第9章 回归方程的函数形式
9.1.2线性回归方程讲义-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册
编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =___________称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=__________称为线性回归方程.其中__称为回归截距,__称为回归系数,__称为回归值. (2),的计算公式=∑i =1n(x i -x)(y i -y )∑i =1n(x i -x )2=________________ ,=______________.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系题2.根据如下样本数据:x2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【当堂巩固训练】题7.已知x,y的取值如表所示:x234 5y 2.2 3.8 5.5m若y与x线性相关,且回归直线方程为=1.46x-0.61,则表格中实数m的值为( )A.7.69 B.7.5 C.6.69 D.6.5题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2) B .(-1,2) C .(1,-2)D .(1,2)题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度C.当x=6时,y的预测值为8.1万盒D.线性回归直线=0.7x +经过点(2,6)题12.下列说法:①设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;②线性回归方程=x+必过()x,y;③设某地女儿身高y对母亲身高x的一个回归直线方程是=34.92+0.78x,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分.其中正确的个数是( )A.0 B.1 C.2 D.3题13.(多选题...)两个相关变量x,y的5组对应数据如表:x8.3 8.6 9.9 11.1 12.1y 5.9 7.8 8.1 8.4 9.8根据表格,可得回归直线方程=x+,求得=0.78.据此估计,以下结论正确的是( )A.x=10 B.y=9C.=0.2 D.当x=15时,=11.95题14.(多选题...)已知x与y之间的几组数据如表:x 1 2 3 4 5 6y0 2 1 3 3 4假设根据表格数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据()1,0和()2,2求得的直线方程为y=b′x+a′,则以下结论正确的是( )参考公式:=∑i=1nx i y i-n x y∑i=1nx2i-n(x)2,=y-b x .A.a′=-2 B.b′=2 C.>b′ D.>a′【综合突破拔高】题15.对于指数曲线y=ae bx,令U=ln y,c=ln a,经过非线性回归分析后,可转化的形式为( ) A.U=c+bx B.U=b+cxC.y=c+bx D.y=b+cx题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝ ⎛⎭⎪⎫sin α+12 2D .以上都不对题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 7 10 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年.题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________.题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x 之间的回归方程.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 4 5 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =a +bx +ε称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=+x 称为线性回归方程.其中称为回归截距,称为回归系数,称为回归值.(2),的计算公式=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=___∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2___ ,=__y -x __.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系【解析】选D .用散点图反映两个变量间的关系时,存在误差. 题2.根据如下样本数据:x 2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0【解析】选B.由题干表中的数据可得,变量Y随着x的增大而减小,则<0,又回归方程为=x+经过(2,4),(3,2.5),可得>0.题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2【解析】选B.设经验回归方程为=x+,由题干中散点图可知变量x,Y之间负相关,经验回归直线在Y轴上的截距为正数,所以<0,>0,因此方程可能为=-1.5x+2.题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元【解析】选C.=0.8×10+2+e i=10+e i,因为|e i|<0.5,所以9.5<<10.5.题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.【解析】把x=80代入经验回归方程可得其预测值=5×80+250=650(kg).答案:650题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【解析】(1)散点图如图所示:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 合计 x i 2 4 5 6 8 25 y i 30 40 60 50 70 250 x i y i 60 160 300 300 560 1 380 x 2i416253664145所以x =255 =5,y =2505=50,∑i =15x 2i =145,∑i =15x i y i =1 380.于是可得=∑i =15x i y i -5x y∑i =15x 2i -5x 2=1 380-5×5×50145-52×5=6.5,=y -x =50-6.5×5=17.5. 所以所求的经验回归方程为=6.5x +17.5.(3)根据上面求得的经验回归方程,当广告费用支出为 10百万元时,=6.5×10+17.5=82.5(百万元),即广告费用支出为10百万元时,销售额大约为82.5百万元. 【当堂巩固训练】题7.已知x ,y 的取值如表所示:x 2 3 4 5 y2.23.85.5m若y 与x 线性相关,且回归直线方程为=1.46x -0.61,则表格中实数m 的值为( ) A .7.69 B .7.5 C .6.69 D .6.5 【解析】选D .因为x =2+3+4+54 =72, y =2.2+3.8+5.5+m 4 =11.5+m 4,所以11.5+m 4 =1.46×72-0.61,解得m =6.5.题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6【解析】选A .由表格中的数据得x =2+3+4+5+65=4,y =19+25+35+37+425=31.6,所以=∑i =15x i y i -5x y∑i =15x 2i -5(x)2=690-5×4×31.690-5×42=5.8, =31.6-5.8×4=8.4,因此,y 关于x 的线性回归方程为=5.8x +8.4.题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6【解析】选D .由题意可得x =10,y =40,所以=y +2x =40+2×10=60.所以=-2x +60,当=72时,有-2x +60=72,解得x =-6. 题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)【解析】选D .由所给数据得x =2,y =3,3i 1=∑(x i -x )(y i -y )=1.8,3i 1=∑(x i -x )2=2,所以b =0.9,a =3-0.9×2=1.2,所以直线ax +by -3=0方程为1.2x +0.9y -3=0,过点(1,2). 题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度 C .当x =6时,y 的预测值为8.1万盒 D .线性回归直线=0.7x +经过点(2,6)【解析】选C .由=0.7x +,得x 每增(减)一个单位长度,y 不一定增加(减少)0.7,而是大约增加(减少)0.7个单位长度,故选项A ,B 错误;由已知表中的数据,可知x =1+2+3+4=55 =3,y =5+5+6+6+85=6,则回归直线必过点(3,6),故D 错误;将(3,6)代入回归直线=0.7x +,解得=3.9,即=0.7x +3.9,令x =6,解得=0.7×6+3.9=8.1万盒. 题12.下列说法:①设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ②线性回归方程=x +必过()x ,y ;③设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分. 其中正确的个数是( ) A .0 B .1 C .2 D .3【解析】选C .设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均减少5个单位,故①错;线性回归方程=x +必过样本中心点()x ,y ,故②正确;设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,当x =0时,=34.92, 方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分,故③正确. 题13.(多选题...)两个相关变量x ,y 的5组对应数据如表:x 8.3 8.6 9.9 11.1 12.1 y5.97.88.18.49.8根据表格,可得回归直线方程=x +,求得=0.78.据此估计,以下结论正确的是( )A .x =10B .y =9C .=0.2D .当x =15时,=11.95【解析】选AC .易求得x =10,y =8⇒=y -x =8-0.78×10=0.2,所以=0.78x +0.2. x =15⇒=0.78×15+0.2=11.90.题14.(多选题...)已知x 与y 之间的几组数据如表:x 1 2 3 4 5 6 y21334假设根据表格数据所得线性回归直线方程为=x +,若某同学根据上表中的前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,则以下结论正确的是()参考公式:=∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2,=y -b x . A .a ′=-2 B .b ′=2 C .>b ′ D .>a ′【解析】选ABD .因为某同学根据前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,所以b ′=2,a ′=-2,根据题意得:x =3.5,y =136,∑i =16x i y i =0+4+3+12+15+24=58,∑i =16x 2i =1+4+9+16+25+36=91,所以=∑i =16x i y i -6x y∑i =16x 2i -6(x)2=57 ,=y -x =136 -57 ×72 =-13 ,所以<b ′,>a ′. 【综合突破拔高】题15.对于指数曲线y =ae bx ,令U =ln y ,c =ln a ,经过非线性回归分析后,可转化的形式为( ) A .U =c +bx B .U =b +cx C .y =c +bxD .y =b +cx【解析】选A .由y =ae bx 得ln y =ln (ae bx ), 所以ln y =ln a +ln e bx ,所以ln y =ln a +bx ,所以U =c +bx .题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝⎛⎭⎪⎫sin α+12 2D .以上都不对 【解析】选B .因为y 是关于t 的经验回归方程,实际上就是y 是关于t 的一次函数,又因为y =(sin α+1)2,若令t =(sin α+1)2,则可得y 与t 的函数关系式为y =t ,此时变量y 与变量t 是线性相关关系. 题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg【解析】选B .由于体重是隔代遗传,且呈线性相关, 则取数据(58,58),(64,62),(58,60),得x =58+64+583 =60,y =58+62+603 =60,即样本点的中心为(60,60),代入=x +, 得=60-0.5×60=30,则=0.5x +30, 取x =62,可得=0.5×62+30=61 kg . 故预测他的孙子的体重约为61 kg .题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 710 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00 【解析】选AD .x =2+4+7+10+15+226=10,y =8.1+9.4+12+14.4+18.5+246=14.4,故样本点的中心为()10,14.4 ,选项A 正确;将样本点的中心()10,14.4 代入=0.8x +得=6.4,故选项B 错误;因为=0.8x +6.4,当y =16时,求得x =12,月出时间为阴历12日,选项C 错误;因为阴历27日时,即x =27,代入=0.8×27+6.4=28,日出时间应该为28日早上4:00,选项D 正确. 题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年. 【解析】当年利润小于或等于零时应该报废该机器, 当y =0时,令10.47-1.3x =0,解得x ≈8, 故估计该台机器最为划算的使用年限为8年. 答案:8题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________. 【解析】由题意,得ln (ce kx )=0.3x +4,所以ln c +kx =0.3x +4,所以ln c =4,所以c =e 4. 答案:e 4题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.【解析】由=0.3x -0.4,令x =6,代入可得=0.3×6-0.4=1.4.所以估计该私家车行驶的时间为1.4小时. 答案:1.4题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日 12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).【解析】由题得x =11+13+123 =12,y =26+32+263 =28,所以样本中心点为(12,28),所以28=×12-8,所以=3;因为=3x -8,所以12月4日的估计值为=3×8-8=16,又|17-16|=1,没有超过2,所以求得的线性回归方程可靠. 答案:3 可靠题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x【解析】作出散点图,如图.从散点图中可以看出x 与Y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线的周围.令Z =ln Y ,则变换后的样本点分布在直线=x +的周围,这样就可以利用线性经验回归模型来建立非线性经验回归方程了,数据可以转化为:x 21 232527 29 32 35 Z1.9462.3983.0453.1784.1904.7455.784求得经验回归方程为=0.272x -3.849, 所以=e0.272x -3.849.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 45 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.【解析】(1)由表中数据得:x =15()1+2+3+4+5 =3,y =15()115+110+100+90+85 =100,=∑i =15x i y i-5x·y∑i=15x2i-5(x)2=1 420-5×3×10055-45=-8,=y-x=100+8×3=124.所以y与x之间的回归直线方程为=-8x+124;(2)由(1)得,=-8x+124,令x=8,得=-8×8+124=60,预测该路段8月份的“不礼让行人”违章驾驶员人数为60人.。
应用技术回归分析第九章部分完整答案
第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。
如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+。
对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。
一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。
9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。
表9.14生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。
(1)二次曲线 SPSS 输出结果如下:Mode l Sum mary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the E stim ateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。
统计学原理第九章(相关与回归)习题答案
第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
第9章多元线性回归-PPT精品文档
统计学
STATISTICS (第三版)
学习目标
多元线性回归模型、回归方程与估计的回 归方程 回归方程的拟合优度与显著性检验 多重共线性问题及其处理 利用回归方程进行预测 虚拟自变量的回归 用Excel和SPSS进行回归分析
统 计 学
(第三版)
2019
作者 贾俊平
统计学
STATISTICS (第三版)
统计名言
上好的模型选择可遵循一个称为奥 克姆剃刀(Occam’s Razor)的基本原 理:最好的科学模型往往最简单, 且能解释所观察到的事实。
——William Navidi
9-2 2019年8月
第 9 章 多元线性回归
b1,b假定其他变量不变,当 xi 每变 动一个单位时,y 的平均变动值
9 - 10
2019年8月
统计学
STATISTICS (第三版)
估计的多元线性回归的方程
(estimated multiple linear regression equation)
9 - 11 2019年8月
9.1 多元线性回归模型 9.1.2 参数的最小二乘估计
统计学
STATISTICS (第三版)
参数的最小二乘估计
1. 使因变量的观察值与估计值之间的离差平方和 ˆ ,b ˆ ,b ˆ ,, b ˆ 。即 达到最小来求得 b 0 1 2 k
2 2 ˆ ,b ˆ ,b ˆ ,, b ˆ ) (y y ˆ Q( b ) e i i i 最小 0 1 2 k i 1 i 1 n n
05_回归方程的函数形式
b1 ln Y0 , b 2 ln(1 r ) , 并 加 上 随 机 误 差 项 ,
则复利公式变成了对数到线性的半对数模型:
ln(Yt ) b1 b 2 t u t
所以复利增长率 1。 Example 9.4 The growth of the U.S. Population,1970 to 1999 pp258-259
Y / Y Y / Y X b2 ( 是 一 个 b2 ( 是 个 常 数 ) X / X Y X / X
变量)
注:当用 X 和 Y 的样本均值 代 入 时( b2
X ) ,即 为 样 本 期 Y
的平均产弹性。
Y 对 X 的 斜率 判定系 数 R2
b2 ( 常 数 )
X 对 Y 变动的解释比例
两边取以 e 为底的对数得:
ln Yt ln a1 a 2 ln X t u t
设
Yt* ln Yt , X* t ln X t , b1 ln a 1 , b 2 a 2 则 模 型 变 为 : Yt* b1 b 2 X* t u t( 变 换 后 的 模 型 为 线 性 模 型 ,该 模
厦门大学经济学院 胡朝霞
1
当 当 的。
b2 1 时 , 则 称 该 商 品 的 价 格 是 有 弹 性 的 ;
b2 1 时 , 则 称 该 商 品 的 价 格 是 无 ( 缺 乏 ) 弹 性
思 考 : 如 何 检 验 价 格 弹 性 的 特 征 ? (用 t 检 验 ) 由于双对数模型的弹性是一个常数,所以双对数模 型又称为不变弹性模型。 2. 双 对 数 模 型 与 一 般 线 性 模 型 的 比 较 :
r eb 1, 即 等 于 回 归 系 数 的 反 对 数 减
9 第九章 回归与相关
估计。
一)、加权最小二乘估计 假定各观测值的权重为Wi,求解回归方 程就要使得以下加权后的残差平方和最小
ss残W Wi Yi aw bw X
2
bw
aW
WX WY WXY W l l WX WX W WY b WX Y b W
二、直线回归方程的求法 直线方程为: a为Y轴上的截距;b为斜率,表示X 每改变一个单位,Y的变化的值,称为回 归系数; 表示在X值处Y的总体均数 估计值。为求a和b两系数,根据数学上 的最小二乘法原理,可导出a和b的算式 如下:
例9-1 某地方病研究所调查了8名正常 儿童的尿肌酐含量(mmol/24h)如表91。估计尿肌酐含量(Y)对其年龄(X) 的关系。
表14,rs界值表,P<0.01,故可认为当地居 民死因的构成和各种死因导致的潜在工作损 失年数WYPLL的构成呈正相关。 二、相同秩次较多时rs的校正 当X及Y中,相同秩次个数多时,宜用下式校 正
第四节
加权直线回归
在一些情况下,根据专业知识考虑 并结合实际数据,某些观察值对于估计 回归方程显得更“重要”,而有些不 “重要”,此时可以采用加权最小二乘
lYY的分析 如图9-4,p点的纵坐标被回归直线与均数 截成三个线段:
图9-4
平方和划分示意图
第一段 第二段
第三段
上述三段代数和为:
移项:
p点是散点图中任取一点,将所有的点子都
按上法处理,并将等式两端平方后再求和,
则有:
它们各自的自由度分别为: 可计算统计量F:
SS回 SS 残
2
F
回 残
表9-3某省1995年到1999年居民死因构成与WYPLL构成
统计学第9章 相关分析和回归分析
回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系
被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)
某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
回归方程的函数形式
二、对数-对数模型用于测量弹性
1、回顾弹性的含义 需求的价格弹性含义: 商品价格每变动1%, 带来需求量变动的百 分比,即两个相对变 动的比值
dQ Q dP P dQ dP Q P
2、对对数-对数模型进行全微分
LNY LNA LNL LNK 对上式全微分得: dY dL dK Y L K 由偏回归系数含义得: 当k不变,即dk 0时 返回 dY Y ,即衡量的是弹性,当 L每变动 1%时,Y变动 %。 dL 我们可以看到此时弹性(α,β)在模型 L 中作为回归参数,是不变的,所以我们也 含义相同 称双对数模型为固定弹性模型或者不变弹
返回
二、半对数模型测度增长率
1、对于对数到线性模型 LNY b 0 b1 X1 dY dY 将其全微分,可得: b1 dX1 , b1 Y Y dX1 b1 含义:X1绝对量变动一个单位, 带来Y 的相对量(即增长率) 的变动, 2、对于线性到对数模型 :Y b 0 b1 LNX1 将其全微分可得: dY b1 dX1 dY , b1 dX1 X1 X1
方程两边变量以对数形式出现(注意参数依然是 线性的)
对于Y AL K 两边取自然对数,我们可以转换为 LNY LNA LNL LNK,此类模型称为对数-对数模型, 在回归分析中有特殊作用 令Y* LNY,A* LNA,L* LNL,K* LNK Y* A* L* K* 如果新的方程满足经典假定,则可使用OLS法估计
例题2:生产函数的回归
1、理论背景
科布-道格拉斯生产函数
2、数据 3、回归结果和解释
2、数据
年份
1955 1956 1957 1958 -----
第九章 相关与回归分析
第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。
本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。
【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。
【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。
第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。
这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。
相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。
例如,商品销售额与流通费用率之间的关系就是一种相关关系。
(二)相关关系的特点1、相关关系表现为数量相互依存关系。
2、相关关系在数量上表现为非确定性的相互依存关系。
二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。
其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。
相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。
第9章 相关与回归分析
第九章相关与回归分析习题一、单选题1.下面的函数关系是()。
A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于()。
A、+1B、0C、0.5D、+1或-13.回归系数和相关系数的符号是一致的,其符号均可用来判断现象()。
A、线性相关还是非线性相关B、正相关还是负相关C、完全相关还是不完全相关D、单相关还是复相关4.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为( )。
A、8B、0.32C、2D、12.55.下面现象间的关系属于相关关系的是()。
A、圆的周长和它的半径之间的关系B、价格不变条件下,商品销售额与销售量之间的关系C、家庭收入愈多,其消费支出也有增长的趋势D、正方形面积和它的边长之间的关系6.下列关系中,属于正相关关系的是()。
A、合理限度内,施肥量和平均单产量之间的关系B、产品产量与单位产品成本之间的关系C、商品的流通费用与销售利润之间的关系D、流通费用率与商品销售量之间的关系7.相关分析是研究()。
A、变量之间的数量关系B、变量之间的变动关系C、变量之间的相互关系的密切程度D、变量之间的因果关系8.在回归直线y=a+bx中,b<0,则x与y之间的相关系数( )。
A、r=0B、r=lC、0<r<1D、-1<r<09.在回归直线y=a+bx中,b表示()。
A、当x增加一个单位时,y增加a的数量B、当y增加一个单位时,x增加b的数量C、当x增加一个单位时,y的平均增加量D、当y增加一个单位时,x的平均增加量10.当相关系数r=0时,表明()。
A、现象之间完全无关B、相关程度较小C、现象之间完全相关D、无直线相关关系11.下列现象相关密切程度最高的是()。
A、某商店的职工人数与商品销售额之间的相关系数0.87B、流通费用水平与利润率之间的相关关系为-0.94C、商品销售额与利润率之间的相关系数为0.51D、商品销售额与流通费用水平的相关系数为-0.8112.估计标准误差是反映()。
回归方程的函数形式
P
P0
D2
A
dQ P Ed dP Q
D1
Q0
Q
对于对数线性回归模型, ln Y 3.9617 0.2272ln X
其回归系数-0.2272的经济意义是价格每上升1%, 平均而言,需求量会下降0.22%。
对于线性回归模型,
Y 49.667 2.1576 X
其回归系数-2.1576的经济意义是价格每增加1元 钱,平均而言,需求量会减少大约2个单位。
形如Yi B1 B2 X i B3 X i2 B4 X i3 ui的回归模型称为 多项式回归模型,
它只有一个解释变量,不过解释变量以 不同次幂的形式出现在回归模型中
由于参数B1 , B2 , B3 , B4是以一次方的形式出现在回归方程中 因而这是一个线性回归模型
问题?由于解释变量X的不同次幂同时出现在回归模型 中,是否会导致(多重)共线性呢?
Y
LNY
X
LNX
思考:是否可以根据判定系数决定模型形式 的选择?
注意:只有当两个模型的应变量相同时,才 可能根据判定系数的高低评价两个模型的拟合优 度。在线性回归模型中,应变量是绝对形式,在 对数线性回归模型中,应变量是对数形式。
判定系数并不是评价模型优劣的唯一标准, 像回归系数的符号是否与理论预期相一致,是 否在统计上显著等也是评价模型好坏的重要标 准。
X Y B2 ( ) X
5.6
倒数模型
1 形如Yi B1 B2 ( ) ui的模型称为倒数模型 Xi
它的特点是随着X取值的无限增大,应变量Y将趋向于 其渐进值B1
Y
B1 B2
0 0
B1
0
X
Y
B1
经济计量学第五讲 回归方程的函数形式
双曲函数模型的一个显著特征是,当X无限 增大时,Y将逐渐接近于B1(渐进值或极值)。可以
用双曲函数模型来描述平均成本曲线、恩格尔消
费曲线和菲利普斯曲线等领域的情况。
东北财经大学数量经济系
第六节 多项式回归模型
下述模型称为多项式回归模型:
Yi B1 B2 X i B3 X B4 X ui
Yi B1 B2 ln X i ui
B2的含义为:X的相对变化引起的Y的绝对量变 化量;即表示自变量的一个单位相对增量引起因变量 平均的绝对增量。
Y B2 (X / X )
东北财经大学数量经济系
第五节 双曲函数模型
下述模型称为双曲函数模型:
Yi B1 B2 1 Xi ui
2 i 3 i
多项式回归模型在生产与成本函数领域应用广
泛。在多项式回归模型中,等式右边虽然只有一个 解释变量,但却以不同的次幂出现,因此可以把它
们看做是多元回归模型中的不同解释变量。
东北财经大学数量经济系
我们通过观察散点图,认为需求量和价格之间是近似
的线性关系,因此建立两变量线性回归模型来研究需 求量和价格之间的关系。 若需求量和价格之间的关系不是线性关系而是指 数形式,则我们就需要建立下面的模型来描述需求量
和价格之间的关系,即:
Yi AX
东北财经大学数量经济系
B i
(1)
第一节 双对数模型(2)
东北财经大学数量经济系
第三节 多元对数线性回归模型(4)
例:根据墨西哥1955年到1974年的数据估计多元对 数模型的结果如下:
东北财经大学数量经济系
第四节 半对数模型(1)
下述模型称为半对数模型或对数—线性模型:
(整理)统计学原理第九章相关与回归习题答案
第九章相关与回归一.判断题部分题目1:负相关指的是因素标志与结果标志的数量变动方向是下降的。
()答案:×题目2:相关系数为+1时,说明两变量完全相关;相关系数为-1时,说明两个变量不相关。
()答案:√题目3:只有当相关系数接近+1时,才能说明两变量之间存在高度相关关系。
()答案:×题目4:若变量x的值增加时,变量y的值也增加,说明x与y之间存在正相关关系;若变量x的值减少时,y变量的值也减少,说明x与y之间存在负相关关系。
()答案:×题目5:回归系数和相关系数都可以用来判断现象之间相关的密切程度。
()答案:×题目6:根据建立的直线回归方程,不能判断出两个变量之间相关的密切程度。
()答案:√题目7:回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。
()答案:×题目8:在任何相关条件下,都可以用相关系数说明变量之间相关的密切程度。
()答案:×题目9:产品产量随生产用固定资产价值的减少而减少,说明两个变量之间存在正相关关系。
()答案:√题目10:计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。
()答案:×题目11:完全相关即是函数关系,其相关系数为±1。
()答案:√题目12:估计标准误是说明回归方程代表性大小的统计分析指标,指标数值越大,说明回归方程的代表性越高。
()答案×二.单项选择题部分题目1:当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。
A.相关关系B.函数关系C.回归关系D.随机关系答案:B题目2:现象之间的相互关系可以归纳为两种类型,即()。
A.相关关系和函数关系B.相关关系和因果关系C.相关关系和随机关系D.函数关系和因果关系答案:A题目3:在相关分析中,要求相关的两变量()。
A.都是随机的B.都不是随机变量C.因变量是随机变量D.自变量是随机变量答案:A题目4:测定变量之间相关密切程度的指标是()。
第09章 线性回归模型的异方差问题
ˆ y = a + bx
∑
ˆ ) 2 = m in (y − y
2
ˆ 由∑ ( y − y ) = min ,有 ∑ ( y − a − bx ) = min, 分别对函数中 a、 b求偏导数,并令其为零 ,有 2∑ ( y − a − bx )(− 1) = 0 2∑ ( y − a − bx )(− x ) = 0
14
(0.0019)
安徽大学经济学院
计量经济学讲义
9.2 异方差的性质-方程回归结果图
15
安徽大学经济学院
计量经济学讲义
9.2 异方差的性质-残差与观察值(销售额)关系图
16
安徽大学经济学院
计量经济学讲义
9.2 异方差的性质
从残差图可以看出:残差的绝对值随着销售额的 增加而增加。 尽管残差ei与扰动项ui是两个不同的概念,根据ei 的变化并不能断言ui的方差也是变化的。但是,实践 u 中很难观察到ui,只能利用检验ei的变动来推断ui的 变化。 问题:如何理解残差ei与扰动项ui两个概念的差 别?
7
安徽大学经济学院
计量经济学讲义
一元线性回归分析-回归的假定条件
假定3 给定X,扰动误差项u的数学期望或均值为0, 即E(u|X)= 0。 Y
+u +u -u -u -u
+u
E(Y|X)=α+β*X
0
X
8
安徽大学经济学院
计量经济学讲义
一元线性回归分析-回归的假定条件
假定4 误差扰动项u的方差为常数,即Var(u)=σ2,称 之为同方差(homoscedasticity) 同方差的含义:每个Y值以相同的方差分布在其均值周 围,即Y偏离其均值的程度相同。 Y
第9章含定性变量的回归模型
高学历家庭x2=1,低学历家庭x2=0。
§9.2 自变量定性变量回归模型的应用
回归模型(9.8)式可以分解为对高学历和对低学历家庭 的两个线性回归模型,分别为:
高学历家庭x2=1, yi=β0+β1xi1+β2+β3xi1+εi =(β0+β2)+(β1+β3)xi1+εi
t Sig. 9.757 .000 -2.65 .045 -1.69 .153
§9.2 自变量定性变量回归模型的应用
对β2的显著性检验的显著性概率Sig=0.153,β2没有通 过显著性检验,不能认为β2非零。用y对x做一元线性回归, 计算结果为:
Coeffi ci ents
(C onstant ) X
x((((
图9.1 单位成本对批量散点图
§9.2 自变量定性变量回归模型的应用
由图9.1可看出数据在生产批量xp=500时发生较大变化, 即批量大于500时成本明显下降。我们考虑由两段构成的分 段线性回归,这可以通过引入一个0-1型虚拟自变量实现。 假定回归直线的斜率在xp=500 yi=β0+β1xi+β2(xi-500)Di+εi
对一般情况,一个定性变量有k类可能的取值 时,需要引入k-1个0-1型自变量。当k=2时,只需要引 入一个0-1型自变量即可。
§9.2 自变量定性变量回归模型的应用
一、分段回归
例9.2 表9.3给出某工厂生产批量xi与单位成本yi(美元)的 数据。试用分段回归建立回归模型。
序号 1 2 3 4 5 6 7 8
§9.1 自变量中含有定性变量的回归模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例9.2 柯布-道格拉斯生产函数(P185)
在模型(9-10)中,令Y表示产出,X2表示劳动 投入, X3表示资本投入。这样,式(9-10)就 是一个生产函数----反映产出与劳动力和资本投 入之间的关系的函数,即柯布-道格拉斯函数 (C-D函数)。 C-D 表9-2给出了1955-1974年间墨西哥的产出Y, (GDP度量,以1960年不变价,单位为百万比 索)、劳动投入X2(用总就业人数度量,单位为 千人),资本投入X3(用固定资本度量,以 1960年不变价,单位为百万比索)的数据。
B2 =
式(9-27)也可写为:
Y的绝对变化量 ∆Y = K 9 − 27) ( X的相对变化量 ∆X X
∆X Y = B2 K ( 9 − 28 ) X
式(9-28)表明,Y的绝对变化量等于乘以 的相对变化量。 因而,若∆X X 每变化0.01个单位(或1%),则Y的绝对改变量为 0.01(B2)
36
8.7 多项式回归模型(P197)
表9-7 成本—产出数据
Y($) 193 ( X 1 226 2 240 244 3 4 257 5 260 6 274 7 297 8 350 9 420 10 总成本 产出
37
例9.7 总成本函数:为了说明多项式模 型,考虑表9-7给出的成本—产出数据
根据这些数据,用OLS方法得到的回归结果如 下:
3
9.1 如何度量弹性:对数线性模型
若(9-6)式满足古典线性回归模型的基 本假定,则用OLS估计方法得到BLUE。 (9-6)式的重要特性:斜率B2度量了Y 对X的弹性。 双对数模型又称为不变弹性模型。 对数线性模型的假设检验与一般线性模型 相同。
4
9.1 如何度量弹性:对数线性模型
弹性的定义: E=
假定联储很关注货币供给的变动对GDP的影响(货 币供给是由FED控制的)。现考虑下面模型: Yt = B1 + B2 ln X 2t + utK(9− 25) 其中,Y=GDP,X=货币供给。 与对数线性模型相比,对数线性模型中的应变量是 对数形式,解释变量是线性形式。在解释线性对数 模型之前,先给出模型(9-25)的回归结果:
如果边际成本的曲线和平均成本的曲线为 U型,根据价格理论可知,模型中的系数 有如下先验值: 1.B1,B2和B4都大于零。 2. B3 <0。 3.B32<3B2B4。 式(9-33)回归结果与这些预期一致。
39
例9.9吸烟与肺癌
表9-9给出了数据 看吸烟对肺癌是递增效应还是递减效应 回归结果表明:吸烟的斜率系数为正,而 吸烟的平方项为负,说明吸烟对肺癌的影 响是递减效应。
30
例9.6 1958-1969年美国的菲利普斯曲线 (P166)
31
例9.6 1958-1969年美国的菲利普斯曲线
模型(9-29)拟合了表9-6给出的数据,回归结 果如下:
ˆ = −0.2594 + 20.5880 1 Yt X t
t=(-0.2572) (4.3996)
K (8 − 30)
2
9.1 如何度量弹性:双对数线性模型
支出函数 双对数(double-log) 模型/对数线性(loglinear)模型 对(9-5)式可变换 为:
Yi = AX iB2 K( 9 −1)
ln Yt = B1 + B 2 ln Xt + ut...(9 − 5)
Yt* = B1 + B2 Xt* + ut ...(9 − 6)
19
例9.4 1970-1999年间美国人口增长率 ( P189)
20
9.4.1 单利增长率与复利增长率
由(9-16)式,b2=B2的估计值=ln(1+r) 因此 antilog(b2)=(1+r)即:1+r=exp( b2) 于是 r= antilog(b2)- 1 即:r= exp( b2)-1 (r 是复利增长率)
半对数模型又称为增长模型,通常我 们用这类模型来测度许多变量的增长 率。
17
例9.4 1970-1999年间美国人口增长率 ( P189)
我们现在要求在此期间的美国人口增长率(Y)。 复利计算公式:
Yt = Y0 (1 + r )t ....................K (9 − 13)
其中,Y0----Y的初始值 Yt----第t期的Y值 r-----Y的增长率 (复利率) 将(9-13)式变形,对等式两边取对数,得:
比较这两个模型可以看出,双曲函数模型比线性 模型更好地拟合了样本数据。
34
9.7 多项式回归模型
35
8.7 多项式回归模型
图8-5描绘了总成本函数(是产出的函数)曲线和边际 成本(MC)及平均成本(AC)曲线。 Y表示总成本(TC),X表示产出,总成本函数可以表 示为: Yi = B1 + B2 X i + B3 X i2 + B4 X i3 ...(8 − 32) 形如式(8-32)的函数又称为立方函数(三次多项 式函数)。 可以把它看作多元回归方程,用OLS方法来估计参 数。
第9章 回归方程的函数形式
9.1 9.2 9.3 9.4 9.5 如何度量弹性:对数线性模型 线性模型与对数线性模型的比较 多元对数线性回归模型 如何测度增长率:半对数模型 线性对数模型:解释变量是对数形式
1
第9章 回归方程的函数形式
9.6 9.7 9.8 9.9 双曲线模型 多项式回归模型 不同函数形式小结 小结
21
9.4.2 线性趋势模型
线性趋势模型: Yt=B1+B2t+ut (8-23)
即Y对时间t的回归,其中t按时间先后顺序 计算。时间t称为趋势变量。
22
8.4.2 线性趋势模型
根据表9-4提供的数据,拟合的回归方程如下:
Yˆt = 201 . 9727 + 2 . 3284 t
Se=(743.2718) (152.1243) r2=0.9987 回归结果表明,在样本区间内,美国人口每年 绝对增长为2.3284(百万美元)。因此,在 2.3284 此期间,美国人口有一个向上的趋势。
∆Y Y 的变动 % Y100 = ∆ Y * X = 斜率 * X = X的变动 % ∆ X ∆X Y Y X100
需求函数及其对数变形后的图形见图9-1a 和 图9-2b.
5
9.1 如何度量弹性:对数线性模型
6
例9.1 博彩支出一例
在(7-46)式中,我们给出了博彩支出函 数,博彩支出和个人可支配收入之间是近 似线性关系的,因为并非所有的样本点都 恰好落在直线上。 下面,我们看一下,如果用对数线性模型 拟合表9-1给出的数据,情况又会怎样? 图9-2描绘了(9-8)所表示的回归直线。 双对数模型的假设检验
ln Yt = ln Y0 + t ln(1 + r ) K..................(9 − 14)
18
例9.4 1970-1999年间美国人口增长率 ( P189)
现令
B1 = ln Y0K....................................( 9−15)
B2 = ln(1 + r ) K.............................(9 − 16)
13
例9.3 对能源的需求(P187)
表9-3给出了1960-1982年间7个OECD 国家的总最终能源需求指数(Y)、实际 GDP( X2 )、实际能源价格( X3)的数 据。所有指数均以1970年为基准 (1970=100)。
14
例9.3 对能源的需求
15
例9.3 对能源的需求
16
9.4 如何测度增长率:半对数模型
23
9.5 线性对数模型:解释变量是对数形式
线性对数模型(lin-log model): 应变量是线性形式而解释变量是对数 形式。 线性对数模型常用于研究解释变量每变动 1%,相应应变量的绝对变化量的情形。
24
例9.5 美国GNP与货币供给间的关系 (1973-1987年)
25
例9.5 美国GNP与货币供给间的关系 (1973-1987年)(P164)
模型 线性模 型 双对数 模型 对数-线 性模型 线性-对 数模型 形式 Y=B1+B2X lnY=B1+B2lnX 斜率= dY dX B2 B2 y X B2Y 弹性= dY . X
ˆ Yi = 141.7667 + 63.4776 X i − 12.9615 X i2 + 0.9396 X i3 K (9 − 33)
se=(6.3753) R2=0.9983 (4.7786) (0.9857) (0.0591)
38
例9.8 总成本函数:为了说明多项式模型,考 虑表9-8给出的成本-产出数据
r2=0.6594
图9-4a给出了该回归线。
32
例9.6 1958-1969年美国的菲利普斯曲线
33
例9.6 1958-1969年美国的菲利普斯曲线
作为比较,我们给出根据相同数据得到的线性回 归结果:
ˆ Yt = 8.0147 − 0.7883 X t K (9 − 31)
t=(6.4625) (-3.2605) r2=0.5153
7
9.2 线性模型与对数线性模型的比较
选择模型的规律: 1)根据数据作图,判断模型形式(只适 用于双变量情况)。 2)不能仅仅根据r 2 选择模型。 3)线性模型的弹性系数随着需求曲线上 的点的不同而变化,而对数线性模型在需 求曲线上任何一点的弹性系数都相同。
8
9.3 多元对数线性回归模型
三变量对数模型:
27