药物的化学结构与药效

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章药物的化学结构与药效的关系

本章以药物的化学结构为主线,重点介绍药物产生药效的决定因素、药物的构效关系、药物的结构与性质,药物的化学结构修饰和新药的开发途径及方法。

第一节药物化学结构的改造

药物的化学结构与药效的关系(构效关系)是药物化学和分子药理学长期以来所探讨的问题。由分子生物学、分子药理学、量子有机化学和受体学说等学科的进一步发展,促使药物构效关系的深入研究和发展

一、生物电子等排原理

在药物结构改造和构效关系的研究中,把具有外层电子相同的原子和原子团称为电子等排体,在生物领域里表现为生物电子等排,已被广泛用于药物结构的优化研究中。所以把凡具有相似的物理性质和化学性质,又能产生相似生物活性的基团或分子都称为生物电子等排体。利用药物基本结构的可变部分,以生物电子等排体的相互替换,对药物进行结构的改造,以提高药物的疗效,降低药物的毒副作用的理论称为药物的生物电子等排原理。

生物电子等排原理中常见的生物电子等排体可分为经典生物电子等排体和非经典生物电子等排体两大类。

(一)经典生物电子等排体

1.一价原子和基团如F、Cl、OH、-NH2、-CH3等都有7个外层电子。

2.二价原子和基团如O、S、—NH—、—CH2—等都有6个外层电子。

3.三价原子和基团如—CH=、—N=等都有5个外层电子。

4.四价基团如=C=、=N+=、=P+=等都有四个外层电子。

这些电子等排体常以等价交换形式相互替换。如普鲁卡因(3-1)酯键上的氧以NH取代,替换成普鲁卡因胺(3-2),二者都有局部麻醉作用和抗心律失常作用,但在作用的强弱和稳定性方面有差别。

(3-2)(3-1)O NHCH 2CH 2N(C 2H 5)2O C H 2N CH 2CH 2N(C 2H 5)2O

C

H 2N

(二)非经典生物电子等排体

常见可相互替代的非经典生物电子等排体,如

—CH =、—S —、—O —、—NH —、—CH 2—

在药物结构中可以通过基团的倒转、极性相似基团的替换、范德华半径相似原子的替换、开链成环和分子相近似等进行电子等排体的相互替换,找到疗效更高,毒性更小的新药。如甲氰咪胍(3-3)为H 2受体拮抗剂,自应用于临床以来,能有效地抑制胃液分泌,治疗胃

及十二指肠溃疡疗效显著。但有报道,有些病人长期使用甲氰脒胍后,有致癌和精神混乱迹象。应用生物电子等排原理对甲氰咪胍结构进行改造,以呋喃环替代咪唑环,并在5位引入二甲胺基甲基,补偿甲氰咪胍分子中咪唑环所具有的碱性,同时,考虑到侧链取代基的碱性过强,因而以硝基亚甲基取代氰基亚氨基,以协调整个分子的脂溶性和电性效应等因素,由此得到的雷尼替丁(3-4)。该药对胃和十二指肠溃疡的疗效更好,且具有速效和长效的特点,是新型的H 2受体拮抗剂。 O N

N

H C NHCH 3N C N CH 3C NHCH 3NCH 2H 3C H 3C (3-3)NO 2(3-4)CH 2SCH 2CH 2NH CH 2SCH 2CH 2NH

二、前药原理

保持药物的基本结构,仅在结构中的官能团作一些修改,以克服药物的缺点,这称为药物结构修饰。结构修饰后的衍生物常失去原药的生物活性,给药后,可在体内经酶或非酶的作用(多为水解)又转化为原药,使药效更好的发挥。这种无活性的衍生物称为前药,采用这种方法来改造药物的结构以获得更好药效的理论称为前药原理。

利用前药原理对药物进行结构的修饰,可以提高或改善药物的性质:

1.改善药物在体内的吸收 药物被机体吸收必须具有合适的脂水分配系数。若药物的脂溶性差,脂水分配系数小,则应制成脂溶性大

的前药,使其脂水分配系数适当增大,从而可改善吸收。如氨苄青霉素(3-5)结构中C 6位侧链部分含有碱性基团,在胃液中可成盐而极性增大,故口服不易吸收,如在其母核羧基上引入脂溶性大的基团,如匹氨西林(3-6),可增加药物的亲脂性,改善口服吸收,可以提高生物利用度。

CH 3CH 3CH

CONH O

NH 2N S N

S 2O CONH CH

CH 3

CH 3COOCH 2OCOC(CH 3)3(3-5)

(3-6)COOH

2.延长药物的作用时间 药物服用后,经过吸收、分布、代谢和排泄等过程。这一过程的长短,因药物的种类而不同。有的药物在体内停留时间短,为了维持有效血药浓度,必须反复给药,使治疗不便。如抗精神病药物氟奋乃静盐酸盐肌内注射给药,吸收代谢快,药效只能维持一天。但将氟奋乃静的羟基经酰化反应,生成酯类前药,肌内注射给药后,慢慢吸收,并分解为氟奋乃静而发挥药效,作用时间延长。如氟奋乃静庚酸酯和癸酸酯分别可保持药效两周和四周。

对于作用时间较短的药物,还可以制成较大分子盐,也能达到延长疗效的目的。而且这种大分子盐对淋巴系统亲和力大,浓度较其它组织高,有利于治疗。如红霉素6小时给药一次,制成其乳糖酸盐后,作用延长至8~12小时给药一次。

3.提高药物的组织选择性 药物的作用强度与血液浓度成正比,同样,药物的毒副作用也与血药浓度成正比。若药物对作用部位没有选择性,为了提高药物的疗效,增加血液中药物的浓度的同时必然也增加药物的毒副作用。如果将药物作适当的结构修饰,制成体外无活性的前药,当它运转到作用部位时,在特异酶的作用下,使其转为原药而发挥药效,而在其它组织中则不被酶解。这样就可以提高药物的组织选择性,使药物在特定部位发挥作用,从而达到增加药效,降低

毒性的目的。如抗肿瘤药物中的环磷酰胺在体外无抗肿瘤作用,在体内经酶转化后,产生磷酰胺氮芥,在肿瘤细胞内进一步转化为具有细胞毒化作用的乙烯亚铵离子而发挥抗肿瘤的作用。

4.提高药物的稳定性有些药物结构中具有易氧化或易还原的基团,在贮存过程中易失效。若将这些化学活性较强的基团保护起来,可以达到增强药物化学稳定性的目的。如维生素C分子结构中具有连二烯醇结构,还原性强,不稳定,但制成维生素C磷酸酯,稳定性增加,进入体内后可释放出原药维生素C而发挥药效。

5.改善药物的溶解度药物发挥药效首先必须溶解,而一些药物在水中的溶解度较小,溶解速度也很慢。若将其结构改造,制成水溶性的前药,增加溶解度和溶解速度,以更适应制剂的要求。传统的提高水溶性的方法是在药物结构中引入极性基团。如氯霉素在水中溶解度较小,制成氯霉素丁二酸单酯钠盐,则易溶于水,可以制备成注射剂和眼药水等剂型供临床使用。

6.消除药物的苦味有些药物具有很强的苦味,不便口服,用制剂的方法难以改变其味觉,若在药物结构中引入适当的基团进行修饰制成前药,可以改变药物的味觉,药物进入体内后,释放原药而发挥药效。如抗生素类药物氯霉素很苦,对其结构中的羟基进行酯化修饰,制成棕榈氯霉素(无味氯霉素)后,苦味消除。

第二节药物的理化性质与药效的关系

根据药物的作用方式,药物可分为非特异性药物和特异性药物两类。非特异性药物的药理作用与化学结构关系较少,主要受理化性质的影响。特异性药物的药理作用与化学结构相互关联,并与特定受体的相互作用有关。

通过给药途径分析,口服给药必须由胃肠道吸收,进入血液,再由血液转运到全身组织;静脉注射给药可直接进入血液,然后再到达作用部位。药物在转运过程中必须通过各种生物膜,因此,理化性质主要影响非特异性药物的活性。药物的理化性质包括药物的溶解度、分配系数、解离度、表面活性、热力学性质和波谱性质等。下面主要介绍溶解度、分配系数和解离度对药效的影响。

相关文档
最新文档