用电系统有几种保护方式
电力系统过频保护
电力系统过频保护在电力系统中,频率是一个非常重要的参数,它反映了系统电力平衡状态的稳定性。
然而,由于各种原因,如电力负荷突变、电力市场需求等,系统频率可能会发生异常波动,甚至超出正常运行范围。
为了防止频率过高对电力系统的损害,我们需要采取过频保护措施。
一、过频保护的基本原理过频保护是一种保护措施,它能够在系统频率超过设定值时,快速断开发电机或负荷的连接,以防止频率继续上升。
其基本原理是通过感知系统频率的变化,在频率超出设定阈值时,通过电气或机械装置,将发电机或负荷从电力系统中隔离。
二、过频保护的设定值过频保护的设定值是根据电力系统的特点和防护需求来确定的。
通常情况下,过频保护的设定值是根据系统额定频率的偏差来确定的。
例如,在50Hz的电力系统中,设定值可以设置为51Hz或52Hz,当频率超过设定值时,过频保护就会动作。
三、过频保护的应用范围过频保护主要应用于以下几个方面:1. 发电机保护:过频保护可以防止发电机超出其额定运行频率范围,从而保护发电机不受频率过高的影响,减少发电机的损坏风险。
2. 负荷保护:过频保护可以保护电力系统中的负荷设备,防止频率过高对负荷设备造成损坏,并确保电力系统的稳定运行。
3. 线路保护:过频保护还可以用于线路的保护,当系统频率超过一定阈值时,可以断开线路连接,避免频率过高对线路设备造成损坏。
四、过频保护的动作方式过频保护可以通过不同的动作方式实现:1. 电气动作方式:通过电气元件,如继电器、保护装置等来实现过频保护。
当系统频率超过设定值时,电气元件会接收到信号,迅速断开发电机或负荷的连接。
2. 机械动作方式:通过机械装置,如机械开关、断路器等来实现过频保护。
当系统频率超过设定值时,机械装置会根据频率变化,自动打开或切断电路连接。
五、过频保护的特点和优势过频保护具有以下特点和优势:1. 快速响应:过频保护可以在频率超出设定值的瞬间快速动作,以保护电力系统的安全运行。
2. 精确可靠:过频保护的设定值可以精确调整,以适应不同电力系统的需求。
电力电子技术中的短路保护方法有哪些
电力电子技术中的短路保护方法有哪些电力电子技术在现代工业和生活中扮演着至关重要的角色。
然而,由于电力电子设备的复杂性和高功率特性,短路事故可能会对设备和人员造成严重威胁。
为了保护设备和确保系统的稳定运行,研究人员和工程师们开发了各种各样的短路保护方法。
本文将介绍电力电子技术中常用的几种短路保护方法。
一、过电流保护方法过电流保护是一种常见且简单的短路保护方法。
当电力电子设备遭遇短路故障时,会出现过电流现象。
过电流保护方法通过监测电流的大小来判断是否存在短路。
当电流超过设定阈值时,过电流保护装置会迅速切断电路,以防止设备的进一步损坏。
常见的过电流保护装置包括熔断器和电子保险丝。
二、电压保护方法电压保护方法主要用于保护电力电子设备免受电压过高或过低的影响。
由于短路故障导致的电流突然变化,往往会引起电压的波动。
过高或过低的电压可能对电子元件造成损坏或系统运行不稳定。
一种常见的电压保护方法是安装过压和欠压保护装置。
当电压超过或低于设定阈值时,保护装置会切断电路以保护设备的安全运行。
三、过温保护方法在电力电子设备中,过温是另一个常见的故障原因。
过高的温度会导致元件老化、材料熔化或绝缘损坏,从而引发短路故障。
过温保护方法旨在监测设备的温度,并在达到设定温度时采取措施以保持设备的工作温度。
常见的过温保护方法包括温度传感器、风扇冷却和热敏开关等。
四、电流限制保护方法电流限制保护方法是一种通过限制电流大小来保护电力电子设备的方法。
当设备遭受短路故障时,电流会急剧增加,可能会对设备和系统造成伤害。
为了防止设备过载并限制电流峰值,电流限制保护方法通过降低电压或改变电路拓扑等方式来有效地控制电流大小。
五、瞬态保护方法电力电子设备往往会遭受来自电力系统的瞬态干扰,如电压尖峰、浪涌和谐波等。
这些瞬态干扰可能会导致设备短路或电子元件损坏。
瞬态保护方法旨在通过安装瞬态保护器件来吸收和降低瞬态干扰的峰值,以保护设备的稳定运行。
六、逻辑保护方法逻辑保护方法是一种基于设备的控制和逻辑判断的短路保护方法。
电气设备接地规范
电气设备接地规范电力讲坛为了保护人身和设备的安全,减少电气事故发生,保障人员和财产不受损失,所有电气设备应按规定进行可靠接地。
各生产经营单位参照本《电气设备接地规范》执行。
一、适用范围本规范规定了生产经营单位用电系统、新建扩建、检维修、改造、办公区域、员工宿舍等电气线路接地规定。
二、规范性引用文件GB14052—93《系统接地的形式及安全要求》GB50054—95《低压配电设计规范》GB 50169—2006《电气装置安装工程接地装置施工及验收柜范》三、术语和定义电气系统配置保护方法有:保护接地、保护接零、重复接地、工作接地等。
电气设备的某个部分与大地之间作良好的电气联接称为接地。
与大地土壤直接接触的金属导体或金属导体组称为接地体:联接电气设备应接地部分与接地体的金属导体称为接地线;接地体和接地线统称为接地装置。
四、接地概念及种类1、防雷接地:为把雷电迅速引入大地,以防止雷害为目的的接地。
防雷装置如与电报设备的工作接地合用一个总的接地网时,接地电阻应符合其最小值要求。
2、交流工作接地:将电力系统中的某一点,直接或经特殊设备与大地作金属连接。
工作接地主要指的是变压器中性点或中性线(N线)接地。
N 线必须用铜芯绝缘线。
在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。
必须注意,该接线端子不能外露;不能与其它接地系统,如直流接地、屏蔽接地、防静电接地等混接;也不能与PE 线连接。
3、安全保护接地:安全保护接地就是将电气设备不带电的金属部分与接地体之间作良好的金属连接。
即将大楼内的用电设备以及设备附近的一些金属构件,有PE 线连接起来,但严禁将PE 线与N 线连接。
4、直流接地:为了使各个电子设备的准确性好、稳定性高,除了需要一个稳定的供电电源外,还必须具备一个稳定的基准电位。
可采用较大截面积的绝缘铜芯线作为引线,一端直接与基准电位连接,另一端供电子设备直流接地。
5、防静电接地:为防止智能化大楼内电子计算机机房干燥环境产生的静电对电子设备的干扰而进行的接地称为防静电接地。
煤矿供电三大保护
煤矿井下供电三大保护(一)矿井低压电的电流保护一、常见过电流故障的类型低压电网运行中,常见的过电流故障有短路、过负荷(过载)和单相断线三种情况。
什么是短路电流?我们首先通过一个简单的实例来说明这一问题:在正常情况下流过导线、灯的电流为:I=V/R=220/(R1+R2+R3)=220/50.48=4.36A如果在灯头处两根导线相互碰头等于灯泡电阻没有接入,此时流过导线的电流则为:I=V/R=220/(R2+R3)=220/2.08=105.5A1、短路是指供电线路的相与相之间经导线直接逢接成回路。
短路时,流过供电线路的电流称为短路电流。
在井下中性点不接地的供电系统中,短路分为三相、两相两种,而单相接地不属于短路,但可发展为短路。
⑴短路故障发生的原因①线路与电气设备绝缘破坏。
例如,绝缘老化、绝缘受潮,接线(头)工艺不合格,设备内部的电气缺陷和电缆质量低及大气过电压等。
②受机械性破坏。
例如,受到运输机械的撞击,片帮、冒顶物的砸伤,炮崩,电缆敷设半径过小等。
③误接线、误码操作。
例如,相序不同线路的并联,带电进行封装接地线与带封装接地线送电,局部检修送电等。
④严重隐患点。
例如,“鸡爪子”、“羊尾巴”处。
⑤带电检修电气设备。
⑥带电移挪电气设备。
⑵短路故障的危害短路事故是煤矿常见的恶性事故之一,它产生的电流很大,在短路点电弧的中心温度一般在2500℃~4000℃,可在极短的时间内烧毁线路或电气设备,甚至引起火灾。
在遇瓦斯、煤尘时,可以引起燃烧或爆炸.短路可使电网电压急剧下降,影响电气设备的正常工作。
2、过负荷过负荷也称为过载,是指实际流过电气设备的电流超过其额电流,又超过了允许的过流时间。
从过流和时间两个量来说,都是相对量,必须具备过流和超时这两个条件,才称为过负荷。
过负荷常烧坏井下电气设备,造成过负荷的原因有:电源电压过低;重载起动;机械性堵转和单相断相。
其共同表现是:电气设备超允许时间的过电流,设备的温升超过其允许温升,有时会引起线路着火,甚至扩大为火灾或重大事故。
低压配电系统保护要求(2)
第一部分低压配电系统本章主要内容一、低压配电网的分类和保护方式IT、TT、TN电网知识;保护接零和保护接地。
二、低压配电系统保护要求短路保护、过载保护、欠压保护、防触电保护、接地。
三、常用低压电器低压断路器、熔断器、漏电保护器、接触器、中间继电器、时间继电器、热继电器、电压继电器、电流继电器等原理和技术参数。
四、低压系统的电气维保、故障诊断、分析与处理结合样例讲授。
1.短路保护短路保护是指线路或设备发生短路时,能迅速的切断电源,从而达到对线路或设备的保护作用。
短路发生的主要原因:系统中某一部位的绝缘遭到破坏。
绝缘遭到破坏的原因很多,根据长期的事故统计分析,主要有以下一些原因。
(1)短路的发生1)雷击或高电位侵入☜2)绝缘老化或外界机械损伤☜3)操作误操作☜4)动、植物造成的短路☜雷击或高电位侵入电气设备的绝缘是有一定的介质强度的,即绝缘耐压值。
超过规定的介电强度,绝缘就会被击穿,从而造成短路。
绝缘老化或外界机械损伤大多数的绝缘都是由高分子材料制造的,老化是这类材料不可避免的一种现象。
老化会带来绝缘性能的降低,当绝缘性能降低到一定程度后,在正常工作电压或允许过电压的作用下,绝缘也可能被击穿。
误操作最常见的误操作是带负荷拉隔离开关和未拆检修接地线就合闸引起的短路。
动、植物造成的短路如动物跨于相导体之间或相导体与地之间,藻类植物生长使相导体间绝缘净距减小,霉菌等造成的绝缘性能下降,都可能引发短路。
(2)短路的种类1)中性点接地系统中的短路种类☜2)中性点不接地系统中的短路种类☜中性点接地系统中的短路种类在中性点接地系统中,可能发生的短路类型有:三相短路、两相短路、单相短路和两相接地短路。
单相短路有相线与中性线间短路;也有相线直接与大地(也包括与大地等电位的PE线)之间的短路,这时的单相短路又被称为单相接地短路。
中性点不接地系统中的短路种类在中性点不接地系统中,可能发生的短路类型有:三相短路、两相短路。
TNC系统、TNS系统、TNCS系统、TT系统的区别
TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别:5/6/2010 10:22:14 AM建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。
其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。
下面内容就是对各种供电系统做一个扼要的介绍。
一,工程供电的基本方式根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。
(1 )TT 方式供电系统TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。
第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
在TT 系统中负载的所有接地均称为保护接地,这种供电系统的特点如下。
1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。
但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统难以推广。
3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT 系统适用于接地保护点很分散的地方。
(2 )TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。
几种接地保护方式
几种接地保护方式接地保护是一种重要的安全措施,用于保护电气设备和人员免受电击等危险。
在电力系统中,接地保护可以有效地将电流引导到地面,防止电阻或故障引起的电压积累,从而保证电气设备的正常运行。
本文将介绍几种常见的接地保护方式。
1. 系统接地系统接地是指将电力系统中的中性点或一侧相接地,通常使用接地电阻或接地变压器来实现。
这种接地方式能够降低系统的电压,并将故障电流引导到地面,减少电气设备受损和人员受伤的风险。
系统接地可以分为直接接地和间接接地两种方式。
直接接地是将电力系统的中性点直接接地,通常采用接地电阻来限制故障电流的流动。
接地电阻的阻值根据系统的额定电压和电流来确定,一般应符合相关的国家标准和规定。
间接接地是通过接地变压器实现的,将系统的中性点与地之间绝缘并通过变压器连接。
接地变压器可以使系统与地之间保持一定的绝缘,减少电气设备的电压升高。
2. 保护接地保护接地是在电力系统中增加保护接地,用于防止电压升高和保护设备和人员的安全。
保护接地一般采用保护接地装置,如接地开关、接地故障指示器等。
接地开关是一种能够将设备与地之间连接或断开的开关装置,可以在故障发生时迅速切断故障电源,避免电气设备的损坏和人员的伤害。
接地故障指示器是一种能够监测电力系统中是否存在接地故障的装置,当接地故障发生时,指示器会报警,提醒操作人员及时采取措施。
3. 信号接地信号接地是指将信号系统中的信号接地,用于保护信号传输的可靠性和设备的正常运行。
在信号系统中,信号接地可以减少电磁干扰和噪音的影响,提高信号的传输质量。
常见的信号接地方式包括单点接地和多点接地。
单点接地是将信号系统中的所有信号共用一个接地点,可以减少接地回路的复杂性,提高信号的稳定性。
多点接地是将信号系统中的不同信号分别接地,可以避免信号之间的干扰和串扰,提高信号传输的清晰度和准确性。
总结:接地保护是保证电气设备和人员安全的重要措施,具备不同的接地方式可以根据具体的工程需求和系统要求选择适合的接地方式。
低压配电系统三种形式
根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。
其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。
第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。
TN系统:电源变压器中性点接地,设备外露部分与中性线相连。
TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。
IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。
1、TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。
下面分别进行介绍。
1.1、TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。
TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
由上可知,TN-C系统存在以下缺陷:(1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。
当三相负载严重不平衡时,触及零线可能导致触电事故。
(2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。
(3)、对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。
TN、TT、IT供电系统的特点及区别解析
TN、TT、IT供电系统的特点及安装要求380V/220V低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。
IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。
即:过去称三相三线制供电系统的保护接地。
TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。
即过去的三相四线制供电系统中的保护接地。
TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。
即过去的三相四线制供电系统中的保护接零。
TN系统的电源中性点直接接地,并有中性线引出。
按其保护线形式,TN系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。
(1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。
它的优点是节省了一条导线,缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。
(2)TN-S系统就是三相五线制,该系统的N线和PE线是分开的,从变压器起就用五线供电。
它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。
此外,由于N线与PE线分开,N线断开也不会影响PE线的保护作用。
③TN-C-S系统(三相四线与三相五线混合系统),该系统从变压器到用户配电箱式四线制,中性线和保护地线是合一的;从配电箱到用户中性线和保护地线是分开的,所以它兼有TN-C系统和TN-S系统的特点,常用于配电系统末端环境较差或有对电磁抗干扰要求较严的场所。
我国的低压配电系统基本上有三种:即TT系统、TN系统、IT系统。
上述各种保护系统均采用国际标准所用符号,第一字母T:表示中性点直接接地;I表示中性点不直接接地(不接地或经高电阻接地等);第二个字母T:表示外露可导电部分对地直接电气连接与电力系统任何接地无关;N表示外露可导电部分与电力系统的接地点直接电气连接。
请简述机电设备电气控制系统中常用的保护措施及其作用。
请简述机电设备电气控制系统中常用的保护措施及其作用。
在机电设备电气控制系统中,常用的保护措施及其作用如下:
短路保护:当电路发生短路时,电流会迅速增加,可能会损坏设备或电线。
短路保护装置(如熔断器或断路器)会在电流超过预定值时自动断开电路,以防止设备损坏和火灾发生。
过载保护:当电机负荷过大时,电流也会增加,可能导致电机过热甚至烧毁。
过载保护装置通常会检测电机的运行电流,当电流超过预定值时,装置会自动切断电源,以防止电机过热。
欠压保护:当电压过低时,电机的输出功率会降低,可能导致设备无法正常运行。
欠压保护装置会在电压低于预定值时自动切断电源,以保护电机和设备不受损坏。
过压保护:当电压过高时,电气元件可能会损坏。
过压保护装置会在电压高于预定值时自动断开电路,以防止元件损坏和设备故障。
接地保护:接地保护是为了防止设备因漏电而带电,从而避免人员触电事故的发生。
通过将设备的金属外壳接地,可以将漏电电流引入地下,从而保护人员和设备的安全。
相序保护:在某些设备中,电动机的相序有特定的要求。
相序保护装置可以检测电机的相序,当相序错误时自动切断电源,以防止设备反转或损坏。
这些保护措施可以有效提高机电设备电气控制系统的安全性和可靠性,确保设备和人员的安全。
电力系统中的电气二次和继电保护
电力系统中的电气二次和继电保护摘要:随着现阶段我们国家经济的不断快速发展,科技水平也在不断提升,城镇化发展的步伐日益加速,人民群众的对电力的需求也变得越来越大。
电力系统对社会运行来说是比较重要的,采用科学合理的方式提升电力系统的稳定性以及安全性有重要的社会价值。
站在人民群众日常生活的角度上来说,电力资源占据重要地位。
由于现阶段人民群众生活水平的提升,对电力资源的需求也变的越来越大。
关键词:电力系统、电气二次、继电保护从电力系统的角度上来说,在实际工作过程中往往会发生电气设备故障和操作失常等现象,因此要采用科学合理的方式检测并维修电气二次设备。
以电气二次保护的角度上来说,继电保护占据较为重要的地位,可以从根本上提升电力系统的安全性。
在电气二次设备中,一般包含继电保护、电流表和电压表等,而这些装置的工作状况会影响电力系统的状态。
所以说,电力系统中的电气二次和继电保护是较为重要的。
本篇文章主要针对电气系统中的电气二次和继电保护进行分析和讨论,希望为相关人士提供参考。
一、电气二次以及继电保护的重要性在电气二次设备实际运行的过程中,各种各样因素的出现都会对系统正常运行产生影响[1]。
比如,周围环境的影响,工作人员操作失误,设备自身就存在问题等。
在电力系统的情况下,一次电力进行维修与检测,采用这样的方法可以突出二次维修的重要性。
在对电气二次设备实施维修与检测时,不光要求对仪器自己完成检测,同时还要借助相应的检测技术。
将以往的检测和维护工作的数据信息作为依据,了解设备的实际状态,制定完善的维修改进计划。
二、电力系统中电气二次及继电保护的现状(一)停电过程中的二次安全保护在停电的情况下,如果想要对机电保护装置开展维修和检查工作,有关人员要重点注意一个问题,是切断装置内部的电路,千万要将其切断,保证没有一个电流和电压,采用这样的方法能够降低安全隐患产生的可能性。
另外,站从被检测系统的角度上来看,要将母线和电力互感器中的电流线路、检测装置和操作断路器之间的连线等都要断开。
TNC系统TNS系统TNCS系统TT系统的区别
TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别:5/6/2010 10:22:14 AM建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。
其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。
下面内容就是对各种供电系统做一个扼要的介绍。
一,工程供电的基本方式根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。
(1 )TT 方式供电系统TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。
第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
在TT 系统中负载的所有接地均称为保护接地,这种供电系统的特点如下。
1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。
但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统难以推广。
3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT 系统适用于接地保护点很分散的地方。
(2 )TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。
继电保护保护类型
继电保护保护类型继电保护是电力系统中保护设备的一种重要手段,它通过对电力设备异常情况的检测,并发送信号控制接触器、断路器等装置进行动作,以保护电力系统的安全运行。
继电保护的分类主要根据被保护元件的不同类型进行划分,下面将介绍几种主要的继电保护类型。
一、电流保护电流保护是最常见的一种继电保护类型。
电流保护根据电路中电流的大小与设定值的关系来判断电路是否正常。
当电流异常时,电流保护会及时控制断路器的动作,切断电路,起到保护电气设备的作用。
例如,在电动机运行过程中,如果电流超过了额定值,则电流保护会及时切断电源,以避免设备烧毁。
二、电压保护电压保护是用来对电力系统电压异常状况进行检测的保护方式。
在电力系统中,电压的稳定性对设备运行非常重要。
电压保护可以检测电压的过高、过低、失压等异常情况,并根据设定值控制断路器等装置的动作。
它起到保护设备以及维持电力系统稳定运行的作用。
三、过载保护过载保护是针对电力设备超过额定负荷长时间运行而导致过热的情况进行保护的一种继电保护类型。
在电力系统中,电力设备的额定负荷一般是由制造厂家或设计部门根据设备的工作特性和可靠性确定的。
过载保护通过监测电路中电流的大小,当电流超过一定值时,会触发保护装置,切断电源,以保护设备不被过热损坏。
四、短路保护短路保护用来对电力系统中由于电路线路、设备绝缘损坏等引起的短路故障进行保护。
短路故障会导致电流迅速升高,对设备和电力系统的安全造成巨大风险。
短路保护通过检测电路中的电流、电压等参数来判断是否存在短路故障,并触发相应的保护动作,将故障段隔离,保护电力设备和系统的安全运行。
五、过电压保护过电压保护是为了防止电力系统中因为电力设备故障、闪击、雷击等原因导致电压突然升高而引发的故障。
过电压保护通过检测电压的变化情况,一旦发现异常,会及时触发保护动作,将电压恢复到正常水平,以保护电力设备不受损害。
六、欠电压保护欠电压保护主要是为了防止电力系统中电压突然降低引发的故障。
TN-C、TN-S、TN-C-S、TT系统区别
有任何连接TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别:建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。
其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。
下面内容就是对各种供电系统做一个扼要的介绍。
一、工程供电的基本方式5/6/2010 10:22:32 AM根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。
(1 )TT 方式供电系统TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。
第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
在TT 系统中负载的所有接地均称为保护接地,这种供电系统的特点如下。
1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。
但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统难以推广。
3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。
页脚内容1有任何连接把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT 系统适用于接地保护点很分散的地方。
(2 )TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。
继电保护常见运行方式
继电保护常见运行方式
继电保护常见的运行方式包括以下几种:
1. 电流保护:通过测量电流的值来判断系统是否发生故障。
常见的电流保护有过流保护、短路保护和地故保护。
2. 过压保护:测量电压的值,一旦电压超过设定值,会触发保护动作,以防止设备过载。
3. 过频保护:测量电网频率的变化,一旦频率超过设定值,会触发保护动作,以防止设备损坏。
4. 欠频保护:测量电网频率的变化,一旦频率低于设定值,会触发保护动作,以防止设备损坏。
5. 过载保护:通过测量设备的负载电流来判断设备是否超负荷,一旦设备超负荷,会触发保护动作,以防止设备过热。
6. 简化差动保护:通常用于高压线路或发电机等,通过比较局部电流和整体电流的差值来判断设备是否发生故障。
7. 欠压保护:测量电压的值,一旦电压低于设定值,会触发保护动作,以防止设备损坏。
8. 过温保护:通过测量设备的温度来判断设备是否过热,一旦设备温度超过设定值,会触发保护动作,以防止设备损坏。
以上是继电保护的一些常见运行方式,不同的保护装置和设备会根据实际需要采用不同的保护方式。
电力系统主设备保护概述
电力系统主设备保护概述1. 引言在电力系统中,主设备的保护是确保电力系统平安运行的重要环节。
主设备包括变压器、发电机、母线、断路器等重要组件。
保护措施的有效实施和运行对于系统的可靠性和稳定性至关重要。
本文将对电力系统主设备保护进行概述,并介绍主要的保护设备和功能。
2. 变压器保护变压器是电力系统中非常重要的设备,用于改变电压的大小。
为了保证变压器的平安运行,需要对其进行保护。
常见的变压器保护设备包括差动保护、油温保护、短路保护等。
差动保护是最常用的一种变压器保护装置,通过对变压器两侧电流进行比拟,及时发现并切除故障线路,保护变压器不受损坏。
油温保护通过监测变压器内部油温,当油温超过设定值时,自动切除电源,防止变压器过热。
短路保护用于检测变压器绕组的短路故障,及时切除电源,防止故障扩大。
3. 发电机保护发电机是电力系统中的能量转换设备,其保护同样非常重要。
发电机保护主要包括差动保护、过流保护、欠频保护等。
差动保护是最常见的发电机保护装置,通过对发电机定子电流、励磁电流进行比拟,及时发现并切除故障线路,保护发电机。
过流保护用于检测发电机电流超过额定值的情况,及时切除电源,防止电流过载引起发电机损坏。
欠频保护用于监测发电机输出频率,当频率过低时,自动切除电源,防止发电机超负荷运行。
4. 母线保护母线是电力系统中连接各个主要设备的重要局部,其保护同样重要。
常见的母线保护设备包括差动保护、电压保护、过流保护等。
差动保护通过对母线两侧电流进行比拟,及时切除故障线路,保护母线。
电压保护用于监测母线电压,当电压异常时,自动切除电源,防止电压过高或过低对母线造成损害。
过流保护用于检测母线电流超过额定值的情况,及时切除电源,防止电流过载引起母线损坏。
5. 断路器保护断路器是电力系统中用于控制和保护设备的关键局部,其保护同样至关重要。
常见的断路器保护设备包括过电流保护、短路保护、欠频保护等。
过电流保护用于监测断路器电流,当电流超过额定值时,自动切除电源,防止电流过载引起断路器损坏。
供电安全三大保护
3、短路的原因 短路有两相短路和三相短路,造成短路
的原因主要有: (1)绝缘击穿。由于绝缘老化、受潮
或接头工艺不符合要求等问题可能导致电 缆绝缘击穿。
在井下变压器中性点不接地供电系统中, 用导体把电气设备中所有正常不带电金属 外壳、构架与埋在地下的接地极连接起来, 称为保护接地。
主要作用是减小人身触电电流。
2、井下保护接地系统
煤矿安全规程》规定,应在煤矿井下指定 地点敷设主接地极、局部接地极,并用电 缆铅包、铠装外皮及接地芯线相互连接起 来,形成一个总接地网。
I 2d 1.5
Iz
9、配电开关智能控制保护器动作电流的 整定
短路整定电流IZ=(1.2-1.4)Ie
过载整定电流IZ=(6-8)Ie
短路整定倍数
K IZ IeK
过载整定倍数 K IZ
IeK
10、若经校验,不能满足要求时,可采 用调整措施:
①加大干线或支线电缆截面。 ②采用移动变电站或移动变压器,减少 低压电缆的长度。 ③采用变压器并联或更换大容量变压器。 ④采用相敏保护器或软启动等技术。 ⑤增设开关,进行分段保护。
点应装设局部接地极: (1)采区变电所(包括移动变电站和移动
变压器); (2)装有电气设备的硐室和单独装设的高
压电气设备; (3)低压配电点或装有3台以上电气设备
的地点; (4)无低压配电点的采煤机工作面的运输
巷、回风巷、集中运输巷(胶带运输巷)以及 由变电所单独供电的掘进工作面,至少应分 别设置一个局部接地极;
电气控制系统保护方式有哪些
电气控制系统保护方式有哪些导读保护环节是所有电气控制系统不可缺少的组成部分。
那么,电气控制系统保护方式有哪些呢?我们一同前去了解下!保护环节是所有电气控制系统不可缺少的组成部分。
那么,电气控制系统保护方式有哪些呢?我们一同前去了解下!电气控制系统保护方式有哪些:短路保护当电器或线路发生绝缘遭到损坏、负载短路、接线错误等情况时就会发生短路现象。
短路时产生的瞬时故障电流可达到额定电流的十几倍到几十倍,使电气设备或配电线路因过电流而损坏,甚至会因电弧而引起火灾。
短路保护要求具有瞬时特性,即要求在很短时间内切断电源。
短路保护常用的方法有熔断器保护和低压断路器保护。
电气控制系统保护方式有哪些:过电流保护过电流保护是区别于短路保护的一种电流型保护。
所谓过电流是指电动机或电器元件超过其额定电流的运行状态,一般比短路电流小,不超过6倍额定电流。
在过电流情况下,电器元件并不是立即损坏,只要达到最大允许温升之前电流值能恢复正常,还是允许的。
但过大的冲击负载,使电动机流过过大的冲击电流,以致损坏电动机。
同时,过大的电动机电磁转矩也会使机械转动部件受到损坏,因此要瞬时切断电源。
电动机在运行中产生过电流的可能性要比发生短路要大,特别是在频繁起动和正反转、重复短时工作电动机中更是如此。
过电流保护常用过电流继电器与接触器配合实现,即将过电流继电器线圈串接在被保护电路中,过电流继电器常闭触头串接在接触器线圈电路中。
当电路电流达到其整定值时,过电流继电器动作;其常闭触头断开,接触器线圈断电释放,接触器主触头断开来切断电动机电源。
这种过电流保护环节常用于直流电动机和三相绕线转子异步电动机的控制电路中。
若过电流继电器动作电源为1.2倍电动机起动电流,则其亦可实现电路的短路保护作用。
电气控制系统保护方式有哪些:过载保护过载保护是过电流保护中的一种。
过载是指电动机的运行电流大于其额定电流,但在1.5倍额定电流以内。
引起电动机过载的原因很多,如负载的突然增加、缺相运行或电源电压降低等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用电系统有几种保护方式?我国目前采用的是什么保护?灯和电器设备的开关为什么要接在“相线”上?
如何确定家用开关箱(又称配电箱)的容
2008-06-03 09:08阅读(1121)评论(0)用电系统有几种保护方式?我国目前采用的是什么保护?
家庭用电系统有两种保护方式:接地保护和接零保护,我国目前一般采用的是接地保护方式。
严禁在同一系统中同时采取两种不同的保护方式,否则会造成安全事故。
灯和电器设备的开关为什么要接在“相线”上?
以灯为例,如果将开关安在“零线”上(如图),开关关掉灯不亮,易误认为灯头已没电,其实灯头仍带电,因为进入灯头的是“相线”,当人体接触后,通过人体接地形成电压,引起触电事故。
如何确定家用开关箱(又称配电箱)的容量、回路数?
家庭的总开关是根据家庭用电器的总功率来选择的。
而总功率是各分路功能之和的0.8倍,即总功率
P总=(P1+P2+P3+……+Pn)×0.8(kW)
总开关承受的电流应为
I总=P总×4.5(A)
其中P总――――总功率(容量)
P1、P2、P3、……、Pn――――分路功率
I总――――总电流
分路开关的承受电流为
I分=0.8Pn×4.5(A)
而空调回路要考虑到起动电流,其开关容量为
I空调=(0.8?Pn×4.5)×3(A)
分回路要按家庭区域划分。
一般来说,分路的容量选择在1.5kW以下,单个用电器的功能在1kW以上的建议单列为一分回路(如空调、电热水器、取暖器灯大功率家用电器)。
用电量如何计算?导线的规格如何选择?
即用电表又叫电力计量表。
用电量的计算:
1度电(kW/h)=1000W×h
即用电器的功率与时间的乘积。
导线的选择以铜芯导线为例,其经验公式为
导线截面(单位为m㎡)≈I/4(A)
若1m㎡截面的铜芯导线的额定载流量≈4A。
例:家用单相电度表的电流为40A,选择导线(铜芯导线截面规格有1m㎡、1.5m㎡、2.5m ㎡、5m㎡、6m㎡、10m㎡、16m㎡、25m㎡、35m㎡)为
I/4≈40/4=10
即选择10m㎡的铜芯导线。
如何选用插座?安装插座的规定是什么?
目前家庭装饰一般选择暗装插座。
市场上的插座品种繁多,但形式大体相同,建议业主选择有品牌的插座,以保证质量。
插座安装应注意以下几点:
(1)插座的安装高度,当设计有规定时应按设计要求安装;当设计不明确时,一般应符合下列要求:
带有安全门的插座不低于0.3M。
不带安全门的插座不低与1.8M。
建议尽可能购买带有安全门的插座,因为两者价格相差不大。
(2)在卫生间或其他潮湿场所应采用密封良好的防水、防溅插座。
(3)插座安装时其面板应端正并紧贴墙面。
而且接线(相位)应符合下列要求:
单相两孔插座,面对插座的右孔或上孔接相线(火线);左孔或下孔接零线。
单相三孔插座,面对插座的右孔接相线(L、火线),左孔接零线(N),上孔接地线(PE)。