键,且在作光路图时尽量与实际相符,这样更有利于问题的分析.考点三 测定玻璃的折射率 【典例3】 (2012²江苏卷12)图1-3-10“测定玻璃的折射率”实验中,在玻璃砖的一侧竖直插两个大头针A 、B ,在另一侧再竖。

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲欧姆定律 电阻定律 电功率及焦耳定律

2014届高考物理一轮 (考纲自主研读+命题探究+高考全程解密) 第1讲欧姆定律 电阻定律 电功率及焦耳定律

选修3-1 第七章 恒定电流第1讲 欧姆定律 电阻定律 电功率及焦耳定律对应学生用书P120电流 Ⅰ 欧姆定律 Ⅱ(考纲要求) 【思维驱动】(单选)一个阻值为R 的电阻两端加上电压U 后,图7-1-1通过电阻横截面的电荷量q 随时间变化的图象如图7-1-1所示,此图象的斜率可表示为( ). A .U B .R C.U R D.I R解析 在q -t 图象中图线的斜率是q t ,即电流.由欧姆定律I =U R可知C 正确. 答案 C 【知识存盘】 1.电流(1)定义:自由电荷的定向移动形成电流. (2)方向:规定为正电荷定向移动的方向. (3)三个公式 ①定义式:I =q t;②决定式:I =UR; ③微观式:I =neSv . 2.欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比. (2)公式:I =U R.(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路.电阻定律 Ⅰ(考纲要求) 【思维驱动】(单选)有Ⅰ、Ⅱ两根不同材料的电阻丝,长度之比为l 1∶l 2=1∶5,横截面积之比为S 1∶S 2=2∶3,电阻之比为R 1∶R 2=2∶5,外加电压之比为U 1∶U 2=1∶2,则它们的电阻率之比为( ).A .2∶3B .4∶3C .3∶4D .8∶3解析 设两根电阻丝电阻率分别为ρ1、ρ2,由电阻定律R =ρl S ,故ρ=RS l ,所以ρ1ρ2=R 1S 1l 1R 2S 2l 2=43,B 正确. 答案 B 【知识存盘】 1.电阻(1)定义式:R =UI.(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小,R 越大,阻碍作用越大. 2.电阻定律(1)内容:同种材料的导体,其电阻跟它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关. (2)表达式:R =ρl S. 3.电阻率(1)计算式:ρ=R S l.(2)物理意义:反映导体的导电性能,是导体材料本身的属性. (3)电阻率与温度的关系金属:电阻率随温度升高而增大; 半导体:电阻率随温度升高而减小.电功、电功率、焦耳定律 Ⅰ(考纲要求) 【思维驱动】(单选)关于电功W 和电热Q 的说法正确的是( ). A .在任何电路中都有W =UIt 、Q =I 2Rt ,且W =QB .在任何电路中都有W =UIt 、Q =I 2Rt ,但W 不一定等于QC .W =UIt 、Q =I 2Rt 均只有在纯电阻电路中才成立D .W =UIt 在任何电路中成立,Q =I 2Rt 只在纯电阻电路中成立解析 W =UIt 、Q =I 2Rt 适用于一切电路,但在纯电阻电路中W =Q ,在非纯电阻电路中W >Q ,B 对,A 、C 、D 错.答案 B 【知识存盘】 1.电功(1)定义:导体中的自由电荷在电场力作用下定向移动,电场力做的功称为电功. (2)公式:W =qU =IUt .(3)电流做功的实质:电能转化成其他形式能的过程. 2.电功率(1)定义:单位时间内电流做的功,表示电流做功的快慢. (2)公式:P =W t=IU . 3.焦耳定律(1)电热:电流流过一段导体时产生的热量. (2)计算式:Q =I 2Rt . 4.热功率(1)定义:单位时间内的发热量. (2)表达式:P =Q t=I 2R .对应学生用书P121考点一对欧姆定律及电阻定律的理解及应用1.电阻与电阻率的区别电阻是反映导体对电流阻碍作用大小的物理量,电阻大的导体对电流的阻碍作用大.电阻率是反映制作导体的材料导电性能好坏的物理量,电阻率小的材料导电性能好.2.电阻的决定式和定义式的区别【典例1】 (单选)两根完全相同的金属裸导线,如果把其中的一根均匀拉长到原来的2倍,把另一根对折后绞合起来,然后给它们分别加上相同电压后,则在相同时间内通过它们的电荷量之比为( ).A .1∶4B .1∶8C .1∶16D .16∶1解析 本题应根据电阻定律R =ρlS 、欧姆定律I =U R 和电流定义式I =q t求解.对于第一根导线,均匀拉长到原来的2倍,则其横截面积必然变为原来的12,由电阻定律可得其电阻变为原来的4倍,第二根导线对折后,长度变为原来的12,横截面积变为原来的2倍,故其电阻变为原来的14.给上述变化后的裸导线加上相同的电压,由欧姆定律得:I 1=U4R,I 2=U R /4=4U R,由I =qt可知,在相同时间内,电荷量之比q 1∶q 2=I 1∶I 2=1∶16. 答案 C【变式跟踪1】 (单选)用电器距离电源为L ,线路上的电流为I ,为使在线路上的电压降不超过U ,已知输电线的电阻率为ρ.那么,输电线的横截面积的最小值为( ). A .ρL /R B .2ρLI /U C .U /(ρLI ) D .2UL /(I ρ) 解析 输电线的总长为2L ,由公式R =U I ,R =ρl S得S =2ρLIU,故B 正确.答案 B ,借题发挥1.走出对电阻认识的误区(1)混淆电阻的定义式和决定式的意义.(2)误认为导体的电阻与导体两端的电压成正比,与电流成反比. (3)对公式R =U I的适用条件不明确. 2.应用公式R =ρl S时的注意事项应用公式R =ρl S解题时,要注意公式中各物理量的变化情况,特别是l 和S 的变化情况,通常有以下几种情况:(1)导体长度l 和横截面积S 中只有一个发生变化,另一个不变.(2)l 和S 同时变化,有一种特殊情况是l 与S 成反比,即导线的总体积V =lS 不变. (3)输电线问题中,输电线的长度等于两地距离的二倍. 考点二 与电功、电功率、电热相关的问题分析【典例2】 如图7-1-2所示图7-1-2是一提升重物用的直流电动机工作时的电路图.电动机内电阻r =0.8 Ω,电路中另一电阻R =10 Ω,直流电压U =160 V ,电压表示数U V =110 V .试求: (1)通过电动机的电流; (2)输入电动机的电功率;(3)若电动机以v =1 m/s 匀速竖直向上提升重物,求该重物的质量?(g 取10 m/s 2) 解析 (1)由电路中的电压关系可得电阻R 的分压U R =U -U V =(160-110)V =50 V ,流过电阻R 的电流I R =U R R =5010A =5 A ,即通过电动机的电流,I M =I R =5 A.(2)电动机的分压U M =U V =110 V ,输入电动机的功率P 电=I M U M =550 W.(3)电动机的发热功率P 热=I 2M r =20 W ,电动机输出的机械功率P 出=P 电-P 热=530 W ,又因P 出=mgv ,所以m =P 出gv=53 kg. 答案 (1)5 A (2)550 W (3)53 kg【变式跟踪2】 (单选)加在某电动机上的电压是U ,电动机消耗的电功率为P ,电动机线圈的电阻为r ,则电动机线圈上消耗的电热功率为( ).A .P B.U 2r C.P 2r U 2 D .P -P 2rU2解析 电热功率P 热=I 2r ,因为P =IU ,I =P U ,所以P 热=⎝ ⎛⎭⎪⎫P U 2r .故正确答案为C.答案 C ,借题发挥1.纯电阻电路与非纯电阻电路的比较2.电功和电热的处理方法无论在纯电阻电路还是在非纯电阻电路中,发热功率都是I 2r .处理非纯电阻电路的计算问题时,要善于从能量转化的角度出发,紧紧围绕能量守恒定律,利用“电功=电热+其他能量”寻找等量关系求解.对应学生用书P122命题热点6 伏安特性曲线的考查命题专家评述应用数学知识特别是运用图象进行表达、分析和求解物理问题是高考能力考查中的重要组成部分.伏安特性曲线是高考的重点之一.阅卷教师叮咛1.理解伏安特性曲线的意义伏安特性曲线I -U 2.运用伏安特性曲线求电阻应注意的问题(1)如图7-1-3所示,非线性元件的I -U 图线是曲线,导体电阻R n =U n I n,即电阻等于图线上点(U n ,I n )与坐标原点连线的斜率的倒数,而不等于该点切线斜率的倒数.图7-1-3(2)I -U 图线中的斜率k =1R,斜率k 不能理解为k =tan α(α为图线与U 轴的夹角),因坐标轴的单位可根据需要人为规定,同一电阻在坐标轴单位不同时倾角α是不同的. 高考佐证(单选)小灯泡通电后其电流I 随所加电压U 变化的图线如图7-1-4所示,P 为图线上一点,PN 为图线在P 点的切线,PQ 为U 轴的垂线,PM 为I 轴的垂线,则下列说法中错误的图7-1-4是( ).A .随着所加电压的增大,小灯泡的电阻增大B .对应P 点,小灯泡的电阻为R =U 1I 2C .对应P 点,小灯泡的电阻为R =U 1I 2-I 1D .对应P 点,小灯泡的功率为图中矩形PQOM 所围的面积解析 灯泡的电阻R =U I,结合题图知,A\,B 正确,C 错误;小灯泡的功率P =UI ,所以D 正确.故选C. 答案 C【预测1】 (多选)如图7-1-5所示是电阻R 的I -U 图象,图7-1-5图中α=45°,由此得出( ). A .通过电阻的电流与两端电压成正比 B .电阻R =0.5 ΩC .因I -U 图象的斜率表示电阻的倒数,故R =1/tan α=1.0 ΩD .在R 两段加上6.0 V 的电压时,每秒通过电阻横截面的电荷量是3.0 C解析 由I -U 图象可知,图线是一条过原点的倾斜直线,即I 和U 成正比,A 正确;而电阻R =U I =105 Ω=2 Ω,B 错误;由于纵横坐标的标度不一样,故不能用tan α计算斜率表示电阻的倒数,C 项错误;在R 两端加上6.0 V 电压时I =U R =6.02A =3.0 A ,每秒通过电阻横截面的电荷量q =It =3.0×1 C =3.0 C ,选项D 正确. 答案 AD【预测2】 (多选)额定电压均为220 V 的白炽灯L 1和L 2的U -I 特性曲线如图7-1-6甲所示,现将和L 2完全相同的L 3与L 1和L 2一起按如图乙所示电路接入220 V 的电路中,则下列说法正确的是( ).图7-1-6A .L 2的额定功率为99 WB .L 2的实际功率为17 WC .L 2的实际功率比L 3的实际功率小17 WD .L 2的实际功率比L 3的实际功率小82 W 解析 由L 2的伏安特性曲线可得,在额定电压为220 V 时L 2的电流为0.45 A ,则L 2的额定功率为P 额=U 额I 额=99 W ,所以选项A 正确;图示电路为L 1和L 2串联后再与L 3并联,所以L 1和L 2串联后两端的总电压为220 V ,那么流过L 1和L 2的电流及两灯的电压满足I 1=I 2,U 1+U 2=220 V ,由L 1和L 2的U -I 图线可知,I 1=I 2=0.25 A ,U 1=152 V ,U 2=68 V ,故灯L 2的实际功率P 2=I 2U 2=17 W ,故选项B 正确;由于L 3两端的电压为220 V ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲机械波对应学生用书P215机械波、横波和纵波Ⅰ(考纲要求)【思维驱动】(多选)(2011·新课标全国卷)一振动周期为T、振幅为A,位于x=0点的波源从平衡位置沿y轴正向开始做简谐振动.该波源产生的一维简谐横波沿x轴正向传播,波速为v,传播过程中无能量损失.一段时间后,该振动传播至某质点P,关于质点P振动的说法正确的是( ).A.振幅一定为AB.周期一定为TC.速度的最大值一定为vD.开始振动的方向沿y轴向上或向下取决于它离波源的距离E.若P点与波源距离x=vT,则质点P的位移与波源的相同解析机械波是将波源的振动形式和能量向外传递的过程,对简谐波而言,介质中各振动质点的振幅和周期都与波源的相同,A、B正确;质点P的振动速度不是波的传播速度v,C错误;质点P开始振动的方向与波源开始振动的方向相同,与它们的距离无关,D 错误;若P点与波源距离x=vT=λ,相差波长λ整数倍的质点振动情况都相同,故E 正确.答案ABE【知识存盘】1.机械波的形成条件(1)有发生机械振动的波源.(2)有传播介质,如空气、水等.2.传播特点(1)机械波传播的只是振动的形式和能量,质点只在各自的平衡位置附近做简谐运动,并不随波迁移.(2)介质中各质点的振幅相同,振动周期和频率都与波源的振动周期和频率相同.(3)一个周期内,质点完成一次全振动,通过的路程为4A,位移为零.3.机械波的分类(1)横波:质点的振动方向与波的传播方向相互垂直的波,有波峰(凸部)和波谷(凹部).(2)纵波:质点的振动方向与波的传播方向在同一直线的波,有密部和疏部.横波的图象Ⅰ(考纲要求)【思维驱动】(单选)如图1-2-1图1-2-1所示为一列沿x轴负方向传播的简谐横波在t=0时的波形图,当Q点在t=0时的振动状态传到P点时,则( ).A.1 cm<x<3 cm范围内的质点正在向y轴的负方向运动B.Q处的质点此时的加速度沿y轴的正方向C.Q处的质点此时正在波峰位置D.Q处的质点此时运动到P处解析由波沿x轴负方向传播知,当Q点在t=0时的振动状态传到P点时,波形如图中虚线所示,所以此时1 cm<x<2 cm范围内的质点正在向y轴正方向运动,因此选项A 错误;Q处质点此时正在波谷位置,加速度沿y轴的正方向,故选项B正确、选项C错误;波传播的是振动的形式和能量,质点并不随波迁移,故选项D错误.答案 B【知识存盘】横波的图象①直波速、波长和频率(周期)的关系 Ⅰ (考纲要求) 【思维驱动】(多选)关于公式v =λf ,正确的说法是( ). A .v =λf 适用于一切波B .由v =λf 知,f 增大,则波速v 也增大C .v 、λ、f 三个量中,对同一列波来说,在不同介质中传播时保持不变的只有fD .由v =λf 知,波长是2 m 的声音比波长是4 m 的声音传播速度小 解析 因波速公式具有普遍意义,故A 对;波的频率由波源决定,故C 对. 答案 AC 【知识存盘】1.波长:在波动中,振动相位总是相同的两个相邻质点间的距离,用λ表示. 2.波速:波在介质中的传播速度.由介质本身的性质决定. 3.频率:由波源决定,等于波源的振动频率. 4.波长、波速和频率的关系 ①v =λf ②v =λT波的干涉和衍射 Ⅰ 多普勒效应 Ⅰ (考纲要求) 【思维驱动】图1-2-2(单选)两波源S 1、S 2在水槽中形成的波形如图1-2-2所示,其中实线表示波峰,虚线表示波谷,则( ).A .在两波相遇的区域中会产生干涉B .在两波相遇的区域中不会产生干涉C .a 点的振动始终加强D .a 点的振动始终减弱解析 由题图知,两列波的波长不相等,不满足波的干涉条件,故B 正确,A 、C 、D 错误. 答案 B 【知识存盘】1. 波的干涉与波的衍射的比较2.多普勒效应(1)波源不动⎩⎪⎨⎪⎧观察者向波源运动,接收频率增大观察者背离波源运动,接收频率减小(2)观察者不动⎩⎪⎨⎪⎧波源向观察者运动,接收频率增大波源背离观察者运动,接收频率减小对应学生用书P216考点一 对机械波的理解及图象的应用 机械波的特点及各物理量之间的关系 (1)介质依存性:机械波离不开介质.(2)能量信息性:机械波传播的是振动的形式、能量和信息.(3)传播不移性:在传播方向上,各质点只在各自平衡位置附近振动,并不随波迁移. (4)时空重复性:机械波传播时,介质中的质点不断地重复着振源的振动形式. (5)周期、频率同源性:介质中各质点的振动周期均等于振源的振动周期且在传播中保持不变.(6)起振同向性:各质点开始振动的方向与振源开始振动方向相同. (7)波长、波速和频率的关系:v =λf ,f 由波源决定,v 由介质决定. 【典例1】 (单选)如图1-2-3所示,图1-2-3实线是沿x 轴传播的一列简谐横波在t =0时刻的波形图,虚线是这列波在t =0.05 s 时刻的波形图.已知该波的波速是80 cm/s ,则下列说法中正确的是( ). A .这列波有可能沿x 轴正方向传播 B .这列波的波长是10 cmC .t =0.05 s 时刻x =6 cm 处的质点正在向下运动D .这列波的周期一定是0.15 s解析 由波的图象可看出,这列波的波长λ=12 cm ,B 错误;根据v =λT,可求出这列波的周期为T =λv =1280 s =0.15 s ,D 正确;根据x =vt =80×0.05 cm =4 cm 可判断,波应沿x 轴负方向传播,根据波的“微平移”法可判断t =0.05 s 时刻x =6 cm 处的质点正在向上运动,A 、C 错误. 答案 D【变式跟踪1】 如图1-2-7图1-2-7所示为波源O 振动1.5 s 时沿波的传播方向上部分质点振动的波形图,已知波源O 在t =0时开始沿y 轴负方向振动,t =1.5 s 时它正好第二次到达波谷,问: (1)何时x =5.4 m 的质点第一次到达波峰?(2)从t =0开始至x =5.4 m 的质点第一次到达波峰这段时间内,波源通过的路程是多少?解析 (1)由题图知λ=60 cm =0.6 m ,由题知1.5 s =114T ,所以T =4×1.5 s5s =1.2 s ,设经过t =1.5 s 波传播的距离为x ,因此波速v =x t=λT,所以x =λt T =0.6×1.51.2m =0.75 m ,即t =1.5 s 时波刚好传到距波源0.75 m 的质点,前面距离该质点最近的波峰是位于x =0.3 m 的质点,设再经过t ′最近的波峰传到x =5.4 m 处,因此波速v =Δx t ′=λT ,所以t ′=ΔxT λ=(5.4-0.3)×1.20.6s =10.2 s ,故t ″=1.5 s +10.2 s =11.7 s 时x =5.4 m 的质点,第一次到达波峰.(2)由(1)知从t =0开始至x =5.4 m 的质点第一次到达波峰经历的时间为11.7 s ,即历时934T ,所以s 源=4A ×9+3A =39A =1.95 m.答案 (1)11.7 s (2)1.95 m ,以题说法质点的振动方向与波的传播方向的互判方法 1.上下坡法沿波的传播方向看,“上坡”的点向下运动,“下坡”的点向上运动,简称“上坡下,下坡上”如图1-2-4所示.图1-2-42.带动法如图1-2-5所示,在质点P 靠近波源一方附近的图象上另找一点P ′,若P ′在P 上方,则P 向上运动,若P ′在P 下方,则P 向下运动.图1-2-53.微平移法图1-2-6原理:波向前传播,波形也向前平移.方法:作出经微小时间Δt 后的波形,如图1-2-6虚线所示,就知道了各质点经过Δt 时间到达的位置,此刻质点振动方向也就知道了,图中P 点振动方向向下. 考点二 波的图象与振动图象的综合应用【典例2】 (多选)(2012·大纲全国卷,20)一列简谐横波沿x 轴正方向传播,图1-2-8(a)是t =0时刻的波形图,图(b)和图(c)分别是x 轴上某两处质点的振动图象.由此可知,这两质点平衡位置之间的距离可能是( ).图1-2-8A.13 mB.23 m C .1 m D.43 m解析 由题图(a)知,波长λ=2 m ,在t =0时刻,题图(b)中的质点在波峰位置,题图(c)中的质点在y =-0.05 m 处,且振动方向向下(设为B 位置,其坐标为x =116 m).若题图(b)中质点在题图(c)中质点的左侧,则两质点平衡位置之间的距离Δx =n λ+⎝ ⎛⎭⎪⎫116-12 m(n =0,1,2,…) 当n =0时,Δx =43 m ;当n =1时,Δx =103 m ,……若题图(b)中质点在题图(c)中质点的右侧,则两质点平衡位置之间的距离Δx ′=n λ+⎝ ⎛⎭⎪⎫52-116 m(n =0,1,2,…)当n =0时,Δx ′=23 m ;当n =1时,Δx ′=83 m ,……综上所述,选项B 、D 正确. 答案 BD【变式跟踪2】 (多选)图1-2-9甲为一列简谐横波在t =0.10 s 时刻的波形图,P 是平衡位置为x =1 m 处的质点,Q 是平衡位置为x =4 m 处的质点,图乙为质点Q 的振动图象,则( ).图1-2-9A .t =0.15 s 时,质点Q 的加速度达到正向最大B .t =0.15 s 时,质点P 的运动方向沿y 轴负方向C .从t =0.10 s 到t =0.25 s ,该波沿x 轴正方向传播了6 mD .从t =0.10 s 到t =0.25 s ,质点P 通过的路程为30 cm解析 对A 选项,由乙图象看出,t =0.15 s 时,质点Q 位于负方向的最大位移处,而简谐运动的加速度大小与位移成正比,方向与位移方向相反,所以加速度为正向最大值;对B 选项,由乙图象看出,简谐运动的周期为T =0.20 s ,t =0.10 s 时,质点Q 的速度方向沿y 轴负方向,由甲图可以看出,波的传播方向应该沿x 轴负方向,因甲图是t =0.10 s 时刻的波形图,所以t =0.15 s 时,经历了0.05 s =T4的时间,图甲的波形向x轴负方向平移了λ4=2 m 的距离,如图中虚线所示,因波向x 轴负方向传播,则此时P点的运动方向沿y 轴负方向;对C 选项,从t =0.10 s 到t =0.25 s ,波沿x 轴负方向传播了6 m ;对D 选项,由图甲可以看出,由于t =0.10 s 时刻质点P 不处于平衡位置,故从t =0.10 s 到t =0.25 s 质点P 通过的路程不为30 c m.本题正确选项为A 、B.答案 AB ,借题发挥1.振动图象和波的图象的辨析2.巧解图象问题求解波动图象与振动图象综合类问题可采用“一分、一看、二找”的方法(1)分清振动图象与波动图象.此问题最简单,只要看清横坐标即可,横坐标为x 则为波动图象,横坐标为t 则为振动图象.(2)看清横、纵坐标的单位.尤其要注意单位前的数量级. (3)找准波动图象对应的时刻. (4)找准振动图象对应的质点. 3.图象问题的易错点:(1)不理解振动图象与波的图象的区别;(2)误将振动图象看做波的图象或将波的图象看做振动图象;。

相关文档
最新文档