奥数专题之列方程解题

合集下载

五年级奥数列方程解应用题

五年级奥数列方程解应用题
五年级奥数列方 程解应用题
大家好
1
1.某果园向市场运一批水果,原计划每车装1.6 吨,实际每车装2吨,结果少了4车,一共有多少 辆车?
解:设一共有X辆车 1.6X=2(X-4) 解得 X=20
答;一共有20辆车.个同学参加植树,男生平均每人种3棵, 女生平均每人种2棵,已知男生比女生多种56棵, 男、女生各有多少人?
解:168÷21=8(天) 设有X个晴天,则雨天有(8-X)个
24X+16(8-X)=168 解得 X=5
答:一共有5个晴天.
大家好
7
7.甲乙两个仓库共有大豆138吨,若从甲仓 库运走30吨,从乙仓库运走35吨,这时乙仓 库比甲仓库的一半还多4吨,求两个仓库原 来各有大豆多少吨?
解:设甲仓库有X吨,则乙仓库有(138-X)吨 (138-X)-35- (X-30) ÷2=4 解得:X=76 当X=76时 138-X=62
解:设男生有X人,则女生有(42-X)人 3X-2(42-X)=56 解得 X=28
当X=28时 42-X=14 答:男生有28人,女生有14人.
大家好
3
3.学校买来科技书的册数是文艺书册数的 1.4倍,如果再买12册文艺书,两种书的册数 相等。学校买来两种书各有多少册?
解:设文艺书买来X册,则科技收买来1.4X册 X+12=1.4X 解得 X=20
答:每张桌子60元,每把椅子20元.
大家好
5
5.东方小学五年级举行数学竞赛,共10 个赛 题每做对一题得8分,错一题倒扣5分,张华 全部解答,但只得41分,他做对多少题?
解;设张华做对X道题,则他做错(10-X)道题. 8X-5(10-X)=41 解得: X=7
答:张华做对了7道题.

四年级奥数方程式计算题

四年级奥数方程式计算题

四年级奥数方程式计算题一、方程式计算题。

1. 已知3x + 5 = 20,求x的值。

- 解析:方程3x+5 = 20,我们要使含有x的项在等式一边,常数项在另一边。

那么先将等式两边同时减去5,得到3x+5 - 5=20 - 5,即3x = 15。

然后再将等式两边同时除以3,得到x=(15)/(3)=5。

2. 2x - 7 = 9,求x的值。

- 解析:对于方程2x - 7=9,先将等式两边同时加上7,得到2x-7 + 7=9 + 7,也就是2x = 16。

再将等式两边同时除以2,x=(16)/(2)=8。

3. 5x+3x = 40,求x的值。

- 解析:方程左边5x+3x=(5 + 3)x=8x,那么原方程就变为8x = 40。

将等式两边同时除以8,x=(40)/(8)=5。

4. 9x-4x = 30,求x的值。

- 解析:方程左边9x - 4x=(9 - 4)x = 5x,原方程变为5x = 30。

等式两边同时除以5,x=(30)/(5)=6。

5. 2(x + 3)=18,求x的值。

- 解析:先将等式左边的括号展开,2(x + 3)=2x+6,原方程变为2x+6 = 18。

等式两边同时减去6,得到2x+6 - 6=18 - 6,即2x = 12。

再将等式两边同时除以2,x=(12)/(2)=6。

6. 3(x - 2)=15,求x的值。

- 解析:先展开括号,3(x - 2)=3x - 6,原方程变为3x - 6=15。

等式两边同时加上6,得到3x-6 + 6=15 + 6,即3x = 21。

再将等式两边同时除以3,x=(21)/(3)=7。

7. 4x+2 = 3x+8,求x的值。

- 解析:要使含x的项在等式一边,先将等式两边同时减去3x,得到4x+2 - 3x=3x+8 - 3x,即x + 2=8。

然后等式两边同时减去2,x=8 - 2=6。

8. 5x-3 = 4x+7,求x的值。

- 解析:等式两边同时减去4x,得到5x-3 - 4x=4x+7 - 4x,即x - 3=7。

五年级奥数之列方程解决问题

五年级奥数之列方程解决问题

五年级奥数之列方程解决问题1、已知连续的5个奇数的和是45,求这5个连续奇数分别是多少?设这5个连续奇数的中间那个数为x,则它们分别为x-4,x-2,x,x+2,x+4.根据题意可列出方程:(x-4)+(x-2)+x+(x+2)+(x+4)=45,化简得5x=45,解得x=9.因此这5个连续奇数分别为5,7,9,11,13.2、两个城市相距255千米,甲乙两辆汽车,同时从两个城市出发相向而行。

甲车的速度是42千米/时,乙车的速度是43千米/时,两车几小时后还相距85千米?设两车相遇的时间为t,则根据题意可列出方程:42t+43t=255-85,化简得t=2.因此两车相遇的时间为2小时。

3、两块地一共100公顷,第一块地比第二块地的3倍多20公顷,这两块地各有多少公顷?设第二块地的面积为x公顷,则第一块地的面积为3x+20公顷。

根据题意可列出方程:x+3x+20=100,化简得x=20.因此第一块地的面积为80公顷,第二块地的面积为20公顷。

4、鸡兔同笼,数头有10只,数脚共有24只,鸡兔各有多少只?设鸡的数量为x,兔的数量为y,则根据题意可列出方程:x+y=10,2x+4y=24.化简第二个方程得x+2y=12,两式相减可得y=4,代入第一个方程得x=6.因此鸡有6只,兔有4只。

5、父亲今年的年龄是儿子年龄的4倍,8年后父亲年龄与儿子年龄的和是61,父亲和儿子今年各多少岁?设儿子今年的年龄为x岁,则父亲今年的年龄为4x岁。

根据题意可列出方程:4x+8+x+8=61,化简得x=5.因此儿子今年5岁,父亲今年20岁。

6、有黑白棋子一堆,其中黑子个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取了多少次后,XXX只剩下1个,而XXX还剩下18个?设白子的数量为x,黑子的数量为2x,则根据题意可列出方程:2x-18=4n,x-1=3n,其中n为取的次数。

化简得x=7,因此白子的数量为7个,黑子的数量为14个,取了4次。

五年级奥数之列方程解决难题

五年级奥数之列方程解决难题

五年级奥数之列方程解决难题介绍本文档将介绍如何解决五年级奥数中的列方程难题。

通过掌握以下方法和技巧,学生们可以更好地应对这类问题,并在奥数考试中获得更好的成绩。

步骤1. 理解问题理解问题在解决列方程问题之前,首先要确保对问题的要求和条件有一个清晰的理解。

仔细阅读问题,并提炼出关键信息,理解方程中的变量和关系。

2. 归类信息归类信息将问题中给出的信息逐步归类,可以帮助我们更好地组织思路。

将已知信息与未知量分开,以便于建立方程。

3. 建立方程建立方程利用已知信息和问题要求,建立代数方程。

根据情况选择合适的变量和关系表达式,并建立方程。

4. 解方程解方程通过运用数学方法,解方程以求得变量的值。

可以利用消元法、代入法或逆运算等方法来求解。

5. 验证答案验证答案解得的方程的解是否符合原问题要求。

将解代入原方程中,验证方程两边是否相等。

只有在验证通过的情况下,我们的答案才是正确的。

技巧以下是一些解决列方程难题的技巧和策略:- 画图辅助画图辅助对于一些较为复杂的列方程问题,可以使用画图来辅助理解。

通过将问题转化为图形,我们可以更直观地看到问题中的关系,更容易建立方程。

- 模拟推理模拟推理对于一些不确定的情况,可以通过模拟推理来解决问题。

通过尝试不同的数值或假设,在不破坏问题本身的前提下,验证不同情况下的结果。

- 实际应用实际应用了解列方程在实际生活中的应用场景,有助于对问题的理解和解题思路的形成。

通过与实际情境的联系,我们可以更好地理解问题,并更容易建立方程和解决问题。

总结通过理解问题、建立方程、解方程和验证答案的步骤,以及使用画图辅助、模拟推理和实际应用的技巧,五年级学生可以更好地解决列方程难题。

通过不断练和应用这些方法和技巧,他们可以提高奥数成绩,并在数学研究中取得更好的进步。

五年级奥数行程问题(三)列方程解行程问题

五年级奥数行程问题(三)列方程解行程问题

,乙每分钟走45米。经过几分钟B地在甲、乙两人之间的中点处?
2,东、西两镇相距60千米。甲骑车行完全程要4小时,乙骑车行完全程要5小时。现在两人 同时从东镇到西镇去,经过多少小时后,乙剩下的路程是甲剩下路程的4倍?
3,老师今年32岁,学生今年8岁。再过几年老师的年龄是学生的3倍?
例4: 快、慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米。途中快车 因故停留3小时,结果两车同时到达B地。求A、B两地间的距离。
分析与解答:
因为这位同学在前一半时间跑步的速度大于后一半时间跑步的速度,所以前一半时间所跑的 路程一定大于半圈180米,即在跑前半圈时的速度都是每秒5米,跑前半圈要用180÷5=36秒 。如果再求出跑一圈的时间,就能求出跑后半圈的时间了。为了方便计算,我们假设他按题 中跑法跑了2圈。
解:设跑一圈用X秒,则跑二圈共跑720米。 5X+4X=720 解得 X=80 80-36=44(秒) 答:他后一半路程用了44秒。
五年级奥数行程问题(三)列方 程解行程问题
专题分析:
很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。 方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟 悉的数量关系。因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知 数,根据自己最熟悉的等量关系列出方程,方便解题。
好好学习
解:设乙车开出X小时和甲车相遇。
38×(X+0.5)+42X=259
解得
X=3
答:乙车开出3小时后和甲车相遇。
练习一
1,甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。1小时后,货车从乙地开出,每 小时行62千米。货车开出几小时后与客车相遇?

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级奥数第10课《列方程解应用题》试题附答案

小学五年级上册数学奥数知识点讲解第10课《列方程解应用题》试题附答案第十讲列方程解应用题列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.而找出等量关系又在于熟练运用数量之间的各种已知条件.掌握了这两点就能正确地列出方程。

列方程解应用题的一般步骤是:①弄清题意,找出已知条件和所求问题;②依题意确定等量关系,设未知数X;③根据等量关系列出方程;④解方程;⑤检验,写出答案。

例1列方程,并求出方程的解。

①与减去一个数,所得差与1.35加上苧的和相等,求这个数。

5O例2已知篮球、足球、排球平均每个36元.篮球比排球每个多10元,足球比排军每个多8元,每个足球多少元?例3妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个苹果,如果每天吃6个,则又少8个苹果.问:妈妈买回苹果多少个?计划吃多少天?例4甲、乙、丙、丁四人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?(这是设间接未知数的例题)例6一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多少平方米?例7某县农机厂金工车间有77个工人.已知每个工人平均每天可以加工甲种零件5个或乙种零件4个,或丙种重件3个。

但加工3个甲种零件,1个乙种妻侔和9个丙种零件才恰好配成一套.问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套?答案例1列方程,并求出方程的解。

①?减去一个数,所得差与1.35加上;的和相等,求这个数。

5O解:设这个数为x∙则依题意有11 2713--X=——+一3 206112713X20^^T,3χβ20检验:把X=2代入原方程,左边=3,-京=32,与右边相等,所以X=220 32060 20 是原方程的解。

五年级奥数专题 列方程解应用题(学生版)

五年级奥数专题 列方程解应用题(学生版)

列方程解应用题学生姓名授课日期教师姓名授课时长知识定位有些数量关系比较复杂的应用题,用算术方法求解比较困难。

此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。

利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。

方程作为一种数学工具对于解题有相当大的帮助,并且在代数学中乃至整个数学中有重要的意义。

列方程与方程组解应用题关键注意以下几点:1、设未知数的主要技巧和手段:把与其他数量关系紧密的关键量设为“x”.2、用代数法来表示各个量:利用“x”表示出所有未知量或变量.3、找准等量关系,构建方程:明显的等量关系与隐含的等量关系的寻找知识梳理1、列一元一次方程解应用题方程是代数学最基本的模型,而一元一次方程是方程中最简单的种类.解一元一次方程的步骤:(1)、去分母(2)、去括号(3)、移项(4)、合并同类项(5)、系数化12、二元一次方程组列方程组解应用题的主要步骤与列方程解应用题基本没有区别,由于可以多设未知数,所以通过列方程组解应用题可以有更多的选择,但解方程组的过程更需要一些技巧方法,其中最关键的步骤是消元,“消元”顾名思义减少方程组中未知数的个数,解方程组的消元方法主要有①代入消元法.②加减消元法.加减消元法:将方程组中的某个未知数的系数调整为相等,将方程组中方程的相减达到消元目的.代入消元法:利用方程组中的某条方程得到某项未知数的代数表达式,然后将它代入方程组中的其他方程达到消元目的.消元后,把方程转化成一元一次方程求解。

3、重点难点解析重点:列方程及方程组解应用题的主要步骤:(1)仔细审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系.(2)设这个量为x,用含x的代数式来表示题目中的其他量.(3)找到题目中的等量关系,建立方程.(4)解方程.(5)通过求到的关键量求得题目答案.难点:(1)恰当的假设未知数(2)从已知条件中寻找等量关系,列出方程或方程组并求解。

小学五年级奥数知识讲解列方程组解应用题三

小学五年级奥数知识讲解列方程组解应用题三

★小学五年级奥数专题解说之“列方程组解应用题(三)”(一)阅读思虑,学会方法。

例 1. 解方程组:3x 7 y 13 (1)4x 7 y 1 ( 2)剖析与解答:在这个方程组的两个方程中,未知数 y 的系数同样但符号相反,两个方程的两边分别相加,就能够消 y,获得一个一元一次方程。

假如把这(1)+(2) ,得3x 7 y 13) 4x 7 y 17x 14x 2把 x 2 代入(1),得3 2 7y 13y 1x 2y 1例 2. 解方程组:9x 3x 2 y4 y3525(1)(2)剖析与解答:在这个方程组的两个方程中,同一个未知数的系数都不同样,假如直接把这两个方程的两边分别相加或相减,都不可以消去任何一个未知数。

但我们能够把方程 (1)的两边同乘以2,就能够使两个方程的未知数 y 的系数相等,并且符号同样,只需把方程两边分别相减,便可消去未知数 y。

(1)×2,得18x 4 y 70(3)(3)-(2) ,得18x 4 y 70) 3x 4 y 2515x 45x 3把 x 3代入(2),得3 34 y 25y 4x 3y 4想想:假如先消去未知数x,又应该如何解呢?聪聪列出以下算式,这样解方程对吗?9x 2 y 35 (1)3x 4 y 25 (2)(2) 3 ,得9x 12 y 75 (3)(3) -(1)9 x 12 y 75) 9x 2 y 3510 y 40y 4把y 4代入 (2)3x 4 425x 3x 3y 4例 3. 解方程组:3y 18 5x (1)3x 4 5y (2)剖析与解答:这个方程里的两个方程都不是标准形式,为了便于应用加减消元法,第一应依据方程的同解原理,先把每一个方程都整理成标准形式,即:5x 3y 18 (3)3x 5y 4 ( 4)(3)×5,得25x 15y 90(5)(4)×3,得9x 15y 12(6)(5)+(6) ,得34x 102x 3把 x 3代入(3)5 3 3y183y 3y 1x 3y 1用加减消元法解二元一次方程组的一般步骤:(1)把方程组里的每一个方程都整理成标准形式;(2)把一个方程或许两个方程的两边都乘以一个适合的数,使两个方程里的某一个未知数的系数相等;(3)把两个方程的两边分别相加或相减,消去一个未知数,得出一个一元一次方程;(4)解这个一元一次方程,求出一个未知数的值;(5)把求出的未知数的值代入方程组里的任何一个方程,求出另一个未知数的值;(6)把所求得的两个未知数的值写在一同,就是方程组的解。

小学数学奥数竞赛列方程解应用题专项练习试卷及答案解析(50道学生专用)

小学数学奥数竞赛列方程解应用题专项练习试卷及答案解析(50道学生专用)

小学数学奥数竞赛列方程解应用题专项练习试卷及答案解析(50道)1、某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将一组人数调整为二组人数的一半,应从一组调多少人到二组去?2、有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.3、兄弟二人共养鸭550只,当哥哥卖掉自己养鸭总数的一半,弟弟卖出70只时,两人余下的鸭只数相等,求兄弟两人原来各养鸭多少只?4、小军原有故事书的本数是小力的3倍,小军又买来7本书,小力买来6本书后,小军所有的书是小力的2倍,两人原来各有多少本书?5、六年级学生去秋游,要分成15个组,一部分由8人组成一个小组,另一部分由5个人组成一个小组,8人组成小组的总人数比5人组成小组的总人数多3人,求六年级共有多少名同学参加秋游?6、五年级一班同学参加学校植树活动,派男、女生共12人去取树苗,男同学每人拿3棵,女同学每人拿2棵,正好全部取完;如果男、女生人数调换一下,则还差2棵不能取回.问:原来男、女生人数各是多少?7、苹果和梨共80斤,价值200元,已知苹果2元一斤,梨元一斤,那么苹果和梨各多少斤?8、甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.9、汽车以每小时千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,秒后听到回音,听到回音时汽车离山谷多远?(声音的速度以米/秒计算)10、平行四边形的周长是80厘米,以边为底时,高为12厘米;以边为底时,高为20厘米,求平行四边形的面积.11、小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了.求原来每个人各有几个球?12、甲、乙、丙共有100本课外书.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,而且余数也都是1.乙有书多少本?13、有甲、乙、丙三堆石子,从甲堆中取出8个给乙堆后,甲、乙两堆的石子数就相等了;再从乙堆中取出6个给丙堆,乙、丙两堆的石子数也相等;此时又从丙堆中取2个给甲堆,使甲堆石子数是丙堆石子数的2倍,问:原来甲堆有多少个石子?14、某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各自买票少花120元,问这个旅游团一共有多少人?15、箱子里面有红、白两种玻璃球,红球数比白球数的倍多两个,每次从箱子里取出个白球,个红球。

六年级小升初奥数列方程解方程列方程解决问题

六年级小升初奥数列方程解方程列方程解决问题

作业评价优良忘做忘带六年级第4讲解方程列方程知识要点:一、解方程步骤:1.去分母,(通过最小公倍数约掉),2.移项,把带有X的都到等号的一边,要变负号:原来是+移项就变成-;原来是-移项就变成+3.合并同类项(把带X的放到等号的一边,数字的放到等好的另一边)4.把X的前面的数字,变为1,(两边同时除以X前面的数字)2.移项、7x+10x=35+33×353.合并同类项:(10+7)x=11904.把X的前面的数字,变为1.两边同时除17:x=1190÷7=70练习1:(1)X-0.8X=6(2)200=450+5X+X16×5+5X=90 6.8X-4.4=0.4×6(3)25000+x=6x(4)2(X+X+0.5)=9.8二、根据条件写出相应的数量关系。

例2:六(五)班有男生30人,比女生的2倍少10人?相等关系:1.男生人数加上10等于2乘以女生的人数2.男生人数等于2乘以女生的人数减去10练习2:1、甲数比乙数的2倍少1 。

相等关系:()。

2、甲数与乙数的和是180。

相等关系:()。

3、东西两仓共存粮230吨。

相等关系:()4、甲数的一半比乙数大25。

相等关系:()。

三、经典例题:例3、一个数的3.7倍加上这个数的1.3倍,和是120,求这个数? 【解析】:1.设未知数:设这个数是X2.找出等量关系:这个数的3.7倍加上这个数的1.3倍等于1203.列方程、解方程:3.7x+1.3x=1205x=120x=24练习3:1、 3.4比x的3倍少5.6,求x。

2、一个数的8倍比它的5倍多24,求这个数?例4、学校买来40跟跳绳和30服羽毛球拍,共用去1020元.每副羽毛球拍30元,每跟跳绳的售价是多少元?【解析】设每根跳绳售价x元40x+30×30=1020得x=3元练习4:1、小亚带10元钱为家里养的金鱼买鱼食,她买的是1.3元一包的鱼食,找回7.4元。

暑假5升6奥数专题:列方程解应用题(试题)-小学数学五年级下册人教版_39877030

暑假5升6奥数专题:列方程解应用题(试题)-小学数学五年级下册人教版_39877030

暑假5升6奥数专题:列方程解应用题(试题)-小学数学五年级下册人教版一、选择题1.如图,梯形的下底是上底的2倍,O为上底的中点,图中涂色三角形的面积是2.5平方分米,这个梯形的面积是()平方分米。

A.15B.17.5C.102.3个不为0的连续自然数,中间的一个是a。

这3个数的和是()。

A.小于2B.等于2C.大于2D.不小于24.x为整数,3x+4,4,x+7,2x+6,0.8中一定是2的倍数的有( )个。

A.4B.1C.3D.25.如图,在钉子板上围多边形,如果多边形内有2枚钉子,用n表示多边形上的钉子数,用S表示多边形的面积,那么S=()。

A.n÷2+2B.(n-2)÷2C.n÷2+16.如图,大三角形内的空白部分是一个正方形,已知三角形甲与三角形乙的面积和是39平方厘米。

下面说法正确的是()。

A.正方形的面积是39平方厘米B.正方形的边长是6厘米C.边BC的长是12厘米D.大三角形的面积是78平方厘米二、填空题7.把一些规格相同的杯子叠起来,如图,4个杯子叠起来高15cm,6个杯子叠起来高19cm。

那么9个杯子叠起来高( )cm,n个杯子叠起来高( )cm。

8.用小棒摆下面的图形。

每增加一个,要多用( )根小棒。

照这样下去,第7幅图共用( )根小棒。

9.一个两位数,十位数字比个位数字大1,这个两位数除以十位数字与个位数字之和,商为6余数为2,那么这个两位数是( )。

10.甲乙丙丁四人拿同样多的钱,合伙买同样规格的货物若干件,货物买回来之后,甲乙丙分别比丁多拿3、7、14件货物,最后结算时,乙付给丁14元,那么丙应该付给丁( )元?11.小张有200支铅笔,小李有40支钢笔,每次小张给小李6支铅笔,小李还给小张1支钢笔,经过( )次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的2倍。

12.一个红球与( )个白球的质量相等。

13.有两个书架共放了76本书,若从第二个书架拿出x本书放入第一个书架,则两个书架的本数相等,原来第一个书架有( )本书。

小学五年级奥数题 列方程解实际问题

小学五年级奥数题 列方程解实际问题

小学五年级奥数题列方程解实际问题引言奥数题是小学生在数学研究中常见的一种题型。

本文将介绍小学五年级的奥数题中如何列方程解实际问题的方法。

列方程解实际问题的基本步骤1. 阅读问题并理解:首先,我们需要仔细阅读问题,确保理解问题的要求和背景信息。

2. 抽象问题为数学符号:将实际问题转化为数学符号,例如用字母代表物体或人物的数量、长度、面积等。

3. 确定未知数和关系方程:根据问题中的关系和要求,确定需要求解的未知数,并用方程表示问题中的关系。

4. 解方程求解未知数:利用数学解方程的方法,求解未知数的值。

5. 验证答案:在求解完毕后,根据问题的要求和条件,验证所得的解是否满足条件,以确保答案的准确性。

实例分析现在我们通过一个实例来具体说明列方程解实际问题的过程。

问题:小明有一些苹果,小红给她5个苹果,那么小明现在有15个苹果,那么小明原本有多少个苹果?:小明有一些苹果,小红给她5个苹果,那么小明现在有15个苹果,那么小明原本有多少个苹果?1. 阅读问题并理解:小明有一些苹果,小红给了她5个苹果,现在小明有15个苹果。

我们需要求解小明原本有多少个苹果。

2. 抽象问题为数学符号:设小明原本有的苹果数量为x。

3. 确定未知数和关系方程:根据问题中的关系,我们可以得到x + 5 = 15。

4. 解方程求解未知数:解方程x + 5 = 15,得到x = 10。

5. 验证答案:将x = 10代入原方程中,得到10 + 5 = 15,满足条件,所以答案是正确的。

结论通过列方程解实际问题的方法,我们可以将实际问题转化为数学问题,并得到准确的解答。

这种方法在小学五年级的奥数题中很常见,帮助学生提升解题能力和数学思维。

小学奥数之列方程组解应用题(完整版)

小学奥数之列方程组解应用题(完整版)

1、设未知数的主要技巧和手段:找出与其他量的数量关系紧密的关键量2、用代数法来表示各个量:利用“,x y ”表示出所有未知量或变量3、找准等量关系,构建方程(明显的等量关系与隐含的等量关系)一、列方程解应用题的主要步骤 ⒈ 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密数量关系; ⒈ 用字母来表示关键量,用含字母的代数式来表示题目中的其他量;⒈ 找到题目中的等量关系,建立方程;⒈ 解方程;⒈ 通过求到的关键量求得题目最终答案.二、解二元一次方程(多元一次方程)消元目的:即将二元一次方程或多元一次方程化为一元一次方程.消元方法主要有代入消元和加减消元. 模块一、列方程组解应用题【例 1】 30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨。

每辆卡车和每辆小车每次各运货多少吨?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设每辆卡车和每辆小车每次各运货x y 、吨,根据题意可得:30375456120x y x y +=⎧⎨+=⎩,解得25x y =⎧⎨=⎩所以,每辆卡车每次运货2吨,每辆小车每次运货5吨。

【答案】每辆卡车每次运货2吨,每辆小车每次运货5吨【巩固】 甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲每小时加工x 个零件,乙每小时加工y 个零件.则根据题目条件有:2254344x y x y +=⎧⎨-=⎩,解得1611x y =⎧⎨=⎩所以甲每小时加工16个零件,乙每小时加工11个零件.【答案】甲每小时加工16个零件【例 2】 已知练习本每本0.40元,铅笔每支0.32元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的10元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来0.56元,那么老师原来打算让小虎买多少本练习本?教学目标 知识精讲列方程组解应用题【解析】 设老师原本打算让小虎买x 本练习本和y 支铅笔,则由题意可列方程组:0.40.32100.40.32100.56x y y x +=⎧⎨+=-⎩,整理得403210004032944x y y x +=⎧⎨+=⎩,即54125(1)54118(2)x y y x +=⎧⎨+=⎩,将两式相加,得9()243x y +=,则27(2)x y +=, ⑴ 4-⨯⒈,得17x =.所以,老师原打算让小虎买17本练习本.【答案】老师原打算让小虎买17本练习本【巩固】 商店有胶鞋、布鞋共45双,胶鞋每双3.5元,布鞋每双2.4元,全部卖出后,胶鞋比布鞋收入多10元.问:两种鞋各多少双?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设布鞋有x 双,胶鞋有y 双.453.5 2.410x y x y +=⎧⎨-=⎩,解得2025x y =⎧⎨=⎩所以布鞋有20双,胶鞋有25双.【答案】布鞋有20双,胶鞋有25双【例 3】 松鼠妈妈采松子,晴天每天可以采20个,雨天每天可以采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天是下雨天?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 根据题意,松鼠妈妈采的松子有晴天采的,也有雨天采的,总的采集数可以求得,采集天数也确定,因此可列方程组来求解.设晴天有x 天,雨天有y 天,则可列得方程组:()()20121121112214x y x y +=⎧⎪⎨+=⎪⎩ ()1化简为5328x y += …………()3用加减法消元:()()253⨯-得:5()(53)4028x y x y +-+=-解得6y =.所以其中6天下雨.【答案】其中6天下雨【例 4】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设乙车运来x 箱,每箱装y 个苹果,根据题意列表如下:()()()()433455x y xy xy x y ⎧+--=⎪⎨--+=⎪⎩,化简为4315(1)5415(2)y x x y -=⎧⎨-=⎩ ⒈+⒈,得:230x =,于是15x =.将15x =代入⒈或⒈,可得:15y =.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:191215151120673⨯+⨯+⨯=(个).【答案】三车苹果的总数是:673个【例 5】 有大、中、小三种包装的筷子27盒,它们分别装有18双、12双、8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种盒各有多少盒?【解析】 设中盒数为x ,大盒数为y ,那么小盒数为2x ,根据题目条件有两个等量关系:227181282330x x y y x x ++=⎧⎨++⨯=⎩ 该方程组解得69x y =⎧⎨=⎩,所以大盒有9个,中盒有6个,小盒有12个. 【答案】大盒有9个,中盒有6个,小盒有12个【巩固】 用62根同样长的木条钉制出正三角形、正方形和正五边形总共有15个.其中正方形的个数是三角形与五边形个数和的一半,三角形、正方形和五边形各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设三角形的个数为x ,五边形的个数为y ,那么正方形的个数为2x y +⎛⎫ ⎪⎝⎭,由此可列得方程组: 152345622x y x y x y x y ⎧+⎛⎫++= ⎪⎪⎪⎝⎭⎨+⎛⎫⎪++= ⎪⎪⎝⎭⎩该方程组解得:46x y =⎧⎨=⎩,所以52x y +⎛⎫= ⎪⎝⎭,因此三角形、正方形、五边形分别有4、5、6个. 【答案】三角形、正方形、五边形分别有4、5、6个【例 6】 有1克、2克、5克三种砝码共16个,总重量为50克;如果把1克的砝码和5克的砝码的个数对调一下,这时总重量变为34克.那么1克、2克、5克的砝码有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】5克砝码比1克砝码每多1个,对调后总重量将减少514-=克,所以5克砝码比1克砝码多()503444-÷=(个). 在原来的砝码中减掉4个5克砝码,此时剩下12个砝码,且1克砝码与5克同样多,总重量为30克.设剩下1克、5克各x 个,2克砝码y 个,则212(15)230x y x y +=⎧⎨++=⎩,解得36x y =⎧⎨=⎩所以原有1克砝码3个,2克砝码6个,5克砝码347+=个.【答案】原有1克砝码3个,2克砝码6个,5克砝码347+=个【巩固】 某份月刊,全年共出12期,每期定价2.5元.某小学六年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元;若订全年的同学都改订半年,而订半年的同学都改订全年,则共需订费1245元.则该小学六年级订阅这份月刊的学生共有 人.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设订半年的x 人,订全年的y 人,则:2.5(612)13202.5(126)1245x y x y ⨯+=⎧⎨⨯+=⎩,得288283x y x y +=⎧⎨+=⎩,两式相加,得3()171x y +=, 所以57x y +=,即该小学六年级订阅这份月刊的学生共有57人.【答案】小学六年级订阅这份月刊的学生共有57人【例 7】 有两辆卡车要将几十筐水果运到另一个城市,由于可能超载,所以要将两辆卡车中的一部分转移到另外一辆车上去,如果第一辆卡车转移出20筐,第二辆卡车转移出30筐,那么第一辆卡车剩下的水果筐数是第二辆的1.2倍,如果第一辆卡车转移出21筐,第二辆卡车转移出25筐,那么第三辆车上的水果筐数是前面两辆车水果筐数和的一半,求原来两辆车上有多少筐水果?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设第一辆卡车上的水果有x 筐,第二辆卡车上的水果有y 筐,则有()()2030 1.2(1)212521252(2)x y x y ⎧-=-⨯⎪⎨-+-=+⨯⎪⎩,由⒈得 1.216x y =-,代入⒈得2.26292y -=,解得70y =,所以 1.21668x y =-=,原来两辆车上分别装有68筐水果和70筐水果.【答案】两辆车上分别装有68筐水果和70筐水果【巩固】 大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容量是小池的1.5倍,问:两池中共有多少吨水?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设大池中有x 吨水,小池中有y 吨水.则根据题目条件,两池一共有x y +吨水,大池可装5x y +-吨水,小池可装30x y +-吨水,所以可列得方程5(30) 1.5x y x y +-=+-⨯,方程化简为80x y +=,所以两池中共有80吨水.【答案】两池中共有80吨水【例 8】 某公司花了44000元给办公室中添置了一些计算机和空调,办公室每月用电增加了480千瓦时,已知,计算机的价格为每台5000元,空调的价格为2000元,计算机每小时用电0.2千瓦时,平均每天使用5小时,空调每小时用电0.8千瓦时,平均每天运行5小时,如果一个月以30天计,求公司一共添置了多少台计算机,多少台空调?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设添置了x 台计算机,y 台空调.则有5000200044000(1)0.25300.8530480(2)x y x y +=⎧⎨⨯⨯+⨯⨯=⎩⒈式整理得416x y +=,则164x y =-;代入⒈得()5000164200044000y y -+=,解得2y =,则8x =,所以公司一共添置了8台计算机和2台空调.【答案】8台计算机和2台空调【巩固】 甲、乙两件商品成本共600元,已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利110元.两件商品中,成本较高的那件商品的成本是多少?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两件商品成本分别为x 元、y 元.根据题意,有方程组:600(145%)0.8(140%)0.9600110x y x y +=⎧⎨+⨯+⨯+⨯-=⎩,解得460140x y =⎧⎨=⎩所以成本较高的那件商品的成本是460元.【答案】成本较高的那件商品的成本是460元【巩固】 某市现有720万人口,计划一年后城镇人口增涨0.4%,农村人口增长0.7%,这样全市人口增加0.6%,求这个城市现在的城镇人口和农村人口.【解析】 假设这个城市现在的城镇人口是x 万人,农村人口是y 万人,得:7200.4%0.7%7200.6%x y x y +=⎧⎨+=⨯⎩,解得240480x y =⎧⎨=⎩, 即这个城市现在的城镇人口有240万,农村人口有480万.【答案】城镇人口有240万,农村人口有480万【例 9】 某次数学竞赛,分两种方法给分.一种是先给40分,每答对一题给4分,不答题不给分,答错扣1分,另一种是先给60分,每答对一题给3分,不答题不给分,答错扣3分,小明在考试中只有2道题没有答,以两种方式计分他都得102分,求考试一共有多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设小明答对了x 道题,答错了y 道题.由题目条件两种计分方式,他都得102分,可得到两条等量关系式:4041026033102x y x y +-=⎧⎨+-=⎩ 解得162x y =⎧⎨=⎩,所以考试一共有162220++=道题. 【答案】考试一共有162220++=道题【巩固】 某次数学比赛,分两种方法给分.一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分.某考生按两种判分方法均得81分,这次比赛共多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设答对a 道题,未答b 道题,答错c 道题,由条件可列方程()()52811403812a b a c +=⎧⎪⎨+-=⎪⎩由()1式知,a 是奇数,且小于17.()2式可化简为()3413c a =-由()3式知,a 大于13.综合上面的分析,a 是大于13小于17的奇数,所以15a =.再由()()13式得到3b =,4c =. 153422a b c ++=++=,所以共有22道题.【答案】共有22道题【巩固】 下表是某班40名同学参加数学竞赛的分数表,如果全班平均成绩是2.5分,那么得3分和5分的各有多少人?【考点】列方程组解应用题【解析】 根据题意,只要设得3分和5分的各有多少人,即可利用总人数和总分数而列方程组求解,等量关系有两条:一是各分数段人数之和等于总人数,各分数段所有人得分之和等于总分数.设得3分的人数有x 人,得5分的人数有y 人,那么:471084017210348540 2.5x y x y +++++=⎧⎨⨯+⨯++⨯+=⨯⎩,化简为:()()11135412x y x y +=⎧⎪⎨+=⎪⎩ ()()213-⨯,得到28y =,即4y =,再代入()1,最后得到方程组得解47x y =⎧⎨=⎩,所以40名学生当中得3分的有7人,得5分的有4人.【答案】得3分的有7人,得5分的有4人【例 10】 在S 岛上居住着100个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神、月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑴您崇拜月亮神吗?⑴您崇拜地球神吗?对第一个问题有60人回答:“是”;对第二个问题有40人回答:“是”;对第三个问题有30人回答:“是”.他们中有多少人说的是假话?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 我们将永远说真话的人称为老实人,把总说假话的人称为骗子.每个老实人都只会对一个问题“是”.而每个骗子则都对两个问题答“是”.将老实人的数目计为x ,将骗子的数目计为y .于是2130x y +=.又由于在S 岛上居住着100个人,所以100x y +=,联立两条方程,解得30y =.所以岛上有30个人说的是假话.【答案】30个人说的是假话【例 11】 甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=. 此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.【答案】最多能生产出1400套产品【巩固】 某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服. 【答案】最多可以生产出408套衣服【例 12】 一片青草,每天长草的速度相等,可供10头牛单独吃20天,供60只羊单独吃10天.如果1头牛的吃草量等于4只羊的吃草量,那么,10头牛与60只羊一起吃草,这片草可以吃________天.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 把1只羊每天的吃草量当作单位“1 ”,则1头牛每天的吃草量为4,设原有草量为x ,每天的长草量为y ,那么:20410201016010x y x y +=⨯⨯⎧⎨+=⨯⨯⎩解得400x =,20y =,如果10头牛与60只羊一起吃草,这片草可以吃400(41016020)5÷⨯+⨯-=(天).【答案】5【例 13】 甲、乙、丙沿着环形操场跑步,乙与甲、丙的方向相反.甲每隔19分钟追上丙一次,乙每隔5分钟与丙相遇一次.如果甲4分钟跑的路程与乙5分钟跑的路程相同,那么甲的速度是丙的速度的多少倍?甲与乙多长时间相遇一次?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 把环形操场的周长看作1,设甲每分钟跑的路程为x ,丙每分钟跑的路程为y .根据题意可知乙每分钟跑的路程为45x .有: 1194155x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,解得857557x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以甲的速度是丙的速度的85 1.65757÷=倍; 甲与乙相遇一次所用的时间为884231()35757524÷+⨯=分钟. 【答案】甲的速度是丙的速度的1.6倍;甲与乙相遇一次所用的时间为23324分钟【例 14】 甲、乙二人从相距60千米的两地同时出发,沿同一条公路相向而行,6小时后在途中相遇.如果两人每小时所行走的路程各增加1千米,则相遇地点距前一次地点差1千米.求甲、乙两人的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲速为每小时x 千米,乙速为每小时y 千米.根据第一次相遇的条件,可知:()660x y +=,则10x y +=,即甲、乙两人的速度和为10千米/小时,所以第二次相遇两人的速度和为12千米/小时.第二次相遇时,甲走的路程可能比第一次少1千米或多1千米,即(61)x -千米,或(61)x +千米.由此可列第二条方程:5(1)61x x +=-或5(1)61x x +=+.因此可列的方程组有:105(1)61x y x x +=⎧⎨+=-⎩解得64x y =⎧⎨=⎩,或105(1)61x y x x +=⎧⎨+=+⎩解得46x y =⎧⎨=⎩. 所以甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时.【答案】甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时【例 15】 从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】华杯赛,复赛【解析】 (法1)从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,依题意得:920351735202x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得140x =,70y =,所以甲、乙两地间的公路有14070210+=千米,从甲地到乙地须行驶140千米的上坡路.答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【答案】甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路【巩固】 从A 村到B 村必须经过C 村,其中A 村至C 村为上坡路,C 村至B 村为下坡路,A 村至B 村的总路程为20千米.某人骑自行车从A 村到B 村用了2小时,再从B 村返回A 村又用了1小时45分.已知自行车上、下坡时的速度分别保持不变,而且下坡时的速度是上坡时速度的2倍.求A 、C 之间的路程及自行车上坡时的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设A 、C 之间的路程为x 千米,自行车上坡速度为每小时y 千米,则C 、B 之间的路程为(20)x -千米,自行车下坡速度为每小时2y 千米.依题意得:2022203124x x y y x x yy -⎧+=⎪⎪⎨-⎪+=⎪⎩, 两式相加,得:202032124y y +=+,解得8y =;代入得12x =. 故A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米.【答案】A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米【巩固】 华医生下午2时离开诊所出诊,走了一段平路后爬上一个山坡,给病人看病用了半小时,然后原路返回,下午6时回到诊所.医生走平路的速度是每小时4千米,上山的速度是每小时3千米,下山的速度是每小时6千米,华医生这次出诊一共走了 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【关键词】2004年,南京市,冬令营【解析】 设平路长a 千米,山坡长b 千米,则共走了2()a b +千米,根据题意,列方程3.54346a b a b +++=,1() 3.52a b +=, 2()14a b +=.所以,华医生这次出诊一共走了14千米.【答案】14【例 16】 小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前13时间乘车,后23时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设小明家到奶奶家的路程为x 千米,而小明从奶奶家返回家里所需要的时间是y 小时,那么根据题意有:112225*********x x y x y y ⎧⎪+=+⎪⎨⎪=⨯+⨯⎪⎩,解得: 15018x y =⎧⎨=⎩ 答:小明从自己家到奶奶家的路程是150千米.【答案】小明从自己家到奶奶家的路程是150千米【例 17】 (保良局亚洲区城市小学数学邀请赛)米老鼠从A 到B ,唐老鸭从B 到A ,米老鼠与唐老鸭行走速度之比是65∶,如下图所示.M 是A 、B 的中点,离M 点26千米的C 点有一个魔鬼,谁从它处经过就要减速25%,离M 点4千米的D 点有一个仙人,谁从它处经过就能加速25%.现在米老鼠与唐老鸭同时出发,同时到达,那么A 与B 之间的距离是 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 设AM MB x ==,米老鼠的行走速度为6k ,则唐老鸭的行走速度为5k (0k ≠),如下图,则有米老鼠从A 到B 需要时间 2630466(125%)6(125%)(125%)x x k k k --++⨯-⨯-⨯+ 11614(4)615x x k ⎧⎫=++-⎨⎬⎩⎭, 唐老鸭从B 到A 需要时间4302655(125%)5(125%)(125%)x x k k k --++⨯+⨯-⨯+ 11620(26)515x x k ⎧⎫=++-⎨⎬⎩⎭. 因为米老鼠与唐老鸭用的时间相同,所以列方程11611614(4)20(26)615515x x x x k k ⎧⎫⎧⎫++-=++-⎨⎬⎨⎬⎩⎭⎩⎭, 解得46x =.所以,A 、B 两地相距92千米.【答案】A 、B 两地相距92千米x -430x -26A C M D【例 18】 甲、乙两人分别从A 、B 两地同时出发相向而行,5小时后相遇在C 点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点D 距C 点10千米.如果乙速度不变,甲每小时多行3千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点E 距C 点5千米.问:甲原来的速度是每小时多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 甲速度不变,乙每小时多行4千米,相遇点D 距C 点10千米,出发后5小时,甲到达C ,乙到达F ,因为乙每小时多行4千米,所以4520FC =⨯=千米,那么10FD DC ==千米,也就是说相遇后相同的时间内甲、乙走的路程相同,也就是说原来甲比乙每小时多行4千米. 乙速度不变,甲每小时多行3千米,相遇点E 距C 点5千米,出发后5小时乙到达C ,甲到达G ,因为甲每小时多行3千米,所以3515GC =⨯=千米.那么10GE =千米,5EC =千米.所以2EG EC =,即相遇后在相同的时间甲走的路程是乙的2倍,所以甲每小时多行3千米后,速度是乙的两倍.于是可列得方程组:432v v v v =+⎧⎪⎨+=⎪⎩乙甲乙甲,解得117v v =⎧⎨=⎩甲乙,所以甲原来每小时11千米. 【答案】甲原来每小时11千米【例 19】 甲、乙二人共存款100元,如果甲取出49,乙取出27,那么两人存款还剩60元.问甲、乙二人各有存款多少元?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲存款x 元,乙存款y 元,根据题目条件有两条等量关系,一是两人存款加起来等于100元,二是取钱后两人存款加起来有60元.由此可列得方程组:100421006097x y x y +=⎧⎪⎨+=-⎪⎩ 方程组最终解得7228x y =⎧⎨=⎩,所以甲存款72元,乙存款28元. 【答案】甲存款72元,乙存款28元【巩固】 甲、乙两个容器共有溶液2600克,从甲容器取出14的溶液,从乙容器取出15的溶液,结果两个容器共剩下2000克.问:两个容器原来各有多少溶液?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲容器有溶液x 克,乙容器有溶液y 克,根据题目条件有两条等量关系,一是两容器溶液加起来等于2600克,二是取溶液后两容器加起来有2000克.由此可列得方程组: 26001111200045x y x y +=⎧⎪⎨⎛⎫⎛⎫-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎩ 方程组最终解得16001000x y =⎧⎨=⎩,所以甲容器中有溶液1600克,乙容器中有溶液1000克. 【答案】甲容器中有溶液1600克,乙容器中有溶液1000克【例 20】 某班有45名同学,其中有6名男生和女生的17参加了数学竞赛,剩下的男女生人数正好相等.问:这个班有多少名男生?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设有x 名男生和y 名女生,那么根据题目条件有两条等量关系:一是原来男女生人数和为45人,二是剩下的男女生人数相等,由此可列得方程组:451617x y x y +=⎧⎪⎨⎛⎫-=- ⎪⎪⎝⎭⎩该方程组解得2421x y =⎧⎨=⎩,所以这个班有24名男生.【答案】这个班有24名男生【巩固】 甲、乙两班人数都是44人,两班各有一些同学参加了数学小组的活动,甲班参加的人数恰好是乙班未参加人数的13,乙班参加的人数恰好是甲班未参加人数的14,那么共有多少人未参加数学小组?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设甲、乙两班参加数学小组的人数分别为x 人、y 人,未参加人数分别为()44x -人、()44y -人,由题设已知条件可以得到:1(44)31(44)4x y x y⎧=-⎪⎪⎨⎪-=⎪⎩,解之得128x y =⎧⎨=⎩ 所以未参加兴趣小组的人数()()444468x y =-+-=人.【答案】未参加兴趣小组的人数68人【例 21】 一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设男孩有x 人,女孩有y 人.根据条件可列方程:(1)52(1)x y x y --=⎧⎨=-⎩由第一条方程可以得到6x y =+,代入第二条方程得到62(1)y y +=- .解得8y =,再代入第一条方程.方程解得148x y =⎧⎨=⎩.所以男孩有14人,女孩有8人.【答案】男孩有14人,女孩有8人【巩固】 有大小两盘苹果,如果从大盘中拿出一个苹果放在小盘里,两盘苹果一样多;如果从小盘里拿出一个苹果放在大盘里,大盘苹果的个数是小盘苹果数的3倍.大、小两盘苹果原来各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设原来大盘有苹果x 个,小盘有苹果y 个.那么可列方程组:()11131x y x y -=+⎧⎪⎨+=-⎪⎩,方程组解得53x y =⎧⎨=⎩,所以大盘原来有苹果5个,小盘原来有苹果3个.【答案】大盘原来有苹果5个,小盘原来有苹果3个【巩固】 教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。

六年级方程解决问题奥数题

六年级方程解决问题奥数题

六年级方程解决问题奥数题
方程是数学中常见的问题解决方法之一。

在六年级的奥数题中,也经常涉及到方程的解决。

本文将介绍一些六年级方程解决问题的
奥数题例子。

题目1
小明有一些苹果,小华比小明多收集了6个苹果,小红比小明
少收集了4个苹果,小华、小明和小红三个人总共收集了54个苹果。

请问小明收集了多少个苹果?
解答1
使用方程来解决这个问题。

设小明收集的苹果数为x。

由题意可知:
* 小华收集的苹果数为x + 6
* 小红收集的苹果数为x - 4
根据题目所给的条件,得到方程:x + (x + 6) + (x - 4) = 54
化简得到:3x + 2 = 54
解方程得到:x = 16
所以,小明收集了16个苹果。

题目2
小明在一家商店买了一些文具,其中有8个铅笔和若干个橡皮。

已知每个铅笔的价格是2元,文具的总价格是18元。

请问小明买
了多少个橡皮?
解答2
使用方程解决这个问题。

设小明买的橡皮个数为y。

由题意可知:
* 铅笔的总价格是8 * 2 = 16元
* 橡皮的总价格是y个橡皮 * 每个橡皮的价格(设为p元)
根据题目所给的条件,得到方程:16 + y * p = 18
根据题目所给的信息,可以得到y * p = 2
由于题目中没有具体给出橡皮的价格p,无法解出橡皮的个数y。

所以,无法确定小明买了多少个橡皮。

以上是六年级方程解决问题的奥数题例子。

方程是解决数学问题的重要工具,通过掌握方程的解题方法,能够更好地解决各种数学问题。

小学奥数2-3-1 列方程解应用题.专项练习及答案解析(精品)

小学奥数2-3-1 列方程解应用题.专项练习及答案解析(精品)

1、会解一元一次方程2、根据题意寻找等量关系的方法来构建方程 3、合理规划等量关系,设未知数、列方程知识点说明:一、 等式的基本性质1、等式的两边同时加上或减去同一个数,结果还是等式.2、等式的两边同时乘以或除以同一个不为零的数,结果还是等式.二、解一元一次方程的基本步骤1、去括号;2、移项;3、未知数系数化为1,即求解。

三、列方程解应用题 (一)、列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值.这个含有未知数的等式就是方程.列方程解应用题的优点在于可以使未知数直接参加运算.解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程. (二)、列方程解应用题的主要步骤是1、 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密的数量关系;2、 设这个量为x ,用含x 的代数式来表示题目中的其他量;3、 找到题目中的等量关系,建立方程;4、 运用加减法、乘除法的互逆关系解方程;5、通过求到的关键量求得题目答案.板块一、直接设未知数【例 1】长方形周长是64厘米,长比宽多3厘米,求长方形的长和宽各是多少厘米?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 解:设长方形的宽是x 厘米,则长方形的长3x ()厘米例题精讲知识精讲教学目标列方程解应用题[3]266366233323015x x x x x x x x ++⨯=++=÷++===()() 15318+=(厘米)答:长方形的长18厘米,长方形的宽是15厘米.【答案】长方形的长18厘米,长方形的宽是15厘米【巩固】 一个三角形的面积是18平方厘米,底是9厘米,求三角形的高是多少厘米?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 解:设三角形的高是x 厘米,则有92189364x x x ⨯÷=⨯== 答:三角形的高是4厘米.【答案】三角形的高是4厘米【巩固】 (全国小学数学奥林匹克)一个半圆形区域的周长等于它的面积,这个半圆的半径是 .(精确到0.01,π 3.14=)【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 设半圆的半径为r ,则21π2π2r r r =+,即 π2π2r =+,所以,半圆的半径42 3.27πr =+≈.【答案】半圆的半径42 3.27πr =+≈【例 2】 用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设这个足球上共有x 块白色皮块,则共有3x 条边是黑白皮块共有的.另一方面,黑色皮块有32x -()块,共有532x -()条边是黑白皮块共有的(如图).由于在这个足球上黑白皮块共有的边是个定值,列得方程:3532x x =-(),解得20x =.即这个足球上共有20块白色皮块.【答案】共有20块白色皮块【例 3】 (2003年全国小学数学奥林匹克)某八位数形如2abcdefg ,它与3的乘积形如4abcdefg ,则七位数abcdefg 应是 . 【考点】列方程解应用题 【难度】3星 【题型】解答【解析】设x abcdefg=,则+⨯=+,x x(20000000)3104x=,759999996x=,8571428即七位数应是8571428【答案】8571428【巩固】有一个六位数1abcde乘以3后变成1abcde,求这个六位数.【考点】列方程解应用题【难度】3星【题型】解答【解析】解:设x abcde=,则有六位数1x和1x,有1000003101x=,(),解得42857+⨯=+x x所以原六位数是142857.【点评】本题的巧妙之处在于abcde始终没有分开,所以我们把它看作一个整体.【答案】142857【巩固】有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数.如果第二个六位数是第一个六位数的5倍,那么这个五位数是.【考点】列方程解应用题【难度】3星【题型】解答【关键词】迎春杯【解析】设五位数是x,那么第一个六位数是107+.依题意x+,第二个六位数是700000x 列方程x=.(),解得142857000005107x x+=+【答案】14285【例4】有三个连续的整数,已知最小的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续整数.【考点】列方程解应用题【难度】3星【题型】解答【解析】设最小的那个数为x,那么中间的数和最大的数分别为1x+和2x+.则2(1)3(2)68++++=x x xx+=6868x=660x=.10所以这三个连续整数依次为10、11、12.【答案】10、11、12【巩固】已知三个连续奇数之和为75,求这三个数。

小学奥数解方程习题汇总及解题思路过程

小学奥数解方程习题汇总及解题思路过程

小学奥数解方程习题汇总及解题思路过程在小学奥数中,解方程是一个重要的知识点,也是很多同学感到头疼的部分。

为了帮助同学们更好地掌握解方程的方法,下面为大家汇总了一些常见的解方程习题,并详细讲解解题思路和过程。

一、简单的一元一次方程例 1:$2x + 5 = 17$解题思路:首先,我们要把含有未知数$x$的项放在等式左边,常数项放在等式右边。

所以,先将等式两边同时减去 5,得到$2x = 175$,即$2x = 12$。

然后,再将等式两边同时除以 2,得到$x = 6$。

例 2:$7 3x = 2$解题思路:先将等式两边同时加上$3x$,得到$7 = 2 + 3x$。

接着,将等式两边同时减去 2,得到$5 = 3x$。

最后,将等式两边同时除以 3,得到$x =\frac{5}{3}$。

二、含有括号的一元一次方程例 3:$3(x 2) + 4 = 19$解题思路:首先,我们要先把括号展开,得到$3x 6 + 4 = 19$,即$3x 2 = 19$。

然后,将等式两边同时加上 2,得到$3x = 21$。

最后,将等式两边同时除以 3,得到$x = 7$。

例 4:$5(2x + 3) 4(3x 2) = 22$解题思路:先将括号展开,得到$10x + 15 12x + 8 = 22$。

接着,合并同类项,得到$-2x + 23 = 22$。

然后,将等式两边同时减去 23,得到$-2x =-1$。

最后,将等式两边同时除以$-2$,得到$x =\frac{1}{2}$。

三、含有分数的一元一次方程例 5:$\frac{x}{2} + 3 = 7$解题思路:先将等式两边同时减去 3,得到$\frac{x}{2} = 4$。

然后,将等式两边同时乘以 2,得到$x = 8$。

例 6:$\frac{2x}{3} 1 = 5$解题思路:先将等式两边同时加上 1,得到$\frac{2x}{3} = 6$。

然后,将等式两边同时乘以 3,得到$2x = 18$。

小学奥数列方程解应用题100题附详解

小学奥数列方程解应用题100题附详解

小学奥数列方程解应用题100题附详解(1)小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟。

小红家离火车站多少千米?(2)有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8。

问:第二组有多少个数?(3)某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(4)甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(5)甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1。

问:乙数是多少?(6)孙悟空采到一堆桃子,平均分给花果山的小猴子吃。

每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完。

问:孙悟空采到多少个桃子?小猴子有多少只?(7)阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书?(8)西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(9)小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(10)一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽。

在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。

问:男孩、女孩各有多少人?(11)大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(12)苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(13)两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(14) 两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(15) 王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同。

小学奥数解方程专题练习及解题思路

小学奥数解方程专题练习及解题思路

小学奥数解方程专题练习及解题思路在小学数学学习中,方程是一个重要的知识点,特别是在奥数中,解方程的题目往往更具挑战性。

通过练习和掌握解方程的方法,可以帮助我们提高逻辑思维能力和数学解题能力。

接下来,让我们一起深入探讨小学奥数中的解方程专题,并通过一些实例来掌握解题思路。

一、方程的基本概念方程是含有未知数的等式。

例如:2x + 3 = 9 ,其中 x 就是未知数。

解方程就是求出使方程左右两边相等的未知数的值。

二、解方程的常用方法1、等式的基本性质(1)等式两边同时加上或减去同一个数,等式仍然成立。

(2)等式两边同时乘以或除以同一个不为0 的数,等式仍然成立。

2、移项法将方程中的某一项从等式的一边移到另一边时,要改变符号。

例如:从 2x + 3 = 9 中,将 3 移到等式右边,得到 2x = 9 3 。

三、小学奥数中常见的方程类型1、一元一次方程形如 ax + b = c (a、b、c 为常数,a ≠ 0 )的方程。

例 1:3x + 5 = 17解:首先,将 5 移到等式右边,得到 3x = 17 5 ,即 3x = 12 。

然后,等式两边同时除以 3 ,得到 x = 4 。

2、简单的二元一次方程组形如:x + y = 5x y = 1可以通过加减消元法或代入消元法来求解。

例 2:x + y = 82x y = 5解:将第一个方程和第二个方程相加,得到 3x = 13 ,解得 x = 13 / 3 。

将 x 的值代入第一个方程,得到 13 / 3 + y = 8 ,解得 y = 11 / 3 。

四、解题思路1、仔细审题理解题目中的数量关系,找出已知量和未知量。

2、设未知数根据题目中的条件,合理地设出未知数。

3、列出方程根据数量关系,列出含有未知数的等式。

4、解方程运用所学的方法解方程。

5、检验答案将求得的未知数的值代入原方程,检验是否符合题意。

五、练习题1、一个数的 3 倍加上 5 等于 20,这个数是多少?设这个数为 x ,则 3x + 5 = 20 ,解得 x = 5 。

五年级列方程解应用题奥数知识(列方程解应用题)

五年级列方程解应用题奥数知识(列方程解应用题)

★小学五年级奥数专题讲解之“列方程解应用题(一)”同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。

用算术方法解答比较困难,如果用方程解就简便得多。

它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“x”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。

例1. 金台小学学生参加申奥植树活动,六年级共植树252棵,比五年级植树总数的114倍少8棵,五年级植树多少棵?思路分析:六年级比五年级植树总数的114倍少8棵,就是六年级的114倍的数少8,等于六年级植树的总数。

等量关系是:五年级的114倍-8=六年级的植树总数。

解:设五年级植树x棵,根据题意列方程,得1148252x-=1142528x=+114260x=xx=÷=260114208验算:把x=208代入原方程左边=⨯-=1142088252右边=252左边=右边x=208是原方程的解。

答:五年级植树208棵。

例2. 一瓶农药700克,其中水比硫磺粉的6倍还多25克,含硫磺粉的重量是石灰的2倍,这瓶农药里,水、硫磺粉和石灰粉各多少克?思路分析:这是道比较复杂的“和倍应用题”,硫磺粉和水有直接关系,硫磺粉和石灰也有直接关系,因此应设未知数硫磺粉为x克。

水的重量是硫磺的6倍还多25克,也就是(6x+25)克,石灰的重量就是硫磺粉的重量除以2,也就是12x克。

等量关系式表示为:水+硫磺粉+石灰=农药重量解:设硫磺粉的重量是x 克,那么,水的重量是(625x +)克,石灰重量是12x 克。

根据题意列方程,解。

62512700x x x +++=71270025x =-75675.x = x =90验算:把x =90代入原方程 左边=⨯+++⨯=69025901290700右边=700左边=右边x =90是原方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数专题之列方程解题文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]
奥数专题之列方程解题8
1. 某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20%,乙种成衣卖价也是120元但亏损20% ,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱?
2.甲、乙两人分别在相距50km的地方同向出发,乙在甲的前面,甲每小时走16km,乙每小时走18km,如果乙先走1小时,问甲走多少时间后,两个人相距70km?
3.某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余车恰好坐满。

已知租用45座的客车每日租金为每辆车250元,60座的车每日租金每辆300元,问租用哪种客车更合算?租几辆车?
4.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元?现售价是多少元?
5.某种商品的进价为100元,若要使利润率达20% ,则该商品的销售价格应为多少元?此时每件商品可获利润多少元?
6.某商品的进价是1000元,标价为1500元,商店要求以利润率不低于5% 的售价打折出售,售票员最低可以打几折出售此商品?
7.某车间有60名工人,生产某种由一个螺栓与两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺母,多少人生产螺栓,才能使每天生产出的螺栓与螺母恰好配套?
8.A、B两地相距60km,甲乙两人分别从A、B两地骑车出发,相向而行,甲比乙迟出发20min,每小时比乙多行3km ,在甲出发后1h40min ,两人相遇,问甲乙两人每小时各行多少km
9.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务已知甲每小时比乙多加工2个零件,求甲、乙两人每小时各加工多少个零件?
10.一件工作,甲单独完成需7.5小时, 乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?。

相关文档
最新文档