等比数列_优秀课件
合集下载
《等比数列性质》课件
等比数列的性质
等比数列的性质取决于公比的正负情况。
公比为正的情况
1 单调性
2
当公比大于1时,数列呈现递增趋势;当 公比小于1但大于0时,数列呈现递减趋势。
公比为负的情况
极限值
当公比大于1时,数列趋于正无穷;当公 比小于1但大于0时,数列趋于0。Biblioteka 1 单调性2 极限值
无论公比是多少,等比数列都不会出现单 调性。
无论公比是多少,等比数列都不会收敛于 一个确定的极限值。
等比数列的无穷级数
等比数列的无穷级数指的是将数列的所有项相加,即求和。 如果公比的绝对值小于1,那么等比数列的无穷级数将收敛,其和可以通过以下公式计算: S∞ = a1 / (1 - r)
等比数列在几何意义上的应用
等比数列在图形中的应用
等比数列可以用来生成一些有趣的图形,如分形。分形是一种具有自相似性质的图形,无论放大或缩 小,形状都保持一致。
《等比数列性质》PPT课件
什么是等比数列
等比数列是一种数列,其中每一项与前一项的比值保持不变。它可以用以下 的通项公式来表示: an = a1 × r(n-1) 其中,a1表示等比数列的首项,r表示公比,而an表示第n项。
等比数列的通项公式与前n项和公式
等比数列的通项公式允许我们计算数列中的任何一项。而前n项和公式则可以帮助我们计算数列前n项 的和。 通项公式:an = a1 × r(n-1) 前n项和公式:Sn = a1 × (1 - rn) / (1 - r)
黄金分割的生成与应用
黄金分割是一种与等比数列相关的数学概念,在建筑、艺术、自然界等领域中有广泛的应用。它具有 特殊的美学意义。
相关练习题目
等比数列的计算 填空题 选择题 解析题
《等比数列的概念》课件
03
等比数列的应用
等比数列在数学中的应用
解题技巧
等比数列是数学中常见的数列类型, 它在解决数学问题时具有广泛的应用 。例如,在求解一些复杂数学问题时 ,可以利用等比数列的性质简化计算 过程。
公式推导
等比数列的通项公式和求和公式在数 学中经常被用来推导其他公式或解决 一些复杂的数学问题。这些公式是等 比数列应用的基石,能够提供解决问 题的有效途径。
等比数列的公比
总结词
表示等比数列中任意两项的比值
详细描述
等比数列的公比是任意两项的比值,通常用字母 q 表示。公比是等比数列中相 隔一项的两个数的比值,即 a_n/a_(n-1)。公比反映了等比数列中每一项与前一 项的比值。
等比数列的项数与项的关系
总结词
表示等比数列中项数与项的关系
详细描述
在等比数列中,任意一项的值可以用首项、公比和项数来表 示。例如,第 n 项的值可以用 a_n=a_1×q^(n-1) 来表示, 其中 a_1 是首项,q 是公比,n 是项数。这个公式揭示了等 比数列中项数与项的关系。
《等比数列的概念》ppt课件
目录 Contents
• 等比数列的定义 • 等比数列的性质 • 等比数列的应用 • 练习题与答案
01
等比数列的定义
等比数列的文字定义
总结词:简洁明了
详细描述:等比数列是一种特殊的数列,其中任意两个相邻项之间的比值都相等 。
等比数列的数学符号定义
总结词:专业严谨
详细描述:等比数列通常表示为 a_n,其中 a 是首项,r 是公比,n 是项数。其数学定义是 a_n = a * r^(n-1),其中 r ≠ 0。
等比数列与等差数列的区别
总结词:对比分析
等比数列课件ppt
02
等比数列的通项公式
等比数列的通项公式推导
01
02
03
定义等比数列
等比数列是一个序列,其 中任意两个相邻项的比值 都相等。
推导通项公式
假设等比数列的首项为 $a_1$,公比为$r$,则第 $n$项$a_n$的通项公式 为$a_n = a_1 times r^{(n-1)}$。
证明通项公式
通过数学归纳法或迭代法 证明通项公式的正确性。
等比数列课件
• 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
等比数列的定义与性质
等比数列的定义
总结词
等比数列是一种特殊的数列,其 中任意两个相邻项之间的比值都 相等。
详细描述
等比数列中,任意两个相邻项的 商是常数,这个常数被称为公比 。在等比数列中,每一项都是前 一项与公比的乘积。
举例说明
通过具体的例子来解释等比数列求和公式的推导过程。
等比数列求和公式的应用
解决实际问题
等比数列求和公式在解决实际问题中有着广泛的应用,如金融、工程、物理等 领域。
举例说明
通过具体的例子来展示等比数列求和公式的应用。
等比数列求和公式的变体
等差数列与等比数列的关系
01
等差数列和等比数列是两种不同的数列,但它们之间存在一定
01
第三组数列是等比数列,因为相 邻两项的比值都是1/2。
02
第四组数列也是等比数列,因为 相邻两项的比值都是1/2。
习题二:等比数列的通项公式
01
题目:已知等比数列的首项为 a,公比为q,求第n项的通项
公式。
02
答案与解析
等比数列公开课课件PPT
等比数列的应用
在数学中的应用
数学建模
等比数列是数学建模中常用的数 学工具,可以用来描述和解决各 种数学问题,如数列求和、数列
极限等。
金融计算
等比数列在金融领域的应用广泛, 如复利计算、贷款还款等,通过等 比数列的公式可以快速准确地计算 出结果。
统计学
在统计学中,等比数列常被用来描 述和预测数据分布,如人口增长、 股票价格波动等。
使用等比数列求和公式可 以大大简化计算过程,提 高计算效率。
推广到其他数列
等比数列求和公式的应用 不仅限于等比数列,还可 以推广到其他类型的数列。
实例解析
实例一
求1,2,4,8,16,...的前n项和。
实例二
求1,3,9,27,81,...的前n项和。
实例三
求2,4,8,16,...的前n项和。
05
通过观察数列1,4,16,64,...可以发现相邻两项的比值分别
为4,4,4,...,所以公比q = 4。
答案2
03
这四项分别为1/3, 2/3, 4/3, 8/3。
答案与解析
• 解析2:已知等比数列的公比为2,前四项和为1,设第一项为a, 则第二项为2a,第三项为4a,第四项为8a。根据等比数列前n 项和公式S_n = a * (q^n - 1) / (q - 1),代入n=4, q=2, S_4=1,解得a = 1/3。因此这四项分别为1/3, 2/3, 4/3, 8/3。
等比数列公开课课件
• 引言 • 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
引言
主题简介
定义
等比数列是一种常见的数列,其中任意两个相邻 项之间的比值是常数。
在数学中的应用
数学建模
等比数列是数学建模中常用的数 学工具,可以用来描述和解决各 种数学问题,如数列求和、数列
极限等。
金融计算
等比数列在金融领域的应用广泛, 如复利计算、贷款还款等,通过等 比数列的公式可以快速准确地计算 出结果。
统计学
在统计学中,等比数列常被用来描 述和预测数据分布,如人口增长、 股票价格波动等。
使用等比数列求和公式可 以大大简化计算过程,提 高计算效率。
推广到其他数列
等比数列求和公式的应用 不仅限于等比数列,还可 以推广到其他类型的数列。
实例解析
实例一
求1,2,4,8,16,...的前n项和。
实例二
求1,3,9,27,81,...的前n项和。
实例三
求2,4,8,16,...的前n项和。
05
通过观察数列1,4,16,64,...可以发现相邻两项的比值分别
为4,4,4,...,所以公比q = 4。
答案2
03
这四项分别为1/3, 2/3, 4/3, 8/3。
答案与解析
• 解析2:已知等比数列的公比为2,前四项和为1,设第一项为a, 则第二项为2a,第三项为4a,第四项为8a。根据等比数列前n 项和公式S_n = a * (q^n - 1) / (q - 1),代入n=4, q=2, S_4=1,解得a = 1/3。因此这四项分别为1/3, 2/3, 4/3, 8/3。
等比数列公开课课件
• 引言 • 等比数列的定义与性质 • 等比数列的通项公式 • 等比数列的求和公式 • 等比数列的应用 • 习题与解答
01
引言
主题简介
定义
等比数列是一种常见的数列,其中任意两个相邻 项之间的比值是常数。
等比数列的概念PPT优秀课件
(3) (4) (5) (6)
公比 q=2 递增数列 公比 q=3 递增数列
1 , x , x , x , x , ( x 0 )
234
公比 d= x
1 公比 q= 递减数列 2
1 1 1 1 , , , , 2 4 8 16
5,5,5,5,5,5,… 1,-1,1,-1,1,…
公比 q=1 非零常数列 公 比q= -1 摆动数列
为0.
等比数列、等差数列定义比较
等比数列:如果一个数列从第2项起,每一项与它 的前一项的比等于同一个常数(指与n无关的数), 这个数列就叫做等比数列,这个常数叫做等比数 列的公比,公比通常用字母q表示。 等差数列:如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,那么这个数列就叫 做等差数列.这个常数叫做等差数列的公差,公差通 常用字母d来表示.
讨论
已知等比数列 (1) 首项
a n
a1
: 能不能是零?
Why? 不能!!!
(2)公比q能不能是零?
Why? 不能!!!
等比中项
观察如下的两个数之间,插入一个什么数后者三个数就会成 为一个等比数列: (1)1,±3 , 9 (3)-12, ±6 ,-3 (2)-1, ±2 ,-4 (4)1,±1 ,1
如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项。
G ab G ab
2
等比中项与等差中项比较
G ab G ab
2
ab A 2
现给出等差中项的性质 1、在等差数列中,从第二项起,每 一项是相邻两项的等差中项。 2、在等差数列中,数列中的某一项 是与它“等距离”的两项的等差中 项。 你能类比中项的性质吗?可以用数学 式子表示吗?
公比 q=2 递增数列 公比 q=3 递增数列
1 , x , x , x , x , ( x 0 )
234
公比 d= x
1 公比 q= 递减数列 2
1 1 1 1 , , , , 2 4 8 16
5,5,5,5,5,5,… 1,-1,1,-1,1,…
公比 q=1 非零常数列 公 比q= -1 摆动数列
为0.
等比数列、等差数列定义比较
等比数列:如果一个数列从第2项起,每一项与它 的前一项的比等于同一个常数(指与n无关的数), 这个数列就叫做等比数列,这个常数叫做等比数 列的公比,公比通常用字母q表示。 等差数列:如果一个数列从第2项起,每一项与它的 前一项的差等于同一个常数,那么这个数列就叫 做等差数列.这个常数叫做等差数列的公差,公差通 常用字母d来表示.
讨论
已知等比数列 (1) 首项
a n
a1
: 能不能是零?
Why? 不能!!!
(2)公比q能不能是零?
Why? 不能!!!
等比中项
观察如下的两个数之间,插入一个什么数后者三个数就会成 为一个等比数列: (1)1,±3 , 9 (3)-12, ±6 ,-3 (2)-1, ±2 ,-4 (4)1,±1 ,1
如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项。
G ab G ab
2
等比中项与等差中项比较
G ab G ab
2
ab A 2
现给出等差中项的性质 1、在等差数列中,从第二项起,每 一项是相邻两项的等差中项。 2、在等差数列中,数列中的某一项 是与它“等距离”的两项的等差中 项。 你能类比中项的性质吗?可以用数学 式子表示吗?
等比数列 课件
问题 下列所给数列中,等比数列的序号是_①__③_____.
①1,1,1,1,1,…. ②0,1,2,4,8,…. ③2- 3,-1,2+ 3,…. ④12,2,4,8,16,….
探究点二 等比中项 问题 请你类比等差中项的概念,给出等比中项的概念.
答案 如果在a与b中间插入一个数G,使a,G,b成等比数列, 那么G叫做a与b的等比中项.
小结 等比数列的通项公式an=a1qn-1中有四个量a1,q,n, an.已知其中三个量可求得第四个,简称“知三求一”.
例2 在243和3中间插入3个数,使这5个数成等比数列,求这3 个数. 解 设插入的三个数为a2,a3,a4,由题意得243,a2,a3,a4,3 成等比数列. 设公比为q,则3=243·q5-1,解得q=±13. 当q=13时,a2=81,a3=27,a4=9; 当q=-13时,a2=-81,a3=27,a4=-9.
,a,
aq;三个数成等差数列,可设为a-d,a,a+d.
因此,所求三个数为81,27,9或-81,27,-9.
小结 利用等比数列的通项公式求各项时,要注意选取的首项 a1与项数n的对应关系,计算各项时注意防止序号出错.
例3 有四个数,其中前三个数成等差数列,后三个数成等比数 列,并且第一个数与第四个数的和是16,第二个数与第三个数 的和是12,求这四个数. 解 方法一 设四个数依次为a-d,a,a+d,a+ad2, 由条件得a-d+a+a d2=16, a+a+d=12.
探究点一 等比数列的概念
观察下面几个数列:
①1,2,4,8,16,… ②1,12,14,18,116,… ③1,-1,1,-1,1,… ④12,-1,2,-4,8,…
上面这几组数列的共同点是: 从第2项起,每一项与前一项的比 都___等__于__同__一__个___非__零__的__常__数__.像这样的数列,就叫做等比数 列.这个非零常数叫做等比数列的 公比 .
等比数列公开课一等奖ppt课件
①-②得12Tn=12+212+213+…+21n-2nn+1 =1211--1221n-2nn+1=1-21n-2nn+1=1-22+n+n1 ∴Tn=2-2+2n n
1.确定等比数列的关键是确定首项a1和公比q. 2.等比数列的通项公式、前n项和的公式中联系着五个量: a1、q、n、an、Sn,已知其中三个量,可以通过解方程(组)求出 另外两个量.
∴12m2+72m+12≤27 整理得 m2+7m-30≤0
解得-10≤m≤3,∴m 的最大值为 3.
设正项等比数列{an}的首项 a1=12,前 n 项和为 Sn, 且 210S30-(210+1)S20+S10=0.
(1)求{an}的通项; (2)求{nSn}的前 n 项和 Tn.
[解] (1)由 210S30-(210+1)S20+S10=0 得 210(S30-S20) =S20-S10 即 210(a21+a22+…+a30)=a11+a12+…+a20 因为 an>0,所以 210q10=1 解之得 q=12.
数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3 =4.
(1)求数列{bn}的通项公式; (2)若an=log2bn+3,求证数列{an}是等差数列; (3)若a12+a2+a3+…+am≤a46,求m的最大值.
[解] (1)由bb11b+3=b34=5 知 b1,b3 是方程 x2-5x+4=0 的两根,注意到 bn+1>bn 得 b1=1,b3=4.
若把例题中的条件改为 an+1=13Sn+1,n=1,2,3……,思 考数列{an}是否为等比数列.若是请证明并求通项公式,若 不是说明理由.
[解] 数列{an}是等比数列 ∵an+1=13Sn+1 ∴an=13Sn-1+1 ∴an+1-an=13(Sn-Sn-1)=13an(n≥2),
等比数列(53张PPT)
⇐把an+1=2an+1变形为an+1+1=2(an+1)
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
[解]
(1)∵an+1=2an+1,
∴an+1+1=2(an+1). an+1+1 ∴ =2. an+1 ∴{an+1}是首项为a1+1=2,公比为2的等比数列. (2)由(1)知an+1=(a1+1)qn-1=2· 2n-1=2n, ∴an=2n-1.
Байду номын сангаас
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
[点评]
证明一个数列是等比数列的常用方法.
an+1 an (1)定义法: a =q(常数)或 =q(常数)(n≥2)⇔{an} a n n -1 为等比数列. (2)等比中项法:a 等比数列. (3)通项法:an=a1qn-1(其中a1,q为非零常数,n∈N+) ⇔{an}为等比数列.
n-1 a q 通项公式是an= 1 .
3.等比中项 (1)如果三个数x,G,y组成 等比数列 ,则G叫做x和y的 等比中项.
2 G (2)如果G是x和y的等比中项,那么 =xy,即G=± xy .
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
思考感悟
1.如何理解等比数列的定义?
∴数列{an}是等比数列.
人教A版· 数学· 必修5
进入导航
第二章 2.4 第1课时
系列丛书
[错因分析] 忽略了由Sn求an需n≥2,除此之外,还要 保证从第二项起每一项与它的前一项的比都等于同一非零 常数.
人教A版· 数学· 必修5
进入导航
高中数学 等比数列课件(完整版).ppt
演示课件
数列 定义 公差(比)
等差数列 an+1-an=d d 叫公差
等比数列
an1 an q
q叫公比
定义变形
an+1=an+d
an+1=an q
通项公式 一般形式
an= a1+(n-1)d
an=am+(n-m)d
d an am nm
演示课件
an=a1qn-1
an=amqn-m
qnm an am
因此a5 120 120 51 2.51010
答:到第5代大约可以得到
an a1 • qn1
这种新品种的种子 2.5 1010 演粒示.课件
例 :某种电讯产品自投放市场以来,经过三次降
价,单价由原来的174元降到58元. 这种电讯产品平
均每次降价的百分率大约是多少(精确到1%)?
解:设平均每次降价的百分率是x,
或
a
d
27 4 9 2
这四个数为3,6,12,18
或 75,45,27,9 4 4 演示课件 4 4
方法三设前一个数为a,则第四个为21-a 第二个数为b,则第三个为18-b
b
a 18 b 21 a
b2 2(18
b)
a b
3或 6
a b
75 4 45 4
这四个数为3,6,12,18
n1
3
2
●
1
●
●●●
0 1 2 3 4 5 6 7 8 9 10
演示课件
10
9 数列:4,4,4,4,4,4,4,…
8 7
an 4
6
5
4
● ● ●● ●●● ● ● ●
数列 定义 公差(比)
等差数列 an+1-an=d d 叫公差
等比数列
an1 an q
q叫公比
定义变形
an+1=an+d
an+1=an q
通项公式 一般形式
an= a1+(n-1)d
an=am+(n-m)d
d an am nm
演示课件
an=a1qn-1
an=amqn-m
qnm an am
因此a5 120 120 51 2.51010
答:到第5代大约可以得到
an a1 • qn1
这种新品种的种子 2.5 1010 演粒示.课件
例 :某种电讯产品自投放市场以来,经过三次降
价,单价由原来的174元降到58元. 这种电讯产品平
均每次降价的百分率大约是多少(精确到1%)?
解:设平均每次降价的百分率是x,
或
a
d
27 4 9 2
这四个数为3,6,12,18
或 75,45,27,9 4 4 演示课件 4 4
方法三设前一个数为a,则第四个为21-a 第二个数为b,则第三个为18-b
b
a 18 b 21 a
b2 2(18
b)
a b
3或 6
a b
75 4 45 4
这四个数为3,6,12,18
n1
3
2
●
1
●
●●●
0 1 2 3 4 5 6 7 8 9 10
演示课件
10
9 数列:4,4,4,4,4,4,4,…
8 7
an 4
6
5
4
● ● ●● ●●● ● ● ●
4311等比数列的概念与通项公式课件共39张PPT
当 q=-2 时,an=a1qn-1=2(-2)n-1=(-1)n-12n, ∴数列{an}的公比为 2 或-2, 对应的通项公式分别为 an=2n 或 an=(-1)n-12n.
类型二 等比中项
[例 2] 已知等比数列的前三项和为 168,a2-a5=42,求 a5,a7 的等比中项. [思路分析] 根据已知条件,求出等比数列的首项和公比,再利用定义求等比 中项.
此时{an}不是等比数列. 4.(知识点二)数列{an}为等比数列,若 a1=2,a5=8,则 a3=±4.正确吗?为
什么?
提示:不正确.设等比数列{an}的公比为 q,则可得 q4=aa51=4,解得 q2=2,所 以 a3=a1·q2=2×2=4.
二、练一练
1.等差数列{an}的公差不为零,首项 a1=1,a2 是 a1 和 a5 的等比中项,则数
课堂篇·互动学习
类型一 等比数列的通项公式及应用
[例 1] 在等比数列{an}中, (1)已知 a3=9,a6=243,求 a5; (2)已知 a1=98,an=13,q=23,求 n. [思路分析] 根据题设条件,充分利用等比数列的通项公式代入求解.
[解] (1)方法一:由 a3=9,a6=243, 得 a1q2=9,a1q5=243. ∴q3=2493=27,∴q=3.∴a1=1. ∴a5=a1q4=1×34=81. 方法二:∵a6=a3q3,∴q3=aa63=2493=27, ∴q=3. ∴a5=a3q2=9×32=81.
D.84
解析:∵a1=3,a1+a3+a5=21,∴3+3q2+3q4=21,∴1+q2+q4=7, 解得 q2=2 或 q2=-3(舍去),∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1,b1,b2,b3,-4
成等比数列,求a2-a1的值. b2
错解:∵-1,a1,a2,-4 成等差数列,设公差
为 d,则 a2-a1=d=13[(-4)-(-1)]=-1.
∵-1,b1,b2,b3,-4 成等比数列.
∴b22=(-1)×(-4)=4,∴b2=±2.
当
b2=2
时,a2-a1=-1=-1,
在等比数列an中,若 am·an=ap·aq=ak2,不一 定有 m+n=p+q=2k,如非零常数列.
2.既是等差数列又是等比数列的数列存在吗? 如果存在,你能举出例子吗?
答案:存在.例如:an=1,既是公差为0的等 差数列,又是公比为1的等比数列.
预习测评
1.在等比数列an中,若 a1+a5=34,a5-a1=30,
答案:等比 公比
2.如果在a与b中间插入一个数G,使a,G,b 成等比数列,那么G叫做a与b的________.
答案:等比中项 3.等比数列的通项公式为________. 答案:an=a1qn-1
自主探究
1.等比数列的公比能否为0,首项能否为0? 答案:等比数列的首项,公比都不为0. 2.若G2=ab,则a,G,b一定成等比数列吗? 答案:不一定,因为若G=0,且a,b中至少有 一个为0,使G2=ab,根据等比数列的定义,a,G, b不成等比数列.当a,G,b全不为零时,若G2=ab, 则a,G,b成等比数列.
答案:1510
要点阐释
1.等比数列的性质 (1)在等比数列中,我们随意取出连续的三项以 上的数,把它们重新依次看成一个数列,则仍是等 比数列. (2)在等比数列中,我们任取“间隔相同”的三项 以上的数,把它们重新依次看成一个数列,则仍是 等比数列,如:等比数列a1,a2,a3,… ,an,…. 那么a2,a5,a8,a11,a14,…;a3,a5,a7,a9, a11…各自仍构成等比数列.
是an+1= an
q(n∈N*),利用这种形式来判定,便于操作.
2.等比中项的应用 等比数列递推关系an2=an-1·an+1(n≥2),即说 明等比数列的任何一项(除第一项和最后一项)都是其 前后两项的等比中项.
特别提醒:(1)利用等比中项可在成等比数列 的三数中“知二求一”.
(2)只有同号的两数才存在等比中项,且等比 中项有两个值,即 G=± ab.
a8
是
a4
与________的等比中项
A.a9
B.a10
C.a11
() D.a12
答案:D
3.在等比数列an中,a5·a7=6,a2+a10=5,则aa1180等 于________.
解析:
因等比数列an
中,
a5·a7=
6=a2·a10,又
a2+
a10=5,求得 a2=2,a10=3 或 a2=3,a10=2,则aa1180=aa120
(c
为不等于
0
的常数)
是________数列.
答案:等比
自主探究
1.如果等比数列an中,m+n=2k(m,n,k∈N*),
那么 am·an=ak2 是否成立?反之呢? 答案:如果等比数列的三项的序号成等差数列,
那么对应的项成等比数列. 事实上,若m+n=2k(m,n,k∈N*), 则am·an=(a1·qm-1)·(a1·qn-1) =a12·qm+n-2=a12(qk-1)2=ak2.
∴b2=-2,∴a2-b2 a1=--12=12
课堂总结
1.等比数列an的通项公式为 an=a1qn-1.在等比数 列中,an≠0,q≠0.
2.公比q可为正数、负数.特殊地,当q=1时, 为常数列a1,a1,…,又若a1≠0,则它既为等差数列, 又为等比数列;当q=-1时,数列为a1,-a1,a1, -a1,….
2 2 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7= a1q4·a1q6=a12q10=962·1210=9. ∴a5,a7 的等比中项是±3.
方法点评:(1)首项a1和q是构成等比数列的基本 量,从基本量入手解决相关问题是研究等比数列的 基本方法.
(2)本题要注意同号的两个数的等比中项有两个, 它们互为相反数,而异号的两个数没有等比中顶.
预习测评
1.已知 a 是公比为
n
q
的等比数列,则这个数列
的通项公式为
()
A.an=a3qn-2 C.an=a3qn-3
B.an=a3qn-1 D.an=a3qn-4
解析:∵a3qn-3=a1·q2·qn-3=aqn-1=an. 答案:C
2.如果-1,a,b,c,-9成等比数列,那么
()
A.b=3,ac=9
之比,防止前后次序颠倒.
(3)如果一个数列不是从第2项起而是从第3项或 第4项起每一项与它前一项的比都是同一个常数,此 数列不是等比数列.这时可以说此数列从第2项起或 第3项起按原数列的项的排列顺序组成一个新数列是 一个等比数列.
(4)项不为0的常数数列是等比数列.
(5)证明一个
数列为等比数
列,其依据
题型三 等比中项的应用
【例3】 等比数列的前三项和为168,a2-a5= 42,求a5,a7的等比中项.
解:设该等比数列的公比为 q,首项为 a1,由已知
a1+a1q+a2q2=168, a1q-a1q4=42,
∴aa11q11+-ຫໍສະໝຸດ q+3q422.=168,①
②
∵1-q3=(1-q)(1+q+q2), ①÷②q(1-q)=14⇒q=12. ∴a1=1-4214=96.
题型二 等比数列的判断
【例 2】
已知数列an
满足
a1=1,an+1=2an+1,
(1)求证:数列an+1是等比数列;
(2)求 an 的表达式.
(1)证明:因为 an+1=2an+1,所以 an+1+1=2(an+1),
由 a1=1,故 a1+1≠0,由上式易知 an+1≠0,所以aan+n+1+11
则 a3=
()
A.8 B.-8 C.±8 D.16
解析:由题意得aa15+ -aa5122= =334022,
即aa1122-+22aa11aa55++aa5522==330422,, 两式相减得 a1a5=64,即 a32=64, 又 a5>a1,故 a3=8. 答案:A
2.在等
比数列an
中,
⇔ a
n
是等比数列;
(2)通项公式法:an=cqn(c,q 均是不为 0 的常数,
n∈N*)⇔an是等比数列;
(3)中项公式法:an+12=an·an+2(an·an+1·an+2≠0,n
∈
N*)⇔an
是
等比数列.
2.在等差数列an中,已知 a1,a2,a4 成等比数
列,求证:a4,a6,a9 也成等比数列.
=2,所
以 a +
n
1 是以
2
为公比的等比数列.
(2)解:由(1)可知an+
1 是以
a1+1=2
为首项,
2 为公比的等比数列,所以 an+1=2×2n-1,所以
an=2n-1.
方法点评:等比数列的判断方法主要有以下几种:
(1)定义法:aan+n 1=q(q 是不为 0 的常数,n∈N*)
3.已知三个数成等比数列,积为27,和为13, 求这三个数.
解:设这三个数为aq,a,aq,则aqaq·+a·aa+ q=a2q=7,13,
整理得a3= q2-3,10q+3=0,
解得
a=3,q=3
或1, 3
∴这三个数为 1,3,9 或 9,3,1.
误区解密 忽视题中隐含条件而出错
【例 4】 已知数列-1,a1,a2,-4 成等差数列,
3.要证明一个数列为等比数列,必须对任意 n ∈N*,aan+n 1=q,或aan-n 1=q(n≥2)都成立.
4.公式中含有四个量a1,an,q,n,如果已知 任意三个,可求第四个量.
等比数列(二)
进一步巩固等比数列的定义和通项公式,掌握 等比数列的性质,会用性质灵活解决问题.
自学导引
1.在等比数列an中,若对于正整数 m、n、k、t, 满足 m+n=k+t,则 aman 与 akat 的关系是________.
(3)如果数列an是等比数列,c 是不等于 0 的常
数,那么数列c ·an仍是等比数列.
B.b=-3,ac=9
C.b=3,ac=-9 D.b=-3,ac=-9
解析:∵b是-1,-9的等比中项,∴b2=9,b
=±3,又因为等比数列奇数项符号相同,得b<0,
故b=-3,而b又是a,c的等比中项,故b2=ac,ac
=9,故选B
答案:B
3.等比数列 1,13,…的通项公式为________________. 1
中.
(1)a2=18,a4=8,求a1与q; (2)a5-a1=15,a4-a2=6,求a3.
解:(1)由aa11qq=3=188,,
a1=27, 解得q=23,
a1=-27, 或q=-23.
(2)由aa11qq43- -aa11=q=156, , 得q2+q 1=52, 得 q=12或 q=2. 当 q=12,a1=-16,此时 a3=a1q2=-4; 当 q=2 时,a1=1,此时 a3=a1q2=4.
证明:设等差数列an的公差为 d,
∵a1,a2,a4成等比数列,∴a22=a1a4. 即(a1+d)2=a1(a1+3d),整理得d2=a1d. ∵a1≠0,∴a1=d或d=0.
当a1=d≠0时,a4=4d,a6=6d,a9=9d, ∴a62=a4a9=36d2, ∴a4,a6,a9成等比数列. 当a1≠0且d=0时,是非零常数列,满足题意. 综上可知a4,a6,a9成等比数列.