最新北师大版九年级数学上册1.3_正方形的性质与判定教案(教学设计)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 正方形的性质与判定

第1课时正方形的性质

1.在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,并能运用正方形的性质进行证明与计算.(重难点)

2.进一步了解平行四边形、矩形、菱形及正方形之间的相互关系,并形成文本信息与图形信息相互转化的能力.

阅读教材P20~21,完成下列问题:

(一)知识探究

1.有________相等并且有一个角是________的__________叫做正方形.

2.正方形既是________又是________,它既具有________的性质,又有________的性质.

3.正方形的________相等,都是________,________相等.

4.正方形的对角线________________________.

(二)自学反馈

正方形的性质:

1.边:________都相等且________.

2.角:四个角都是________.

3.对角线:两条对角线互相________且________,并且每一条对角线平分________.

4.正方形既是________图形,又是________图形,正方形有________对称轴.

活动1 小组讨论

例如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请说明理由.

解:BE=DF,且BE⊥DF.理由如下:

如图,延长BE交DF于点M.

∵四边形ABCD是正方形,

∴BC=DC,∠BCE=90°(正方形的四条边都相等,四个角都是直角).

∴∠DCF=180°-∠BCE=180°-90°=90°.

∴∠BCE=∠DCF.

又∵CE=CF,∴△BCE≌△DCF.

∴BE=DF,

∵∠DCF=90°,∴∠CDF+∠F=90°.

∴∠CBE+∠F=90°.

∴∠BMF=90°.

∴BE⊥DF.

本题是通过证明△BCE≌△DCF来得到BE与DF之间的关系,证明三角形全等是解决这一类型问题的常用做法.

活动2 跟踪训练

1.菱形,矩形,正方形都具有的性质是( )

A.对角线相等且互相平分B.对角线相等且互相垂直平分

C.对角线互相平分D.四条边相等,四个角相等

2.正方形面积为36,则对角线的长为( )

A.6 B.6 2 C.9 D.9 2

3.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.17

4.如图,延长正方形ABCD的边BC至E,使CE=AC,连接AE交CD于F,则∠AFC=________°.

5.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:OE=OF.

活动3 课堂小结

正方形的性质⎩⎪⎨⎪⎧边:正方形的四条边都相等且对边平行.

角:正方形的四个角都是直角.对角线:正方形的两条对角线互相垂直平分且相等,

每一条对角线平分一组对角.

对称:既是轴对称图形,又是中心对称图形,它有四条对称轴,其对角线交点为对称中心.

【预习导学】 (一)知识探究

1.一组邻边 直角 平行四边形 2.矩形 菱形 矩形 菱形 3.四个角 直角 四条边 4.相等且互相垂直平分 (二)自学反馈

1.四条边 对边平行 2.直角 3.垂直平分 相等 一组对角 4.中心对称 轴对称 四条 【合作探究】 活动2 跟踪训练 1.C 2.B 3.C 4.112.5

5.证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,OB =OC.

∴∠AOB =∠BOC =90°.又∵∠OBE =∠OCF ,∴△OBE ≌△OCF.∴OE =OF.

第2课时 正方形的判定

1.掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题.(重难点)

2.发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断.

阅读教材P22~24,完成下列问题: (一)知识探究

1.对角线相等的________是正方形. 2.对角线垂直的________是正方形. 3.有一个是直角的________是正方形. (二)自学反馈

1.已知四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )

A .∠D =90°

B .AB =CD

C .A

D =BC D .BC =CD 2.下列命题正确的是( )

A .两条对角线相等的菱形是正方形

B .对角线与一边的夹角是45°的四边形是正方形

C .两邻角相等,且有一角是直角的四边形是正方形

D .对角线相等且互相垂直的四边形是正方形

3.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A .AC =BD ,AB ∥CD ,AB =CD B .AD ∥BC ,∠A =∠C

C .AO =BO =CO =DO ,AC ⊥B

D D .AO =CO ,BO =DO ,AB =BC

4.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F.则四边形ABEF 是________形.

活动1 小组讨论

例 如图,在矩形ABCD 中,BE 平分∠ABC ,CE 平分∠DCB ,BF ∥CE ,CF ∥BE.求证:四边形BECF 是正方形.

证明:∵BF ∥CE ,CF ∥BE , ∴四边形BECF 是平行四边形. ∵四边形ABCD 是矩形, ∴∠ABC =90°,∠DCB =90°. 又∵BE 平分∠ABC ,CE 平分∠DCB ,

∴∠EBC =12∠ABC =45°,∠ECB =1

2∠DCB =45°.

∴∠EBC =∠ECB. ∴EB =EC.

∴平行四边形BECF 是菱形. 在△EBC 中,

相关文档
最新文档