一元二次方程经典例题及练习

合集下载

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。

一元二次方程练习题 (含答案)

一元二次方程练习题 (含答案)

一元二次方程练习题题号一、填空题二、选择题三、多项选择四、简答题五、计算题总分得分一、填空题(每空5分,共30分)1、关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= .2、已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.3、已知圆锥底面圆的半径为6cm,它的侧面积为60πcm2,则这个圆锥的高是4、已知m、n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是5、若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2= .6、一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,则= .二、选择题(每空5 分,共35分)7、下列选项中一元二次方程的是()A.x=2y﹣3 B.2(x+1)=3 C.2x2+x﹣4 D.5x2+3x﹣4=0 8、一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=29、将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm10、某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8%B.18%C.20%D.25%11、如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为()A.1米 B.2米 C.3米 D.4米12、已知直角三角形的两条直角边的长恰好是方程的两根,则此直角三角形的斜边长为( ).A. B.3 C. D.1313、要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15 B.x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=1514、由一元二次方程x2+px+q=0的两个根为p、q,则p、q等于()A.0B.1C.1或-2D.0或1评卷人得分评卷人得分三、多项选择(每空5 分,共5分)15、方程的两根分别为,,且,则的取值范围是.四、简答题(每题10 分,共110 分)16、试求实数(≠1),使得方程的两根都是正整数.17、已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.18、如图,在矩形ABCD中,AB=4cm,BC=cm,点P从点A出发以1cm/s的速度移动到点B;点P出发几秒后,点P、A的距离是点P、C距离的倍?19、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20、某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少0.5元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株?21、一个足球被从地面向上踢出,它距地面高度可以用二次函数刻画,其中表示足球被踢出后经过的时间.(1)解方程,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?22、随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2014年底拥有家庭轿车64辆,2016年底家庭轿车的拥有量达到100辆.(1)若该小区2014年底到2016年底家庭轿车拥有量的年平均增长率都相同,求该小区到2017年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,求该小区最多可建室内车位多少个?23、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.评卷人得分评卷人得分(1) 写出月销售利润y(单位:元) 与售价x(单位:元/千克)之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3) 商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24、.要制作一个如图所示(图中阴影部分为底与盖,且SⅠ=SⅡ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来既可,求有盖盒子的高x.25、如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有__________块,白色瓷砖有__________块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?26、已知:平行四边形ABCD的两边AB、BC的长是关于的方程的两个实数根.(1)试说明:无论取何值方程总有两个实数根(2)当为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?五、计算题(每题5分,共35 分)27、用恰当的方法解下列方程:28、解方程:29、x2﹣7x﹣18=0.30、2x2+12x﹣6=031、解方程:.评卷人得分参考答案一、填空题1、﹣2 .【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.【点评】此题要注意一元二次方程的二次项系数不得为零.2、k<3 .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.3、8 cm.【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l•2π•6=60π,然后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得l•2π•6=60π,解得l=10,所以圆锥的高==8(cm).故答案为8.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.4、4 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】先根据判别式的意义确定a≤2,再根据根与系数的关系得到m+n=2a,然后利用a的取值范围确定m+n的最大值.【解答】解:根据题意得△=4a2﹣4(a2+a﹣2)≥0,解得a≤2,因为m+n=2a,所以m+n≤4,所以m+n的最大值为4.故答案为4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的判别式.5、16 .【考点】根与系数的关系.【分析】利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2﹣2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.【点评】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2﹣2αβ是解题的关键.6、﹣.【考点】根与系数的关系.【分析】由根与系数的关系可得x1+x2=﹣m,x1•x2=2m,继而求得答案.【解答】解:∵一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,∴x1+x2=﹣m,x1•x2=2m,∴==﹣.二、选择题7、D【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元一次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、不是方程,故此选项错误;D、符合一元二次方程的定义,故此选项正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.8、D【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.9、D【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.10、C【分析】设每次降价的百分率为x,则第一次降价后的售价为200(1﹣x)元,第二次降价后的售价为200(1﹣x)(1﹣x)元,根据第二降价后的售价为128元建立方程求出其解即可.【解答】解:设每次降价的百分率为x,由题意,得200(1﹣x)2=128,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:每次降价的百分率为20%.故选C.【点评】本题考查了列一元二次方程解降低率的问题的运用,一元二次方程的解法的运用,解答时根据降低率的数量关系建立方程是关键,检验根是否符合题意是容易忘记的过程.11、C【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程20x+33x﹣x2=20×33﹣510,解方程即可求解.解题过程中要根据实际意义进行x的值的取舍.【解答】解:设道路的宽为x,根据题意得20x+33x﹣x2=20×33﹣510整理得x2﹣53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.【点评】本题考查的是一元二次方程的实际运用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12、C13、B【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=15,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.14、C三、多项选择15、.四、简答题16、解:因式分解得:,………….5分所以或. ………….7分因为,所以,,………….9分因为两根都是正整数,所以,. ………….12分17、解:(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根,∴△=(2m-1)2-4×1×m2=-4m+1≥0,∴m ≤;(2)当x12-x22=0时,即(x1+x2)(x1-x2)=0,∴x1-x2=0或x1-x2=0当x1+x2=0,依据一元二次方程根与系数的关系可得x1+x2=-(2m-1)∴-(2m-1)=0,∴m=又∵由(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根时的取值范围是m ≤,∴m=不成立,故m无解;当时x1-x2=0,x1=x2,方程有两个相等的实数根,∴△=(2m-1)2-4×1×m2=-4m+1=0,∴m=综上所述,当x1-x2=0时,m=。

一元二次方程经典例题及练习

一元二次方程经典例题及练习

一元二次方程练习题1. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.2. 解下列方程:(1)2(1)9x -=; (2)2(21)3x +=;(3)2(61)250x --=. (4)281(2)16x -=.3. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥ 4. 填空(1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a-+( )=(y - )2.5. 用适当的数(式)填空:2x px -+=(x -2)23223(x x x +-=+2)+.6. 用配方法解下列方程1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02x x ---+=7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 .8. 用配方法解方程.23610x x --= 22540x x --=9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;2213. 已知关于x 的一元二次方程22(21)10m x m x +-+=有两个不相等的实数根,则m 的取值范围是 .一元二次方程综合测试(一)姓名:____________ 分数:___________一、填空题(每小题5分,计35分)1、()x x 6542=+-化成一般形式是___________________________________,其中一次项系数是___________2、()22________________3+=++x x x3、若()()______________054==-+x x x ,则4、若代数式242-+x x 的值为3,则x 的值为_______________________________5、已知一元二次方程022=+-mx mx 有两个相等的实数根,则m 的值为____________________ 6、已知三角形的两边长分别为1和2,第三边的数值是方程03522=+-x x 的根,则这个三角形的周长为_______________________7、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒60元调至52元,若设每次平均降价的百分率为x ,则由题意可列方程为_______________________________________ 二、选择题(每小题5分,计20分)8、下列方程是一元二次方程的是( )A 、0523=-x x B 、()06122=--x C 、022312=-+x x D 、02122=-+xx 9、方程0562=--x x 左边配成一个完全平方式后,所得方程为( )10、要使方程()()0132=+++-c x b x a 是关于x 的一元二次方程,则( )A 、0≠aB 、3≠aC 、13-≠≠b a ,且D 、013≠-≠≠c b a ,且,11、某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,二按原价的九折出售,将赚20元,则这种商品的原价是( )A 、500元B 、400元C 、300元D 、200元 三、解答题12、用适当的方法解下列方程(每小题6分,计24分)(1)()9322=-x ; (2)162=-x x ;(3)051632=++x x ; (4)()()2231623-=+x x13、(10分)无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由 14、(11分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?一元二次方程综合测试(二)姓名:____________ 分数:___________一、填空题(每小题5分,计40分)1、已知方程2(m+1)x 2+4mx+3m -2=0是关于x 的一元二次方程,那么m 的取值范围是 。

(完整版)一元二次方程计算题及答案

(完整版)一元二次方程计算题及答案

6X2-7X+1=06X2-7X=-1X2- ( 7/6)X+ ( 7/12 )2=-1 /6 +( 7/12 )2 (X-7 /12 )2=25 /144•••X-7 /12= ±5/12•••X1=1,X2=1/ 65X2-18=9X5X2-9X=18X2-1.8X=3.6(X-0.9 )2=4.41•••X-.9= ±2.1•••X1=3,X2=-1.24X 2-3X=52解:X2- ( 3/4 ) X=13(X-3 / 8 )2=13•••X-3 /8= ±29 /8•••X1=4,X2 =-13 / 45X 2=4-2X5X 2+2X=4X2+0.2X=0.8(X+0.1 )2 =0.81X+0.1= ±0.9X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x A2-9x+8=0 答案:x1=8 x2=1⑵ xA2+6x-27=0 答案:x1=3 x2=-9⑶ xA2-2x-80=0 答案:x仁-8 x2=10⑷ xA2+10x-200=0 答案:x1=-20 x2=10(5)xA2-20x+96=0 答案:x仁12 x2=8⑹xA2+23x+76=0 答案:x1=-19 x2=-4(7)xA2-25x+154=0 答案:x1=14 x2=11(8)xA2-12x-108=0 答案:x仁-6 x2=18(9)xA2+4x-252=0 答案:x1=14 x2=-18(10)xA2-11x-102=0 答案:x仁17 x2=-6(11)xA2+15x-54=0 答案:x1=-18 x2=3(12)xA2+11x+18=0 答案:x仁-2 x2=-9(13)xA2-9x+20=0 答案:x1=4 x2=5(14)xA2+19x+90=0 答案:x1=-10 x2=-9(15)xA2-x1=13 x2=1225x+156=0 答案:(16)xA2-22x+57=0 答案:x1=3 x2=19(17)xA2-5x-176=0 答案:x仁16 x2=-11(18)xA2-x1=7 x2=1926x+133=0 答案:(19)xA2+10x-11=0 答案:x1=-11 x2=1(20)xA2-3x-304=0 答案:x1=-16 x2=19(21)xA2+13x-x1=7 x2=-20140=0 答案:(22)xA2+13x-48=0 答案:x1=3 x2=-16(23)xA2+5x-176=0 答案:x1=-16 x2=11(24)x A2+28x+171=0 答案:x仁-9 x2=-19(25)x A2+14x+45=0 答案:x仁-9 x2=-5(26)xA2-9x-136=0 答案:x仁-8 x2=17(27)xA2-15x-76=0 答案:x仁19 x2=-4(28)xA2+23x+126=0 答案:x仁-9 x2=-14(29)xA2+9x-70=0 答案:x1=-14 x2=5(30)xA2-1x-56=0 答案:x1=8 x2=-7(31)xA2+7x-60=0 答案:x1=5 x2=-12(32)xA2+10x-39=0 答案:x1=-13 x2=3(33)xA2+19x+34=0 答案:x1=-17 x2=-2(34)xA2-6x-160=0 答案:x仁16 x2=-10(35)xA2-6x-55=0 答案:x仁11 x2=-5(36)xA2-7x-144=0 答案:x仁-9 x2=16(37)xA2+20x+5 仁0 答案:x仁-3 x2=-17(38)xA2-9x+14=0 答案:x1=2 x2=7(39)xA2-29x+208=0 答案:x1=16 x2=13(40)xA2+19x-20=0 答案:x1=-20 x2=1(41)xA2-13x-48=0 答案:x仁16 x2=-3(42)xA2+10x+24=0 答案:x仁-6 x2=-4(43)xA2+28x+180=0 答案:x1=-10 x2=-18(44)xA2-8x-209=0 答案:x1=-11 x2=19(45)xA2+23x+90=0 答案:x1=-18 x2=-5(46)x A2+7x+6=0 答案:x仁-6 x2=-1(47)x A2+16x+28=0 答案:x1=-14 x2=-2(48)xA2+5x-50=0 答案:x1=-10 x2=5(49)xA2+13x-14=0 答案:x1=1 x2=-14(50)xA2-23x+102=0 答案:x仁17 x2=6(51)xA2+5x-176=0 答案:x1=-16 x2=11(52)xA2-8x-20=0 答案:x仁-2 x2=10(53)xA2-16x+39=0 答案:x1=3 x2=13(54)xA2+32x+240=x1=-20 x2=-120 答案:(55)xA2+34x+288=x1=-18 x2=-160 答案:(56)xA2+22x+105=x仁-7 x2=-150 答案:(57)xA2+19x-20=0 答案:x1=-20 x2=1(58)xA2-7x+6=0 答案:x1=6 x2=1(59)xA2+4x-22 仁0 答案:x仁13 x2=-17(60)xA2+6x-9 仁0 答案:x1=-13 x2=7(61)xA2+8x+12=0 答案:x1=-2 x2=-6(62)xA2+7x-120=0 答案:x1=-15 x2=8(63)xA2-18x+17=0 答案:x1=17 x2=1(64)xA2+7x-170=0 答案:x1=-17 x2=10(65)xA2+6x+8=0 答案:x仁-4 x2=-2(66)x^2+13x+12=0 答案:x仁-1 x2=-12(67)xA2+24x+119=0 答案:x仁-7 x2=-17(68)x A2+11x-42=0 答案:x1=3 x2=-14(69)x A20x-289=0 答案:x仁17 x2=-17(70)xA2+13x+30=0 答案:x仁-3 x2=-10(71)xA2-24x+140=0 答案:x1=14 x2=10(72)xA2+4x-60=0 答案:x1=-10 x2=6(73)xA2+27x+170=0 答案:x1=-10 x2=-17(74)xA2+27x+152=0 答案:x1=-19 x2=-8(75)xA2-2x-99=0 答案:x仁11 x2=-9(76)xA2+12x+11=0 答案:x1=-11 x2=-1(77)xA2+17x+70=0 答案:x1=-10 x2=-7(78)xA2+20x+19=0 答案:x1=-19 x2=-1(79)xA2-2x-168=0 答案:x1=-12 x2=14(80)xA2-13x+30=0 答案:x1=3 x2=10(81)xA2-10x-119=0 答案:x仁17 x2=-7(82)xA2+16x-17=0 答案:x1=1 x2=-17(83)xA2-1x-20=0 答案:x1=5 x2=-4(84)xA2-2x-288=0 答案:x仁18 x2=-16(85)xA2-20x+64=0 答案:x仁16 x2=4(86)xA2+22x+105=0 答案:x仁-7 x2=-15(87)xA2+13x+12=0 答案:x仁-1 x2=-12(88)x^2-4x-285=0 答案:x仁19 x2=-15(89)x^2+26x+133=0 答案:x1=-19 x2=-7(90)x A2-17x+16=0 答案:x1=1 x2=16(91)x A2+3x-4=0 答案:x1=1 x2=-4(92)xA2-14x+48=0 答案:x1=6 x2=8(93)xA2-12x-133=0 答案:x仁19 x2=-7(94)xA2+5x+4=0 答案:x仁-1 x2=-4(95)xA2+6x-9 仁0 答案:x1=7 x2=-13(96)xA2+3x-4=0 答案:x仁-4 x2=1(97)xA2-13x+12=0 答案:x1=12 x2=1(98)xA2+7x-44=0 答案:x1=-11 x2=4(99)xA2-6x-7=0 答案:x仁-1 x2=7 (100)xA2-9x-90=0 答案:x仁15 x2=-6(101)xA2+17x+72=x仁-8 x2=-9 0 答案:(102)xA2+13x-14=0 答案:x1=-14 x2=1 (103)xA2+9x-36=0 答案:x1=-12 x2=3 (104)xA2-9x-90=0 答案:x仁-6 x2=15(105)xA2+14x+13=x仁-1 x2=-13 0 答案:(106)xA2-16x+63=0 答案:x1=7 x2=9 (107)xA2-15x+44=0 答案:x1=4 x2=11 (108)xA2+2x-168=0 答案:x1=-14 x2=12 (109)xA2-6x-216=0 答案:x1=-12 x2=18 (110)xA2-6x-55=0 答案:x仁11 x2=-5(111)x A2+18x+32=0 答案:x1=-2 x2=-16。

一元二次方程100道计算题练习(附答案解析)

一元二次方程100道计算题练习(附答案解析)

一元二次方程100 道计算题练习1 、 ( x 4) 25( x 4)2 、 ( x 1)24x3 、 (x 3)2(1 2x) 24 、 2x 210 x 3 5、( x+5 )2 =16 6 、2( 2x -1)- x(1 - 2x) =07 、 x2 =64 8 、5x229 、 8 ( 3 -x )2–72=0-=0510 、3x(x+2)=5(x+2) 11 、( 1- 3y )2+2 ( 3y -1 ) =0 12 、 x 2 + 2x + 3=0 13 、x 2 + 6x - 5=0 14 、 x 2-4x+ 3=0 15 、 x 2-2x - 1 =016 、2x 2 +3x+1=0 17 、 3x 2 +2x - 1 =0 18 、 5x 2- 3x+2 =019 、7x 2- 4x- 3 =0 20 、 -x 2 -x+12 =0 21 、 x 2- 6x+9 =022 、 (3x 2) 2(2x 3) 223 、 x2 -2x-4=0 24 、 x2-3=4x25 、3x 2+8 x - 3 = 0(配方法)26 、 (3x + 2)(x + 3) =x+ 14 27、 (x+1)(x+8)=-12 28 、2(x - 3) 2= x 2- 9 29 、- 3x 2+ 22x - 24= 0 30 、(2x-1 )2 +3 ( 2x-1 ) +2=031 、2x 2-9x + 8 =0 32、 3 ( x-5)2=x(5-x) 33 、 (x+2) 2= 8x34 、(x- 2) 2= (2x+ 3)235 、 7x2 2 x 0 36 、 4t24t 1 037 、 4 x 3 22 31x 35 02 x x3 0 38 、 6x 39 、 2x 3121 040 、 2x223x 65 0补充练习:一、利用因式分解法解下列方程(x- 2) 2=(2x-3) 2x24x 0 3x(x 1) 3x 3x2-2 3 x+3=0 x 5 28 x 5 16 0 二、利用开平方法解下列方程1( 2 y 1)2 14( x-3 )2=25 (3x 2) 2242 5三、利用配方法解下列方程x2 5 2x 2 0 3x 26x 12 0 x 27 x 10 0四、利用公式法解下列方程- 3x 2+ 22x - 24 =0 2x( x- 3) =x - 3 .3x2+5(2x+1)=0五、选用适当的方法解下列方程(x+ 1) 2-3 (x + 1) + 2= 0 (2 x 1)29( x 3)2x22x 3 0x23x 1 0 x(x 1) 1 ( x 1)( x2)2 3 4(3x 11)( x 2) 2 x(x+1)- 5x=0. 3x(x-3) =2(x-1) ( x+1).应用题:1 、某商场销售一批名牌衬衫,平均每天可售出20 件,每件盈利40 元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售 2 件,若商场平均每天盈利 1250 元,每件衬衫应降价多少元?2 、两个正方形,小正方形的边长比大正方形的边长的一半多 4 cm ,大正方形的面积比小正方形的面积的 2 倍少 32 平方厘米,求大小两个正方形的边长.3 、如图,有一块梯形铁板ABCD ,AB ∥CD ,∠A=90 °,AB=6m, CD =4m, AD=2 m ,现在梯形中裁出一内接矩形铁板AEFG ,使 E 在 AB 上,F在 BC 上,G在AD 上,若矩形铁板的面积为5 m 2,则矩形的一边EF 长为多少?4 、如右图,某小在长32 米,区规划宽20 米的矩形场地ABCD 上修建三条同样宽的3 条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为566 米 2,问小路应为多宽?5 、某商店经销一种销售成本为每千克40 元的水产品,据市场分析,若按每千克50 元销售一个月能售出 500 千克;销售单价每涨元的情况下,使得月销售利润达到1 元,月销售量就减少10 千克,商店想在月销售成本不超过8000 元,销售单价应定为多少?1 万6.某工厂 1998 年初投资100 万元生产某种新产品,1998 年底将获得的利润与年初的投资的和作为1999 年初的投资,到1999 年底,两年共获利润56 万元,已知 1999 年的年获利率比1998 年的年获利率多 10 个百分点,求 1998 年和 1999 年的年获利率各是多少?思考:1、关于 x 的一元二次方程a 2 x2x a2 4 0 的一个根为 0 ,则 a 的值为。

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)

完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。

为了方便,我们可以将这些方程按照不同的方法分类。

一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。

根据不同的题目,我们可以选择不同的方法来解决问题。

例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。

将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。

将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。

一元二次方程经典例题及答案

一元二次方程经典例题及答案

一.一元二次方程的概念:例1;若关于的方程(a-5)x ∣a ∣-3+2x-1=0是一元二次方程,求a 的值?1、下列方程:(1)x 2-1=0; (2)4 x 2+y 2=0; (3)(x-1)(x-3)=0; (4)xy+1=3. (5)3212=-x x其中,一元二次方程有( ) A .1个 B .2个 C .3个 D .4个2、一元二次方程(x+1)(3x-2)=10的一般形式是 ,二次项 , 二次项系数 ,一次项 ,一次项系数 ,常数项 。

3.判断下列关于x 的方程是否为一元二次方程: (1)2(x 2-1)=3y ; (2)4112=+x ; (3)(x -3)2=(x +5)2; (4)mx 2+3x -2=0; (5)(a 2+1)x 2+(2a -1)x +5―a =0.4.把下列方程化成一元二次方程的一般形式,并写出它们的二次项系数,一次项系数及常数项。

(1)(3x-1)(2x+3)=4; (2)(x+1)(x-2)=-2.5.当m 为何值时,关于x 的方程(m-2)x 2-mx+2=m-x 2是关于x 的一元二次方程?二.一元二次方程的解法(1)直接开平方法1.方程036)5(2=--x 的解为( )A 、0B 、1C 、2D 、以上均不对2.已知一元二次方程)0(02≠=+m n mx ,若方程有解,则必须( )A 、n=0B 、n=0或m ,n 异号C 、n 是m 的整数倍D 、m ,n 同号 3.方程(1)x 2=2的解是 ; (2)x 2=0的解是 。

4.用直接开平方法解方程(x +h )2=k ,方程必须满足的条件是( ) A .k≥o B .h≥o C .hk >o D .k <o 5.方程(1-x )2=2的根是( )A.-1、3B.1、-3C.1-2、1+2D.2-1、2+16.、方程 (3x -1)2=-5的解是 。

7.用直接开平方法解下列方程:(1)4x 2=9; (2)(x+2)2=16(3)(2x-1)2=3; (4)3(2x+1)2=12三.一元二次方程的解法(2)配方法例:试用配方法证明:代数式x 2+3x-23的值不小于-415。

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

一元二次方程10道例题

一元二次方程10道例题

一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。

所以方程的解为x_1 = 7,x_2=-1。

二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。

2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。

3. 然后用直接开平方法,x+3=±4。

- 当x+3 = 4时,x=1。

- 当x + 3=-4时,x=-7。

所以方程的解为x_1=1,x_2 = - 7。

三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。

在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。

1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。

2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。

- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。

- 当取负号时,x=(5-1)/(4)=1。

所以方程的解为x_1=(3)/(2),x_2 = 1。

四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。

2. 则有x-1=0或者x - 2=0。

- 当x-1=0时,x = 1。

- 当x-2=0时,x=2。

所以方程的解为x_1=1,x_2=2。

例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。

一元二次方程经典练习题附带详细答案

一元二次方程经典练习题附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )+x=1 =12; (x 2-1)=3(x-1) (x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( ) 个 B2个 个 个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )=0 =0 +1=0 +6=0 4.方程x 2=6x 的根是( )=0,x 2=-6 =0,x 2=6 =6 =0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对6.若两个连续整数的积是56,则它们的和是( ) D.±157.不解方程判断下列方程中无实数根的是( )=2x-1 +4x+5420x -= D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) (1+x)2=1000 +200×2x=1000 +200×3x=1000 [1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程2(1)5322xx-+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到万元,求3, 4月份平均每月销售额增长的百分率.练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题一元二次方程的解法及经典练题方法一:直接开平方法(基于平方根的定义)平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

即,如果x²=a,那么x=±√a。

注意,x可以是多项式。

一、使用直接开平方法解下列一元二次方程:1.4x²-1=22.(x-3)²=233.81(x-2)²=1644.(x+1)²/4=255.(2x+1)²=(x-1)²6.(5-2x)²=9(x+3)²7.2(x-4)²/3-6=0.方法二:配方法解一元二次方程1.定义:把一个一元二次方程的左边配成一个平方,右边为一个常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2.配方法解一元二次方程的步骤:1)将方程移项,使等式左边为完全平方,右边为常数。

2)将等式左右两边开平方。

3)解出方程的根。

二、使用配方法解下列一元二次方程:1.y²-6y-6=02.3x²-2=4x3.3x²-4x=94.x²-4x-5=05.2x²+3x-1=06.3x²+2x-7=0方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法。

2.公式的推导:使用配方法解方程ax²+bx+c=0(a≠0),解得x=[-b±√(b²-4ac)]/(2a)。

3.由上可知,一元二次方程ax²+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因为1)当b²-4ac>0时,方程有两个实数根,x₁=[-b+√(b²-4ac)]/(2a),x₂=[-b-√(b²-4ac)]/(2a)。

2)当b²-4ac=0时,方程有一个实数根,x₁=x₂=-b/(2a)。

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)(1)x^2+17x+72=0答案:x1=-8x2=-9(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(21)x^2+13x-140=0答案:x1=7x2=-20(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(43)x^2+28x+180=0答案:x1=-10x2=-18(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(87)x^2+13x+12=0答案:x1=-1x2=-12(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6。

一元二次方程的应用专项练习60题(有答案)

一元二次方程的应用专项练习60题(有答案)

一元二次方程的应用专项练习60题(有答案)1.某单位组织职工旅游,旅行社的收费标准如下:人数不超过25人,每人旅游费用为100元;超过25人,每增加1人,人均旅游费用降低2元,但不低于70元。

该单位按照旅行社的收费标准组团,结束后,共支付给旅行社2700元。

求该单位这次旅游共有多少人参加?2.国务院于4月7日公布了《医药卫生体制改革近期重点实施方案(2009~20XX年)》。

某市政府决定用于改善医疗卫生服务的经费为6000万元,并计划到20XX年提高到7260万元。

如果从现在到20XX年每年的资金投入按相同的增长率递增,求到20XX年的平均增长率。

3.某商场按照定价销售某种电器时,每台可获利48元。

如果按照定价的九折销售该电器6台,则将定价降低30元销售该电器9台所获得的利润相等。

1)该电器每台进价和定价各是多少元?2)按照(1)的定价,该商场一年可销售1000台。

经市场调查,每降低一元,一年可多卖该种电器10台。

如果商场想在一年中使该种电器获利元,那么商场应该按几折销售?4.5月1日,杭州湾跨海大桥通车。

通车后,苏南A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地。

如果有一批货物(不超过10车)从A地按照外运路线运到B地,运费为8320元。

其中,从A地经杭州湾跨海大桥到宁波港的每车运输费用为380元。

从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元。

如果这批货物有x车。

1)用含x的代数式表示每车从宁波港到B地的海上运费;2)求x的值。

5.有一块矩形铁皮,长100cm,宽50cm。

在它的四角各切去一个同样大的正方形,然后将四周突出部分折起,就能制作成一个无盖的方盒。

如果制成的无盖方盒的底面积为3600cm²,那么铁皮各角应切去多大的正方形?6.近年来,我市某乡的蔬菜产值不断增加,蔬菜的产值从640万元增加到1000万元。

一元二次方程解法例题

一元二次方程解法例题

一元二次方程解法例题一、配方法例题1. 例题:解方程x^2+6x + 4 = 0。

- 首先呢,我们要把这个方程变成完全平方式的样子。

对于x^2+6x这部分,我们知道完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=x,2ab = 6x,那b就是3。

- 我们就在方程两边加上3^2,同时为了保持等式成立,也要在右边减去3^2。

方程就变成了x^2+6x+3^2+4 - 3^2=0。

- 也就是(x + 3)^2+4 - 9 = 0,进一步得到(x + 3)^2=5。

- 然后呢,开平方可得x+3=±√(5)。

- 最后解得x=-3±√(5)。

2. 再看一个例子,解方程2x^2-5x+1 = 0。

- 先把二次项系数化为1,方程两边同时除以2,得到x^2-(5)/(2)x+(1)/(2)=0。

- 对于x^2-(5)/(2)x这部分,按照完全平方公式,2ab =-(5)/(2)x,a = x,所以b=-(5)/(4)。

- 方程两边加上(-(5)/(4))^2,同时右边也要减去(-(5)/(4))^2,就变成x^2-(5)/(2)x+(-(5)/(4))^2+(1)/(2)-(-(5)/(4))^2=0。

- 也就是(x-(5)/(4))^2+(1)/(2)-(25)/(16)=0,化简得到(x-(5)/(4))^2=(25)/(16)-(8)/(16)=(17)/(16)。

- 开平方得x-(5)/(4)=±(√(17))/(4)。

- 解得x=(5±√(17))/(4)。

二、公式法例题1. 例题:解方程x^2-3x - 4 = 0。

- 对于一元二次方程ax^2+bx + c = 0(这里a = 1,b=-3,c = - 4),有个求根公式x=frac{-b±√(b^2)-4ac}{2a}。

- 先算判别式Δ=b^2-4ac,把a = 1,b=-3,c = - 4代入,得到Δ=(-3)^2-4×1×(-4)=9 + 16=25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程练习题1. 用直接开平方法解下列方程:(1)2225x =; (2)21440y -=.2. 解下列方程:(1)2(1)9x -=; (2)2(21)3x +=;(3)2(61)250x --=. (4)281(2)16x -=.3. 用直接开平方法解下列方程:(1)25(21)180y -=; (2)21(31)644x +=;(3)26(2)1x +=; (4)2()(00)ax c b b a -=≠,≥ 4. 填空(1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a-+( )=(y - )2.5. 用适当的数(式)填空:23x x -+(x =-2); 2x px -+=(x -2)23223(x x x +-=+2)+.6. 用配方法解下列方程1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02x x ---+=7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 .8. 用配方法解方程.23610x x --= 22540x x --=9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程(1)210x x --=; (2)23920x x -+=.12. 用适当的方法解方程(1)23(1)12x +=; (2)2410y y ++=;(3)2884x x -=; (4)2310y y ++=.13. 已知关于x 的一元二次方程22(21)10m x m x +-+=有两个不相等的实数根,则m 的取值范围是 .一元二次方程综合测试(一)姓名:____________ 分数:___________一、填空题(每小题5分,计35分)1、()x x 6542=+-化成一般形式是___________________________________,其中一次项系数是___________2、()22________________3+=++x x x3、若()()______________054==-+x x x ,则4、若代数式242-+x x 的值为3,则x 的值为_______________________________5、已知一元二次方程022=+-mx mx 有两个相等的实数根,则m 的值为____________________ 6、已知三角形的两边长分别为1和2,第三边的数值是方程03522=+-x x 的根,则这个三角形的周长为_______________________7、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒60元调至52元,若设每次平均降价的百分率为x ,则由题意可列方程为_______________________________________ 二、选择题(每小题5分,计20分)8、下列方程是一元二次方程的是( )A 、0523=-x x B 、()06122=--x C 、022312=-+x x D 、02122=-+xx 9、方程0562=--x x 左边配成一个完全平方式后,所得方程为( )A 、()4162=-x B 、()432=-x C 、()1432=-x D 、()3662=-x10、要使方程()()0132=+++-c x b x a 是关于x 的一元二次方程,则( )A 、0≠aB 、3≠aC 、13-≠≠b a ,且D 、013≠-≠≠c b a ,且,11、某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,二按原价的九折出售,将赚20元,则这种商品的原价是( )A 、500元B 、400元C 、300元D 、200元 三、解答题12、用适当的方法解下列方程(每小题6分,计24分)(1)()9322=-x ; (2)162=-x x ;(3)051632=++x x ; (4)()()2231623-=+x x13、(10分)无论m 为何值时,方程04222=---m mx x 总有两个不相等的实数根吗?给出答案并说明理由 14、(11分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?一元二次方程综合测试(二)姓名:____________ 分数:___________一、填空题(每小题5分,计40分)1、已知方程2(m+1)x 2+4mx+3m -2=0是关于x 的一元二次方程,那么m 的取值范围是 。

2、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是 它的二次项系数是 ;一次项系数是 ;常数项是 。

3、已知关于x 的一元二次方程(2m -1)x 2+3mx+5=0有一根是x=-1,则m= 。

4、 关于x 的方程2310x x -+= 实数根。

(注:填写“有”或“没有”) 5、若代数式x 2-2x 与代数式 -9+4x 的值相等,则x 的值为 。

6、在实数范围内定义一种运算 “*” , 其规则为 22a b a b *=-, 根据这个规则, 方程(x+3)*2=0的解为 。

7、在参加足球世界杯预选赛的球队中,每两支队都要进行两次比赛,共要比赛30场,则参赛队有 支。

8、如右图,是一个正方体的展开图,标注了字母A 的面是正方体的正面, 如果正方体的左面和右面所标注代数式的值相等,则x 的值是 。

二、选择题(每小题4分,计20分) 9、下列方程,是一元二次方程的是( ) ①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x+3=0 A .①② B .①②④⑤ C .①③④ D .①④⑤ 102(7)x -=7-x ,则x 的取值范围是( )A .x ≥7B .x ≤7C .x>7D .x<711、方程(x-3)2=(x-3)的根为( )A .3B .4C .4或3D .-4或312、若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( ) A .1 B .-1 C .2 D .-213、从正方形铁片上截去2cm 宽的一个长方形,剩余矩形的面积为80cm 2,•则原来正方形的面积为( ) A .100cm 2 B .121cm 2 C .144cm 2 D .169cm 2 三、解答题14、用适当的方法解下列方程(每小题6分,计24分)(1)(3)(1)5x x +-=; (2)231060x x -+=(3)2(3)2(3)x x x -=-; (4)2(3)2(1)7x x x --+=-15、(10分)已知方程2(m+1)x 2+4mx+3m=2,根据下列条件之一求m 的值. (1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0. 16、(11分)某农户在山上种了脐橙果树44株,现进入第三年收获。

收获时,先随意采摘5株果树上的脐橙,称得每株果树上的脐橙质量如下(单位:千克):35,35,34,39,37(1)根据样本平均数估计,这年脐橙的总产量约是多少?(2)若市场上的脐橙售价为每千克5元,则这年该农户卖脐橙的收入将达多少元?(3)已知该农户第一年卖脐橙的收入为5500元,根据以上估算,试求第二年、第三年卖脐橙收入的年平均增长率。

(四)一元一次方程的实际应用(1)与数字有关的问题例11:一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数解:设原两位数的十位数字为x ,则个位数字为x -5. 根据题意,得()[]()[]736510510=+--+x x x x整理后,得0652=+-x x 解方程,得3221==x x ,当2=x 时,35=-x ,两位数为23;当3=x 时,25=-x ,两位数为32 答:原来的两位数为23或32 一元二次方程实际应用练习题11:1.一个两位数,个位数字比十位数字大3,个位数字的平方恰好等于这个两位数,则这个两位数是多少?2、某两位数的十位数字是082=-x x 的解,则其十位数字是多少;某两位数的个位数字是方程082=-x x 的解,则其个位数是多少?3、一个两位数,个位上数字比十位数字小4,且个位数字与十位数字的平方和比这两位数小4,设个位数字为x ,求这个两位数?4、一个两位数,个位上的数字是十位数字的平方还多1,若把个位上的数字与十位上的数字对调,所得的两位数比原数大27,求原两位数?5、一个三位数,百位上数字为2,十位上数字比个位上数字小3,这个三位数个位、十位、百位上的数字之积的6倍比这个三位数小20,求这个三位数?例12:三个连续奇数,它们的平方和为251,求这三个数?解:设中间的一个奇数为x ,则另两个奇数分别为22+-x x ,.由题意,得()()25122222=++-+x x x整理,得24332=x ∴9921-==x x ,当91=x 时,11272=+=-x x ,;当92-=x 时,72112-=+-=-x x ,答:三个连续奇数分别为7,9,11或7911---,,一元二次方程实际应用练习题12:1、 两个数的和为16,积为48,则这两个正整数各是多少?2、 若两个连续正整数的平方和为313,则这两个正整数的和是多少?3、 三个连续正整数中,前两个数的平方和等于第三个数的平方,则这三个数从小到大依次是多少?4、 三个连续偶数,使第三个数的平方等于前两个数的平方和,求这三个数?5、 有四个连续整数,已知它们的和等于其中最大的与最小的两个整数的积,求这四个数?(2)与几何图形面积有关的问题例13:一个直角三角形三边的长是三个连续整数,求这三条边的长和它的面积解:设三条边的长分别为()()11+-x x x ,, 由勾股定理,得()()22211+=+-x x x整理,得042=-x x . ∴4021==x x , ∵01=x ,不合题意,舍去∴4=x 从而5131=+=-x x , ∴S △=64321=⨯⨯一元二次方程实际应用练习题13:1.直角三角形两直角边的比是8:15,而斜边的长等于6.8cm ,那么这个直角三角形的面积等于多少?2、直角三角形的面积为6,两直角边的和为7,则斜边长为多少?3、用一条长12厘米的铁丝折成一个斜边长是5厘米的直角三角形,则两直角边的长是多少?4、一个三角形的两边长为2和4,第三边长是方程0121022=+-x x 的解,则三角形的周长为多少6、 若三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为多少?例14:一块长80cm ,宽60cm 的薄钢片,在四个角截去四个相同的小正方形,然后将四边折起,做成如图所示的底面积是15002cm 且无盖的长方体盒子. 求截去的小正方形的边长.解:设截去的小正方形的边长为x cm ,则 ()()1500260280=--x x 整理,得0825702=++x x 解得551521==x x ,因为0260>-x ,所以55=x 不合题意,舍去 所以 15=x答:截去的小正方形的边长为15cm一元二次方程实际应用练习题14:1.一块矩形的地,长是24米,宽是12米,要在它的中央划一块矩形的花坛,四周铺上草地,其宽都相同,花坛占大块矩形面积的95,求草地的宽?2、从一块正方形的木板上锯下2m 宽的长方形木条,剩下部分的面积是482m ,则这块木板的面积是多少?3、有一间长18m ,宽7m 的会议室,在它的中间铺一块地毯,地毯的面积是会议室面积的31,四周未铺地毯处的宽度相同,则求所留宽度是多少?4、一根铁丝长48cm ,围成一个面积为140cm 2的矩形,求这个矩形的长和宽分别是多少?5、建一个面积为480平方米的长方形存车处,存车处的一面靠墙,另三面用铁栅栏围起来,已知铁栅栏的长是92米,求存车处的长和宽各是多少?(3)有关增长率的问题例15:将进货单价为30元的商品按40元售出时,每天能卖出500个. 已知这种商品每涨价1元,其每天销售量就减少10个,为了每天能赚取8000元的利润,且尽量减少库存,售价应定为多少?解:设售价应定为x 元,则()()[]8000401050030=---x x整理,得035001202=+-x x解得705021==x x ,因为要尽量减少库存,所以70=x 不合题意,舍去所以50=x答:售价应定为50元一元二次方程实际应用练习题15:1、 某商店的童装按标价的九折出售,仍可获利20%,若进价为每件21元,求每件标价为多少元?2、 一个小组有若干个人,新年互送贺卡一张,已知全组共送贺卡72张,求这个小组有多少人?3、 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共赠送了182件,求全组有多少名同学?4、 有一种植物的主干长出了若干数目的支干,每个支干又长出同样数目的小分支,主干、分支和小分支的总数是111,每个支干长出多少小分支?例16:某工厂1月份产值为50万元,采用先进技术后,第一季度产值共为182万元,2月份和3月份的平均增长率为多少?解:设2月份和3月份的平均增长率为x ,则()()182150150502=++++x x 整理,得01675252=-+x x解得2.32.021-==x x ,因为02.3<-=x ,所以2.3-=x 不合题意,舍去所以%202.0==x答:2月份和3月份的平均增长率为%20一元二次方程实际应用练习题16:1、 某农场的产量两年从50万公斤增加到60.5万公斤,平均每年增产百分之几??2、 某化肥厂今年一月份的化肥产量为4万吨,第一季度共生产化肥13.2万吨,问2、3月份平均每月的增长率是多少?3、 某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,求平均每月增长率为多少?4、某种粮大户今年产粮20万千克,计划后年产粮达到28.8万千克,若每年粮食增产的百分率相同,求平均每年增产的百分数?5、某钢厂今年一月份产量为4万吨,第一季度共生产13.24万吨,问二、三月份平均每月的增长率是多少?。

相关文档
最新文档