大学物理量子物理作业答案
大学物理量子力学习题附标准标准答案
一、选择题1.4185:已知一单色光照射在钠表面上,测得光电子地最大动能是1.2 eV ,而钠地红限波长是5400 Å,那么入射光地波长是(A) 5350 Å (B) 5000 Å (C) 4350 Å (D) 3550 Å []2.4244:在均匀磁场B 内放置一极薄地金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出地电子(质量为m ,电荷地绝对值为e )在垂直于磁场地平面内作半径为R 地圆周运动,那末此照射光光子地能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+[] 3.4383:用频率为ν 地单色光照射某种金属时,逸出光电子地最大动能为E K ;若改用频率为2ν 地单色光照射此种金属时,则逸出光电子地最大动能为:(A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K []4.4737:在康普顿效应实验中,若散射光波长是入射光波长地1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 []5.4190:要使处于基态地氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射地各谱线组成地谱线系)地最长波长地谱线,至少应向基态氢原子提供地能量是(A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV []6.4197:由氢原子理论知,当大量氢原子处于n =3地激发态时,原子跃迁将发出:(A) 一种波长地光 (B) 两种波长地光 (C) 三种波长地光 (D) 连续光谱[]7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 地状态跃迁到上述定态时,所发射地光子地能量为(A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV []8.4750:在气体放电管中,用能量为12.1 eV 地电子去轰击处于基态地氢原子,此时氢原子所能发射地光子地能量只能是(A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV []9.4241:若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 地圆形轨道运动,则α粒子地德布罗意波长是(A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [] 10.4770:如果两种不同质量地粒子,其德布罗意波长相同,则这两种粒子地(A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同[]11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为:a x ax 23cos 1)(π⋅=ψ ( -a ≤x ≤a ),那么粒子在x = 5a /6处出现地概率密度为(A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1[]12.4778:设粒子运动地波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量地精确度最高地波函数是哪个图?[]x (A)x (C)x (B) x(D)13.5619:波长λ =5000 Å地光沿x 轴正向传播,若光地波长地不确定量∆λ =10-3 Å,则利用不确定关系式h x p x ≥∆∆可得光子地x 坐标地不确定量至少为:(A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm []14.8020:将波函数在空间各点地振幅同时增大D 倍,则粒子在空间地分布概率将(A) 增大D 2倍 (B) 增大2D 倍 (C) 增大D 倍 (D) 不变[]15.4965:下列各组量子数中,哪一组可以描述原子中电子地状态?(A) n = 2,l = 2,m l = 0,21=s m (B) n = 3,l = 1,m l =-1,21-=s m (C) n = 1,l = 2,m l = 1,21=s m (D) n = 1,l = 0,m l = 1,21-=s m []16.8022:氢原子中处于3d 量子态地电子,描述其量子态地四个量子数(n ,l ,m l ,m s )可能取地值为(A) (3,0,1,21-) (B) (1,1,1,21-)(C) (2,1,2,21) (D) (3,2,0,21) []17.4785:在氢原子地K 壳层中,电子可能具有地量子数(n ,l ,m l ,m s )是(A) (1,0,0,21) (B) (1,0,-1,21)(C) (1,1,0,21-) (D) (2,1,0,21-) []18.4222:与绝缘体相比较,半导体能带结构地特点是(A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子(D) 禁带宽度较窄[]19.4789:p 型半导体中杂质原子所形成地局部能级(也称受主能级),在能带结构中应处于(A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶(D) 禁带中,但接近导带底[]20.8032:按照原子地量子理论,原子可以通过自发辐射和受激辐射地方式发光,它们所产生地光地特点是:(A) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是不相干地(B) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是相干地(C) 两个原子自发辐射地同频率地光是不相干地,原子受激辐射地光与入射光是不相干地(D) 两个原子自发辐射地同频率地光是相干地,原子受激辐射地光与入射光是相干地21.9900:xˆ与x P ˆ地互易关系[x P x ˆ,ˆ]等于 (A) i (B) i -(C)ih (D)ih -[] 22.9901:厄米算符Aˆ满足以下哪一等式(u 、v 是任意地态函数) (A)()dx v u A dx v A u ⎰⎰=**ˆˆ(B)()dx u A v dx u A v ⎰⎰=**ˆˆ(C)()dx u v A dx u A v ⎰⎰=**ˆˆ(D)()dx v u A dx v A u ⎰⎰=**ˆˆ[]二、填空题1.4179:光子波长为λ,则其能量=_____;动量地大小 =______;质量=_______.2.4180:当波长为3000 Å地光照射在某金属表面时,光电子地能量范围从0到4.0×10-19 J.在作上述光电效应实验时遏止电压为 |U a | =________V ;此金属地红限频率ν0 =_________Hz.3.4388:以波长为λ= 0.207 μm 地紫外光照射金属钯表面产生光电效应,已知钯地红限频率ν 0=1.21×1015赫兹,则其遏止电压|U a | =_______________________V.4.4546:若一无线电接收机接收到频率为108 Hz 地电磁波地功率为1微瓦,则每秒接收到地光子数为___________.5.4608:钨地红限波长是230 nm ,用波长为180 nm 地紫外光照射时,从表面逸出地电子地最大动能为_________eV.6.4611:某一波长地X 光经物质散射后,其散射光中包含波长________和波长__________地两种成分,其中___________地散射成分称为康普顿散射.7.4191:在氢原子发射光谱地巴耳末线系中有一频率为6.15×1014 Hz 地谱线,它是氢原子从能级E n =__________eV 跃迁到能级E k =__________eV 而发出地.8.4192:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .9.4200:在氢原子光谱中,赖曼系(由各激发态跃迁到基态所发射地各谱线组成地谱线系)地最短波长地谱线所对应地光子能量为_______________eV ;巴耳末系地最短波长地谱线所对应地光子地能量为___________________eV .10.4424:欲使氢原子发射赖曼系(由各激发态跃迁到基态所发射地谱线构成)中波长为1216 Å地谱线,应传给基态氢原子地最小能量是_________________eV .11.4754:氢原子地部分能级跃迁示意如图.在这些能级跃迁 中,(1) 从n =______地能级跃迁到n =_____地能级时所发射地光子地波长最短;(2) 从n =______地能级跃迁到n =______地能级时所 发射地光子地频率最小.12.4755:被激发到n =3地状态地氢原子气体发出地辐射中, 有______条可见光谱线和_________条非可见光谱线. 13.4760:当一个质子俘获一个动能E K =13.6 eV 地自由电子组成一个基态氢原子时,所发出地单色光频率是______________.14.4207:令)/(c m h e c =λ(称为电子地康普顿波长,其中e m 为电子静止质量,c 为真空中光速,h 为普朗克常量).当电子地动能等于它地静止能量时,它地德布罗意波长是λ =______λc .15.4429:在戴维孙——革末电子衍射实验装置中,自热 阴极K 发射出地电子束经U = 500 V 地电势差加速后投射到晶 体上.这电子束地德布罗意波长λ =⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽nm. 16.4629:氢原子地运动速率等于它在300 K 时地方均根速率时,它地德布罗意波长是______.质量为M =1 g ,以速度 =v 1 cm ·s -1运动地小球地德布罗意波长是________.17.4630:在B =1.25×10-2 T 地匀强磁场中沿半径为R =1.66 cm 地圆轨道运动地α粒子地德布罗意波长是___________. 18.4203:设描述微观粒子运动地波函数为),(t r ψ,则*ψψ表示_______________________;),(t r ψ须满足地条件是_____________________;其归一化条件是___________________.19.4632:如果电子被限制在边界x 与x +∆x 之间,∆x =0.5 Å,则电子动量x 分量地不确定量近似地为________________kg ·m /s. n = 1 n = 2 n = 3 n = 4 4754图 U 4429图20.4221:原子内电子地量子态由n 、l 、m l 及m s 四个量子数表征.当n 、l 、m l 一定时,不同地量子态数目为_____________;当n 、l 一定时,不同地量子态数目为_________________;当n 一定时,不同地量子态数目为_______.21.4782:电子地自旋磁量子数m s 只能取______和______两个值.22.4784:根据量子力学理论,氢原子中电子地动量矩为 )1(+=l l L ,当主量子数n =3时,电子动量矩地可能取值为_____________________________.23.4963:原子中电子地主量子数n =2,它可能具有地状态数最多为______个.24.4219:多电子原子中,电子地排列遵循_____________原理和_______________原理.25.4635:泡利不相容原理地内容是________________________________________.26.4787:在主量子数n =2,自旋磁量子数21=s m 地量子态中,能够填充地最大电子数是_____________.27.4967:锂(Z =3)原子中含有3个电子,电子地量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子地量子态为(1,0,0,21),则其余两个电子地量子态分别为(_____________________)和(________________________).28.4969:钴(Z = 27 )有两个电子在4s 态,没有其它n ≥4地电子,则在3d 态地电子可有____________个.29.8025:根据量子力学理论,原子内电子地量子态由(n ,l ,m l ,m s )四个量子数表征.那么,处于基态地氦原子内两个电子地量子态可由______________和______________两组量子数表征.30.4637:右方两图(a)与(b)中,(a)图是____型半导体地能带结构图,(b)图是____型半导体地能带结构图.31.4792:若在四价元素半导体中掺入五价元素原子,则可构成______型半导体,参与导电 地多数载流子是_______. 32.4793:若在四价元素半导体中掺入三价 元素原子,则可构成______型半导体,参与导电 地多数载流子是______.33.4971:在下列给出地各种条件中,哪些是 产生激光地条件,将其标号列下:___________.(1)自发辐射;(2)受激辐射;(3)粒子数反转;(4)三能极系统;(5)谐振腔.34.5244:激光器中光学谐振腔地作用是:(1)_____________________________________;(2)_________________________________;(3)_________________________________________.35.8034:按照原子地量子理论,原子可以通过____________________________两种辐射方式发光,而激光是由__________________方式产生地.36.8035:光和物质相互作用产生受激辐射时,辐射光和照射光具有完全相同地特性,这些特性是指_______________________________________________.37.8036:激光器地基本结构包括三部分,即_____________、___________和_____________.38.写出以下算符表达式:=x pˆ________;=H ˆ________;=y L ˆ________; 39.微观低速地(非相对论性)体系地波函数ψ满足薛定谔方程,其数学表达式为________.40.自旋量子数为______________地粒子称为费米子,自旋量子数为_______________地粒子称为玻色子;________________体系遵循泡利不相容原理.4637图E v e 41.[]x p x ˆˆ,=___________;[]=z y ˆˆ,___________;[]=z x p p ˆˆ,___________; []=z L L ˆ,ˆ2___________;[]=y x p L ˆ,ˆ___________. 42.线性谐振子地能量可取为________________;若32010352103u u u ++=ψ,nu 是谐振子地第n 个能量本征函数,则体系地能量平均值为________________.三、计算题1.4502:功率为P 地点光源,发出波长为λ地单色光,在距光源为d 处,每秒钟落在垂直于光线地单位面积上地光子数为多少?若λ =6630 Å,则光子地质量为多少?2.4431:α粒子在磁感应强度为B = 0.025 T 地均匀磁场中沿半径为R =0.83 cm 地圆形轨道运动.(1) 试计算其德布罗意波长;(2) 若使质量m = 0.1 g 地小球以与α粒子相同地速率运动.则其波长为多少?(α粒子地质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)3.4506:当电子地德布罗意波长与可见光波长( λ =5500 Å)相同时,求它地动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-19J)4.4535:若不考虑相对论效应,则波长为 5500 Å地电子地动能是多少eV ?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)5.4631:假如电子运动速度与光速可以比拟,则当电子地动能等于它静止能量地2倍时,其德布罗意波长为多少?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31kg)6.5248:如图所示,一电子以初速度v 0 = 6.0×106 m/s 逆着场强方向飞入电场强度为E = 500 V/m 地均匀电场中,问该电子在电场中要飞行多长距离d ,可使得电Yl4HdOAA61 子地德布罗意波长达到λ = 1 Å.(飞行过程中,电子地质量认为不变, 即为静止质量m e =9.11×10-31 kg ;基本电荷e =1.60×10-19 C ;普朗克 常量h =6.63×10-34 J ·s).7.4430:已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ(0≤x≤a ),求发现粒子地概率为最大地位置. 8.4526:粒子在一维矩形无限深势阱中运动,其波函数为:)/sin(/2)(a x n a x n π=ψ (0 <x <a ),若粒子处于n =1地状态,它在 0-a /4区间内地概率是多少?提示:C x x x x +-=⎰2sin )4/1(21d sin 29.氢原子波函数为()310211210100322101ψψψψψ+++=,其中nlm ψ是氢原子地能量本征态,求E 地可能值、相应地概率及平均值. 10.体系在无限深方势阱中地波函数为sin 0()00n A x x a x a x x a πψ⎧<<⎪=⎨⎪≤≥⎩,求归一化常数A . 11.质量为m 地粒子沿x 轴运动,其势能函数可表示为:()000,x a U x x x a <<⎧=⎨∞≤≥⎩,求解粒子地归一化波函数和粒子地能量.12.设质量为粒子处在(0,a )内地无限方势阱中,()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=x a x a a x ππψ2cos sin 4,对它地能量进行测量,可能得到地值有哪几个?概率各多少?平均能量是多少?13.谐振子地归一化地波函数:()()()()x cu x u x u x 3202131++=ψ.其中,()x u n 是归一化地谐振子地定态波函数.求:c 和能量地可能取值,以及平均能量E .一、选择题1.4185:D 2.4244:B 3.4383:D 4.4737:D 5.4190:C 6.4197:C 7.4748:A 8.4750:C 9.4241:A 10.4770:A 11.4428:A 12.4778:13.5619:C 14.8020:D 15.4965:B 16.8022:D 17.4785:A 18.4222:D 19.4789:C 20.8032:B 21.9900:A 22.9901:C二、填空题1.4179:λ/hc ----------------1分;λ/h ----------------2分;)/(λc h --------------2分2.4180: 2.5---------------------2分; 4.0×1014-----------2分3.4388: 0.99--------------------3分4.4546: 1.5×1019 ------------3分5.4608: 1.5 --------------------3分6.4611:不变-----------------1分;变长----------------1分;波长变长--------------1分7.4191:-0.85---------------2分;-3.4----------------2分8.4192: 13.6----------------- 2分; 3.4---------------- 2分9.4200: 6----------------------2分; 973----------------2分10.4424: 10.2-------------------3分11.4754: 4 1------------2分; 4 3----------------2分12.4755: 1-----------------------2分; 2----------------2分13.4760: 6.56×1015 Hz-------3分14.4207:3/1----------------3分15.4429: 0.0549----------------3分16.4629: 1.45 Å-----------------2分;6.63×10-19 Å-------------------2分17.4630: 0.1 Å-------------------3分18.4203:粒子在t 时刻在(x ,y ,z )处出现地概率密度-------------2分单值、有限、连续---------------------------------------------1分1d d d 2=⎰⎰⎰z y x ψ----------------------------------------2分19.4632: 1.33×10-23 -----------------------3分20.4221: 2-------------------1分;2×(2l +1)-------------2分;2n 2 --------------2分21.4782:21-------------------2分;21------------------------------2分22.4784: 0, 2, 6-----------------------------各1分23.4963: 8------------------------------------------------ 3分24.4219:泡利不相容---------------2分;能量最小-----------------2分25.4635:一个原子内部不能有两个或两个以上地电子有完全相同地四个量子数(n 、l 、m l 、m s )--------------------------3分26.4787: 4---------------------3分27.4967: 1,0,0,21---------------2分;2,0,0,21 2,0,0,21----------------------2分28.4969: 7----------------------------3分 29.8025: (1,0,0,21)----------2分; (1,0,0,21-)-----------------2分30.4637: n-----------------------2分; p-------------2分31.4792: n-----------------------2分;电子--------2分32.4793: p-----------------------2分;空穴--------2分33.4971: (2)、(3)、(4)、(5)-------3分答对2个1分34.5244:产生与维持光地振荡,使光得到加强---------------------------2分使激光有极好地方向性---------------------------------------------1分使激光地单色性好---------------------------------------------------2分35.8034:自发辐射和受激辐射-----------2分;受激辐射------------2分36.8035:相位、频率、偏振态、传播方向---------------------------------3分37.8036:工作物质、激励能源、光学谐振腔---------------------------各1分38.x i p x ∂∂-= ˆ;U H +∇-=222ˆμ ;)(ˆz x x z i L y ∂∂-∂∂-= 39.t i U ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∇- 222μ或t i U x ∂ψ∂=ψ⎪⎪⎭⎫ ⎝⎛+∂∂- 2222μ 40.半奇数;整数;费米子41. i ;0;0;0;z pi ˆ 42.ω )21(+=n E n ,n =0,1,2,3……;ω 511三、计算题1.4502:解:设光源每秒钟发射地光子数为n ,每个光子地能量为h ν,则由:λν/nhc nh P ==得:)/(hc P n λ=令每秒钟落在垂直于光线地单位面积地光子数为n 0,则:)4/()4/(/220hc d P d n S n n π=π==λ------------------------------------------3分光子地质量:)/()/(/22λλνc h c hc c h m ====3.33×10-36 kg--------------------2分 2.4431:解:(1) 德布罗意公式:)/(v m h =λ由题可知α粒子受磁场力作用作圆周运动:R m B q /2v v α=,qRB m =v α 又e q 2=则:eRB m 2=v α----------------4分故:nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ-------------3分 (2) 由上一问可得αm eRB /2=v对于质量为m 地小球:αααλλ⋅=⋅==m m m m eRB h m h 2v =6.64×10-34 m-----------3分3.4506:解:)2/()/()2/(22e e K m h m p E λ==---------------3分 =5.0×10-6 eV--------------------------------------2分4.4535:解:非相对论动能:221v e K m E =而v e m p =,故有:e K m p E 22=-----------------------------2分 又根据德布罗意关系有λ/h p =代入上式--------------------1分 则:==)/(2122λe K m h E 4.98×10-6 eV----------------------2分 5.4631:解:若电子地动能是它地静止能量地两倍,则:2222c m c m mc e e =----------1分故:e m m 3=--------------------------1分 由相对论公式:22/1/c m m e v -= 有:22/1/3c m m e e v -= 解得:3/8c =v ---------------------------------------------1分 德布罗意波长为:)8/()v /(c m h m h e ==λ131058.8-⨯≈m-----------------2分光电子地德布罗意波长为:===v e m h p h λ 1.04×10-9 m =10.4 Å------------------3分6.5248:解:)/(v e m h =λ①---------------------2分ad 2202=-v v ②a m eE e =③----------------------2分由①式:==)/(λe m h v 7.28×106 m/s由③式:==e m eE a /8.78×1013 m/s 2由②式:)2/()(202a d v v -== 0.0968 m = 9.68 cm-----------------------4分 7.4430:解:先求粒子地位置概率密度:)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=--------------------2分当:1)/2cos(-=πa x 时,2)(x ψ有最大值.在0≤x ≤a 范围内可得π=πa x /2 ∴a x 21=--------------------------------3分 8.4526:解:x a x a x P d sin 2d d 22π==ψ-----------------3分粒子位于0 – a /4内地概率为:x ax a P a d sin 24/02⎰π=)d(sin 24/02a x a x a a a πππ=⎰ 4/021]2sin 41[2a a x a x πππ-=)]42sin(414[221a a a a π-ππ= =0.091----------2分9.解:根据给出地氢原子波函数地表达式,可知能量E 地可能值为:1E 、2E 、3E ,其中:113.6E eV =、2 3.4E eV =-、3 1.51E eV =------------------3分由于:11031021011022222=+++-----------------------1分 所以,能量为1E 地概率为5210221==P ---------------------1分能量为2E 地概率为103102101222=+=P ---------------------1分 能量为3E 地概率为10310323==P ---------------------1分 能量地平均值为:332211E P E P E PE ++=-----------------------2分 eV 913.6-=--------------------1分10.解:由归一化条件,应有1sin 022=⎰xdx a n A a π-----------------------3分 得:a A 2=-----------------------2分11.解:当0≤x 或a x ≥时,粒子势能无限大,物理上考虑这是不可能地,所以粒子在该区域出现纪律为零,即:()0=x ψ当a x <<0时,()0=x U ,定态薛定谔方程为:ψψE dx d m =-2222 设2/2 E k μ=,则方程为:0222=+ψψk dx d通解为:()kx B kx A x cos sin +=ψ由波函数地连续性可知,在0x =、x a =处()0=x ψ,即:()()()()0cos sin 00cos 0sin =+==+=ka B ka A x B A x ψψ得:0B =;n k a π=,n =1、2、3……所以有:()sin n n x A a πψ⎛⎫= ⎪⎝⎭,n =1、2、3…… 归一化条件:()()1sin 022022=⎪⎭⎫ ⎝⎛==⎰⎰⎰∞+∞-a a dx a n A dx x dx x πψψ 所以:a A 2=,即:()n n x a πψ⎛⎫ ⎪⎝⎭,n =1、2、3…… 粒子能量为:22222n E E n a πμ==,n =1、2、3……12.解:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=a x a x a x a a x a x a x πππππψ2cos sin sin 2cos sin 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=a x a a x a ππ3sin 221sin 221即()x ψ是第一和第三个能量本征态地叠加,所以测得能量值可为: (1)2222a μπ ,相应概率为:21212= (2)22229a μπ ,相应概率为:21212= 所以,能量平均值为:21=E 2222a μπ +2122229a μπ =22225a μπ 13.解:由归一化条件得:12131222=++c 解得:61=c根据谐振子波函数地表达式,可知能量E 地可能值为:0E 、2E 、3E 因为:νh n E n ⎪⎭⎫ ⎝⎛+=21 所以:νh E 210=;νh E 252=;νh E 273= 则:=E =++332200E P E P E P ννννh h h h 2276125212131222=⋅+⋅+⋅版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.ViLRaIt6sk用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.9eK0GsX7H1个人收集整理仅供参考学习Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.naK8ccr8VI转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.B6JgIVV9aoReproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.P2IpeFpap511 / 11。
15 量子物理习题答案
量子物理习题参考答案一、选择题:1.C 分析:0A h ν=2.A 分析:k h A E ν=+ 2k h A E ν'=+ 所以:k k E hE ν'=+ 3. D 分析:光强不变,增加照射光频率,单位时间入射光子数减少,单位时间吸收光子而逸出金属表面的电子数减少,饱和电流减小。
入射光频率增加,截至电压增加。
4.D5.D 分析:hp λ=22220E E p c=+ 6.A 分析:22mv R p mv eBR eB =⇒== h h p pλλ=⇒= 7. A 分析:光子的静止质量为零;若光的频率为ν,则光子能量为h εν=,动量h hp cc ενλ===,质量22h m c c εν==8. D二、填空题:1. 102νν-2. 011hc λλ⎛⎫-⎪⎝⎭; 分析: 00hcA h νλ== k hch A E νλ==+ 所以:011k hcE A hc λλλ⎛⎫=-=- ⎪⎝⎭3. >、>、<分析:根据爱因斯坦光电效应方程max k h A E ν=+,入射光频率越大,产生光电子的动能越大,对应的截止电压绝对值也越大;光强I =n hν,入射光频率越大,单位时间照射到金属表面光子数越少,饱和电流越小。
4. 0.0732nm ;0.0756nm分析:22002sin 0.070820.0024sin 22c θθλλλλλ=+∆=+=+⨯5.246.6310-⨯分析: 102max 121a eU h mv A h +=+=νν202a eU h h +=νν0212ννν=-0122ννν-=分析:0.1nm y a ∆== 3424106.6310 6.6310N s 10y yh y p h p y ---⨯∆∆≥⇒∆≥==⨯⋅∆6.150V7. hmu ;2mc h8. 3.29×10-21J9. t 时刻粒子在r 附近出现的概率密度。
大学物理第十六章 量子物理基础参考答案
量子物理基础参考答案一、选择题参考答案:1. (D);2. (C);3. (D);4. (C);5. (C);6. (A);7. (A);8. (D);9. (C);10. (C);11.( D);12.( E);13. (C);14. (C);15. (A);16. (D);17.( C);18. (B);19. (A);20. (C);21. (D);22.( A);23. (A);24. (D);25. (B);26. (C);27. (C);28. (D);29.( A);30.(D);二、填空题参考答案:1、J 261063.6-⨯,1341021.2--⋅⋅⨯s m kg2、>,>3、14105⨯,24、θφcos cos P c v hc hv +'=5、2sin 2sin 2212ϕϕ6、π,︒07、定态,(角动量)量子化,跃迁8、(1)4 , 1 (2)4 ,39、10 ,310、6.13 , 4.311、912、1:1, 1:413、122U em he14、m 101045.1-⨯, m 291063.6-⨯15、231033.1-⨯, 不能16、241063.6-⨯17、≥18、(1)粒子在t 时刻在()z y x ,,处出现的概率密度;(2)单值、有限、连续;(3)12*=ψ=ψψ⎰⎰⎰⎰dxdydz dV V19、不变20、a x n a π2sin 2, dx a x n a a π230sin 2⎰三、计算题参考答案:1、解: 由光电效应方程可得V 45.1=-=eW h U a ν m/s 1014.725max ⨯==meU a v 2、解: 氢原子从基态1=f n 激发到3=i n 的能级需要的能量为 eV 1.12Δ13=-=E E E对应于从3=i n 的激发态跃迁到基态1=f n 的三条谱线的光子能量和频率分别为 Hz 1092.2eV 1.12 :1315⨯===→=νE n n f iHz 1046.2eV 2.10 Hz1056.4eV 89.1 :12315221411⨯==⨯===→=→=ννE E n n n f i3、解: 经电场加速后,电子的动量为meU p 2=根据德布罗意关系,有m 1023.111-⨯==Ph λ 4、解: 一维无限深阱中概率密度函数(定态)为)2cos 1(1sin 2)(*)()(2ax n a a x n a x x x ππψψρ-=== 当12cos -=a x n π时,即 ,212,,.23,2212a nk n a n a a n k x +=+=时,发现粒子的概率最大.当∞→n 时,趋近于经典结果.。
《大学物理AII》作业 No.08 量子力学基出 参考解答
解: (1)由波函数归一化条件 ( Axe x ) 2 dx
0 2
2 A2 1 ,可得 A 2 3 ; ( 2 ) 3 d ( x ) 0, dx
2
(2)粒子的概率密度 ( x ) 43 x 2 e 2 x (x>=0),令 可得: 43 2 xe x (1 x ) 0 ,即 x (1 x ) 0 。
出, 电子的物质波波长是 10 10 m 数量级,在现有的条件下电子的波动性是可以通 过实验进行检验的, 讨论电子等微观粒子的波动性具有实际意义;但是宏观物体 物质波的波长远远小于 10 10 m 数量级, 无法通过我们所能利用的任何仪器装置来 验证其波动性。 因此谈论宏观物体是否遵从德布罗意关系,是否具有波动性是没 有意义的,宏观物体的波动性可以不用考虑。
处于 n=4 的激发态时,则:在 x=0 到 x=
P 3 1 x dx
2 0 a 4x 4x sin dx 3 sin 2 d 0 a a a 4 a a a 3
1 1 4x 1 8x 1 2 1 8 a sin sin 29.9% 2 2 a 4 a 0 2 3 4 a 3
。
3 。 2
2、计算下列两种情况下的速度不确定量: (1)宏观子弹:m =10 克,v=800m/s, Δx=1cm;
(2)原子中的电子:me=9×10-28 克,ve=108cm/s, Δx=10-8cm 第一种情况下, 如果把普朗克常数视为零结果怎样?第二种情况下呢?根据计算 结果总结出采用量子力学与经典力学处理问题的分界线。
2024高考物理量子物理学专题练习题及答案
2024高考物理量子物理学专题练习题及答案一、选择题1. 下列说法正确的是:A. 电子云中的电子运动呈连续轨道。
B. 电子在原子核周围的轨道上运动速度是恒定的。
C. 电子在原子核周围的轨道上运动具有不确定性。
D. 电子在原子核周围的轨道上运动具有确定的轨迹。
答案:C2. 根据波粒二象性原理,下列说法正确的是:A. 波动性只存在于光学现象中。
B. 微观粒子既具有波动性又具有粒子性。
C. 微观粒子只具有波动性,不具有粒子性。
D. 微观粒子只具有粒子性,不具有波动性。
答案:B3. 某氢原子的能级为-13.6电子伏特,当电子从第3能级跃迁到第2能级时,所辐射的光子的能量为:A. 10.2电子伏特B. 12.1电子伏特C. 1.89电子伏特D. 2.04电子伏特答案:D二、填空题1. 根据不确定性原理,测量一个粒子的位置和动量越准确,就会越大地影响到它的 _______。
答案:状态2. 量子力学中,电子在原子内的运动状态由 _______ 表示。
答案:波函数3. 量子力学中,电子的能级用 _______ 表示。
答案:量子数三、简答题1. 什么是量子力学?请简述其基本原理。
答:量子力学是描述微观粒子行为的物理理论。
其基本原理包括波粒二象性原理和不确定性原理。
波粒二象性原理指出微观粒子既具有波动性又具有粒子性,可以用波函数来描述其运动状态。
不确定性原理指出无法同时准确地确定粒子的位置和动量,测量一个物理量会对另一个物理量产生不可忽略的影响。
2. 请简述量子力学中的量子力学态和测量问题。
答:量子力学态是用波函数表示的一种描述微观粒子运动状态的数学表示。
波函数包含了粒子的位置信息和概率分布。
在量子力学中,测量问题指的是测量粒子的某个物理量时,由于波粒二象性原理和不确定性原理的存在,测量结果只能是一系列可能的取值,并且每个取值的概率由波函数给出。
四、综合题某物理学家正在研究一个单电子系统,该系统可以用简化的一维势场模型来描述。
大学物理下(毛峰版)量子力学习题及答案
第18章 量子力学基础 习题解答1.一波长为300nm 的光子,假定其波长的测量精度为610-,即6110λλ∆=,求该光子位置的不确定量。
解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为292630010 2.3910244410x m m p λλπλπλλπ---⨯∆=====⨯∆∆∆⨯ 2.原子的线度为1010m -,求原子中电子速度的不确定量。
解:依题意,电子位置的不确定量为1010x m -∆=,由不确定关系,有2x x p x m v ∆∆=∆∆≥34631101.0510/0.610/229.11010v m s m s m x ---⨯∆≥==⨯∆⨯⨯⨯ 3.波函数模的二次方的物理意义是什么?波函数必须满足哪些条件?解:波函数是描述粒子运动状态的函数,是微观粒子具有波动性的数学描述,波函数描述的波是概率波,波函数模的平方表示粒子在空间出现的概率,即概率密度。
波函数要满足标准条件(即波函数必须是单值、连续和有限的)和归一化条件。
4.波函数在空间各点的振幅同时增大D 倍,则粒子在空间分布的概率会发生什么变化?解:不变.因为波函数是计算粒子t 时刻空间各点出现概率的数学量.概率是相对值.则21、点的概率比值为:22212221φφφφD D =∴概率分布不变.5.假设粒子只在一维空间运动,它的状态可用如下波函数来描写:00,(,)sin 0i Et x x ax t Ae x x aa ψπ-≤≥⎧⎪=⎨≤≤⎪⎩式中,E 和a 分别为确定常数,A 为归一化系数,计算归—化的波函数和概率密度。
解:根据波函数的归一化条件,有2222(,)sin 12aaxa x t dx A dx A aπψ===⎰⎰ 得A =故归一化波函数为 ⎪⎩⎪⎨⎧≤≤≥≤=-ax x a e aax x t x Et i 0sin 2,00),(πψ相应的概率密度()P x =200,2sin 0x x a x x aaa π≤≥⎧⎪⎨≤≤⎪⎩6.已知粒子在一维矩形无限深势阱中运动,其波函数为:3()2xx a πψ=)(a x a ≤≤- 那么,粒子在a x 65=处出现的概率密度为多少? 解:22*)23cos1(ax aπψψψ== aa a a a a aa 21)21(14cos 1)4(cos 145cos 12653cos 122222===+===πππππ7.粒子在一维无限深势阱中运动,其波函数为:()n n xx aπψ=)0(a x << 若粒子处于1=n 的状态,在0~4a区间发现粒子的概率是多少? 解:x ax a x w d sin 2d d 22πψ== ∴在4~0a区间发现粒子的概率为: ⎰⎰⎰===4020244)(d sin 2d sin 2a a ax aa x a a x a x a dw p ππππ091.0)(]2cos 1[2124/0=-=⎰x ad a x a πππ8.宽度为a 的一维无限深势阱中粒子的波函数为x an A x πψsin )(=,求:(1)归一化系数A ;(2)在2=n 时何处发现粒子的概率最大?解:(1)归一化系数⎰⎰==+∞∞-ax x 0221d d ψψ即⎰⎰=aa x an x a n A n a x x a n A 00222)(d sin d sin ππππ⎰-=a x an x a n A n a 02)(d )2cos 1(2πππ12222===A an A n a ππ∴=A a2 粒子的波函数x a n a x πψsin 2)(=(2)当2=n 时,x aa πψ2sin 22= 几率密度]4cos 1[12sin 2222x aa x a a w ππψ-=== 令0d d =x w ,即04sin 4=x a a ππ,即,04sin =x aπ, ,2,1,0,4==k k x aππ∴4ak x =又因a x <<0,4<k ,∴当4a x =和a x 43=时w 有极大值,当2ax =时,0=w .∴极大值的地方为4a ,a 43处9.求一电子处在宽度为0.1a nm =和a =1m 的势阱中运动的能级值。
大学物理(下) No.8作业解析
《大学物理》作业 No.8 量子力学基础一、选择题1. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 [ A ] (A) 动量相同。
(B) 能量相同。
(C) 速度相同。
(D) 动能相同。
解: 由德布罗意关系λhp =可知,粒子波长相同,动量必然相同。
由于粒子质量不同,所以,粒子速度、动能和能量将不同。
2. 若α 粒子在磁感应强度为B 的均匀磁场中沿半径为R 的圆形轨道运动,则粒子的德布罗意波长是[ A ] (A)eRB h 2 (B) eRB h(C) eRB 21 (D) eRBh 1 解:半径eB mv qB mv R 2==,所以德布罗意波长eBRhmv h 2==λ。
3. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?[ A ]解:由不确定关系 ≥∆⋅∆x p x 可知,x ∆大,x p ∆小,图(A)x ∆最大,所以x p ∆最小,确定粒子动量的精确度最高。
4. 关于不确定关系⎪⎭⎫ ⎝⎛=≥∆⋅∆π2h p x x有以下几种理解:(1) 粒子的动量不可能确定。
(2) 粒子的坐标不可能确定。
(3) 粒子的动量和坐标不可能同时确定。
(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子。
其中正确的是:[ C ] (A) (1)、(2) (B) (2)、(4) (C) (3)、(4) (D) (4)、(1)()D xx x ()A()B ()C5. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()()a x a a x ax ≤≤-⋅=23cos1πψ那么粒子在65ax =处出现的概率密度为 [ A ] (A)a 21 (B) a 1(C) a 21 (D) a1 解:概率密度()a x a x 23cos 122πψ=,将6/5a x =代入,得()aa a a x 216523cos 122=⋅=πψ二、填空题1. 若中子的德布罗意波长为2Å,则它的动能为J 1029.321-⨯。
大学物理知识总结习题答案(第十章)量子物理基础
第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。
· 在任何温度下都能全部吸收照射到它表面上的各种波长的光(电磁波),则这种物体称为绝对黑体,简称黑体。
· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率,称为辐射出射度。
2. 维恩位移定律· 在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm ,维恩从热力学理论导出T 和λm 满足如下关系λm T b =其中b 是维恩常量。
3. 斯忒藩—玻尔兹曼定律· 斯忒藩—玻尔兹曼定律表明黑体的辐射出射度M 与温T 的关系4T M σ=其中s 为斯忒藩—玻尔兹曼常量。
对于一般的物体4T M εσ=e 称发射率。
4. 黑体辐射· 黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,这种能量分立的现象被称为能量的量子化,每一份最小能量E hv =被称为一个量子。
黑体辐射的能量为E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。
· 普朗克黑体辐射公式简称普朗克公式25/λ2πhc 1()λ1hc kT M T e l =-· 光是以光速运动的粒子流,这些粒子称为光量子,简称光子。
· 一个光子具有的能量为νh E =。
5. 粒子的波动性· 德布罗意认为实物粒子也具有波粒二象性,它的能量E 、动量p 跟和它相联系的波的频率ν、波长λ满足以下关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。
与实物粒子相联系的波称为物质波或德布罗意波。
· x x p D D ?h 或者E t D D ?h 这一关系叫做不确定关系。
其中为位置不确定量、动量不确定量、能量不确定量、时间不确定量。
量子物理3近代物理学,大学,课程
光强度大
光波振幅平方大 (波动观点)
光子在该处出现 的 概率大
(微粒观点)
物质波的 强度大
波函数振幅的平方大 (波动观点) 单个粒子在该处出现 (微粒观点) 的概率大
•波函数统计诠释涉及对世界本质的认识观念
哥本哈根学派--爱因斯坦 著名论战
玻尔、波恩、海 森伯、费曼等
还有狄拉克、 德布罗意等
波函数的概 率解释是自 然界的终极 实质
E)
三个区间的薛定谔方程化为:
d
2 1 ( dx2
x)
k
2
1
(
x
)
0,
x0
d
2
2 ( dx2
x)
k12
2
(
x
)
0,
0 xa
d
2
3 ( dx2
x
)
k
23
(
x)
0,
xa
考虑粒子是从 I 区入射,在 I 区中有入射波和反射波; 粒子从I区经过II区穿过势垒到III 区,在III区只有透 射波。粒子在x=0处的几率要大于在x=a处的几率。
建立薛定谔方程的主要依据和思路:
•微观客体具有波粒二象性,满足德布罗意关系式
E / h, h / p
•对于一个能量为E,质量为m,动量为p的粒子
p2
E V(r )
2m
波函数应遵从 线性方程
•若Ψ1是方程的解,则CΨ1也是它的解;若波函数Ψ1与Ψ2是某 粒子的可能态,则C1Ψ1+C2Ψ2也是该粒子的可能态。
因此自由粒子的德布罗意波的波函数可表示为
是一个待定常数,
x处波函数的复振幅
则反映波函数随时间的变化。
• 波函数的统计解释 :物质波是一种概率波
《大学物理II》作业-No.07量子力学的基本原理及其应用-C-参考答案
《大学物理II 》作业 No.07 量子力学的基本原理及其应用(C 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题(8小题)1、下列说法不正确的是 [ B ](A)德布罗意提出了物质波假说; (B)爱因斯坦提出了概率波假说; (C)海森堡提出了不确定关系; (D)波尔提出了互补原理。
解: 《大学物理学》下册第二版(张晓 王莉 主编)160页,玻恩于1926年用概率波的概念来解释微观粒子的波动性与粒子性的关联,所以B 的说法不对。
故选B2.如图所示,一束动量为p 的电子,通过缝宽为a 的狭缝。
在距离狭缝为R 处放置一荧光屏,屏上衍射图样中央最大的宽度d 等于 [ D ](A) 2a 2/R (B) 2ha /p(C) 2ha /(Rp )(D) 2Rh /(ap )解:根据单缝衍射中央明纹线宽度有()222hp Rhd R R ap a aλ=⨯⨯=⨯⨯= 故选D3. 我们不能用经典力学中的轨道运动来描述微观粒子,是因为: [ C ] (1)微观粒子的波粒二象性 (2)微观粒子的位置不能确定(3)微观粒子的动量不能确定 (4)微观粒子的位置和动量不能同时确定 (A) (1)(3) (B )(2)(3) (C)(1)(4) (D)(2)(4) 解:《大学物理学》下册第二版(张晓 王莉 主编)161-162页。
由于微观粒子的波粒二象性,使其运动具有一种不确定性。
不确定关系式 ≥∆⋅∆x p x 表明,微观粒子的位置和动量不能同时确定。
故选C4. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()()2cos 0x x x a aπψ=<<那么粒子在/3x a =处出现的概率密度为[ A ] (A)a 21 (B) a1(C) a21 (D) a1解:任意位置概率密度()2222cos x x a aπψ=,将/3x a =代入,得 ()22221cos 32a x a a aπψ=⋅= 故选A5.锂(Z =3)原子中含有3个电子,电子的量子态可用(n ,l ,m l ,m s )四个量子数来描述,若已知基态锂原子中一个电子的量子态为(1,0,0,21),则其余电子的量子态不可能为[ C ] (A) (1,0,0,21-) (B) (2,0,0,21-)(C) (2,1,1,21)(D) (2,0,0,21)解:根据泡利不相容原理和能量最小原理知,处于基态的锂原子中其余两个电子的量子态分别为 (1,0,0,21-)和 (2,0,0,21)或 (2,0,0,21-), 故选C6.一个光子和一个电子具有同样的波长,关于二者动量的大小比较,有: [ B ] (A) 光子具有较大的动量 (B )他们具有相同的动量 (C )电子具有较大的动量 (D )它们的动量不能确定解:根据德布罗意公式和爱因斯坦光量子理论,知B 正确。
大学物理量子力学习题答案解析
一、简答题(1——8题,每题5分,共40分)1. 用球坐标表示,粒子波函数表为()ϕθψ,,r 。
写出粒子在),(ϕθ方向的立体角Ωd 中且半径在a r <<0范围内被测到的几率。
解:()⎰Ω=adrr r d P 022,,ϕθψ。
2. 写出三维无限深势阱⎩⎨⎧∞<<<<<<=其余区域,0,0,0,0),,(cz b y a x z y x V中粒子的能级和波函数。
解:能量本征值和本征波函数为⎪⎪⎭⎫ ⎝⎛=++222222222c n b n a n mE z yx n n n zy x π ,,3,2,1,00,0,0,sin sin sin 8),,(=⎪⎩⎪⎨⎧<<<<<<=n c z b y a x czn b y n a x n abc z y x z y x n n n z y x 其余区域πππψ3. 量子力学中,一个力学量Q 守恒的条件是什么?用式子表示。
解:有两个条件:0],[,0==∂∂H Q t Q。
4.)(z L L ,2 的共同本征函数是什么?相应的本征值又分别是什么?解:()zL L,2的共同本征函数是球谐函数),(ϕθlmY。
),(),(,),()1(),(22ϕθϕθϕθϕθlm lm z lm lm Y m Y L Y l l Y L =+=。
5. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
解: ()dxx x x x c n n n ⎰==)()()(,)(*ψψψψ。
6. 一个电子运动的旋量波函数为()()()⎪⎪⎭⎫ ⎝⎛-=2,2,,r r s r z ψψψ,写出表示电子自旋向上、位置在r处的几率密度表达式,以及表示电子自旋向下的几率的表达式。
解:电子自旋向上(2 =z s )、位置在r 处的几率密度为()22/, r ψ;电子自旋向下(2 -=z s )的几率为()232/,⎰-r r d ψ。
量子物理作业答案
量子力学导论作业File2~file51. 热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律:b T m =λ表示,其中K m b ⋅⨯=-3108978.2。
求人体热辐射的峰值波长(设体温为 37)。
解:由定律b T m =λ可得:m m T t b T b o m 631035.927337108978.2--⨯=+⨯=+==λ即,人体热辐射的峰值波长为9350nm 。
2. 宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于T=2.726K 黑体辐射。
此辐射的峰值波长是多少?在什么波段?解:根据维恩位移定律b T m =λ,得:m m T b m 331006.1726.2108978.2--⨯=⨯==λ即该辐射峰值波长为1.06mm ,属于红外波段。
3. 波长λ=0.01nm 的X 射线光子与静止的电子发生碰撞。
在与入射方向垂直的方向上观察时,散射X 射线的波长为多大?碰撞后电子获得的能量是多少eV?解:依题意,在垂直方向观察时散射角, 90=θ由波长改变量公式()θλλλcos 100-=-=∆cm h,得散射后X 射线波长:m 98313490100124.0)90cos 1(103101.91063.61001.0----⨯=-⨯⨯⨯⨯+⨯=∆+= λλλ X 射线损失的能量等于电子增加的动能)0124.0101.01(1011031063.698340-⨯⨯⨯⨯⨯=-=∆=∴--λλhc hc E E X e eV J E e 415104.21085.3⨯=⨯=∴-所以,散射X 射线波长为0.0124nm ,电子获得能量为eV 4104.2⨯4. 在一束电子束中,单电子的动能为E =20eV ,求此电子的德布罗意波长。
解:电子动能较小,固忽略其相对论效应,所以由221mv E =,得电子速率mEv 2= 又mv p = ,由德布罗意公式ph =λ mm mvh 10311931341075.2101.9106.1202101.91063.6-----⨯=⨯⨯⨯⨯⨯⨯⨯==∴λ即电子德布罗意波长为101075.2-⨯m 。
2023高考物理量子力学练习题及答案
2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。
入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。
答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。
求交叉区域的宽度。
答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。
根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。
将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。
大学物理(第四版)课后习题及答案 量子物理
第十七 章量子物理题17.1:天狼星的温度大约是11000℃。
试由维思位移定律计算其辐射峰值的波长。
题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。
若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。
设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。
题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。
太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 58004122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。
哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率范围可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。
题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。
题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==,可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。
大作业参考答案-量子力学
一、1C 2D 3C 4B 5C 6A 7C 8BC 9A 10 B 11B 12ABC二、1 2 0.52 νh λ/h 2/mc h ν3 散射角 入射光波长和散射物质4 10-10m5 1.46×10-10m6 2h p x x ≥∆∆ 2h p y y ≥∆∆ 2h p z z ≥∆∆ 106 m/s 7 波函数是一种概率波,t 时刻粒子在空间r 处附近的体积元dv 中出现的概率与该处波函数绝对值平方成正比8 2 2(2l+1) 2n 29 0)(2222=-+U E m dx dψ 一维定态薛定谔方程 10 激活介质 激励能源 光学谐振腔三、答:物质波与经典波的本质差别在于,物质波既不是机械波,也不是电磁波,而是一种几率波,显示出粒子性和波动性的统一。
物质波是几率波,波函数不表示其实在物理量在空间的波动,其振幅没有实在的物理意义。
四、1.解:K b T m s 3109.549.02898-⨯===λ2. 解:概率密度a x a a x x x x ππ3sin 23sin a 2)()()(222=⎪⎪⎭⎫ ⎝⎛=ψψ=ψ* 取最大值时)0(13sin 2a x ax <<=π 则65,2,6a a a x = 3.证明:m vh p h x ===∆λ 由不确定关系h p x =∆∆h v m mvh =∆ v v =∆4解:(1)电子的最小动能J m h m p E e e K 153********min1041.2101.921010135.422----⨯=⨯⨯⎪⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛==λ (2)光子的最小能量J c h h E 1410989.1-⨯===λν (3)电子显微镜计较实用 五、 解:2λn a = ,3,2,1=nλhp =m p E E k 22==2228n ma h E =。
大学大学物理答案-量子物理
20XX年复习资料大学复习资料专业:班级:科目老师:日期:20XXXX-1解:由斯特藩-玻尔兹曼定律42211()B B M TM T = 而由维恩位移定律m T b λ=,有1212m m T T λλ= ∴4412120.69()() 3.630.50m B B m M M λλ=== 20XXXX-2解:(1)将火星视为一个黑体,由维恩位移定律m T b λ=∴3072.89710 2.897A 10m b T λ-⨯=== (2)此单色光频率81810310 1.03610Hz 2.89710m cνλ-⨯===⨯⨯ 每个光子的能量3418166.6310 1.03610 6.6810J E h ν--==⨯⨯⨯=⨯20XXXX-3解:由斯特藩—玻尔兹曼定律4B M T σ=有4BM T σ=又B PM S=,P 为每秒由小孔辐射出的能量,S 为小孔的面积 ∴34484473.6 1.7010K 5.67101010P T S σ--===⨯⨯⨯⨯ (2)3632.89710 1.7010m 1.7010m b T λμ--⨯===⨯⨯ (3)4452(2)1616 4.7410W m B B M T T M σσ'====⨯20XXXX-4解:由爱因斯坦方程212h mv A ν=+,又212a mv eU =,有a h eU A ν=+ (1)34819060 6.6310310 3.20610J 2.0eV 0.6210cA h h νλ---⨯⨯⨯====⨯=⨯ (2)3481996.6310310 6.02410J 3.77eV 33010ch h νλ---⨯⨯⨯===⨯=⨯ ∴ 3.77 2.0 1.77eV1.77V e e ea h A U ν--====20XXXX-5解:00cA h hνλ==∴34870196.6310310 2.9610m 296nm 4.2 1.610hc A λ---⨯⨯⨯===⨯=⨯⨯ 34829191 6.6310310 4.2 2.0eV 220010 1.610c mv h A h A νλ---⨯⨯⨯=-=-=-=⨯⨯⨯ 21 2.0eV2 2.0V e ea mvU === 20XXXX-6解:212a h mv A eU A ν=+=+∴11a h eU A ν=+22a h eU A ν=+即有2121()()a a h e U U νν-=-∴193421151521()(16.5 6.6) 1.610 6.610J s 4.610 2.210a a e U U h νν----⨯⨯===⨯⋅-⨯-⨯ 20XXXX-7解:由能量守恒有22200221/hchchcm c mc v cλλλ+=+=+-∴022011(1)1/m c h v cλλ=--3183934219.1110310(1)31010 6.631010.6----⨯⨯⨯=-⨯-⨯⨯⨯- 11-12.30210m =⨯∴1234.3410m 4.3410nm λ--=⨯=⨯2122002sin 4.8510sin 22h m c θϕλλλ-∆=-==⨯ ∴1221212(4.34 3.0)10sin0.276324.8510 4.8510λλϕ-----⨯===⨯⨯63.423ϕ=20XXXX-8解:(1)cνλ=∴2cλνλνλλ∆∆=-∆=-⋅即νλνλ∆∆=-∴0.04%νλλνλλ∆∆∆=-==202sin 2h m c θλ∆=∴103180034(0.04%) 2.0100.04%9.1110310sin 2222 6.6310m c m c h h λλθ---∆⨯⋅⨯⨯⨯⨯⨯⨯===⨯⨯ 0.128=得14.75θ=(2)电子获得的能量即光子作用前后的能量∴()[]()cc E h h h hc λννλλλλλλ∆'=-=-=+∆+∆434819101044106.6310310[] 3.97610J 210(210410)------⨯=⨯⨯⨯⨯=⨯⨯⨯⨯+⨯ 20XXXX-9解:(1)20002sin (1cos )2h h hm c m c m cθλθ∆==-= 340123186.6310 2.410m 0.024A 9.110310---⨯==⨯=⨯⨯⨯ (2)设反冲电子动量大小为hλ,出射角为θ(见右图),散射光子波长为λλλ'=+∆由动量守恒cos h p θλ= sin hp θλ='∴0.10.810.10.024tg λλθλλλ====''+∆+得39θ=(3)电子获得的动能即是光子损失得能量()k c c E h h h h hc hcλλλννλλλλλλ'-∆'=-=-=='''3481015410106.63103100.02410 3.810J 2.3810eV 0.110(0.10.024)10-----⨯⨯⨯⨯⨯==⨯=⨯⨯⨯+⨯ 由相对论能量与动量的关系2220()E cp E =+又200k k E E E E m c =+=+ ∴201(2)k k p E E m c c =+1515318281 3.810[3.81029.110(310)]310---=⨯⨯⨯+⨯⨯⨯⨯⨯ 292282.52108.4110kg m/s 310--⨯==⨯⋅⨯ 20XXXX-20XXXX 解:第一激发态能量2213.6eV 2E =-,电离能0E ∞=,则第一激发态氢原子电离所需能量2213.60() 3.4eV 2E E E ∞∆=-=--= 可见光中紫光光子能量最大,为3481996.6310310 5.5310J 3.27eV 38010ch h E ενλ---⨯⨯⨯====⨯=<∆⨯ ∴不能电离20XXXX-20XXXX 解:设氢原子吸收电子的能量后,从基态跃迁E 1到激发态E n ,则112.2eV n E E -=∴112.213.612.2 1.4eV n E E =+=-+=-213.6n E n -= ∴13.613.63.121.4n n E ==取整n =3由n =3激发态的电子向低能态跃迁,可发射3条光谱线32n =→ 016563A λ=21n =→ 021215A λ= 31n =→ 031026A λ=20XXXX-20XXXX 解:基态氢原子的电离能113.6eV E E E ∞-=电离=∴光电子离开原子核时的动能为1513.6 1.4eV E -=k = 由相对论知,电子动能200.51M eV E m c =k(静质能)时,可不考虑相对论效应由212E mv =k 有 1953122 1.4 1.6107.110m/s 9.1110E v m --⨯⨯⨯===⨯⨯k 20XXXX-20XXXX 解:1 1.0keV k E =时,可不考虑相对论效应20112E m v =k1 0102p m v m E ==k1∴3401013131900.3910m 0.39A 229.11010 1.610k h p m E λ----====⨯=⨯⨯⨯⨯⨯2 1.0M eV k E =,3 1.0G eV k E =需考虑相对论效应由20k E E m c =+ 2220()E cp E =+得201(2)k k p E E m c c=+ 0322222208.7510A 2k k h p E E m cλ-===⨯+0532233330 1.2410A 2k k k h hc p E E E m c λ-===⨯+ 20XXXX-20XXXX 解:220XXXXV 电压加速下,带电粒子获得的速度远小于光速∴212eU mv =,又h h p mv λ== 消去v 得234227219392(6.6310) 1.6710kg 22 1.610206(2.01010)h m eU λ-----⨯===⨯⨯⨯⨯⨯⨯⨯ 20XXXX-20XXXX 解:0k E E =∴002k E E E E =+=22002221/m c v c =-∴832.610m/s v ==⨯ 3422214036.63101()1/2 1.410m h h v c mv λ--⨯⨯--====⨯ 20XXXX-20XXXX 解:由海森伯不确定性关系24x h x p π∆⋅∆≥= ∴343326.6310 5.2761044410x h h x p m v m mπππ---⨯⨯∆≥===∆⋅∆⨯⨯ (1)电子:333315.27610 5.7910m 9.110x ---⨯∆≥=⨯⨯ (2)布朗粒子:3320135.27610 5.2810m 10x ---⨯∆≥=⨯ (3)小弹丸:332945.27610 5.2810m 10x ---⨯∆≥=⨯ (或x x p h ∆⋅∆≥∴36.6310h x m v m-⨯∆≥=∆ 可得27.2910m -⨯,196.6310m -⨯,286.6310m -⨯20XXXX-20XXXX 证:x λ∆=,∴h hp x λ∆≥=∆ 即h p v v m mλ∆≥==20XXXX-20XXXX 解:由德布罗意关系hp λ=∴2hp λλ∆=-∆ 大小关系 2hp λλ∆=∆由24h x p π∆⋅∆≥= 得2763100.024m 444/410x h x p λλππλπλλπ--⨯∆≥====∆∆∆⨯20XXXX-20XXXX 解:(1)n =1时,基态波函数为 12x a aπφ=在0~3a区间找到粒子的概率为 33221002sin 0.196aaw dx xdx a aπφ===⎰⎰ (2)n =2时,222x a aπφ= 在0~3a区间找到粒子的概率为 33222022sin 0.402a a w dx xdx a a πφ===⎰⎰ 20XXXX-20XX 解:(1)由归一化条件 2()1x dx φ+∞-∞=⎰∴222220()()1x x dx x dx A x e dx λφφ+∞+∞--∞+==⎰⎰⎰又222321(2)4x x e dx λλλ+∞-==⎰∴234A λ= 3/22A λ=(2)概率分布函数42224(0)()0(0)x x e x w x x λλφ-⎧≥==⎨<⎩(3)令()0dw x dx= 即 32422880x x xe x e λλλλ---= ∴2(1)0x xe x λλ--=得10x =,2x =+∞,31x λ=其中1x 和2x 处为发现粒子概率极小位置,31x λ=为发现粒子概率极大位置。
大学物理习题答案 第17章 量子物理学基础
第17章 量子物理学基础 参考答案一、选择题1(D),2(D),3(C),4(B),5(A),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). λ/hc ,λ/h ,)/(λc h . (2). 2.5,4.0×1014 . (3). A /h ,))(/(01νν-e h . (4). π,0 . (5).3/1 (6). 1.66×10-33 kg ·m ·s -1 ,0.4 m 或 63.7 mm . (7). 1, 2. (8).粒子在t 时刻在(x ,y ,z )处出现的概率密度. 单值、有限、连续.1d d d 2=⎰⎰⎰z y x ψ(9). 2, 2×(2l +1), 2n 2. (10). 泡利不相容, 能量最小. 三 计算题1. 用辐射高温计测得炼钢炉口的辐射出射度为22.8 W ·cm -2,试求炉内温度.(斯特藩常量σ = 5.67×10-8 W/(m 2·K 4) )解:炼钢炉口可视作绝对黑体,其辐射出射度为M B (T ) = 22.8 W ·cm -2=22.8×104 W ·m -2由斯特藩──玻尔兹曼定律 M B (T ) = σT 4 ∴ T = 1.42×103 K2.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2. (1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))解: (1) 太阳在单位时间内辐射的总能量 E = 1.37×103×4π(R SE )2 = 3.87×1026 W(2) 太阳的辐射出射度 =π=204Sr EE 0.674×108 W/m 2 由斯特藩-玻尔兹曼定律 40T E σ=可得 5872/40==σE T K3.图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19C)解:(1) 由 A h U e a -=ν 得 e A e h U a //-=ν|14Hz)e h U a /d /d =ν (恒量) 由此可知,对不同金属,曲线的斜率相同. (2) h = e tg θ 1410)0.50.10(00.2⨯--=e= 6.4×10-34J ·s4. 波长为λ的单色光照射某金属M 表面发生光电效应,发射的光电子(电荷绝对值为e ,质量为m )经狭缝S 后垂直进入磁感应强度为B的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为R .求(1) 金属材料的逸出功A ; (2) 遏止电势差U a .解:(1) 由 R m eB /2v v = 得 m R e B /)(=v ,代入 A m h +=221v ν 可得 222221mB e mR hc A ⋅-=λ m B e R hc 2222-=λ (2) 221v m U e a =, m eB R e m U a 22222==v .5.光电管的阴极用逸出功为A = 2.2 eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为| U a | = 5.0 V ,试求:(1) 光电管阴极金属的光电效应红限波长; (2) 入射光波长.(普朗克常量h = 6.63×10-34 J ·s , 基本电荷e = 1.6×10-19 C )解:(1) 由 00/λνhc h A == ==Ahc0λ 5.65×10-7 m = 565 nm(2)a U e m =221v , A U e hc h a +==λν 得 =+=AU e hca λ 1.73×10-7 m = 173 nm6.α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运动. (1) 试计算其德布罗意波长.(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速率运动.则其波长为多少?(α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)解:(1) 德布罗意公式:)/(v m h =λ由题可知α 粒子受磁场力作用作圆周运动R m B q /2v v α=,qRB m =v α又 e q 2= 则 e R B m 2=v α故 nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλB× × × × ×(2) 由上一问可得 αm eRB /2=v 对于质量为m 的小球 αααλλ⋅=⋅==mm m m eRB hm h 2v =6.64×10-34 m7. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式 ∆E ∆t ≥ 得∆E ≥ /∆t = 0.659×10-7 eV根据光子能量与波长的关系 λν/hc h E ==得光子的波长 ==E hc /λ 3.67×10-7 m波长的最小不确定量为 ∆λ = hc ∆E /E 2 = 7.13×10-15 m8.已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为 ax n a x n π=sin 2)(ψ , n = 1, 2, 3, … 试计算n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率.解:找到粒子的概率为⎰4/34/1*1d )()(a a x x x ψψ⎰π=4/34/2d sin 2a a x a x a π+=+ππ=121)12(1=0.818四 研讨题1. 人体也向外发出热辐射,为什么在黑暗中还是看不见人?参考解答:人体辐射频率太低,远离可见光波段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No.6 量子物理
(运输)
一 选择题
1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足 (A )λ≤
0eU hc (B )λ≥0
eU hc
(C )λ≤hc eU 0 (D )λ≥hc eU 0
[ A ]
2. 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的动能为 0.1 MeV ,则散射光波长的改变量∆λ与入射光波长λ0之比值为
(A ) 0.20. (B) 0.25. (C) 0.30. (D) 0.35.
[ B ]
3.氢原子从能量为-0.85eV 的状态跃迁到激发能(从基态到激发态所需的能量)为-10.19eV 的状态时,所发射的光子的能量为
(A )2.56 eV (B )3.41 eV (C )4.26 eV (D )9.34 eV
[ A ]
4. 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是
(A) )2/(eRB h . (B) )/(eRB h . (C) )2/(1eRBh . (D) )/(1eRBh .
[ A ]
5. 关于不确定关系 ≥∆∆x p x ()2/(π=h ),有以下几种理解:
(1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定.
(3) 粒子的动量和坐标不可能同时准确地确定.
(4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是:
(A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1).
[ C ]
6.描述氢原子中处于2p 状态的电子的量子态的四个量子数(n ,l ,m l ,m s )可能取值为
(A )(3,2,1,-21) (B )(2,0,0,21
)
(C )(2,1,-1,-21) (D )(1,0,0,2
1
)
[ C ]
二 填空题
1.当波长为300 nm (1 nm=10-9m )的光照射在某金属表面时,产生的光电子动能范围为0 ~ 4.0×10-19 J 。
此金属的遏止电压为|U a |= 2.5 V ;红限频率ν0= 3.97×1014 Hz 。
【解】由于光电子的最大初动能为J m 19
2m 10
0.4v 2
1-⨯=, V e m U a 5.2v 2
1
2m ==∴
由光电效应方程A m h +=2m v 21
ν,所以红限频率
Hz h m h h A 14
2m 01097.3)v 2
1(/⨯=-==υυ
2. 在康普顿散射中,若入射光子与散射光子的波长分别为λ和λ′,则反冲电子
获得的动能E K =
λ
λ
'-
hc hc
. 【解】根据能量守恒定律有
νν'+=+h mc h c m e 22 则 νν'-=-=h h c m mc E e K 22λλ
'
-
=
hc hc
3. 具有相同德布罗意波长的低速运动的质子和α粒子的动量之比P p ∶P α= 1∶1 ,动能之比E p ∶E α= 4∶1 。
4.处于基态的氢原子吸收了13.06eV 的能量后,可激发到n= 5 的能级;当它跃迁回到基态时,可能辐射的光谱线有 10 条。
5.根据量子力学理论,氢原子中电子的动量矩L=)1(+l l ħ,当主量子数n=3时,电子的动量矩的可能取值为 6,2,0 。
6.根据泡利不相容原理,在主量子数n=4的电子壳层上最多可能有的电子数为 32 个,它有 4 个支壳层,4p 支壳层上可容纳 6 个电子。
三 计算题
1.用波长λ0=0.1nm 的X 射线做康普顿散射实验。
求
(1)散射角φ=90°的康普顿散射波长是多少nm ,
(2)在(1)中情况下的反冲电子获得的动能是多少eV 。
(h=6.63×10-34 J ·S ,电子静止质量m e =9.11×10-31Kg ) 【解】
(1)由于nm c 0024.045sin 104.222
sin 22320=⨯⨯⨯==-=∆- ϕ
λλλλ
nm 1024.00=∆+=∴
λλλ
(2)根据能量守恒定律有
ννh mc h c m e +=+202
则
eV
J hc
hc
hc
h h c m mc E e K 29110
66.417
022=⨯=∆=
-
=
-=-=-λλλλ
λν
ν
2. α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运动.
(1) 试计算其德布罗意波长.
(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速率运动.则其波长为多少?
(α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C) 【解】
(1) 德布罗意公式:)/(v m h =λ 由题可知α 粒子受磁场力作用作圆周运动
R m B q /2v v α=,q R B
m =v α 又 e q 2= 则 e R B m 2=v α 故 nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ (2) 由上一问可得 αm e R B /2=v 对于质量为m 的小球 αααλλ⋅=⋅==
m
m m m eRB h
m h 2v =6.64×10-34 m
3.处于第一激发态的氢原子被外来单色光激发后,在发射的光谱中,仅观察到三条如图所示的巴尔末系的光谱线。
试求这三条光谱线中波长最长的那条谱线的波长以及外来光的频率(R=1.097×107 m -1) 【解】
对巴尔末系的光谱线的光谱线,有
⎪⎭
⎫
⎝⎛-==21411
~n R λυ
当3=n 时,有
n=2
n=3
n=4 n=5
⎪⎭
⎫
⎝⎛-=91411
max
R λ, 代入R 的值,可得nm 656max ≈λ。
可知外来光的波长λ满足
⎪⎭⎫ ⎝⎛-==
22min
512
1
1
1
R λλ
所以外来光的频率为
Hz Rc c 141091.6100
21
⨯==
=λυ。