六年级奥数讲义下
六年级下册奥数讲义-奥数方法:假设法(练习无答案)全国通用
六年级下册奥数讲义-奥数⽅法:假设法(练习⽆答案)全国通⽤对于某些数学问题,可以根据题⽬中的已知条件或结论作出某种假设,然后依据假设进⾏分析推理,这种解题⽅法叫做假设法。
假设思维是⼀种常⽤的推测性的辩证思维,它要求⼈们在错综复杂的数量关系中,找出能起主导作⽤的某⼀数量或某⼀等量关系,以显现可求解的对应关系,从⽽确定解题思路。
常⽤的假设有条件假设、问题假_设、单位假设及情境假设等。
⽤假设法解题的思维过程分为三步:第⼀步对题⽬中的部分条件进⾏假设,第⼆步由假设导出⽭盾,第三步分析产⽣⽭盾的原因,原因找到后,问题也就解决了。
【例1]有五堆苹果,较⼩的三堆平均有18个苹果,较⼤的两堆,苹果数之差为5个,⼜,较⼤三堆平均有26个苹果,较⼩的两堆苹果数之差为7个。
最⼤堆与最⼩堆平均有22个苹果。
则每堆各有个苹果。
分析与解答根据题意按从⼤到⼩⽤字母表⽰如下:abcde,因为a,b,c的平均数是26,所以b应接近26,则a=26+5=31,e=22×2-31=13,d=13+7= 20。
c=18×3-13-20=21,符合题意,故每堆有(从⼤到⼩)31、26、21、20、13。
[例2] 绕湖的⼀周是22千⽶,甲、⼄⼆⼈从湖边某⼀地点同时出发反向⽽⾏,甲以4千⽶/⼩时的速度每⾛1⼩时后休息5分钟,⼄以6千⽶/⼩时的速度每⾛50分钟后休息10分钟,则两⼈从出发到第⼀次相遇⽤分析与解答如图1所⽰,包括休息时间,甲65分钟⾛4千⽶,⼄60分钟⾛5千⽶(⼄以60千⽶/⼩时的速度⾛50分钟只能⾛5千⽶)。
剩下的路程两⼈共同⾛完需:(22-19)÷(4+6)=0.3(⼩时)=18(分钟)故两⼈从出发到第⼀次相遇⽤时:65×2+18=148(分钟)。
[例3】⼩⽞和⼩斌⼀起跳绳,⼩⽞先跳了2分钟,然后两⼈各跳了3分钟,⼀共跳了780下,已知⼩⽞⽐⼩斌每分钟多跳12下,问⼩⽞⽐⼩斌多跳了多少下?周『-路剖析因为本题中有些数量关系⽐较隐蔽,如果对已知条件作出假设,就能顺利找到解此题的途径和答案了。
小升初典型奥数:行程问题(讲义)-2023-2024学年六年级下册数学全国通用
3.A,B两地相距540千米.甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么到两车第三次相遇为止,乙车共走了多少千米?
13.上海小学有一长 米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑 米,小胖每秒钟跑 米.
小亚第一次追上小胖时两人各跑了多少米?
小亚第二次追上小胖两人各跑了多少圈?
14.龟兔进行1000米的赛跑,小兔心想:我1分钟能跑100米,而你乌龟每分钟只能跑10米,哪是我的对手.比赛开始后,当小兔跑到全程一半时,发现把乌龟甩得老远,便在路旁睡着了.当乌龟跑到距终点还有40米时,小兔醒了拔腿就跑.当胜利者到达终点时,另一个距终点还有几米?
10.甲乙两车从相距800千米的两地同时相向而行,已知甲车每小时行42千米,乙车每小时行58千米,两车相遇时乙车行了多少千米?
11.一列火车通过一条长1260米的桥梁(车头上桥到车尾离桥)用了60秒,用同样的速度火车穿越2010米的隧道用了90秒,这列火车的车速和车身长度分别是多少?
12.甲、乙两站从上午6时开始每隔8分同时相向发出一辆公共汽车,汽车单程运行需45分。有一名乘客乘坐6点16分从甲站开出的汽车,途中他能遇到几辆从乙站开往甲站的公共汽车?
=54000÷10÷60
=90(分钟)
他们应该是7:30出发的。
答:小明和小红出发时间是7:30。
六年级下册数学讲义-小学奥数精讲精练:-第八讲-一笔画问题
第八讲一笔画问题一、一笔画问题问题1 你能一笔画出一个“田”字吗?所谓一笔画出的意思就是在一张纸上(不允许折叠)笔不离纸,而且每一笔划(或称线段)只能画一次,不准重复.对于“串”字或“品”字呢?结果会怎样?(参看图 8-1)通过各种尝试发现,“田”字总也不能一笔画成,而“串”字却可以一笔画成.由于“品”字中的三个“口”字不连在一起,显然也不能一笔画成.我们把那些能一笔画成的图形叫一笔画.一笔画问题主要讨论什么样的图形可以一笔画成.例 1 下列图形哪些能一笔画成?哪些不能一笔画成?经过尝试,你会发现,图 8-2(a)、(c)、(e)是可以一笔画成的.而且图(c)、(e)可从任意一点出发,一笔画成回到出发点,而图(a)只能从A (或D)点出发,一笔画成到 D(或A)点结束.如果图形非常复杂,用这种逐一尝试的方法,则所花的时间较多,且有时还无法下结论.有没有一种简便的判断方法呢?下面就来研究这个问题.上面研究的图形都是由点和线段(或弧)组成的,在数学中叫做图.图形中的点叫图的结点,线段(或弧)叫做图的边.作为一个图,其图形还必须满足以下条件:(1)每条边都有两个端点(可以重合)作为结点;(2)各条边之间互不相交.一个图完全由它的结点和边的个数以及它们相互连结的情况来确定,而与边的曲直长短无关.图中与一个结点相连结的边的条数称为这个结点的度数.度数为偶数的结点叫做偶结点.例如,图 8-3 中结点 C、D、E 都是偶结点.度数为奇数的结点叫做奇结点.例如,图 8-3 中结点A、B、F、G 都是奇结点.任何两点间都有线连接的图称作连通图.(如图8-3 中D 与G 可通过DB、BA、AG 连接)观察例 1 中的五个图,其结点的奇偶性可列成下表:从表中可以发现,一个图能否一笔画成,与图的奇结点的个数有密切联系, 人们总结出如下规律:一个图若是一笔画必定是个连通图.一个连通图,若没有奇结点(即全是偶结点),那么这个图一定可以一笔画成,而且可以从任一偶结点出发,一笔画成回到出发点.一个连通图,若只有两个奇结点,那么这个图也可以一笔画成.而且只能从某一奇结点出发一笔画成,到另一奇结点结束.一个图,若奇结点个数多于两个,那么这个图就不能一笔画成. 例 2判断下列各图是否能一笔画出来.解:其中(b)、(d)、(e)三个图无奇结点,所以可从任一点出发,一笔画成, 并且回到出发点;(a)、(f)两图各有两个奇结点,所以可从其中一个奇结点出发,一笔画成,到另一个奇结点结束;而图(C)的八个结点都是奇结点,所以不能一笔画出来.当作练习,请把例 2 中能够一笔画的图一笔画出来.二、七桥问题和欧拉定理问题 2 七桥问题.关于一笔画,曾有一个颇为著名的哥尼斯堡七桥问题.事情发生在 18 世纪的哥尼斯堡,有一条河流从这个城市穿过,河中有两个小岛 A、B,河上有七座桥连结两个小岛及河的两岸(参看图 8-5),那里的居民在星期日有散步的习惯.有的人想,能不能一次走遍七座桥,每座桥只走过一次,最后回到出发点?这个问题似乎不难,谁都想试一试,但谁也没有找到答案.后来有人写信请教著名的瑞士数学家欧拉.欧拉的头脑比较冷静,千百人的失败使他猜想:也许那样的走法根本就不存在.1936 年他证明了自己的猜想.欧拉解决七桥问题的方法独特,思想新颖,非常富有启发性.他用点表示小岛和两岸,用连结两点的线段表示连结相应两地的桥,得到由七条线段连结四个点而成的图形(参看图8-5(b)).这样七桥问题就变成了一个一笔画问题:能不能一笔画出这个图形,并且最后返回起点?前面我们虽然通过对例 1 的分析归纳出了一个连通图是否能一笔画出来的三条结论,但并没有证明,没有说明这是为什么.下面我们简要说明其中的道理.一个连通图能否一笔画成主要是与结点的边数(也称度数)有关.假定某个图能一笔画成,如果结点 P 不是起点或终点,而是中间点,那么 P 一定是个偶结点.因为无论何时通过一条边进入 P,由于不能重复,必须从另一条边离开 P,因此与 P 连结的边一定成对出现,所以 P 是偶结点.如果一个结点 Q 是奇结点,那么在一笔画中只能是起点或终点.由此可以看出,在一个一笔画中,奇结点个数至多只能有两个.由于哥尼斯堡七桥问题相应的图中有四个奇结点,所以不能一笔画成.也就是说,七桥问题无解,证实了欧拉的猜想.欧拉通过对七桥问题的研究,不仅圆满地回答了哥尼斯堡居民提出的问题, 而且得到并证明了更为广泛的上述有关一笔画的三条结论,人们通常称之为欧拉定理.1736 年,欧拉在圣彼得堡科学院作了一次报告,公布了他关于七桥问题的研究成果.欧拉在研究中提出了一种新颖的数学问题及思想方法,它标志着一门崭新的数学学科——图论的诞生.对于一个连通图,通常把从某结点出发一笔画成所经过的路线叫做欧拉路.例如,图 8-6(a)中的图无奇结点,可以从 A 点出发,一笔画成回到 A 点, 其路线为A→D→E→H→D→G→H→I→F→E→B→F→C→B→A.图8-6(b)中的图有两个奇结点 C 和E,可以从E 出发一笔画成,到 C 结束.其路线为E→D→C→B→A→C.这两条路线都是欧拉路.应当注意:一个图如果存在欧拉路,那么不一定是唯一的.人们又通常把一笔画成回到出发点的欧拉路叫做欧拉回路.具有欧拉回路的图叫做欧拉图.例如,图 8-6(a)所表示的路线就是一条欧拉回路,因此相应的图就是一个欧拉图.例3 图8-7 是一公园的平面图,线段表示路径,要使游客走遍每条路且不重复, 问出入口应设在哪里?分析与解:这个问题实质上是一个一笔画问题.图中只有两个奇结点 C 和E,因此,只要把出入口分别设在这两个奇结点处,游客就能由入口进入公园,不重复地走遍每条路,然后从出口处离开公园.例4 能否一笔画出一条曲线,使它和图 8-8 中的八条线段都只相交一次(不准在端点处相交)?分析与解:尝试几次后,会感到很难下结论.事实上,直接寻找答案并不容易.我们可从七桥问题得到启示.原图形把平面分成了五个部分,分别用 A、B、C、D、E 五个点表示.两个点之间的连线正好用来表示与相应的线段相交一次,如图 8 -8(b).于是,问题就变成了图 8-8(b)中所表示的图能否一笔画成.因为图中A、B、C、D 都是奇结点,因此,它不能一笔画成,即不存在符合题目要求的曲线.例 5 图 8-9 表示一个展览馆的平面图,其中共有五个展览室,每个展览室都有一个门通向室外.能否设计一条参观路线,一次不重复地穿过每一个门并能回到原地.分析与解:如果用 A、B、C、D、E 表示展览室,用F 表示室外,用连线表示相应的门,那么图 8-9(a)就变成了图 8-9(b)于是问题就转化为判断图 8-9(b)是否为欧拉图.由图中可以看出,点 C、D、E、F 都是奇给点,因而图 8-9(b)不具有欧拉回路.所以不是欧拉图.也就是说,不存在题中所要求的那种参观路线.可以进一步考虑,关闭了哪两个门之后,就能设计出符合题中要求的参观路线了?为此,只要使图 8-9(b)变为欧拉图,即使它的奇结点个数为 O 即可.例如抹去线段CD 和EF 后的图就没有奇结点了.也就是说,如果关闭 C、D 之间和E、F 之间的两个门,就能设计出一条参观路线,一次不重复的穿过每一个门,并能回到原地.请你试一试,同时想一想,是否还存在其它的答案,一共有几种?习题八1.判断下列各图是否能一笔画成.2.一个花园的小径如图 8-11 所示,散步者能否不重复地一次走遍全部小径?3.图8-12 中A、B、C、D 是四个防空洞,相邻防空洞之间有地道相通,且每个防空洞各有一条地道与地面相通,能否找到一条路线不重复地走遍所有地道?4.用剪刀能否一次连续剪下图 8-13 所示的纸上的 3 个正方形和2 个三角形?5.一只蚂蚁,从图 8-14 右上角长方形中 P 点出发爬行,它要越过这图中16 条线段.每条线段只能通过一次,且不能通过线段的端点,你认为存在这样的路线吗?806.图8-15 表示一个有九个展室的展览馆平面图,每相邻的展室之间都有一道门相通,能否设计一条参观路线,从入口进去,每道门只通过一次,再由出口出去?如果能,则标出参观路线;如果不能,则考虑至少要增开几道门就可设计出符合要求的路线,并标出“新门”的位置.。
六年级下册数学奥数讲义分数、百分数应用题(二)全国通用
一、 知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=. 方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、 怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相知识框架分数、百分数应用题(二)当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
六年级下册数学讲义-奥数讲与练:行程.发车间隔、接送和扶梯问题(ABC级)
发车间隔、接送和扶梯问题知识框架一、发车间隔间隔发车问题,只靠空间理想象解稍显困难,证明过程对快速解题没有帮助,但是一旦掌握了3个基本方法,一般问题都可以迎刃而解。
在班车里——即柳卡问题不用基本公式解决,快速的解法是直接画时间——距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
在班车外——联立3个基本公式好使(1)汽车间距=(汽车速度+行人速度)×相遇事件时间间隔(2)汽车间距=(汽车速度-行人速度)×追及事件时间间隔(3)汽车间距=汽车速度×汽车发车时间间隔综上总结发车问题可以总结为如下技巧(1)、一般间隔发车问题。
用3个公式迅速作答;(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡二、接送问题校车问题——行走过程描述队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地,即到达目的地的最短时间,不要求证明。
常见接送问题类型根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
三、扶梯问题1、当人顺着扶梯的运动方向走台阶时,相当与流水行船中的“顺水行驶”,这里的水速就是扶梯自身的台阶运行速度。
有:人的速度+扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速+时间×扶梯速=人走的台阶数+扶梯自动运行的台阶数2、当人沿着扶梯逆行时,有:人的速度-扶梯速度=人在扶梯上的实际速度扶梯静止可见台阶总数=时间×人速-时间×扶梯速=人走的台阶数-扶梯自动运行的台阶数。
六年级下册奥数讲义-奥数方法:代数法
在解题时,我们常常用字母(或符号)来表示数量,并根据题中的等量关系列出方程,然后通过解方程来求出问题的解,这种方法叫做代数法。
在用代数法解题的过程中,通过用字母来代替未知数,使其与已知数同等地参与列式、运算,这样有利于由已知向未知的转化,克服了平时必须避开未知数来列式的不足,使某些较复杂的、隐蔽的数量关系变得简单、明显,降低了思维难度。
用代数法解题的一般步骤:(1)审题,用字母表示所求的数量或有关的未知数;(2)找出题中数量问的相等关系,列出方程;(3)解方程;(4)检验并写出答案。
[例1】有一项工程,甲单独做需36天完成,乙单独做需30天完成,丙单独做需48天完成。
现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天。
那么,丙休息了[例2] 六年级甲、乙两班学生共有109人,已知甲班男生占甲班人数的乙班女生占乙班人数的则两班共有男生多少人?思路剖析依题意,甲班学生数应是11的倍数,设为11x;乙班的学生数应是9 的倍数,设为9y,,从而有11x+9y=109,求出这个不定方程的整数解,问题就可得到解决。
解答设甲班的学生数为llx,乙班的学生数为9y,依题意有llx+9y=109这个方程可以变为9y=109-llx因为左边是自然数,所以x最大等于9。
当x取1、2、3、4、6、7、8、9 时,右边都不是9的倍数;只有当x=5时,右边等于54,是9的倍数,此时y=6,所以x=5,y=6是这个方程惟一的一组解。
甲班有学生11 x 5=55(人),乙班有学生9×6=54(人)两班共有男生答:两班共有男生60人。
[例3】一个人将弹子放进两种盒子里,每个大盒子装12个,每个小盒子装5个,恰好装完。
如果弹子数为99,问两种盒子各有多少个?思路剖析把大、小盒子的个数都设出来,结合大、小盒子装的数量及弹子的总数就可列出一个不定方程。
解这个不定方程,就可求出两种盒子各有多少个。
六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用
1
,第二天比
2
【巩固】 迎 春农机厂计划生产一批插秧机,现已完成计划的 划产量的 16%.那么,原计划生产插秧机台.
56%,如果再生产 5040 台,总产量就超过计
【例 9】 某运输队运一批大米. 第一天运走总数的 1 多 60 袋,第二天运走总数的 1 少 60 袋.还剩下 220
5
4
袋没有运走。这批大米原来一共有多少袋?
我国人口是部分数, 世界人口就是单
位“ 1”。
解答题关键:只要找准总数和部分数,确定单位“
1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是
带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通
常就作为标准量,也就是单位“ 1”。
分数、百分数应用题(二)
知识框架
一、 知识点概述:
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一
方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”
之间的对应是解题的关键. 关键: 分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称
【例 6】 一个机关精简机构后有工作人员 120 人,比原来工作人员少 40 人,精简了百分之几?
【巩固】 小 强看一本书,每天看 15 页, 4 天后加快进度,又看了全书的 多少页?
2 ,还剩下 30 页,这本故事书有 5
【例 7】 有男女同学 325 人,新学年男生增加 25 人, 女生减少 5%,总人数增加 16 人,那么现有男同学 多少人?
六年级下册奥数讲义-奥数方法:归纳法与数列分析法
专题4 归纳法与数列分析法按照一定次序排列的一列数叫做数列,数列中的每一个数都叫做这个数的项。
如l、3、5、7、9、…,这样的一列数叫做数列,1是这个数列的项,7和9也是。
数列问题主要有两类:一类是找规律求出数列中的某一项;另一类是求数列中某些项的和。
任何事物的发展变化都是有规律可循的,这就需要我们去观察、思考、分析,找出数列中各项之间的关系,对数进行加、减、乘、除等运算。
高斯算法就是我们求数列中一些项的和的方法,还有其他几种方法,我们将在下面陆续介绍。
【例1】仔细观察下面的数列,找出其中的规律,并根据规律在括号中填上合适的数。
(1)1、3、5、7、( )、ll、13、( )(2)50、48、46、( )、42、40、( )、36(3)1、2、4、8、( )、32、64、( )(4)243、81、( )、9、3、( ) ,分析与解答(1)仔细观察这列数,可以发现如下规律,1+2=3,3+2=5,5+2= 7。
ll+2:13,也就是数列中的每一项都等于它的前一项加上2。
按照这样的规律,紧跟在7后面的数应该是7+2=9,13后面的数应该是13+2= 15.因此这个数列就是:1、3、5、7、9、11、13、15 0、(2) 细心观察相邻两项的差,可以发现如下规律:50—48=2,48-46 =2,42-40=2,差为常数2,也就是说这个数列中每一项都等于这项的前一项减去2,按照这个规律可以知道紧跟在46后面的数应该是46-2=44.而40后面的数应该是40-2=38,所以这个数列是:50、48、46、44、42、40、38、36(3)通过观察可以发现,数列中存在这样的规律:l×2=2,2×2=4,4×2=8。
32×2=64,也就是说这个数列中的每一项乘以2与紧接着这一项后的那个数相等,按照这个规律,在8后面应该填的数是8×2=16,64 后应谊填64×2=128,所以这个数列是:1、2、4、8、16、32、64、128(4) 这个数列中243÷3=81,9÷3=3,通过这样的计算,可以猜测这个数列的规律是数列中相邻两项的商为3,这样81后可以填上81÷3=27。
六年级下册奥数经典培训讲义——行程问题8 全国通用 无答案
行程问题(八)姓名1、一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高91,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高31,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米?2、从甲地到乙地的公路 只有上坡路和下坡路,没有平路。
一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米。
车从甲地开往乙地需9时,从乙地到甲地需7.5时。
问:甲乙两地间的距离公路有多少千米?从甲地到乙地须行驶多少千米上坡路?3、小明放学回家,他沿一路电车的路线步行,他发现每隔六分钟,有一辆一路电车迎面开来,每隔12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?4、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?5、小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来,每隔9分钟就有一辆公共汽车从背后超过她。
如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?6、小明从东城到西城去,一共用了24分钟。
两城之间同时并且每隔相等的时间对发一辆公共汽车。
他出发时恰好有一辆公共汽车从东城发出,之后他每隔4分钟看见一辆公共汽车迎面开来,每隔6分钟有一辆公共汽车从背后超过。
问小明从东城出发与到达西城这段时间内,一共有多少辆公共汽车从东城发出?7、有一路电车的起点站和终点站分别是甲站和乙站。
每隔5分钟有一辆电车从甲站出发开往乙站。
全程要走15分钟。
有一个人从乙站出发沿电车路线骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车,才到达甲站。
六年级下册春季奥数培优讲义——6-01-真题汇编-平面图形-学生
第1讲平面图形【学习目标】1、复习平面图形;2、熟悉小升初的常见题型。
【知识梳理】在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
【典例精析】1、如图、四边形ABCD是一个正方形,其中几块同影部分的面积如图所示,则四边形BMQN的面积为。
2、如图所示,正方形ABCD的面积是20,AE=ED,EF=3FC,则三角形ABF的面积是。
3、如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成。
求阴影部分的面积。
4、如图,在梯形ABCD 内有两个三角形的面积分别是10与12,已知梯形的上底AB 长是下底CD 长的32,那么余下阴影部分的面积是多少?5、如图所示,梯形ABCD 的面积为117平方厘米,AD//BC,EF=13厘米,MN=4厘米,又已知EF ⊥MN 于0点,那么阴影部分的总面积为多少平方厘米?6、已知图中△ABC 的每边长是96cm ,用折线把这个三角形分割成面积相等的四个三角形,则线段CE 和CF 的长度之和为 cm 。
7、如图,已知三角形ABC 面积为1,延长AB 至D ,使BD =AB ;延长BC 至E ,使CE =BC ;延长CA 至F ,使AF =2AC ,求三角形DEF 的面积。
8、如图,在三角形ABC 中,AE=BE ,AD=32CD ,如果三角形ABC 的面积是30平方厘米,那么四边形ADFE 的面积是 平方厘米。
9、如图,已知三角形ABC 的面积为8平方厘米,AE=ED, BD=32BC ,求阴影部分的面积。
10、在四边形ABCD 中,AB =3BE ,AD =3AF ,四边形AEOF 的面积为12,那么平行四边形BODC 的面积为多少?11、如图,在四边形ABCD 中,DCFG 为正方形,ABED 为梯形,DE=12厘米,DG=9厘米,AB=20厘米,梯形ABED 的面积是多少平方厘米?12、如图,在平行四边形ABCD 中,AE=32AB,BF=43BC,AF 与CE 相交于0点,已知BC 的长是16厘米,BC 边上的高是9厘米,那么四边形AOCD 的面积是多少平方厘米?13、如下图所示,有一张斜边为21厘米的红色直角三角形纸片,一张斜边为36厘米的黄色直角三角形纸片,一张蓝色正方形纸片拼成一个直角三角形,红黄两张三角形纸片的面积之和是多少?14、如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是____平方厘米.15、如果,图中三个圆的周长都是25.12厘米圆心恰在直角梯形的三个顶点处,则圆与梯形重叠部分的面积是平方厘米。
六年级下册奥数讲义-奥数方法:类比转化法
我们在碰到一些较难的应用题时,有时难以理清数量之间的种种关系。
这时可以转换一个角度去思考,问题也往往迎刃而解了。
这种把要解决的问题变换为另一个与之有关系的问题去解答的方法就是类比转换法。
类比转化的方向是变繁为简,变生疏为熟悉,变隐含为显现,化难为易。
转化的对象是题知中的条件或图形,有时甚至是整个问题。
解题思路包括:审题、找类比转化模型、解答三个步骤,其中寻找模型最为关键。
进行转化的方法有两种,一种是等价转换法,一种是不等价转换法。
其中等价转换法是把问题A转化成新问题B后,两个问题的答案完全一样,而不等价转化法则是原问题A与转化后的新问题B并不等价,但通过解答问题B,很容易就可以找到原问题A的答案。
[例1] 分数的分子和分母同时加上一个相同的数,使分数变成问:这个加上的数是多少?思路剖析本题的要求是要我们求分子和分母同加上什么数,使分数的分母是分子的5倍。
因为分子和分母不管加上什么数,它们的差(71-3=)68是不变的,所以,根据这一特点,我们一定会想起本题和年龄问题相类似。
例如,儿子今年6岁,父亲33岁,问几年以后父亲的年龄正是儿子的4倍。
儿子今年6岁,父亲33岁,父子俩年龄差为(33-6=)27岁,因为儿子长几岁,父亲也长几岁,他们的年龄差不变。
几年后父亲的年龄是儿子的4倍,27岁相当于几年后儿子年龄的(4—1=)3倍。
用除法即可求出几年后儿子的年龄是(33-6)÷(4-1)=9岁,9-6=3年,也就是3年后父亲的年龄是儿子年龄的4倍。
从这道年龄问题的解题方法中,可以类比出原题的解题方法。
原题的分母与分子的差是(71-3=)68,分子和分母加上同一个数后,使分数变成即分母是分子的5倍,58相当于新分子的(5-l=)4 倍,用除法可求出新分子,进而再求出分子、分母同加上的是什么数。
解答(71-3)÷(5-1)-3=68÷4-3=17-3=14答:这个加上的数是14。
小升初典型奥数:多次相遇问题+(讲义)-2023-2024学年六年级下册数学
多次相遇问题【知识精讲+典型例题+高频真题】第一部分知识精讲知识清单方法技巧第二部分典型例题例题1:甲、乙两车同时从东城出发,开往相距750千米的西城,甲车每小时行68千米,乙车每小时行57千米,甲车到达西城后立刻返回.两车从出发到相遇一共经过多长时间?【答案】12小时【分析】甲车到达西城后返回与乙车相遇时,两车一共走了2个全程.【详解】750×2÷(68+57)=1500÷125=12(小时)答:两车从出发到相遇一共经过12小时.例题2:小新、正南、妮妮三人同时从学校出发到公园去。
小新、正南两人的速度分别是每分钟20米和每分钟16米。
在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度。
【答案】13米/分钟【分析】当小新和风间相遇时,正南落后小新6×(20-16)=24(米)。
依题意知正南和风间走这24米需要7-6=1(分钟),正南和风间的速度和为24÷1=24(米/分),风间的速度为:24-16=8(米/分),风间和小新相遇后又过了8-6=2分钟,才与妮妮相遇,所以在8分钟中妮妮的行程为20×6-8×2=104(米),根据速度=路程÷时间,即可解答。
【详解】风间的速度:(20-16)×6÷(7-6)-16=4×6÷1-16=24÷1-16=24-16=8(米/分)妮妮的速度:(20×6-8×2)÷8=(120-16)÷8=104÷8=13(米/分)答:妮妮的速度是13米/分。
【点睛】这是一个多重相遇和追及的问题,考查学生分析与理解能力。
例题3:甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【答案】100【详解】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000×=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3.5300014003.54×=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100−=米才能回到出发点.例题4:快、慢两车同时从甲、乙两车站迎面开来,快车每小时行驶100km,慢车每小时行驶65km.两车到达车站后立即往回开,第二次相遇时快车比慢车多行驶了210km.求甲、乙两车站间的距离.【答案】330km【详解】快车慢车总共花的时间是一样的.快车每小时比慢车多走35千米,多行驶了210千米,说明一共行驶了210÷35=6小时.第二次相遇两辆车一共行驶了3个车站的距离.(100+65)×(210÷35÷3)=330(km)例题5:甲乙两人同时从A、B两地出发相向而行,两人在离A地90米处第一次相遇,相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距B地70米处第二次相遇.两人从第一次相遇到第二次相遇恰好经过了5分钟,甲、乙两人的速度是多少?【答案】甲的速度为每分钟36米,乙的速度为每分钟44米【详解】解:A、B间距离:90×3-70=270-70=200(米)甲的速度:90÷(5÷2)=90÷2.5=36(米)乙的速度:(200-70+90)÷5=220÷5=44(米)答:甲的速度为每分钟36米,乙的速度为每分钟44米.【点睛】两人第一次相遇时,合行的路程是A、B之间的距离.两人从出发到第二次相遇时,合行的路程是三个A、B之间的距离,即从第一次相遇到第二次相遇所行的路程应是从出发到第一次相遇的两倍.因此甲从第一次相遇到第二次相遇所行的时间也是从出发到第一次相遇时间的两倍,所以甲行90米用了5分钟的一半时间.第三部分高频真题1.甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶.甲、乙两车的速度比为3:7,并且甲、乙两车第1996次相遇的地点和第1997次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇).那么,A、B两地之间的距离是多少千米?2.甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.3.甲、乙二人分别从A、B两地同时出发,往返跑步.甲每秒跑3米,乙每秒跑7米.如果他们的第四次相遇点与第五次相遇点的距离是150米,求A、B两点间的距离为多少米?4.如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?5.每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?6.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?7.有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?8.张华和李冰分别从A、B两地同时出发相向而行,张华的速度是李冰的56,两人分别到达B地与A地后,立即返回各自的出发地。
六年级下册奥数讲义-小学奥数盈亏问题专题讲解 人教版含答案
小学奥数盈亏问题专题讲解一、基本题型第一类:一盈一亏例1:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还少4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以不仅把那剩下的16块分完,还少4块,总数上,第二次比第一次多16+4=20块.换句话说:每人多分2块,就得多分20块,我们就可以算出有多少人了,20÷2=10人,那总饼干数就是:10×3+16=46或10×5-4=46第二类:二次都是盈例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就多4块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还剩16块第二种分法:每人5块,还多4块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由剩下16块变成只剩下4块,总数上,第二次比第一次多16-4=12块.换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3+16=34或6×5+4=34第三类:二次都是亏例:阿姨给幼儿园小朋友分饼干.如果每人分3块,则少4块饼干;如果每人分5块,那么就少16块饼干.问有多少小朋友,有多少块饼干?分析:依题中条件,我们可知:第一种分法:每人3块,还少4块第二种分法:每人5块,还少16块我们可以比较看出:由于第二种分法比第一种分法每人多分了2块,所以饼干由少4块变成了少16块,总数上,第二次比第一次多16-4=12块.换句话说:每人多分2块,就得多分12块,我们就可以算出有多少人了,12÷2=6人,那总饼干数就是:6×3-4=14或6×5-16=14二、变化题型语言上的变化例1:同学去划船,如果每只船坐4人,则少1只船;如果每只船坐6人,则多出4只船,问同学们共多少人?租了几只船?分析:讲解时,可先让学生练习以下这道题,引导学生在对比两道例题异与同,进行条件转换.(同学去划船,如果每只船坐4人,则多4人;如果每只船坐6人,则少24人,问同学们共多少人?租了几只船?) 例2:学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?分析:仔细观察,发现第一次分法与基本题型的分法不一样,有什么办法转换过来?由其中两人各擦4块、其余各擦5块则余12块,可知,若每人都擦5块,则余12-(5-4)×2=10块,而每人擦6块则正好.可见每人多擦一块可把余下的10块擦完.则擦玻璃人数是[12-(5-4)×2]÷(6-5)=10(人),玻璃的块数是6×10=60(块).三、特殊例题1.钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角.问小明带了多少钱?分析:关键在于条件的转换,要么都转换成钢笔,要么都转换成圆珠笔.解1:都转换成钢笔;买5支钢笔差15角,买8支钢笔差(12×8-6)90角,这是双亏:分差是(8-5)3支,总差是(90-15)75角,就是说多买3支,就多差75角;这样就可求出1支钢笔多少钱;继而求出小明带了多少钱.[(12×8-6)-15]÷(8-5)=75÷3=25(角)--钢笔的价钱25×5-15=125-15=110(角)=11(元)--小明带得钱数解2:都转换成圆珠笔;买5支圆珠笔多(12×5-15)45角,买8支圆珠笔多6角.[(12×5-15)-6]÷(8-5)=39÷3=13(角)--圆珠笔的价钱 13×8+6=104+6==110(角)=11(元)--小明带得钱数2.某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加 10个,问这批学生可能有多少人?解答:关键在于条件的理解,每个寝室安排8个人,要用33个寝室;因没说盈或亏,我们只能认为至少有:(33-1)×8+1=257(人);至多有:33×8=264(人);每个寝室少安排2个人,寝室就要增加10个,也没说盈或亏,我们也只能认为至少有:(33+10-1)×(8-2)+1=253(人);至多有:(33+10)×(8-2)=258(人);根据这两个条件可以得到人数在257与258之间.(至少取大数,至多取小数,)3.有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问第二组有多少人?解答:因分给第一组,那么每人4本,有剩余;每人5本,书不够.说明第一组的人数不到48÷4=12人,多于(48÷5=9…3)9个人,即10到11人;同理,第二组不到48÷3=16人,又多与48÷4=12人,即13到15人,因15-10=5(人);由此可知:第一组是10人,第二组是15人.4.“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?分析:根据题意我们可知盒内的球的数量一定是2、3、5的倍数,假设1份球数是30个;原来各买一份要:30÷2+30÷3=15+10=25(元);现在要(30+30)÷5×2=24(元);即小明每买30+30=60个球,就可以少花1元钱,那么小明一共就买了4×60=240个球.。
六年级下册奥数第36讲 流水行船问题
第36讲流水行船问题讲义知识要点当你逆风骑自行车时有什么感党?是的,逆风时很大力气,因为面对的是迎面吹来的风。
当顺风时,借着风力,相对而言用力较少。
在你的生活中是否也遇到过类似的如流水行船题?解答这类题的要素有下列几点:水速、流速、划速、距离。
解答这类题与和差问题相似:划速相当于和差问题中的大数,水速相当于小数,顺流速度相当于和数,逆流速度相当于差数。
划速=(顺流船速+逆流船速)÷2;水速=(顺流船速-逆流船速)÷2;顺流船速=划速+水速;逆流船速=划速-水速;顺流船速=逆流船速+水速×2;逆流船速=顺流船速-水速×2。
例1、一条轮船往返于AB两地之回,由A地到B地是顺水航行,由B地到A地是逆水航行。
已知船在静水中的速度是20千米/时,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。
练习:1、水流速度是15千米/时。
现在有船顺水而行,8小时行320千米。
若逆水行320千米需几小时?2、水流速度是5千米/时。
现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?3、一船从A地顺流到B地,船在静水中的速度是32千米/时水流速度是4千米/时,212天可以到达。
此船从B地返回至A地需多少小时?例2、有一船行驶于120千米长的河中,逆行需10小时,顺行需6小时,求划速和水速。
练习:1、有只大木船在长江中航行。
逆流而上5小时行5千米,顺流而下1小时行5千米。
求这只木船的划船速度和河水的流速各是多少?2、有一船完成360千米的水程运输任务。
顺流而下30小时到达,但逆流而上则需60小时。
求河水流速和静水中划行的速度各是多少3、一海轮在海中航行。
顺风每小时行45千米,逆风每小时行31千米。
求这艘海轮的划行速度和风速各是多少?例3、轮船以同一速度往返于两码头之间。
它顺流而下,行了8小时;逆流而上,行了10小时。
如果水流速度是3千米/时,求两码头之间的距离。
小升初典型奥数:立体图形的表面积和体积 (讲义)-2023-2024学年六年级下册数学人教版
=160×80×2
=25600(平方厘米)
80×45×2+100×45×2
=180×45×2
=16200(平方厘米)
答:刷浅黄色的面积为25600平方厘米;油绿色面积为16200平方厘米.
【点评】本题主要运用长方形面积公式:长方形面积=长×宽,解决问题.
1.一个长方体容器长10厘米,宽10厘米,高20厘米,盛满水后,将容器绕着靠地面的一条棱倾斜45°,求容器内剩下水的体积。
(1)如果要在领奖台的表面喷漆(底面不喷漆),需要喷漆的面积是多少?
(2)这个领奖台的体积是多少?
34.有一个形状如图的零件.(单位:dm)
①一个碗的高度是多少厘米?
②把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?
③一个长方体木箱子内部高度是25cm,最高的一摞最多能摆下几个碗?
④量得碗口的直径是6厘米,这个长方体木箱子的底面的长28厘米,宽22厘米,这个木箱最多可放下多少个这样的碗?
12.计算下面物体的体积和表面积
13.如图的物体摆放在地面上(如图,单位:分米),露在外面的面积和是多少平方分米?
(1)一共有多少个面露在外面?
(2)露在外面的面积是多少cm2?
27.如图所示是一个用棱长为1厘米的小正方体木块堆放而成的物体。
(1)这个物体的表面积是多少平方厘米?
(2)要把这个物体补成一个大正方体,这个大正方体的表面积至少是多少平方厘米?
28.有5个棱长是20cm的正方体纸盒放在墙角处(如图),有几个面露在外面?露在外面的面积一共有多少平方厘米?
不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”合并使用才能解决.
小升初典型奥数:百分数问题(讲义)-2023-2024学年六年级下册数学通用版
解得x=10000元.
答:甲原来有10000元.
【点睛】本题考查的是利息问题和利润问题的综合求解.在计算本息和时最好写成x(1+4%),这样后面的也可以直接写为x(1+4%)(1+2%)了,比较简单明了方便计算.推而广之,在计算所有增加或者减少分率时都可以这样处理,一般公式为单位“1”×(1±增加或减少分率).
8.国家规定个人发表文章,出版图书获得稿费的计算方法是:①稿费不高于800元的不纳税;②稿费高于800元又不高于4000元的应缴纳超过800元的那一部分的14%的税;③稿费高于4000元的应缴纳全部稿费的11%的税。今得知丁老师获得一笔稿费,并且依法缴纳个人所得税420元,问丁老师这笔稿费是多少元?又得知马老师获得一笔稿费,并且依法缴纳个人所得税550元,问马老师这笔稿费是多少元?
17.李校长向某课桌生产厂订购了定价为100元的课桌80套.李校长对厂长说:“如果你肯减价,那么每减价1元,我们就多订购4套.”厂长听后算了一下:若减价5%,则由于李校长多订购,所获利润反而比原来多100元.问这种课桌每套的成本价是多少元?
18.某商店同时卖出两件商品,每件60元,但其中一件赚20%,另一件亏本20%,问这个商店卖出这两件商品是赚钱还是亏本?
11.某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价85%出售,蓝笔按定价80%出售.结果他付的钱就少了18%.已知他买了蓝笔30支,问红笔买了几支?
12.某商场在迎元旦展销期间,将一批电视机降价出售.如果打九折出售,可盈利215元;如果打八折出售,亏损125元.此电视机的购入价是多少元?
小升初奥数培优:年龄问题(讲义)-2023-2024学年六年级下册数学人教版
年龄问题(知识梳理+典例分析+高频考题+答案解析)一、年龄问题的基本特征1、年龄差不变:这是年龄问题中最核心、最基本的特征。
无论过了多少年,两个人之间的年龄差都是恒定的,不会发生变化。
2、年龄同时增加或减少:两个人的年龄是同时增加的,也是同时减少的。
例如,如果过了一年,两个人的年龄都会各自增加一岁。
3、倍数关系变化:虽然年龄差不变,但是两个人年龄之间的倍数关系可能会随着年龄的增长而发生变化。
二、年龄问题的常见题型1、和差年龄:给出两个人的年龄和与年龄差,求两个人的年龄。
这类问题可以通过简单的算术运算来解决,例如加减法和除法。
2、和差倍年龄:在给出年龄和与年龄差的基础上,还涉及到倍数关系。
这类问题通常需要通过列方程来求解,利用年龄差和倍数关系建立等式,然后解方程得出答案。
3、间接年龄差:题目中并没有直接给出年龄差,但是通过其他条件可以间接求出年龄差。
这类问题需要灵活运用题目中的条件,通过推理和计算来求出答案。
三、年龄问题的解题技巧1、理解题意:认真阅读题目,理解题目中描述的年龄关系和变化。
这是解题的第一步,也是非常重要的一步。
2、设定变量:对于含有多个未知数的年龄问题,可以设定变量来表示每个人的年龄。
例如,用x表示某人的年龄,y表示另一个人的年龄。
3、列方程:根据题目中给出的信息,列出方程来表示年龄关系。
然后,通过解方程来求出答案。
4、使用表格:对于涉及到多个人的年龄问题,可以使用表格来表示每个人的年龄和年龄关系。
这样,可以更直观地观察年龄变化和关系,有助于理解和解决问题。
5、代入排除法:如果题目给出了多个选项,可以尝试代入每个选项,验证是否符合题目条件。
这种方法在选择题中特别有用。
四、年龄问题的注意事项1、注意年龄差的计算:在计算年龄差时,要确保使用的是同一时间点的年龄。
2、注意倍数关系的变化:在解决和差倍年龄问题时,要注意倍数关系可能会随着年龄的增长而发生变化。
因此,在列方程时要特别注意这一点。
六年级下册春季奥数培优讲义——6-05-真题汇编-工程问题-学生
第5讲 工程问题【学习目标】1、复习工程问题;2、熟悉小升初的常见题型。
【知识梳理】1、基础公式:(1)工作量=工作效率×工作时间;(2)工作时间=工作量÷工作效率;(3)工作效率=工作量÷工作时间。
2、常用方法:(1)分工法;(2)比例法。
【典例精析】1、修一条公路,计划每天修60米,实际每天多修15米,结果提前4天修完,一共修了多少米?2、有一批零件由甲、乙两人合作完成,原计划甲比乙多做50个,结果乙实际做的比计划少70个,比甲实际做的总数的53多10个,这批零件共有多少个?3、一项工程,甲单独做40天完成,乙单独做60天完成。
现在两人合作,中间甲因病休息了若干天,所以经过27天才完成。
甲休息了多少天?4、单独完成某路段维修工程,甲队需10天,乙队需15天,丙队需20天。
开始三个队一起开工,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。
问:甲队实际工作了几天?5、加工一批零件,甲、乙两人合作需要12天完成,现在由甲先做3天,然后由乙做2天,还6、加工一批服装,原计划甲、乙两车间在25天合作完成,甲、乙合作10天后,甲单独做8天,接着乙又单独做14天,这样共完成全部任务的81%,已知甲比乙每天多做10套,求计划加工多少套服装?7、甲、乙、丙合作一项工程,4天干了整个工程的31,这4天内,除丙外,甲休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍,问工程前后一共用了多少天?8、甲、乙、丙三人去完成植树任务,已知甲植1棵树的时间,乙可以植2棵树,丙可以植3棵树,他们先一起工作了5天,完成全部任务的31,然后丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务。
从开始植树算起,共用了多少天才完成任务?9、甲、乙、丙三人合着做一项工程,甲、乙合作6天完成31,乙、丙合作2天完成余下工程的41,剩下的再由甲、乙、丙三人合作5天完成,共领工程款18000元,按工作量分配,甲应得多少元?10、一项工程,甲、乙合作需要20天完成,乙、丙合作需要15天完成,由甲、丙合作需要12天完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数讲义下:巧求面积习题
直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACDE 与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(△ANE、△NPD与梯形BTFG)的总面积等于多少?
从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是______平方厘米。
下图中,ABCD是边长为1的正方形,A,E,F,G,H分别是四条边AB,BC,CD,DA 的中点,计算图中红色八边形的面积。
求面积答案:
至此,我们对各部分的面积都已计算出来,如下图所示.
【又解】设O为正方形中心(对角线交点),连接OE、OF,分别与AF、BG交于M、N,设AF与EC的交点为P,连接OP,△MO F的面积为正方形面积的,N为OF中点,△OPN 面积等于△FPN面积,又△OPN面积与△OPM面积相等,所以△OPN面积为△MOF面积的,为正方形面积的,八边形面积等于△OPM面积的8倍,为正方形面积的.
如右图,在以AB为直径的半圆上取一点C,分别以AC和BC为直径在△ABC外作半圆AEC和BFC.当C点在什么位置时,图中两个弯月型(阴影部分)AEC和BFC的面积和最大。
如图,已知边长为5的额正方形ABCD和边长为的正方形CEFG共顶点C,正方形CEFG绕点C旋转60°,连接BE、DG,则ΔBCE的面积与ΔCDG的面积比是_____.
1、有10张扑克牌,点数分别为1,2,3,…,9,10。
从中任意取出若干张牌,为了使其中必有几张牌的点数之和等于15,问最少要取多少张牌?
2、在三角形ABC中,点E是BC边上的中点,点F是中线AE上的点,其中AE=3AF,并且延长BF与AC相交于D,如下图所示。
若三角形ABC的面积为48,请问三角形AFD的面积为多少?
六年级奥数下册:第五讲巧求面积习题。