5--典型环节传递函数-比例环节
控制工程基础(第三章,控制系统的复数域描述)
负载效应
2、动态结构图的等效变换 结构图表示了系统中各信号之间的传递与运算的全部关 系。但有时结构图比较复杂,需简化后才能求出传递函数, 等效原则是:对结构图任何部分进行变换时,变换前后该 部分的输入量、输出量及其相互之间的数学关系应保持不 变。 (1)串联环节的简化
X 0 (s)
G1 ( s )
4. 积分环节 积分环节的动态方程和传递函数分别为
c (t ) K r (t ) dt
K G (s) s
特点:输出量与输入量的积分成正比例,当输入 消失,输出具有记忆功能。 实例:电动机角速度与角度间的传递函数、电容 充电、模拟计算机中的积分器等。
5. 二阶振荡环节
振荡环节的运动方程和传递函数分别为
(a)
(b)
结构图的相加点(a)和分支点(b)
绘制系统方框图的一般步骤 1) 写出系统中每一个部件的运动方程式 2) 根据部件的运动方程式写出相应的传递函数,一个 部件用一个方框表示在框中填入相应的传递函数
3)根据信号的流向,将各方框单元依次连接起来,并 把系统的输入量置于系统方框图的最左端,输出量置 于最右端 例 绘制下图所示电路的方框图 方程有
Gs 就是该系统的传递函数 阵
用拉氏变换做微分方程组的传递函数矩阵,中间变量的消元
三、典型环节的传递函数 1. 比例环节
比例环节又称放大环节,该环节的运动方程和相 对应的传递函数分别为
c(t ) Kr (t )
式中K为增益。
C ( s) G( s) K R( s )
特点:输入输出量成比例,无失真和时间延迟。
R-L-C电路
c
弹簧-质量-阻尼器系统
6. 纯时间延时环节
延时环节的动态方程和传递函数分别为
自动控制理论_哈尔滨工业大学_2 第2章线性系统的数学模型_(2.4.1) 典型环节的传递函数PPT
0
t
积分环节在单位阶跃输入下的响应
例:积分器
i2
C
ui R
_
i1
uo
+i1 i2Fra bibliotek1 Rui
(t)
C
d dt
u0
(t )
uo
(t)
1 RC
ui (t)dt
G(s) Uo (s) 1 1 Ui (s) RC s
二、几种典型环节的数学模型
4.微分环节
c(t) d r(t)
斜率1/T
0τ
t
例: • 汽车加速、火箭升空; ——作用力和输出速度
• 加热系统; ——加热量和温度变化
• 励磁回路; ——输入电压和励磁电流
惯性大小用τ来量度。 ——τ越大,接近目标值越慢 ,惯性越大;τ越小,接近 目标值越快,惯性越小。
几乎任何物理系统都包含 大大小小的惯性。
二、几种典型环节的数学模型
滞后环节
二、几种典型环节的数学模型
1.比例环节
y(t) Ku(t)
G(s) Y(s) K U (s)
K——称为比例系数或放大系数,也称为环节的增益,有量纲。
输出量无失真、无滞后、成比例地复现输入。
• 无弹性变形的杠杆;
——作用力和输出力
• 忽略非线性和时间迟后的运算放大器;
——比例放大器的输入电压和输出电压
τ=RC—时间常数
当 r(t) 1(t) 时, R(s) 1
s
Y(s) s 1 1 s 1 s s 1
t
y(t) e
t=0时,输出幅值为1;
t→∞时,指数衰减至0。
二、几种典型环节的数学模型
传递函数及方块图剖析
则G(s) = Uo s = RCS
(RC = T
K 1
Ui s RCS + 1
K = 1)
Gs k
4 积分环节
s
时间域方程
xo t k xi t dt
X o s
k
X i s
s
X o s X i s
k s
例9
i2(t)
i1(t) ui(t)
R
A
B
C
_
K0 +
uo(t)
ui (t) = -C duo (t)
传递函数及 典型环节的传递函数
一、传递函数定义:
在初始条件为零时,线性
定常系统输出象函数 Xo s与输 入象函数 Xi s 之比。
Gs
X o s Xi s
Xi s Gs Xo s
设线性定常系统的微分方程为:
a
0
xon
t
a1
x
n1
o
t
a
n1
x
o
t
a
n
x
o
t
b0
x
m
i
t
b1
x
m
i
1
t
bm 1
x i
t
则G(s) = Uo s =
1
Ui s RCS + 1
(RC = T)
例4
弹簧-阻尼系统
K
xi
t
xo
t
D
dxo
dt
t
KXi s KXo s DsXo s
Gs
Xo s Xi s
K Ds
K
D
1 s 1
K
Gs Ks
五、传递函数
C ui(t) i(t) R uo(t)
RCs Ts , T RC RCs 1 Ts 1
无源微分网络
显然,无源微分网络包括有惯性环节和微分环 节,称之为惯性微分环节,只有当|Ts|<<1时, 才近似为微分环节。 除了上述纯微分环节外,还有一类一阶微分环 节,其传递函数为:
14
X o ( s) G( s) K ( s 1) X i ( s)
16
如:有源积分网络 i1 ( t)
R a +
i2 ( t)
C
u i( t)
u o ( t)
du o (t ) RC ui (t ) dt 1 1 G( s ) , T RC RCs Ts
17
振荡环节
含有两个独立的储能元件,且所存储的能量能 够相互转换,从而导致输出带有振荡的性质, 运动方程为:
20
L-R-C电路
(t ) uo (t ) ui (t ) Li
uo (t ) 1 ic (t ) dt C
整理后得传递函数为:
il ic iR
G(S )
UO ( S ) 1 Ui ( S ) LCs 2 L S 1 R
21
二阶微分环节 运动方程:
2 d2 d xo (t ) K x (t ) 2 xi (t ) xi (t ), 0 1 2 i dt dt
8
的零极点分布图
4、典型环节及其传递函数 环节 具有某种确定信息传递关系的元件、元件组或 元件的一部分称为一个环节。经常遇到的环节 称为典型环节。
任何复杂的系统总可归结为由一些典型环节所 组成。
典型环节示例
第二章5典型环节.
5
Page: 6
三.积分环节
1 微分方程: xo (t ) xi (t )dt T
X o ( s) 1 传递函数: G( s) X ( s) Ts i
Xi ( s) 1 Ts Xo ( s)
频率特性:
1 j 1 G( j ) 0 j j
1
o
幅频特性 ∶ G( j ) = , 相频特性∶∠G( j ) = - 90
KT 虚频特性: v( ) 1 T 2 2 0
jik 06 9
幅频特性:
1 T 2 2 相频特性: G( j ) arctg(T ) 特殊点: 0, G( j 0) K , G( j 0) 0 ;
G ( j )
K
Page: 10
, G( j) 0, G( j) 90o ;
Page: 3
特殊点: =0, G ( j 0) =0,∠ G( j 0) =90 ;
o
∠G (j∞) =90 = ∞, G(j∞) = ∞,
Nyquist 图:
G ( j ) ( 0 , j ) 90 Im
o
Re
dB 20 lg G
20
Bode图:
A( ) 20 lg
ui(t) R1 ∑ R2 -
z1 xi(t)
Page: 2
xo(t) z2
uo(t)
>1 0 t
R2 R2 u o (t ) u i (t ) G ( s ) K R1 R1
二. 微分环节
时间响应:
Xi ( s)
(t) >1 1 0
t
i ( t ) 微分方程: xo (t ) Tx
典型环节分析实验报告
一、实验目的1. 理解并掌握典型环节(比例、惯性、比例微分、比例积分、积分、比例积分微分)的原理及其在控制系统中的应用。
2. 通过实验验证典型环节的阶跃响应特性,分析参数变化对系统性能的影响。
3. 熟悉MATLAB仿真软件的使用,掌握控制系统仿真方法。
二、实验原理控制系统中的典型环节是构成复杂控制系统的基础。
本实验主要研究以下典型环节:1. 比例环节(P):输出信号与输入信号成比例关系,传递函数为 \( G(s) = K \)。
2. 惯性环节:输出信号滞后于输入信号,传递函数为 \( G(s) = \frac{K}{T s + 1} \)。
3. 比例微分环节(PD):输出信号是输入信号及其导数的线性组合,传递函数为\( G(s) = K + \frac{K_d}{s} \)。
4. 比例积分环节(PI):输出信号是输入信号及其积分的线性组合,传递函数为\( G(s) = K + \frac{K_i}{s} \)。
5. 积分环节(I):输出信号是输入信号的积分,传递函数为 \( G(s) =\frac{K_i}{s} \)。
6. 比例积分微分环节(PID):输出信号是输入信号、其导数及其积分的线性组合,传递函数为 \( G(s) = K + \frac{K_i}{s} + \frac{K_d}{s^2} \)。
三、实验设备1. 计算机:用于运行MATLAB仿真软件。
2. MATLAB仿真软件:用于控制系统仿真。
四、实验步骤1. 建立模型:根据典型环节的传递函数,在MATLAB中建立相应的传递函数模型。
2. 设置参数:设定各环节的参数值,例如比例系数、惯性时间常数、微分时间常数等。
3. 仿真分析:在MATLAB中运行仿真,观察并记录各环节的阶跃响应曲线。
4. 参数分析:改变各环节的参数值,分析参数变化对系统性能的影响。
五、实验结果与分析1. 比例环节:阶跃响应曲线为一条直线,斜率为比例系数K。
2. 惯性环节:阶跃响应曲线呈指数衰减,衰减速度由惯性时间常数T决定。
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3
比例环节可以完全、真实地复现任何频率的输入 信号,幅值上有放大或衰减作用;υ (ω)=0º ,表示输 出与输入同相位,既不超前也不滞后。
5.3 典型环节的频率特性
二、积分环节 1.代数表达式 传递函数
G (s) 1 s 1
频率特性 相频特性
幅频特性
A( )
1 1 1 j 90 G( j ) j e j () 90
对数频率特性曲线是一条斜线, 斜率为-20dB/dec, 称为高频渐 近线,与低频渐近线的交点为ωn=1/T,ωn称为交接频率或转 折频率,是绘制惯性环节的对数频率特性时的一个重要参数。
5.3 典型环节的频率特性
3.伯德图 对数幅频图
L( ) 20lg A( ) 20lg 1 1 2T 2 20lg 1 2T 2
G ( j ) 1 j 2 2 2 (1 2 2 ) j 2 (1 2 2 ) 2 (2 ) 2 e
2 T j arctan 1 2 2
5.3 典型环节的频率特性
2.极坐标图 理想微分环节的极坐标图在0 <<的范围内,与正虚轴重合。 可见,理想微分环节是高通滤 波器,输入频率越高,对信号的 放大作用越强;并且有相位超前 作用,输出超前输入的相位恒为 90º ,说明输出对输入有提前性、 预见性作用。 (纯微分)
在控制工程中,采用分段直线表示对数幅频特征 曲线,作法为: a.当Tω<<1(ω<<1/T)时,系统处于低频段 L( ) 20lg1 0 b.当Tω>>1(ω>>1/T)时,系统处于高频段
L( ) 20lg T
此直线方程过(1/T,0)点, 且斜率为-20dB/dec。
典型环节数学模型与阶跃响应
第三章 自动控制系统的数学模型
当输入量r(t)=1(t)时, 输出量 C(s)为
K 1 C ( s ) G ( s ) R( s ) Ts 1 s
可得其单位阶跃响应为
c(t)= L-1[C(s)]=K(1-e-t/T)
第三章 自动控制系统的数学模型
当K=1时, 惯性环节的单位阶跃响 应曲线如上图 (b)所示。 对惯性环节的阶 跃 响 应 曲 线 进 行 分 析, 可 得 C(0)=0 , C(T)=0.632 , C(3T)=0.95 , C(4T)=0.982 , C(∞)→1。因此, 惯性环节在输入量突变 时, 输出量不能突变, 只能随着时间的 推移按指数规律变化, 这表明该环节具 有惯性特点。 常见的惯性环节如下图所 示。
2 n G( s ) 2 2 s 2n s n
振荡环节的方框图如下图 (a)所示。
c(t) c(t) R(s)
2 n 2 s 2 2 n s n
C(s)
1
r(t)
0 (a) (b)
t
图 振荡环节方框图及单位阶跃响应曲线 (a) 振荡环节方框图; (b) 振荡环节单位阶跃响应
第三章 自动控制系统的数学模型
对上式作拉氏变换, 可得 T2s2C(s)+2ζTsC(s)+C(s)=R(s) 移项整理有
C ( s) 1 G( s) 2 2 R( s) T s 2Ts 1
第三章 自动控制系统的数学模型
令T=1/ωn, ωn为该环节的无阻尼自然 振荡频率, 则上式可改写成如下形式:
振荡环节的单位阶跃响应曲线一般 如上图 (b)所示。 振荡环节的单位阶跃响应, 随着阻 尼比 ζ 的不同, 表现出不同的动态响应 过程, 如下图 所示。
传递函数
(t)
则在零初始条件下,对上式进行拉氏变换,可得系 统传递函数的一般形式:
G(s) Xo Xi
s s
b0 s m a0sn
b1sm1 a1sn1
bm1s bm (n m) an1s an
2.2.1 传递函数的性质
性质1 传递函数只表示输出量与输入量的关系,是一 种函数关系。这种函数关系由系统的结构和参 数所决定,与输入信号和输出信号无关。这种 函数关系在信号传递的过程中得以实现,故称 传递函数。
输出量与输入量之间能用一阶线性微分方程描述的
环节称为一阶惯性环节:
T xo (t) x0 (t) xi (t)
一阶惯性环节的传递函数为:
G(s)
1
Ts 1
式中 T-时间常数,表征环节惯性,和结构参数有关。
特点:含一个储能元件,当输入量突然变化时,由于物理状
态不能突变,输出量也就不能立即复现,而是按指数规律逐渐变
性质5
如果系统的G(s)未知,可以给系统加上已知 的输入,研究其输出,从而得出传递函数。
2.2.1 传递函数的性质
性质6 传递函数G(s)的拉氏反变换是脉冲响应g(t)。
脉冲响应(脉冲过渡函数)g(t)是系统在单位 脉冲输入时的输出响应。
Xi (s) L[ (t)] 1
xo (t) L1[ X o (s)] L1[G(s) Xi (s)] L1[G(s)]
这样,任何复杂的系统总可归结为由一些典型环节所 组成,从而给建立数学模型,研究系统特性带来方 便,使问题简化。
2.2.3 典型环节及其传递函数
系统的传递函数可以写成:
b
c
K
典型环节的传递函数
1、比例环节 凡输出量与输入量成正比,输出不失真也不延迟 而按比例地反映输入的环节,称为比例环节又叫 放大环节、无惯性环节、零阶环节
•动力学方程为:
xotKxit
•传递函数为:
Gs
Xo s Xi s
K
典型环节的传递函数
2、积分环节(纯积分环节) 凡输出量与输入量的积分成正比,称为积分环节, 又称为理想积分环节
•动力学方程为:
Tdxdottxotxit
•传递函数为:
GsXXoi ss
1 Ts1
典型环节的传递函数
5、导前环节(一阶微分环节) 又称为一阶微分环节,是一个相位超前环节。
•传递函数为:
GsXXoi ssTs1
典型环节的传递函数
6、振荡环节(二பைடு நூலகம்积分环节) 振荡环节是二阶环节,又称二阶振荡环节
•传递函数为:
•动力学方程为:
xotT1xi tdt
•传递函数为:
Gs
Xo s Xi s
1 Ts
典型环节的传递函数
3、微分环节(纯微分环节) 凡输出量与输入量的微分成正比,称为微分环节, 又称为理想微分环节
•动力学方程为:
xo
t
T
dxi t
dt
•传递函数为:
Gs
Xo s Xi s
Ts
典型环节的传递函数
4、惯性环节(一阶积分环节) 又称一阶惯性环节,是一个相位滞后环节。
G sX Xo isss22 n 2 nsn 2
GsX Xo issT2s22 1Ts1
典型环节的传递函数
7、二阶微分环节
•传递函数为:
G sX Xo isss22 n 2 nsn 2 GsX Xo issT2s22Ts1
典型环节的传递函数
21
一、典型输入信号
1. 阶跃函数:
r(t)
a t 0
a
r(t) 0 t 0
t
单位阶跃函数:
1 t 0 r(t) 1(t) 0 t 0
单位阶跃函数的拉氏变换
R(s) L[1(t)] 1 s
22
2. 速度函数(斜坡函数):
r(t)
at t 0
r(t)
0
t0
at
t
单位速度函数(斜坡函数):
传递函数为: G(s)
1
s
积分环节原理图为:
U2(s) 1/ Cf s 1 1 U1(s) R1 R1C f s Tis
4
空载油缸
流量:
Q
f
(t)
A
dx(t) dt
X (s) 1/ A K Q f (s) s s
小惯性电动机
m(s) Km
Ua(s) s
三、理想微分环节 微分方程为:c(t) dr(t)
4. 调节时间ts:整个过渡过程所经历的时间,有时也叫过渡过 程时间。
30
5. 超调量σ%: 响应过程中,输出量
超出稳态值的最大偏差值, 一般用它与稳态值的比值 的百分数表示,即
% h(t p ) h() 100%
h()
6. 振荡次数N:单位阶跃响应曲线在0→ts时间内,穿越稳态 值次数的一半称为振荡次数。
31
7.稳态误差ess:对单位 负反馈系统,当时间t 趋于无穷时,系统单 位阶跃响应的期望值 [即输入量1(t)] 与实际值 (即稳态值)之差,定义为 稳态误差:
ess =1 - h(∞)
当h(∞) =1时,系统的稳态误差为零。
32
注意: σ%
自动控制原理--典型环节的频率特性
j 1
0j 1
Im
0
Re
0
积分与微分环节
L(dB) 40
积分环节
0
微分环节
40
( )
90
微分环节
0 90
积分环节
20dB / dec
20dB / dec
6
三、微分环节
传递函数: G s s
频率特性:
G(j)
j
ej
π 2
➢1. 幅频特性 A及相频特性
A ,
A
( )
0
1
T
4
2
L,
0
1
T 3dB
4
20lg 2T 2 1
2
近似曲线 精确曲线
对数幅频特性和相频特性:
L() 20 lg 1 (T )2 () tg1 T
0 L0 0
1 L 20 lg 1 3
T
2
4
L
2
L()(dB) 0 0.1 5
10 15 20
0.2
0.3 0.4
0.6 0.8 1
T
2
34
6 8 10
七、一阶不稳定环节
传递函数: G s 1
Ts 1
➢1. 幅相频率特性
频率特性: G j 1
jT 1
G j
1
jT 1
1
1 T2
T
j1 T2
U
jV
U
1 2
2
V
2
1 2
2
一阶不稳定系统的幅相频
率特性是一个为(-1,j0)
为圆心,0.5为半径的半圆。
180O 90O
Im
1
2.4传递函数及典型环节传递函数
输出量不失真、无惯性地跟随输入量, 两者成比例关系。
传递函数及典型环节的传递函数
比例环节的传递函数为:
传递函数及典型环节的传递函数
2 惯性环节: 凡运动方程为一阶微分方程
形式的环节称为惯性环节。其传递函数为:
K—环节增益(放大系数) T—时间常数,表征环节的惯性,和 环节结构参数有关
传递函数及典型环节的传递函数
如:有源积分网络
传递函数及典型环节的传递函数
液压缸
传递函数及典型环节的传递函数
5 二阶振荡环节 含有两个独立的储能元件,且所存储的 能量能够相互转换,从而导致输出带有 振荡的性质,运动方程为:
传递函数:
传递函数及典型环节的传递函数
振荡环节传递函数的另一常用标准形式为 (K=1)
无源微分网络
无源网络
显然,无源微分网络包括有惯性环节和微 分环节,称之为惯性微分环节,只有当 |Ts|<<1时,才近似为微分环节。
传递函数及典型环节的传递函数
除了上述微分环节外,还有一类一阶微分环 节,其传递函数为:
微分环节的输出是输入的导数,即输出反 映了输入信号的变化趋势,从而给系统以 有关输入变化趋势的预告。因此,微分环 节常用来改善控制系统的动态性能。
2) 传递函数是s 的复变函数。传递函数中的 各项系数和相应微分方程中的各项系数对应 相等,完全取决于系统结构参数;
传递函数及典型环节的传递函数
3) 传递函数是在零初始条件下定义的,即在零时 刻之前,系统对所给定的平衡工作点处于相对静 止状态。因此,传递函数原则上不能反映系统在 非零初始条件下的全部运动规律; 4) 传递函数只能表示系统输入与输出的关系,无 法描述系统内部中间变量的变化情况。
典型环节
[G ( jω )]
1
ω →∞
0
G ( jω ) =
(1 − T ω ) + (2ζTω )
2 2 2
1
2
ωn ωn ωn
1 ω ≤ T
ς↑
ω →0
ς↓
2ζTω − arctan 1 − T 2ω 2 ∠ G ( jω ) = 2ζTω − π − arctan 1 − T 2ω 2
6、勾画出大致曲线。
①
②
当频率ω = 0 时,其开环幅相特性完全由比例环节和积分环 节决定。 节决定。 G 开环传递函数不含积分环节, 开环传递函数不含积分环节,即v = 0 时,( jω ) 曲线从正实 开始; 轴 开始;G ( j0) = K∠0° G 开环传递含有一个积分环节, 开环传递含有一个积分环节,即 v = 1 时, ( jω ) 曲线从负虚 π G 轴方向开始; 轴方向开始; ( j 0 ) = ∞ ∠ − 2 π G 曲线从负实轴方向开始; 当 v = 2 时,曲线从负实轴方向开始; ( j 0 ) = ∞∠ − 2 2 其余依次类推。 其余依次类推。 ,(即 中分母阶次n 当频率 ω = ∞ 时,若 n > m ,(即 G ( s ) 中分母阶次 大 于分子阶次m) 的模值等于0, 于分子阶次 )其 G ( jω ) 的模值等于 ,相为 ( m − n ) π 。 2 即 π G ( j ∞ ) = 0∠ ( m − n ) 2
G ( jω) = G ( jω) e j∠G( jω) = u (ω) + jv (ω)
a) 令∠G ( jω ) = −π 。解出与负实轴交点处对应的频率 ω x 的值。再将 ω x 代入 G ( j ω ) 中,求得与负实轴交 的值。 点的模值。 点的模值。 b) 令 v (ω ) = 0 解出 ω x ,再将 ω x 代入 u (ωx ) 中求得与负 实轴交点的坐标。 实轴交点的坐标。
典型环节的传递函数
典型环节的传递函数
传递函数是一种表示线性时不变系统的方法,它可以表示为输入和输出之间的关系。
典型环节的传递函数是指在不同应用场景下,系统的输入和输出之间具有特定的数学关系。
下面列举一些常见的典型环节的传递函数:1、比例环节:
传递函数:G(s) = K
特性方程:y = Kx
2、一阶滞后环节:
传递函数:G(s) = K/(Ts+1)
特性方程:y(t) = Kx(t-t0)
3、积分环节:
传递函数:G(s) = Ks/(Ts+1)
特性方程:y(t) = K∫x(t) dt
4、微分环节:
传递函数:G(s) = Ks
特性方程:y(t) = Ky(t) + Kd/dt[y(t)]
5、二阶振荡环节:
传递函数:G(s) = (K/T)(s^2+ω^2)/(s^2+2ζω_n s+ω_n^2)
特性方程:(T/K)(y''(t)+2ζω_n y'(t)+ω_n^2 y(t))=x''(t)+2ζω_n x'(t)+ω_n^2 x(t)
其中,K表示增益,T表示时间常数,s表示复变量,x表示输入,y 表示输出,ω_n表示无阻尼固有频率,ζ表示阻尼比。
自动控制原理_2.4典型环节传递函数
B盘以角速度ω 转动时,因 B盘和I 轴
间以滑动键联接,故B盘滑动就会改变
偏心量e;当时e=0,A盘转动而 B盘不
转;e增大, B盘角速度ω 正比的增大, 设K为比例常数,B盘转角为θ (t)。 输入— e 输出—θ (t)
解: (t ) Ke(t )
(t ) K e(t )dt
di(t ) 1 ui (t ) L i(t ) R i(t )dt dt C 1 uo (t ) i(t )dt C
§2.4.6 延时环节(迟延环节)
xo (t ) xi (t )
τ为延迟时间
L[ x0 (t )] L[ xi (t )] G( s ) L[ xi (t )] L[ xi (t )]
当|Ts|<<1时,G(s)=Ts,
才近似为理想的微分环节。
此系统为包含有惯性环节及微分环节的系统。
(1)预见输入(ቤተ መጻሕፍቲ ባይዱ输入提前)
比例环节
R(s) r(t) t
1
1
X o ( s)
xo (t )
o
45
t
比例+微分
R(s) r(t ) t
1 Ts
X o ( s)
xo (t )
K G( s ) Ts 1
K为惯性环节的增益或放大系数;T为时间常数
理想的一阶惯性环节
1 G( s ) Ts 1
例1. 无源滤波电路
ui uo C为电容 R为电阻
1 ui (t ) i (t ) R i (t )dt C 解: 1 uo (t ) i (t )dt C 1 U i (t ) I ( s) R I (s) Cs LT得: 1 U o (t ) I ( s) Cs
第二章5典型环节
当从 0—→∞变化时,频率特性曲线在第 三、四象限。
与虚轴交于(
1
2
)。
Nyquist图:
特点:
0.5
0
∞ Im
0
1
Re
-0.5
2
越小,曲线与横轴 -1
围成的面积越大;
谐振频率r
-1.5
越接近固有频率n
-2 -1
1 - 2
-0.5
jik 06
0.7 0.5
Nyquist图:
趋势:当从 0—→∞变化时,G( j) 逐渐减
小到 0 ,相位从0o逐渐变到- 90o。Im
特点:半圆,园心为 (K ,j0),半径为 K 。
2
2
∵ν(ω)总是小于零,∴曲线是下半圆。
Page: 10
G ( j ) K Re
K2
思考∶若图形为上半圆,其频率特性应是怎样的?
G
180 90
- 90
(s -1 )
超前90o
jik 06
3
L(ω)
40db 20db 0db -20db --40db
Page: 4
微分环节L(ω)
G(s)=10s
0.1 0.2
12
[+20]
ω
10 20
100
G(s)= s
G(s)=0.1s
jik 06
4
Page: 5
实例:永磁式测速发电机
jik 06
dB 20 lg G
40
20
20 dB dec
T
G
(s-1)
10 T
90
45
0
(s-1 )
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
典型环节的传递函数
1 xo t xi t dt T
•传递函数为:
1 G s X i s Ts
Xo s
典型环节的传递函数
3、微分环节(纯微分环节) 凡输出量与输入量的微分成正比,称为微分环节, 又称为理想微分环节 •动力学方程为:
xo t T
•传递函数为:
dxi t dt
典型环节的传递函数
8、延时环节 延时环节是输出滞后输入时间 但不失真地反映 输入的环节,又称为时滞环节。 •动力学方程为:
xo t xi t s Xi s
e s
•拉普拉斯变换:
F s L f t f t e dt 0
Ts
G s
Xo s Xi s
典型环节的传递函数
4、惯性环节(一阶积分环节) 又称一阶惯性环节,是一个相位滞后环节。 •动力学方程为:
T
dxo t dt
xo t xi t
Xo s
•传递函数为:
1 G s X i s Ts 1
典型环节的传递函数
1、比例环节 凡输出量与输入量成正比,输出不失真也不延迟 而按比例地反映输入的环节,称为比例环节又叫 放大环节、无惯性环节、零阶环节 •动力学方程为:
xo t Kxi t
•传递函数为:
G s
Xo s Xi s
K
典型环节的传递函数
2、积分环节(纯积分环节) 凡输出量与输入量的积分成正比,称为积分环节, 又称为理想积分环节 •动力学方程为:
st
s a i
•拉普拉斯反变换:
1 a i st f t L F s 2 i a i F s e ds