双曲线的几何性质(1) 导学案
双曲线的几何性质导学案
双曲线的几何性质(一)导学案学习目标:1、用类比的方法分析双曲线的范围,对称性,顶点等几何性质。
2、明确标准方程中a,b,c 的几何意义。
学习过程:复习巩固:1、已知a=3,b=4焦点在x 轴上,双曲线的标准方程为2、已知a=3,b=4焦点在y 轴上,双曲线的标准方程为3、a=25,经过点A (2,5),焦点在Y 轴上,双曲线的标准方程为一、定向自学: 阅读教材P 49---P 51页内容(独学) 1 、双曲线 的几何性质(1)、范围 方程中的x 的范围是 y 的范围是 (2)、对称性 双曲线的图象关于 成轴对称图形,关于 成中心对称图形。
(3)、顶点:作出图形,然后指出顶点坐标,实轴是 长度是 实半轴长是虚轴 长度是 虚半轴长是(4)、渐近线:(作图指出渐近线) 双曲线 的渐近线方程是 双曲线 的渐近线方程是问题:什么是等轴双曲线?它的方程是什么?(5)、离心率e= 其范围是例1、(1)求双曲线9y2-16x2=144的实半轴长、虚半轴长、焦点坐标、离心率和渐近线方程;(2)求双曲线9y2-16x2=-144的实半轴长、虚半轴长、焦点坐标、离心率和渐近线方程;)0,0(12222>>=-b a b y a x )0,0(12222>>=-b a b y a x ),b (a b x a y 00 1 >>=-2222二、 小组讨论(对学、群学)对独学的中存在的问题进行讨论三、 全班交流(展示,提出疑问或质疑)展示组在黑板上展示内容,其他组认真倾听并提出疑问或质疑四、 归纳小结这节课我们学到了什么知识?五、 巩固提升1、 求下列双曲线的实轴,虚轴的长顶点的、焦点的坐标和离心率:(1)X 2-8y 2=32 (2)9 X 2- y 2=81(3) X 2- y 2=-4 (4) 492x -252y =-12.方程 表示双曲线时,则m 的取值范围是_________________.3求以椭圆492x +252y =1 的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程。
高中数学-圆锥曲线双曲线简单几何性质(一)教案新课标人教B版选修2
双曲线简单几何性质(一)合作学习导纲
练习:
1、下列方程中,以x±2y=0为渐近线的双曲线方程是: A 、14
162
2
=-
y
x
B 、
1164
2
2
=-
y
x
C 、
12
2
2
=-y
x
D 、12
2
2
=-
y
x
2、求中心在原点,一个焦点为(3,0),一条渐近线方程2x-3y=0的双曲线方程。
作业:
必做题:教课书113页习题8.4(1、3、4题) 选做题:1、双曲线
18
42
2
=-
y
x
的两渐近线所夹锐角的正切值。
2、已知双曲线
116
2
22
=-b
y x
的实轴的一个端点为A 1,虚轴的一个端点为 B 1,且 A 1 B 1=5,
求双曲线方程。
课外研讨题:若直线1-=kx y 与双曲线42
2
=-y x 有:①一个公共点;②两个公共点;③无公共点;④在右支上有两个公共点;⑤在右支上有一个公共点,求k 的取值范围。
人教版高中数学第二册(上)
8.4双曲线简单几何性质(一)
教案
抚顺县高级中学数学教师:吴春义
2006年12月1日。
高中数学 选修2-1双曲线导学案加课后作业及参考答案
双曲线及其标准方程导学案【学习要求】1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.【学法指导】本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程.【知识要点】1.双曲线的定义把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2探究点一 双曲线的定义问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|?问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1)6)5()5(2222=+--++y x y x ;(2)6)4()4(2222=+--++y x y x(3)方程x =3y 2-1所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分 探究点二 双曲线的标准方程问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程?问题2 两种形式的标准方程怎样进行区别?能否统一?问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗?例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.跟踪训练1 (1)过点(1,1)且ba=2的双曲线的标准方程是 ( )A .12122=-y x B .y 212-x 2=1 C .x 2-y 212=1D .x 212-y 2=1或y 212-x 2=1(2)若双曲线以椭圆x 216+y 29=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______探究点三 与双曲线定义有关的应用问题例2 已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).跟踪训练2 如图,从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A . 3B . 5C .5- 3D .5+ 3例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.【当堂检测】1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 29=1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( )A .7B .23C .5或25D .7或234.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程.【课堂小结】1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.【拓展提高】1.已知方程12522=---k y k x 的图形是双曲线,那么k 的取值范围是( )A .k >5B .k >5,或22<<-kC .k >2,,或2-<kD .22<<-k2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4.是双曲线上的一点,且,点的两个焦点分别是已知双曲线P F F y x 2122,13=-__________602121的面积等于,则PF F PF F ∆=∠5.根据下列条件,求双曲线的标准方程. (1)过点P )415,3(,Q )5,316(-且焦点在坐标轴上; (2)c =6,经过点(-5,2),焦点在x 轴上.(3))的双曲线。
灌南高级中学高三数学复习导学案:双曲线(1)
教学目的: 1.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.2. 了解双曲线的实际背景及双曲线的简单应用.3. 理解数形结合的思想.知识要点:1. 双曲线的概念平面内与两个定点F1,F2(|F1F2|=2c>0)的距离的差的绝对值为常数(小于|F1F2|且不等于零)的点的轨迹叫做________.这两个定点叫双曲线的________,两焦点间的距离叫做________.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0;(1)当________时,P点的轨迹是双曲线;(2)当________时,P点的轨迹是两条________;(3)当________时,P点不存在.判断下列点的轨迹是否为双曲线(请在括号内填写“是”或“否”)(1)平面内到点A(0,2),B(0,-2)距离之差等于2的点的轨迹;()(2)平面内到点A(0,2),B(0,-2)距离之差的绝对值等于3的点的轨迹;()(3)平面内到点A(0,2),B(0,-2)距离之差等于4的点的轨迹;()(4)平面内到点A(0,2),B(0,-2)距离之差的绝对值等于4的点的轨迹;()(5)平面内到点A(0,2),B(0,-2)距离之差等于6的点的轨迹;()双曲线为等轴双曲线⇔双曲线离心率e=2⇔双曲线的两条渐近线互相垂直(位置关系).2种必会方法1. 定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a、2b或2c,从而求出a2、b2,写出双曲线方程.2. 待定系数法:先确定焦点是在x轴上还是在y轴上,设出标准方程,再由条件确定a2、b2的值,即“先定型,再定量”;如果焦点位置不好确定,可将双曲线方程设为x2m2-y2n2=λ(λ≠0),再根据条件求λ的值.3点必须注意1. 区分双曲线中的a,b,c大小关系与椭圆a,b,c关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2.2. 求双曲线的离心率e时,只要求出a、b、c的一个齐次方程,再结合c2=a2+b2,就可求得e(e>1),而椭圆的离心率e∈(0,1).3. 双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程是y =±abx .(1)Ax 2+By 2=1表示焦点在y 轴上的双曲线的条件是什么?(2)若双曲线的两条渐近线的夹角是90°,则双曲线的实轴长与虚轴长有何关系? 基础训练1.若双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于________.2. 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为________.3.已知方程x 2k -5-y 2|k |-2=1的图形是双曲线,那么k 的取值范围是________.4.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为________.5.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为________.6.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是椭圆和双曲线的离心率,求1e 21+1e 22的值.例2:已知双曲线的方程是16x 2-9y 2=144.(1)求此双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|·|PF2|=32,求∠F1PF2的大小.变式:已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=________.例3 10.(12分)(2011·广东)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切. (1)求圆C 的圆心轨迹L 的方程;(2)已知点M (355,455),F (5,0),且P 为L 上动点,求||MP |-|FP ||的最大值及此时点P 的坐标.例4已知双曲线x 2-y 22=1. (1)求证:对一切实数k ,直线kx -y -2k +2=0与双曲线均有公共点; (2)求以点A (2,1)为中点的弦的方程.变式1:过点P (8,1)的直线与双曲线x 2-4y 2=4相交于A 、B 两点,且P 是线段AB 的中点,求直线AB 的方程.变式2:已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?巩固练习1.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为________.2.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________.课后练习1.双曲线x 24-y 28=1的渐近线方程是______.2.与椭圆x 2+4y 2=16有共同焦点,且一条渐近线方程是x +3y =0的双曲线的方程是________.3.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为________;渐近线方程为________.4.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C 的离心率为________.5.在平面直角坐标系xOy ,已知双曲线x 24-y 212=1上一点M 的横坐标是3,则点M 到此双曲线的右焦点的距离为________.6.F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于________.7.如果双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________.8.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为________.9.已知P 是双曲线x 2a 2-y 29=1(a >0)右支上的一点,双曲线的一条渐近线方程为3x -y =0.设F 1、F 2分别为双曲线的左、右焦点.若|PF 2|=3,则|PF 1|=________.10.已知双曲线的中点在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)对于(2)中的点M ,求△F 1MF 2的面积.11.已知离心率为45的椭圆的中心在原点,焦点在x 轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为234. (1)求椭圆及双曲线的方程;(2)设椭圆的左、右顶点分别为A 、B ,在第二象限内取双曲线上一点P ,连接BP 交椭圆于点M ,连接P A 并延长交椭圆于点N ,若BM →=MP →,求点M 、点P 的坐标.。
双曲线的简单几何性质(一)导学案
1标准方程 错误!-错误!=1 (a 〉0,b>0) 错误!-错误!=1(a 〉0,b 〉0) a ,b,c 关系 a 2+b 2=c 2 a 2+b 2=c 2
渐近
线
探究点二由性质求标准方程(定型→设方程→定量→作答)
例2 求满足下列条件的双曲线的标准方程:
(1)双曲线的焦点为(2,0),右顶点为(错误!,0); (2)实半轴长为8,离心率为错误!;
变式:求满足下列条件的双曲线方程
(1)双曲线C的焦点为(0,5),虚轴长为4; (2)实轴长为2,离心率为2;
四、巩固提高(链接高考):
1、(2013陕西卷)双曲线x2
16
-错误!=1的离心率为______,两条渐近线的方程为_____.
2、(2011年高考安徽卷)双曲线2x2-y2=8的实轴长是
3、(2011年高考江西卷)若双曲线错误!-错误!=1的离心率e=2,则m=__ __.
4、思考:若a=b,则渐近线的方程为_____,离心率e=
五、小结(方法总结):
(1)双曲线的简单性质(2)应用:①方程→性质②性质→方程
六、作业:1、P835 2、补充:求适合下列条件的双曲线的标准方程:
(1)焦点分别为F1(-3,0),F2(3,0),离心率e= 3
(2)虚轴长为12,离心率为4
5
;。
《3.2.2 双曲线的几何性质》学历案-中职数学高教版21拓展模块一上册
《双曲线的几何性质》学历案(第一课时)一、学习主题本课学习主题为《双曲线的几何性质》。
双曲线是中职数学课程中的重要内容,它不仅在数学本身有着广泛的应用,而且在物理、工程等领域也有着重要的意义。
本课将围绕双曲线的定义、性质、几何图像以及相关计算进行学习。
二、学习目标1. 知识与技能:理解双曲线的定义和标准方程,掌握双曲线的基本几何性质;能利用双曲线的性质解决简单的数学问题。
2. 过程与方法:通过观察双曲线的图像,培养学生利用数形结合的思想理解数学概念的能力;通过解决实际问题,培养学生应用数学知识解决实际问题的能力。
3. 情感态度与价值观:通过本课学习,激发学生对数学的兴趣和好奇心,培养他们认真、严谨的学习态度和良好的学习习惯。
三、评价任务1. 知识评价:通过课堂提问、随堂测验等方式,评价学生对双曲线定义、性质及标准方程的理解程度。
2. 能力评价:通过课堂练习、小组讨论等形式,评价学生利用双曲线知识解决实际问题的能力。
3. 过程评价:通过观察学生在课堂上的表现,评价他们的学习态度和学习习惯,包括参与度、合作能力、探究精神等。
四、学习过程1. 导入新课:通过回顾之前学习的内容(如直线、圆等),引出双曲线的概念,为学习新知做铺垫。
2. 新课学习:首先介绍双曲线的定义和标准方程,然后通过具体例子讲解双曲线的几何性质。
在此过程中,可以结合图像和动画,帮助学生更好地理解双曲线的形状和性质。
3. 课堂练习:布置相关练习题,让学生运用所学知识解决问题。
教师巡视指导,及时解答学生疑问。
4. 小组讨论:分组进行讨论,让学生分享自己的解题思路和方法,互相学习、互相启发。
5. 总结归纳:对本次课的学习内容进行总结归纳,强调重点和难点内容。
五、检测与作业1. 课堂检测:通过课堂小测验或作业的方式,检测学生对双曲线知识的掌握情况。
2. 课后作业:布置相关练习题和思考题,让学生巩固所学知识并拓展思维。
六、学后反思1. 学生反思:引导学生对本次课的学习过程进行反思,总结自己的收获和不足。
2025年高考数学一轮复习-8.6.1-双曲线的定义、方程与性质【导学案】
故得|MC1|-|MC2|=2 2.在④的情况下,
同理得|MC2|-|MC1|=2 2.
由③④得|MC1|-|MC2|=±2 2.
已知|C1C2|=8,根据双曲线定义,
可知点 M 的轨迹是以 C1(-4,0),C2(4,0)为焦点的双曲线,
且 a= 2,c=4,b2=c2-a2=14,
22
其方程为 - =1.
2.双曲线的标准方程和几何性质
标准
xa22-by22=1
方程
(a>0,b>0)
ya22-bx22=1 (a>0,b>0)
图形
性 范围
质
x≤-a 或 x≥a,y∈R
y≤-a 或 y≥a,x∈R
对称轴:坐标轴 对称中心:原 对称性
点
顶点坐标:
顶点坐标:
顶点
A1(-a,0),
A1(0,-a),
A2(a,0)
22
2.已知 F 是双曲线 - =1 的左焦点,A(1,4),P 是双曲线右支上的动点,则|PF|+|PA|
4 12
的最小值为 ( )
A.9B.8 C.7 D.6
22
【解析】选 A.由 - =1,得 a2=4,b2=12,
4 12
则 a=2,b=2 3,c= 2 + 2=4,
所以左焦点为 F(-4,0),右焦点为 F'(4,0),
22
4.(结论 1)若双曲线 2- 2=1 的焦点 F(3,0)到其渐近线的距离为 5,则双曲线的方程
为( )
22
22
A. - =1 B. - =1
45
54
22
22
C. - =1 D. - =1
双曲线的几何性质1
2.3.3双曲线的几何性质(一)一、教学目标知识与技能:了解双曲线的性质,能运用双曲线的标准方程讨论他的几何性质。
过程与方法:进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比,提高类比分析的能力。
理解并掌握代数知识在解析几何运算中的作用。
情感态度价值观:提高分析问题解决问题的能力,培养学生形结合思想、方程思想及等价转化思想。
二、学习重难点重点:双曲线的几何性质难点:双曲线的离心率,渐近线的问题三、学法指导:教师平等地参与学生的自主探究活动,引导学生全员参与,全过程参与。
通过启发、调整、激励来体现自己的主导作用,保证学生的认知水平和情感体验分层次向前推进。
四、知识链接【A 】练习:在一个坐标系中,画出下列双曲线的图形1、(1)1242522=-y x (2)1202522=-y x2、(1)1252422=-y x (2)1252022=-y x (3)1162522=-y x (4)192522=-y x (3)1251622=-y x (4)125922=-y x问题2、离心率可以刻画椭圆的圆扁程度,双曲线的离心率刻画双曲线的什么?【A 】例1、求双曲线14416922=-x y 的半实轴长和半虚轴长、焦点坐标、离心率、渐近线方程。
【A 】练习:1、求下列双曲线的实轴长和虚轴长、顶点和焦点坐标、离心率、渐近线方程。
(1)32822=-y x (2)81922=-y xOy xO y x【B 】2、求适合下列条件的双曲线的标准方程。
(1)顶点在x 轴上,两顶点间的距离是8,45=e (2)焦点在y 轴上,焦距是16,34=e六、达标训练【A 】1、求下列双曲线的实轴长和虚轴长、顶点和焦点坐标、离心率、渐近线方程。
(1)422-=-y x (2)1254922-=-y x(3)14491622=-y x (4)14491622-=-y x【B 】2、求适合下列条件的双曲线的标准方程。
双曲线的简单几何性质+导学案- 高二上学期数学人教A版(2019)选择性必修第一册
3.2.2 双曲线的简单几何性质导学案课时目标:1.掌握双曲线的简单几何性质,了解双曲线的渐近线及渐近线的求法;2理解离心率的几何意义.活动一、复习回顾1.双曲线的定义:一般地,把平面内与两个定点F 1,F 2的距离的______________ 等于非零常数(小于|F 1F 2|)的点的轨迹叫做_________ .这两个定点叫做双曲线的________,两焦点间的距离叫做双曲线的_______ .2. 焦点位置 焦点在x轴上 焦点在y 轴上图形标准方程 焦点坐标a, b, c 的关系活动二:类比探究1.思考:我们前面在学习椭圆的几何性质时,主要从哪几方面学习了椭圆的几何性质?2.类比探究双曲线的几何性质 (1焦点位置焦点在x 轴上焦点在y 轴上图形标准方程x 2a 2-y 2b 2=1 (a>0,b>0)y 2a 2-x 2b 2=1 (a>0,b>0)性质范围对称性顶点轴及轴长 实轴长=____,虚轴长=____离心率渐近线(2)重、难点突破:双曲线的渐近线渐近线方程:____________________ 渐近线方程:____________________(3)思考归纳:结合双曲线的离心率与渐近线斜率的关系总结出离心率的几何意义.活动三:练习巩固例. 求双曲线 229-16=144y x 的顶点坐标、焦点坐标、实轴长、虚轴长、离心率及渐近线方程.活动四:课堂小结1.知识清单:双曲线的几何性质:范围、对称性、顶点、渐近线及离心率;结论1:渐近线方程为:y =±ba x (焦点在x 轴上)或y =±ab x (焦点在y 轴上). 结论2:离心率越大,双曲线开口越___ ;离心率越小,开口越___.2.数学思想方法归纳: 类比、数形结合等.3.常见误区:忽略焦点位置致错.活动五:作业布置课后思考:设双曲线方程为22(0)x y k k R k -=∈≠且,求该双曲线的渐近线方程与离心率,并观察该双曲线有什么特点?。
双曲线的简单几何性质优秀教案
2.3.2 双曲线的几何性质(第一课时教案)一、 教学目标1. 知识与技能(1)理解并掌握双曲线的简单几何性质;(2)利用双曲线的几何性质解决双曲线的问题。
2. 过程与方法(1)通过类比椭圆的几何性质,得到双曲线的几何性质;(2)通过例题和练习掌握根据条件求双曲线几何性质的相关问题。
3. 情感、态度与价值观(1)培养学生的知识类比的数学思想和逻辑思维能力;(2)培养学生的方法归纳能力和应用意识。
二、 教学重难点1、教学重点:双曲线的几何性质2、教学难点:应用双曲线的几何性质解决双曲线的相关问题三、 教学过程结合双曲线图像以及几何画板动画,学习双曲线的相关几何性质。
1. 取值范围(1) 焦点在x 轴上:x a ≥或x a ≤-,y R ∈(2) 焦点在y 轴上:y a ≥或y a ≤-,x R ∈2. 对称性——既是轴对称图形,又是中心对称图形3. 顶点——双曲线与坐标轴的交点,即12,A A (以图为例)(1) 实轴——线段12A A 。
122,A A a a =为半实轴长;(2) 虚轴——记12(0,),(0,)B b B b -,则线段12B B 为虚轴。
122,B B b b =为半虚轴长。
(3) 等轴双曲线——实轴与虚轴长度相等的双曲线。
一般可设为:22,(0)x y m m -=≠4. 离心率:c e a= (1) 范围:1e >;(2) 变化规律:e 越大,双曲线开口越大;e 越小,双曲线开口越小.5. 渐近线(1) 若22221(0,0)x y a b a b -=>>,则渐近线为:b y x a=±, (2) 若)0,0(12222>>=-b a b x a y ,则渐近线为:a y x b=±, (3) 一般求法:令双曲线方程等于0,即22220x y a b -=(或22220y x a b-=) (4) 渐近线相同的双曲线可设为:2222(0)x y a bλλ-=≠题型一:求双曲线的标准方程例 求满足下列条件的双曲线标准方程(1) 顶点在x 轴上,两定点间的距离为8,54e =; (2) 焦点在y 轴上,焦距为16,43e =; (3) 以椭圆22185x y +=的焦点为顶点,顶点为焦点的双曲线; (4) 过点(3,1)A -的等轴双曲线.题型二:有关渐近线的计算例1 已知双曲线的渐近线方程为34y x =±,求双曲线的离心率为.例2 若双曲线的渐近线方程为3y x =±,它的一个焦点为),求双曲线的方程.例3 求与双曲线221916x y -=有共同的渐近线,且过点(3,-的双曲线方程.作业:P61 A 组 《导报》第8课时。
双曲线的简单性质导学案
主备人:审核:包科领导签字:使用时间:§3.2双曲线的简单性质【学习目标】1、掌握双曲线标准方程中a、b、c、e之间的关系;2、了解双曲线的渐近线的概念和求法;3、用对比椭圆的方法分析双曲线的范围、对称性、顶点、离心率和渐近线几何性质。
【学习重点】双曲线的范围、对称性、顶点、渐近线和离心率求法。
【学习难点】双曲线的渐近线和离心率求法。
【使用说明与学法指导】1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标2.用红笔勾勒出疑点,合作学习后寻求解决方案【自主探究】双曲线的几何性质【合作探究】1.求双曲线标准方程⑴实轴的长是10,虚轴长是8,焦点在x轴上;⑵焦距是10,虚轴长是8,焦点在y 轴上;2. 已知双曲线的离心率为2,焦点是(-4,0),(4,0),求双曲线方程。
3.设F 1、F 2分别是双曲线2222b ya x-=1的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,求双曲线的离心率。
【巩固提高】1.根据下列条件,写出双曲线的标准方程(1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).2.已知椭圆的标准方程是14722=+y x ,求以椭圆的焦点为顶点,椭圆的顶点为焦点的双曲线的标准方程。
.3.已知双曲线)0,0(12222>>=-b a b ya x的左顶点、右焦点和虚轴的一个端点构成一个直角三角形,求双曲线的离心率。
2025年高考数学一轮复习-8.6.1-双曲线的定义、方程与性质【导学案】
1.焦点在 x 轴上,焦距为 10,且与双曲线 -x2=1 有相同渐近线的双曲线的标准方程是 - =1 . 解析:设所求双曲线的标准方程为 -x2=-λ(λ>0),即 - =1,则有 4λ+λ=25,解得λ=5,
所以所求双曲线的标准方程为 - =1.
2.经过点 P(3,2 ),Q(-6 ,7)的双曲线的标准方程为 - =1 . 解析:设双曲线方程为 mx2+ny2=1(mn<0),因为所求双曲线经过点 P(3,2 ),Q(-6 ,
A.
B.
C.
D.
(2)(2022·全国甲卷 15 题)记双曲线 C: - =1(a>0,b>0)的离心率为 e,写出满足条
件“直线 y=2x 与 C 无公共点”的 e 的一个值 2(答案不唯一,(1, ]内的任意值均可) .
7 / 15
解析:(1)设|PF2|=m,|PF1|=3m,则|F1F2|= + - × × × cos °= m, 所以 C 的离心率 e= = = | | = = .
双曲线定义的应用主要有两个方面
1.已知动点 M(x,y)满足 ( + ) + - ( - ) + =4,则动点 M 的轨迹是( )
A.射线 C.椭圆
B.直线 D.双曲线的一支
4 / 15
解析:A 设 F1(-2,0),F2(2,0),由题意知动点 M 满足|MF1|-|MF2|=4=|F1F2|,
PF2|,则 cos∠F1PF2=
;
(2)已知 F 是双曲线 - =1 的左焦点,A(1,4),P 是双曲线右支上的一动点,则|PF| +|PA|的最小值为 9 . 解析:(1)∵由双曲线的定义有||PF1|-|PF2||=2a=2 ,∴|PF1|=2|PF2|=4 ,
双曲线(经典导学案及练习答案详解)
§8.7双曲线学习目标1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、离心率、渐近线).3.了解双曲线的简单应用.知识梳理1.双曲线的定义把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F 1F2|)的点的轨迹叫做双曲线.两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b,实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±ba x y=±ab xa,b,c的关系c2=a2+b2 (c>a>0,c>b>0)常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为2b 2a.(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=b 2tan θ2,其中θ为∠F 1PF 2.(5)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线x 2m 2-y 2n 2=1(m >0,n >0)的渐近线方程是x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) 教材改编题1.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2 答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,即b =2a , 又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a 2=5,∴e = 5. 2.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上均不对 答案 B解析 根据双曲线的定义得||PF 1|-|PF 2||=8⇒|PF 2|等于1或17.又|PF 2|≥c -a =2,故|PF 2|=17. 3.(2022·汕头模拟)写一个焦点在y 轴上且离心率为3的双曲线方程________. 答案y 2-x 22=1(答案不唯一,符合要求就可以) 解析 取c =3,则e =ca=3,可得a =1,∴b =c 2-a 2=2, 因此,符合条件的双曲线方程为y 2-x 22=1(答案不唯一,符合要求就可以).题型一 双曲线的定义及应用例1 (1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆答案 B解析 如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,所以|MF 2|=2.因为点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,由垂直平分线的性质可得|PM |=|PF 1|, 所以||PF 2|-|PF 1||=||PF 2|-|PM || =|MF 2|=2<|F 1F 2|,所以由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为______. 答案 2 3解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12, ∴|PF 1|·|PF 2|=8,∴12F PF S △=12|PF 1|·|PF 2|·sin 60°=2 3.延伸探究 在本例(2)中,若将“∠F 1PF 2=60°”改为“PF 1―→·PF 2―→=0”,则△F 1PF 2的面积为_____.答案 2解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1―→·PF 2―→=0,∴PF 1―→⊥PF 2―→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4,∴12F PF S △=12|PF 1|·|PF 2|=2.教师备选1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A .x 2-y 28=1B.x 28-y 2=1 C .x 2-y 28=1(x ≤-1) D .x 2-y 28=1(x ≥1) 答案 C解析 设圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2相外切, 得|MC 1|=1+r ,|MC 2|=3+r , |MC 2|-|MC 1|=2<6,所以点M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支, 且2a =2,a =1,又c =3, 则b 2=c 2-a 2=8, 所以点M 的轨迹方程为x 2-y 28=1(x ≤-1). 2.(2022·长春模拟)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A .8 B .10 C .4+37 D .3+317答案 B解析 由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时, |PF ′|+|P A |有最小值,为|AF ′|=3, 故△P AF 的周长的最小值为10.思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1 (1)(2022·扬州、盐城、南通联考)已知双曲线C 的离心率为3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为2,则双曲线C 的实轴长为( ) A .1 B .2 C .3 D .6 答案 B解析 由题意知,|PF 1|-|PF 2|=2a , 所以|PF 2|=a ,|PF 1|=3a , 又离心率e =ca =3,|F 1F 2|=2c =23a ,所以cos ∠F 1PF 2=9a 2+a 2-12a 22·3a ·a=-2a 26a 2=-13, sin ∠F 1PF 2=223,所以12PF F S △=12·a ·3a ·223=2a 2=2,所以a =1,实轴长2a =2.(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 答案 9解析 设双曲线的右焦点为F 1,则由双曲线的定义,可知|PF |=4+|PF 1|, 所以当|PF 1|+|P A |最小时满足|PF |+|P A |最小. 由双曲线的图象,可知当点A ,P ,F 1共线时, 满足|PF 1|+|P A |最小,|AF 1|+4即|PF |+|P A |的最小值. 又|AF 1|=5,故所求的最小值为9. 题型二 双曲线的标准方程例2 (1)(2021·北京)双曲线C :x 2a 2-y 2b 2=1过点(2,3),且离心率为2,则该双曲线的标准方程为( )A .x 2-y 23=1B.x 23-y 2=1 C .x 2-3y 23=1D.3x 23-y 2=1答案 A解析 ∵e =ca=2,则c =2a ,b =c 2-a 2=3a , 则双曲线的方程为x 2a 2-y 23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a 2-33a 2=1a 2=1,解得a =1,故b =3,因此,双曲线的方程为x 2-y 23=1. (2)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的标准方程是________.答案y 2-x 29=1 解析 设双曲线的方程是y 2-x 29=λ(λ≠0). 因为双曲线过点(3,2), 所以λ=2-99=1,故双曲线的标准方程为y 2-x 29=1. 教师备选1.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1. 2.经过点P (3,27),Q (-62,7)的双曲线的标准方程为________.答案 y 225-x 275=1解析 设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1, 解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a ,2b 或2c ,从而求出a 2,b 2. (2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.跟踪训练2 (1)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( ) A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 答案 C解析 因为双曲线的渐近线方程为y =±3x ,所以可设双曲线的方程为x 2-y 23=λ(λ≠0),将点(2,3)代入其中,得λ=1,所以该双曲线的标准方程为x 2-y 23=1. (2)(2022·佛山调研)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上一点,PF 2与x 轴垂直,∠PF 1F 2=30°,且虚轴长为22,则双曲线的标准方程为( ) A.x 24-y 22=1 B.x 23-y 22=1 C.x 24-y 28=1 D .x 2-y 22=1 答案 D解析 由题意可知|PF 1|=43c3, |PF 2|=23c3, 2b =22,由双曲线的定义可得43c 3-23c3=2a ,即c =3a .又b =2,c 2=a 2+b 2,∴a =1,∴双曲线的标准方程为x 2-y 22=1.题型三 双曲线的几何性质 命题点1 渐近线例3 (1)由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线y 2a 2-x 2b 2=1(a >0,b >0)下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A.y 212-x 24=1 B.3y 24-x 24=1 C.x 24-y 24=1 D.y 216-x 24=1 答案 B解析 由题意知,b =2, 又因为e =ca =1+⎝⎛⎭⎫b a 2=2,解得a 2=43,所以双曲线的方程为3y 24-x 24=1.(2)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32 答案 B解析 由题意知双曲线的渐近线方程为y =±bax .因为D ,E 分别为直线x =a 与双曲线C 的两条渐近线的交点, 所以不妨设D (a ,b ),E (a ,-b ),所以S △ODE =12×a ×|DE |=12×a ×2b =ab =8,所以c 2=a 2+b 2≥2ab =16(当且仅当a =b 时等号成立), 所以c ≥4,所以2c ≥8, 所以C 的焦距的最小值为8.思维升华 (1)渐近线的求法:求双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的方法是令x 2a 2-y 2b 2=0,即得两渐近线方程x a ±yb =0⎝⎛⎭⎫y =±b a x . (2)在双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba ,满足关系式e 2=1+k 2.命题点2 离心率例4 (1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( ) A.72 B.132C.7D.13 答案 A解析 设|PF 2|=m ,则|PF 1|=3m , 在△F 1PF 2中,|F 1F 2|=m 2+9m 2-2×3m ×m ×cos 60° =7m ,所以C 的离心率e =c a =2c 2a =|F 1F 2||PF 1|-|PF 2|=7m 2m =72. 高考改编已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在双曲线E 的左支上,且∠F 1AF 2=120°,|AF 2|=2|AF 1|,则双曲线E 的离心率为( ) A. 3 B. 5 C.7 D .7答案 C解析 点A 在双曲线E 的左支上,左、右焦点分别为F 1,F 2, 设|AF 1|=m ,由|AF 2|=2|AF 1|知|AF 2|=2m ,由双曲线定义得|AF 2|-|AF 1|=2m -m =m =2a , 在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°, 由余弦定理知,|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|cos 120° =4a 2+16a 2+8a 2=28a 2, ∴|F 1F 2|=27a , 又|F 1F 2|=2c ,∴27a =2c ,e =ca=7.(2)(2022·滨州模拟)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P是双曲线C 上在第一象限内的一点,若sin ∠PF 2F 1=3sin ∠PF 1F 2,则双曲线C 的离心率的取值范围为( ) A .(1,2) B .(1,3) C .(3,+∞) D .(2,3)答案 A解析 在△PF 1F 2中, sin ∠PF 2F 1=3sin ∠PF 1F 2, 由正弦定理得,|PF 1|=3|PF 2|,又点P 是双曲线C 上在第一象限内的一点, 所以|PF 1|-|PF 2|=2a , 所以|PF 1|=3a ,|PF 2|=a ,在△PF 1F 2中,由|PF 1|+|PF 2|>|F 1F 2|, 得3a +a >2c ,即2a >c , 所以e =ca <2,又e >1,所以1<e <2. 教师备选1.(2022·济南模拟)已知双曲线x 2m +1-y 2m =1(m >0)的渐近线方程为x ±3y =0,则m 等于( )A.12B.3-1C.3+12D .2答案 A解析 由渐近线方程y =±b a x =±33x , 所以b a =33, 则b 2a 2=13, 即m m +1=13,m =12. 2.设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2D. 5答案 A解析 令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c ,0),则c =a 2+b 2. 如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c 2, 由|OM |2+|MP |2=|OP |2,得⎝⎛⎭⎫c 22+⎝⎛⎭⎫c 22=a 2,∴c a=2,即离心率e = 2. 思维升华 求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用c 2=a 2+b 2和e =c a转化为关于e 的方程(或不等式),通过解方程(或不等式)求得离心率的值(或范围).跟踪训练3 (1)(多选)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,C 上的点到其焦点的最短距离为1,则( )A .双曲线C 的焦点坐标为(0,±2)B .双曲线C 的渐近线方程为y =±3xC .点(2,3)在双曲线C 上D .直线mx -y -m =0(m ∈R )与双曲线C 恒有两个交点答案 BC解析 双曲线C 上的点到其焦点的最短距离为c -a =1,离心率e =c a =2,所以a =1,c =2,所以b 2=3,所以双曲线C 的方程为x 2-y 23=1,所以C 的焦点坐标为(±2,0),A 错误; 双曲线C 的渐近线方程为y =±b ax =±3x ,B 正确; 因为22-323=1,所以点(2,3)在双曲线C 上,C 正确; 直线mx -y -m =0即y =m (x -1),恒过点(1,0),当m =±3时,直线与双曲线C 的一条渐近线平行,此时直线与双曲线只有一个交点,D 错误.(2)(2022·威海模拟)若双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线C 2的离心率的取值范围是( )A.⎝⎛⎭⎫1,132B.⎝⎛⎭⎫1,133 C.⎝⎛⎭⎫132,+∞ D.⎝⎛⎭⎫133,+∞ 答案 D解析 因为双曲线C 1:y 24-x 29=1的渐近线方程为y =±23x , 双曲线C 2:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , 为使双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点, 只需b a >23, 则离心率为e =c a =a 2+b 2a 2=1+⎝⎛⎭⎫b a 2>1+49=133. 课时精练1.双曲线9x 2-16y 2=1的焦点坐标为( )A.⎝⎛⎭⎫±512,0 B.⎝⎛⎭⎫0,±512 C .(±5,0) D .(0,±5)答案 A解析 将双曲线的方程化为标准形式为x 219-y 2116=1, 所以c 2=19+116=25144, 所以c =512, 所以焦点坐标为⎝⎛⎭⎫±512,0. 2.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为( ) A.x 22-y 24=1 B.x 24-y 28=1 C .x 2-y 28=1 D.x 22-y 28=1 答案 D解析 由题意,得2m =m +6,解得m =2,所以双曲线的标准方程为x 22-y 28=1. 3.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3答案 B解析 方法一 依题意知,点P 在双曲线的左支上,根据双曲线的定义,得|PF 2|-|PF 1|=2×3=6,所以|PF 2|=6+3=9.方法二 根据双曲线的定义,得||PF 2|-|PF 1||=2×3=6,所以||PF 2|-3|=6,所以|PF 2|=9或|PF 2|=-3(舍去).4.(2022·大连模拟)若双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33,则C 的离心率为( )A .2 B. 3 C.43 D.233答案 A解析 双曲线C :x 29-y 2b 2=1的右焦点坐标为(9+b 2,0),渐近线方程为y =±b 3x ,即bx ±3y =0, ∵双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33, ∴b 9+b 2b 2+9=33, 解得b =33,∴c =9+b 2=9+(33)2=6,∴离心率e =c a =63=2. 5.(多选)已知双曲线C 的方程为x 216-y 29=1,则下列说法正确的是( ) A .双曲线C 的实轴长为8B .双曲线C 的渐近线方程为y =±34x C .双曲线C 的焦点到渐近线的距离为3D .双曲线C 上的点到焦点距离的最小值为94答案 ABC解析 因为a 2=16,所以a =4,2a =8,故A 正确;因为a =4,b =3,所以双曲线C 的渐近线方程为y =±b a x =±34x ,故B 正确; 因为c =a 2+b 2=16+9=5,所以焦点坐标为(-5,0),(5,0),焦点(5,0)到渐近线3x -4y =0的距离为|15|32+(-4)2=3,故C 正确;双曲线C 上的点到焦点距离的最小值为c -a =1,故D 错误. 6.(多选)(2022·潍坊模拟)已知双曲线C :x 2a 2-y 29=1(a >0)的左、右焦点分别为F 1,F 2,一条渐近线方程为y =34x ,P 为C 上一点,则以下说法正确的是( ) A .C 的实轴长为8B .C 的离心率为53 C .|PF 1|-|PF 2|=8D .C 的焦距为10 答案 AD解析 由双曲线方程知,渐近线方程为y =±3a x ,而一条渐近线方程为y =34x , ∴a =4,故C :x 216-y 29=1, ∴双曲线实轴长为2a =8,离心率e =c a =16+94=54, 由于P 可能在C 不同分支上,则有||PF 1|-|PF 2||=8,焦距为2c =2a 2+b 2=10.∴A ,D 正确,B ,C 错误.7.(2021·新高考全国Ⅱ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,则该双曲线C 的渐近线方程为________.答案 y =±3x解析 因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2, 所以e =c 2a 2=a 2+b 2a 2=2,所以b 2a2=3, 所以该双曲线的渐近线方程为y =±b ax =±3x . 8.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.答案 3215解析 因为a 2=9,b 2=16,所以c =5.所以A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5), 代入双曲线方程解得B ⎝⎛⎭⎫175,-3215. 所以S △AFB =12|AF |·|y B |=12×2×3215=3215. 9.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2. (1)若点M 在双曲线上,且MF 1-→·MF 2-→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同的焦点,且过点(32,2),求双曲线C 的方程. 解 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,∵MF 1-→·MF 2-→=0,∴MF 1⊥MF 2.设|MF 1|=m ,|MF 2|=n ,由双曲线的定义知m -n =2a =8.①在Rt △F 1MF 2中,由勾股定理得m 2+n 2=(2c )2=80,②由①②得m ·n =8.∵12MF F S △=12mn =4=12×2ch , ∴h =255. 即M 点到x 轴的距离为255. (2)设双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16). ∵双曲线C 过点(32,2),∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去),∴双曲线C 的方程为x 212-y 28=1. 10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,渐近线方程是y =±255x ,点A (0,b ),且△AF 1F 2的面积为6.(1)求双曲线C 的标准方程;(2)直线l :y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点P ,Q ,若|AP |=|AQ |,求实数m 的取值范围. 解 (1)由题意得b a =255,① 12AF F S △=12×2c ·b =6,②a 2+b 2=c 2,③由①②③可得a 2=5,b 2=4,∴双曲线C 的标准方程是x 25-y 24=1. (2)由题意知直线l 不过点A .设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为D (x 0,y 0),连接AD (图略).将y =kx +m 与x 25-y 24=1联立,消去y , 整理得(4-5k 2)x 2-10kmx -5m 2-20=0,由4-5k 2≠0且Δ>0,得⎩⎪⎨⎪⎧4-5k 2≠0,80(m 2-5k 2+4)>0,④ ∴x 1+x 2=10km 4-5k 2,x 1x 2=-5m 2+204-5k 2, ∴x 0=x 1+x 22=5km 4-5k 2, y 0=kx 0+m =4m 4-5k 2. 由|AP |=|AQ |知,AD ⊥PQ ,又A (0,2),∴k AD =y 0-2x 0=4m 4-5k 2-25km 4-5k 2=-1k, 化简得10k 2=8-9m ,⑤由④⑤,得m <-92或m >0. 由10k 2=8-9m >0,得m <89. 综上,实数m 的取值范围是m <-92或0<m <89.11.(多选)双曲线C :x 24-y 22=1的右焦点为F ,点P 在双曲线C 的一条渐近线上,O 为坐标原点,则下列说法正确的是( )A .双曲线C 的离心率为62B .双曲线y 24-x 28=1与双曲线C 的渐近线相同 C .若PO ⊥PF ,则△PFO 的面积为 2D .|PF |的最小值为2答案 ABC解析 因为a =2,b =2,所以c =a 2+b 2=6,所以e =c a =62, 故A 正确;双曲线y 24-x 28=1的渐近线方程为y =±22x ,双曲线C 的渐近线方程为y =±22x ,故B 正确; 因为PO ⊥PF ,点F (6,0)到渐近线2x -2y =0的距离d =|2×6|6=2, 所以|PF |=2,所以|PO |=(6)2-(2)2=2,所以△PFO 的面积为12×2×2=2, 故C 正确;|PF |的最小值即为点F 到渐近线的距离,即|PF |=2,故D 不正确.12.(2022·湖南师大附中模拟)已知双曲线C: x 24-y 2b2=1(b >0),以C 的焦点为圆心,3为半径的圆与C 的渐近线相交,则双曲线C 的离心率的取值范围是( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫1,132 C.⎝⎛⎭⎫ 32,132 D .(1,13) 答案 B解析 由题意可知双曲线的其中一条渐近线为y =b 2x ,即bx -2y =0, 又该圆的圆心为(c ,0),故圆心到渐近线的距离为bc b 2+4, 则由题意可得bc b 2+4<3,即b 2c 2<9(b 2+4), 又b 2=c 2-a 2=c 2-4,则(c 2-4)c 2<9c 2,解得c 2<13,即c <13,则e =c a =c 2<132,又e >1, 故离心率的取值范围是⎝⎛⎭⎫1,132. 13.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为x -2y =0,双曲线的左焦点在直线x +y +5=0上,A ,B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,直线P A ,PB 的斜率分别为k 1,k 2,则k 1+k 2的取值范围为( )A .(1,+∞)B .(2,+∞)C .(2,+∞)D .[2,+∞)答案 A 解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为x -2y =0,可得a =2b ,由双曲线的左焦点在直线x +y +5=0上,可得c =5,则由a 2+b 2=c 2,得a =2,b =1,双曲线的方程为x 24-y 2=1, 由题意可得A (-2,0),B (2,0),设P (m ,n )(m >2,n >0),则m 24-n 2=1,即n 2m 2-4=14, k 1k 2=n m +2·n m -2=n 2m 2-4=14, 易知k 1,k 2>0,则k 1+k 2≥2k 1k 2=1,由A ,B 分别为双曲线的左、右顶点,可得k 1≠k 2,则k 1+k 2>1.14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为原点,若以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,且|F 1P |=3|OP |,则C 的渐近线方程为________. 答案 y =±3x解析 根据双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1,F 2,O 为原点,以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,如图所示,则|F 1O |=|OP |=c ,|F 1P |=3|OP |=3c ,所以在△POF 1中,由余弦定理可得cos ∠POF 1=|OP |2+|OF 1|2-|PF 1|22|OP |·|OF 1|=c 2+c 2-()3c 22×c ×c=-12. 所以∠POF 1=2π3,则∠POF 2=π3,所以tan ∠POF 2=tan π3=3, 则渐近线方程为y =±3x .15.(多选)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点在圆O :x 2+y 2=13上,圆O 与双曲线C 的渐近线在第一、二象限分别交于点M ,N ,点E (0,a )满足EO →+EM →+EN →=0(其中O 为坐标原点),则( )A .双曲线C 的一条渐近线方程为3x -2y =0B .双曲线C 的离心率为132C .|OE →|=1D .△OMN 的面积为6答案 ABD解析 如图,设双曲线C 的焦距为2c =213,MN 与y 轴交于点P ,由题意可知|OM |=c =13,则P (0,b ),由EO →+EM →+EN →=0得点E 为△OMN 的重心,可得|OE |=23|OP |, 即a =23b ,b 2a 2=c 2-a 2a 2=94, 所以a =2,b =3,e =132. 双曲线C 的渐近线方程为3x ±2y =0,|OE →|=2,M 的坐标为(2,3),S △OMN =6.16.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |.(1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .(1)解 设双曲线的半焦距为c ,则F (c ,0),B ⎝⎛⎭⎫c ,±b 2a , 因为|AF |=|BF |,所以b 2a=a +c , 所以c 2-a 2a=a +c , 所以c -a =a ,即c =2a ,所以e =2.(2)证明 设B (x 0,y 0),其中x 0>a ,y 0>0. 因为e =2,故c =2a ,b =3a , 故双曲线的渐近线方程为y =±3x ,所以∠BAF ∈⎝⎛⎭⎫0,π3,∠BF A ∈⎝⎛⎭⎫0,2π3. 当∠BF A =π2时, 由题意易得∠BAF =π4, 此时∠BF A =2∠BAF .当∠BF A ≠π2时, 因为tan ∠BF A =-y 0x 0-c =-y 0x 0-2a, tan ∠BAF =y 0x 0+a, 所以tan 2∠BAF =2y 0x 0+a 1-⎝⎛⎭⎫y 0x 0+a 2=2y 0(x 0+a )(x 0+a )2-y 20 =2y 0(x 0+a )(x 0+a )2-b 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3a 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3(x 20-a 2) =2y 0(x 0+a )-3(x 0-a ) =-y 0x 0-2a=tan ∠BF A ,因为2∠BAF ∈⎝⎛⎭⎫0,2π3,故∠BF A =2∠BAF . 综上,∠BF A =2∠BAF .。
双曲线的简单几何性质 精品教案
双曲线的简单几何性质第三课时(一)教学目标1.掌握直线与双曲线位置关系的判定,能处理直线与双曲线截得的弦长,与弦的中点有关的问题.2.能综合应用所学知识解决较综合的问题,提高分析问题与解决问题的能力. (二)教学过程 【设置情境】练习:求下列直线和双曲线的交点坐标(课本P108.5)①02=-y x ,152022=-y x ②01634=--y x ,1162522=-y x ③01=+-y x ,322=-y x 答案:①(6,2),(14332-,)②(425,3)③()12--, 说出上边各例直线与双曲线的位置关系.不少学生会认为直线01=+-y x 与双曲线322=-y x 相切,让学生动手画图,很显然此时直线与双曲线相交,且只有一个交点.为什么会出现这种情况呢? 【探索研究】直线与双曲线的位置关系通过对第③小题的研究发现直线01=+-y x 与双曲线的渐近线平行,因而此时相交且只有一个公共点.从而得出结论直线与双曲线相切—只有一个公共点(只有一个公共点是直线与双曲线相切的必要条件,但不是充分条件).直线与双曲线相离—没有公共点. 【例题分析】例 1 如果直线1-=kx y 与双曲线422=-y x 没有公共点,求k 的取值范围.(课本P132第13题)解:由⎩⎨⎧=--=4122y x kx y 得()()*=-+-052122kx x k 即此方程无解.由()⎪⎩⎪⎨⎧<-+=∆≠-0120401222k k k 得25>k 或25-<k则k 的取值范围为25>k 或25-<k . 引申:(1)如果直线1-=kx y 与双曲线422=-y x 有两个公共点,求k 的取值范围. 解析:直线与双曲线有两个公共点()*⇔式方程有两个不等的根()25250120401222<<-⇔⎪⎩⎪⎨⎧>-+≠-⇔k k k k 且1±≠k (2)如果直线1-=kx y 与双曲线422=-y x 只有一个公共点,求k 的取值范围. 解析:此时等价于(﹡)式方程只有一解当012=-k 即1±=k 时,(﹡)式方程只有一解当012≠-k 时,应满足()0120422=-+=∆kk解得25±=k 故k 的值为1±或25±(3)如果直线1-=kx y 与双曲线422=-y x 的右支有两个公共点,求k 的取值范围. 解析:此时等价于(﹡)式方程有两个不等的正根()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-->-->-+⇔015012012042222k k k k k 即251110112525<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧->><<-><<-k k k k k k 或或 (4)如果直线1-=kx y 与双曲线422=-y x 的左支有两个公共点,求k 的取值范围.(125-<<-k ) (5)如果直线1-=kx y 与双曲线422=-y x 两支各有一个交点,求k 的取值范围.解析:此时等价于(﹡)式方程有两个相异实根即0152<--k 即11<<-k . 例2 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点.当k 为何值时,以AB 为直径的圆经过坐标原点.可由一位学生演板,教师讲评指出有关二次方程知识的应用.解:由方程组:⎩⎨⎧=-+=13122y x kx y 得()022322=---kx x k因为直线与双曲线交于A 、B 两点 ∴()038422>-+=∆k k解得66<<-k .设()11y x A ,,()22y x B ,,则:22132k k x x -=+,32221-=k x x , 而以AB 为直径的圆过原点,则OB OA ⊥, ∴02121=+y y x x .()()()111212122121+++=++=x x k x x k kx kx y y .于是()()01121212=++++x x k x x k ,即()0132321222=+-+-⋅+k kkkk. 解得1±=k 满足条件.故当1±=k 时,以AB 为直径的圆过原点.例3 已知双曲线方程1222=-y x ,试问过点()11,A 能否作直线l ,使与双曲线交于1P 、2P 两点,且点A 是线段1P 、2P 的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.由学生讨论完成,教师给予提示. 解:假设存在直线l 满足条件.显然斜率不存在时,直线1=x 不满足条件.设()11+-=x k y l :,代入双曲线方程整理得:()()032122222=-+--++k k x k k x k若022=-k 即2±=k ,则l 与渐近线平行,没有交点.∴022=-k 设()111y x P ,、()222y x P ,则:()221212k k k x x --=+由于()11,A 是1P 2P 的中点.∴()1212221=--=+k k k x x 解得2=k . 这时方程为03422=+-x x ,02416<-=∆,即直线l 与双曲线无交点. 故这样的直线l 不存在.例 4 已知1l 、2l 是过点()02,-P 的两条互相垂直的直线,且1l 、2l 与双曲线122=-x y 各有两个交点,分别为1A 、1B 和2A 、2B .(1)求1l 的斜率1k 的取值范围;(2)若22115B A B A =,求1l 、2l 的方程. 由教师讲解,弦长的求法要分步演算.解:(1)依题意,两直线的斜率都存在,由于()211+=x k y l :与双曲线有两个交点,则下述方程组有两组不同解:()()012221≠⎪⎩⎪⎨⎧=-+=k x y x k y 消去y 得()0122212121221=-++-k x k x k于是 ()⎪⎩⎪⎨⎧>-=∆≠-013401212k k ①同理由()⎪⎩⎪⎨⎧=-+-=121221x y x k y 得()0222121221=-++-k x x k ()⎪⎩⎪⎨⎧>-=∆≠-0134012121k k 解①②得1k 的取值范围是()()3113333113,,,,⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--- (2)设()11y x A ,,()22y x B ,,则212121122k k x x -=+ 12212121-=k k x x ∴()()()()[]212212122121211411x x x x k x x k B A -++=-+=()()()221212111314k k k --+=同理()()()22121412121221361k k k k k B A --++=由22115B A B A =得()()()()()()2212141212122121211361511314k k k k k k k k --++⋅=--+解得21±=k 当 21=k 时,()221+=x y l :,()2222+-=x y l :, 当21-=k 时, ()221+-=x y l :, ()2222+=x y l :. (三)随堂练习1.设双曲线1322=-y x C :的左准线与x 轴的交点是M ,则过点M 与双曲线C 有且只有一个交点的直线共有( )A .2条B .3条C .4条D .无数条2.过双曲线1222=-y x 的右焦点F 作直线l 交双曲线于A 、B 两点,4=AB ,则这样的直线l 有( )A .1条B .2条C .3条D .4条3.若过双曲线1322=-y x 的右焦点2F ,作直线l 与双曲线的两支都相交,则直线l 的倾斜角α的取值范围是________________.答案:1.C 2.C 3.()()180120600,,∈α2.注意二次曲线、二次方程、二次函数三者之间的内在联系,直线与双曲线的位置关系通常是转化为二次方程,运用判别式、根与系数关系以及两次方程实根分布原理来解决.(五)布置作业1.设双曲线()0012222>>=-b a by a x ,的一条准线与两条渐近线交于A 、B 两点,相应焦点为F ,若ABF ∆为正三角形,则双曲线的离心率为( )A .3B .3C .2D .22.直线l 过双曲线12222=-by a x 的右焦点,斜率2=k ,若l 与双曲线的两个交点分别在双曲线左、右两支上,则双曲线的离心率e 的取值范围是( )A .2>e B .31<<e C .51<<e D .5>e3.若过点()18,P 的直线与双曲线4422=-y x 相交于A 、B 两点,且P 是线段AB 的中点,则直线A 、B 的方程是________________.4.直线1+=ax y 与双曲线1322=-y x 相交于A 、B 两点,当α为何值时,A 、B 两点在双曲线的同一支上?5.过双曲线()0012222>>=-b a by a x ,上的点P 向x 轴作垂线恰好通过双曲线的左焦点1F ,双曲线的虚轴端点B 与右焦点2F 的连线平行于PO ,如图.(1)求双曲线的离心离;(2)若直线2BF 与双曲线交于M 、N 两点,且12=MN ,求双曲线方程.答案:1.D ;2.D ;3.0152=--y x ;4.63<<α或36-<<-α;5.(1)2=e (2)422=-y x(六)板书设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线的几何性质(1)
【学习目标】
1.了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。
2.能用双曲线的简单几何性质解决一些简单问题。
【自主学习】关于椭圆与双曲线性质的表格
渐近线
①我们把两条直线y=±x a
b 叫做双曲线的渐近线; ②双曲线12222=-b
y a x 的各支向外延伸时,与直线y =±x a b 逐渐接近。
离心率
双曲线的焦距与实轴长的比e =a
c ,叫双曲线的离心率; 说明:①由c >a >0可得e >1;②双曲线的离心率越大,它的开口越阔。
【活动探究】
例1双曲线22169144x y -=的实轴长是 ,虚轴的长是 ,离心率是 ,顶点坐标是 ,渐近线方程是 .
例2求双曲线13
42
2=-y x 的实轴长和虚轴长、焦点的坐标、顶点坐标、离心率、渐近线方程.
例3 已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为
43
,求双曲线的标准方程。
【目标检测】
1.比较下列双曲线的形状,
①22
936x y -=;②2211612x y -= ; ③2213664x y -=;④22
1106y x -= 其中开口最大的是 ,开口最小的是 。
2. 离心率是椭圆16x 2+25y 2=400的离心率的倒数,焦点是此椭圆长轴端点的双曲线的标准方程是___________________。
3..中心在原点,对称轴为坐标轴,离心率为
3,焦距等于10的双曲线方程为______________________。
4.过双曲线的一个焦点F 2作垂直于实轴的弦PQ ,F 1是另一焦点,∠PF 1Q =π2
,则这条双曲线的离心率等于_________。
5.渐近线方程是3x 02=±y ,一个焦点为F(-4,0)的双曲线方程为 。
6. 双曲线的离心率为
5
13,坐标轴为对称轴,且焦点在y 轴上,则此双曲线的渐近线方程是__________。