数学:第二章《统计》测试(5)(新人教A版必修3)
高一数学人教A版必修三练习:第二章统计2.2.1含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是()A.频率分布折线图与总体密度曲线无关B.频率分布折线图就是总体密度曲线C.样本容量很大的频率分布折线图就是总体密度曲线D.如果样本容量无限增大、分组的组距无限减小,那么频率分布折线图就会无限接近总体密度曲线解析:总体密度曲线通常是用样本频率分布估计出来的.而频率分布折线图在样本容量无限增大,分组的组距无限减小的情况下会无限接近于一条光滑曲线,这条光滑曲线就是总体密度曲线.答案: D2.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分解析:从茎叶图可以看出,甲运动员的成绩集中在大茎上的叶多,故成绩好.故选A.答案: A3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60解析: 设该班人数为n ,则20×(0.005+0.01)n =15,n =50,故选B. 答案: B4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)内的频率为( )A .0.001B .0.1C .0.2D .0.3解析: 由频率分布直方图的意义可知,各小长方形的面积=组距×频率组距=频率,即各小长方形的面积等于相应各组的频率.在区间[2 700,3 000)内频率的取值为(3 000-2 700)×0.001=0.3.故选D.答案: D二、填空题(每小题5分,共15分)5.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.解析:由题意得在[2500,3000)(元)月收入段应抽出的人数为0.0005×500×100=25.答案:256.某省选拔运动员参加2015年的全运会,测得7名选手的身高(单位:cm)分布茎叶图如图所示,记录的平均身高为177 cm,其中有一名候选人的身高记录不清,其末位数为x,那么x的值为________.解析:依题意得180×2+1+170×5+3+x+8+9=177×7,x=8.答案:87.下面是某中学期末考试各分数段的考生人数分布表:则分数在[700,800)的人数为________人.解析:由于在分数段[400,500)内的频数是90,频率是0.075,则该中学共有考生900.075=1 200,则在分数段[600,700)内的频数是1 200×0.425=510,则分数在[700,800)内的频数,即人数为1 200-(5+90+499+510+8)=88.答案:88三、解答题(每小题10分,共20分)8.下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134 cm的人数占总人数的百分比.解析:(1)样本频率分布表如下:(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.9.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图所示的统计图,试求:(1)甲、乙两个交通站的车流量的极差分别是多少? (2)甲交通站的车流量在[10,40]间的频率是多少? (3)甲、乙两个交通站哪个站更繁忙?并说明理由.解析: (1)甲交通站的车流量的极差为73-8=65(百辆),乙交通站的车流量的极差为71-5=66(百辆).(2)甲交通站的车流量在[10,40]间的频率为414=27.(3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.。
人教A版高中数学必修三试卷第二章统计2.1.3.docx
高中数学学习材料马鸣风萧萧*整理制作2.1.3 分层抽样 课时目标 1.理解分层抽样的概念.2.掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样.1.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A .抽签法B .随机数表法C .系统抽样D .分层抽样 答案 D2.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A .70B .20C .48D .2答案 B解析 由于70070=10,即每10所学校抽取一所, 又因中学200所,所以抽取200÷10=20(所).3.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( )A .50B .60C .70D .80答案 C解析 由分层抽样方法得:33+4+7×n =15, 解得n =70.4.下列问题中,最适合用分层抽样方法抽样的是( )A .某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D .从50个零件中抽取5个做质量检验答案 C解析 A 的总体容量较大,宜采用系统抽样方法;B 的总体容量较小,用简单随机抽样法比较方便;C 总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D 与B 类似.5.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A .5个B .10个C .20个D .45个答案 A解析 由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个). 6.某小学三个年级共有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2,…,270,如果 抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265;②7,34,61,88,115,142,169,196,223,250;③30,57,84,111,138,165,192,219,246,270;④11,38,60,90,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为( )A .①②B .②③C .①③D .①④答案 D解析 按照分层抽样的方法抽取样本,一、二、三年级抽取的人数分别为:10827,8127,8127,即4人,3人,3人;不是系统抽样即编号的间隔不同,观察①、②、③、④知:①④符合题意,②是系统抽样,③中三年级人数为4人,不是分层抽样.二、填空题7.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案 7,4,6解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 8.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C 中抽取________个个体.答案 20解析 由题意可设A 、B 、C 中个体数分别为5k,3k,2k ,所以C 中抽取个体数为2k 5k +3k +2k×100=20.9.某工厂生产A 、B 、C 、D 四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号有16件,那么此样本的容量n 为________.答案 88解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n =2+3+5+12×16=88. 三、解答题10.某小学有1 800名学生,6个年级中每个年级的人数大致相同,男女生的比例也大致相同,要从中抽取48名学生,测试学生100米跑的成绩.你认为应该用什么样的方法?怎样抽样?为什么要用这个方法?解 应该用分层抽样的方法.因为小学的不同年级之间,男女生之间百米跑的成绩有较大差异,所以将1 800名学生按不同年级、性别分成12组,每组随机抽取4名,一共抽取48名学生.这样的抽样方法可使样本的结构与总体的结构保持一致.11.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?解 总体中的个体数N =3 000+4 000+8 000=15 000,样本容量n =150,抽样比例为n N =15015 000=1100,所以应该在第1条流水线生产的产品中随机抽取3 000×1100=30(件)产品,在第2条流水线生产的产品中随机抽取4 000×1100=40(件)产品,在第3条流水线生产的产品中随机抽取8 000×1100=80(件)产品.这里因为每条流水线所生产的产品数都较多,所以,在每条流水线的产品中抽取样品时,宜采用系统抽样方法. 能力提升12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.解 因为采用系统抽样和分层抽样时不用剔除个体,所以n 是36的约数,且36n是6的约数,即n 又是6的倍数,n =6,12,18或36,又n +1是35的约数,故n 只能是4,6,34,综合得n =6,即样本容量为6.13.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.解 (1)总体容量较小,用抽签法.①将30个篮球编号,号码为00,01, (29)②将以上30个编号分别写在完全一样的小纸条上,揉成小球,制成号签;③把号签放入一个不透明的袋子中,充分搅拌;④从袋子中逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样法.①确定抽取个数.因为3010=3,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个);②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数法.①将300个篮球用随机方式编号,编号为000,001, (299)②在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始.任选一个方向作为读数方向,比如向右读;③从数“7”开始向右读,每次读三位,凡不在000~299中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大宜用系统抽样法.①将300个篮球用随机方式编号,编号为001,002,003,…,300,并分成30段,其中每一段包含30030=10(个)个体; ②在第一段001,002,003,…,010这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,组成样本1.分层抽样的概念和特点当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.分层抽样的优点是使样本具有较强的代表性,而且在各层抽样时又可灵活地选用不同的抽样法.2.三种抽样方法的选择简单随机抽样、系统抽样及分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会都相等,体现了抽样方法的公平性和客观性.其中简单随机抽样是最基本的抽样方法,在系统抽样和分层抽样中都要用到简单随机抽样.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当已知总体是由差异明显的几部分组成时,常采用分层抽样.。
必修三第二章统计单元测试题及答案
必修三统计试题一、选择题(每小题 5分,共60分) 1①某学校高二年级共有526人,为了调查学生每天用于休息的时间,决定抽取10%勺学生进行调查;②一次数学月考中,某班有 10人在100分以上,32人在90〜100分,12人低 于90分,现从中抽取9人了解有关情况;③运动会工作人员为参加 4 X 100 m 接力赛的6 支队伍安排跑道•就这三件事,恰当的抽样方法分别为( )A. 分层抽样、分层抽样、简单随机抽样B. 系统抽样、系统抽样、简单随机抽样C. 分层抽样、简单随机抽样、简单随机抽样D. 系统抽样、分层抽样、简单随机抽样2.某单位有840名职工,现采用系统抽样方法抽取 42人做问卷调查,将840人按1,2,…, 840随机编号,则抽取的 42人中,编号落入区间 481,720的人数为( )A . 11B . 12C . 13D . 143从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽 样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性()4.某大学数学系共有学生 5 000人,其中一、二、三、四年级的人数比为 4 : 3 : 2 : 1,要用分层抽样的方法从数学系所有学生中抽取一个容量为 200的样本,则应抽取三年级的学生人数为()A.80B.40C.605•下列数字特征一定是数据组中数据的是( )_ 26. 某公司10位员工的月工资(单位:元)为X 1.X 2.X 3.X 4,其均值和方差分别为 x 和s ,若从下 月起每位员工的月工资增加 100元,则这10位员工下月工资的均值和方差分别为( )7.—组数据中的每一个数据都乘以 2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )B . 48.8,4.4C . 81.2,44.4D . 78.8,75.6 8.如图所示的茎叶图记录了甲、 乙两组各5名工人某日的产量数据(单位:件).若这两组数据y 与X 之间的回归直线方程是()A. = x + 1.9B. = 1.04x + 1.910 .将容量为n 的样本中的数据分成 6组,若第一组至第六组的频率之比为2 :3 :4 : 6 :A •不全相等B .均不相等C .都相等,且为 1 40D .都相等,且为502007D.20 A .众数B .中位数C .标准差D .平均数A.X.s 2 100B. X + 100.S 2 1002C.X.s 2D.X+100.S 2A . 40.6,1.1 的中位数相等,且平均值也相等,则X 和y 的值分别为().A.3 和 5B.5 和 5C.3 和 7D.5 和 7甲组567B(2,3.8), C(3,5.2), D(4,6),C. = 0.95x + 1.04D. = 1.05x — 0.94 : 1,且前三组数据的频数之和等于27,则n的值为()16. 为了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率 分布直方图(如图),已知图中从左到右的前 3个小组的频率之比为 1 : 2 : 3,其中第2小组A . 50B . 60C . 70D . 8011.关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时, 从50排(每排人数相同)中任意抽取一排的人进行调查, 属于分层抽样;④一组数据的方差- ,定是 正结论错误的个数为()12..为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到的数据频率分布直方图如图所示 •由于不慎将部分数据丢失,仅知道后五组频数和为 62,最大频率为0.32,设视力在4.6到4.8之间的学生人数为a,则a 的值为(A.64B.54C.48D.27、填空题(每小题5分,共20 分) 13. 已知样本 9,10,11,x, 14. 若 a 1, a 2,21个数据的方差为15. 从某小区抽取 y 的平均数是10,标准差是 2,则xy _____a 20这20个数据的平均数为 x ,方差为0.21,则a 1, a 2,…,a 20, x 这100户居民进行月用电量调查,发现其用电量都在 率分布直方图如图所示.(1) 直方图中x 的值为一 (2)在这些用户中,用电量落在区间100,250的频数为12,则报考飞行员的总人数是三、解答题(共70 分)17. (10分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下;).50至350度之间,频甲 60 80 70 90 70 乙8060708075问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?18. (12分)在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测•现从 甲、乙两种树苗中各抽测了 10株树苗,量出它们的高度如下 (单位:厘米甲:37, 21, 31, 20, 29, 19, 32, 23, 25, 33; 乙:10, 30, 47, 27, 46, 14, 26, 10, 44, 46.(1) 画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论; (2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的 S 大小 为多少?并说明S 的统计学意义.19.(:使用年限x 2 3 4 5 6 维修费用y 2. 23. 85. 56. 57. 0(1)画出散点图;(2)求支出的维修费用 与使用年限的回归方程;(3)估计使用年限为10年时,维修费用是多少),苟曰I20. 某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段40,50 , 50,60…90,100后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;21. 某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏, 其可见部分如图 C26所示•据此解答如下问题:(1) 计算频率分布直方图中[80, 90)间的矩形的高; (2) 根据茎叶图和频率分布直方图估计这次测试的平均分.22•某地统计局就该地居民的月收入调查了 10 000人,并根据所得数据画了样本的频率分布 直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在 [1 000,1 500)) • (1)求居民月收入在[2000,2500)的频率; ⑵根据频率分布直方图算出样本数据的中位数; ⑶在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出 人作进一步分析,则月收入在 [3000,3 500)的这段应抽多少人?答案1-5 D B D B A 6-10 D A A B B 11-12 C B 13. 96_ 14. 0.215. 0.00447016. 48____5 68623356897 1 2234 5678S 89 5 890517.解:X 甲=_(60 80 70 90 70) 74, (2分) X 乙 1 -(80 560 70 80 75) 73, (4 分)2 (142 62 42 162 42) 104, (6 分)52A 132 32 72 22) 56 (8 分)QX 甲 X 乙 ®2邑2甲的平均成绩较好,乙的各门功课发展较平衡18.解:⑴茎叶图:ip乙9 1 0 4 05 3 9 0 12 7 63 217牛n47 6 4 6统计结论:(答案不唯一,任意两个即可 ) ① 甲种树苗的平均高度小于乙种树苗的平均高度; ② 甲种树苗比乙种树苗长得整齐;③ 甲种树苗的中位数为 27,乙种树苗的中位数为 28.5 ;④ 甲种树苗的高度基本上是对称的, 而且大多数集中在平均数附近, 布比较分散.(2) = 27, S = 35, S 表示10株甲种树苗高度的方差.S 越小,表示长得越整齐, S 值越大,表示长得越参差不齐.19. 解:(1)散点图如图:10 分)乙种树苗的高度分(2) X2.23.8 5.5 6.575X i Y ii 12 2.23 3.84 5.55 6o567 112.3.(4分)形框知,m = 0.008X 10,得到m = 25,所以频率分布直方图中[80, 90)间的矩形的高为 X⑵设这次测试的平均分为 ,贝U = 55X 0.08 + 65X 0.28 + 75X 0.4+ 85X 0.16 + 95 X0.08= 73.8,所以,根据茎叶图和频率分布直方图估计这次测试的平均分为73.8分.22. (1) 0.0005 500=0.25(2)设中位数为x500 0.0002 500 0.0004 (x 2000) 500 0.5X i y i 5xyi 1 52 Xi-25x112.3 5 4 590 5 42123a y bx 5 1.23 4 0.08.所求的线性回归方程为? 1.23x(3) 维修费用=12.38 (15分) 20. (1)由频率分布直方图可知第 1、2、3、5、6小组的频率分别为:0.1、0.15、0.15、0.25、0.05,所以第4小组的频率为:1-0.1-0.15-0.15-0.25-0.05=0.3 ..•.在频率分布直方图中第 4小组的对应的矩0 30.08. (12 分)(2) 考试的及格率即 60分及以上的频率•••及格率为 0.15+0.3+0.25+0.05=0.75 又由频率分布直方图有平均分为:0.1 45 0.15 55 0.15 65 0.3 75 0.25 85 0.05 95 7121. (1)设该班的数学测试成绩统计的人数为m ,则由茎叶图及频率分布直方图第一个矩110 0.016.解得x 2400中位数的估计值为2400(3)收入在[2500,3000)的人数为500 0.0005 10000=2500 收入在[3000,3500)的人数为500 0.0003 10000=1500 收入在[3500,4000]的人数为500 0.0001 10000=500 分层抽样,在月收入在[3000,3500)这段应抽取的人数为:150090 302500 1500 500。
人教版高中数学必修三第二章《统计》质量检测
(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是()A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:A、B、D均为函数关系,C是相关关系.答案:C3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:由随机数抽取原则可知选D.答案:D5.(2011·湖北高考)有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18 B.36C.54 D.72解析:易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 答案:B6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( ) A .平均数与方差均不变 B .平均数变了,而方差保持不变 C .平均数不变,而方差变了 D .平均数与方差均发生了变化解析:设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n [(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.答案:B7.如果是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )A .甲运动员的成绩好于乙运动员B .乙运动员的成绩好于甲运动员C .甲、乙两名运动员的成绩没有明显的差异D .甲运动员的最低得分为0分解析:从这个茎叶图可以看出运动员得分大致对称,平均得分及中位数都是30多分;乙运动员的得分除一个52外,也大致对称,平均得分及中位数都是20多分,因此,甲运动员发挥比较稳定,总体得分情况比乙好. 答案:A8.(2011·江西高考)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对x 的线性回归方程为( ) A.y ^=x -1 B.y ^=x +1 C.y ^=88+12xD.y ^=176 解析:设y 对x 的线性回归方程为y ^=bx +a ,因为b=-2×(-1)+0×(-1)+0×0+0×1+2×1(-2)2+22=12,a=176-12×176=88,所以y对x的线性回归方程为y^=12x+88.答案:C9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确.答案:D10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上.) 11.(2012·银川模拟)将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.解析:由题意,应从C中抽取100×25+3+2=20个个体.答案:2012.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图如图所示,由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.解析:因为直方图中的各个矩形的面积之和为1,所以有10×(0.005+0.035+a +0.020+0.010)=1,解得a =0.03.由直方图可知三个区域的学生总数为100×10×(0.030+0.020+0.010)=60,其中身高在[140,150]内的学生人数为10,所以从身高在[140,150]内抽取的学生人数为1860×10=3.答案:0.03 313.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投蓝练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班67679则以上两组数据的方差中较小的一个为s 2=________.解析:甲班的平均数为7,方差s ?=15[(6-7) 2+02+02+(8-7) 2+02]=25;乙班的平均数为7,方差 s 2=2(6-7)2+2(7-7)2+(9-7)25=65.答案:2514.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5,父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁.答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株;[113,115)16株;[115,117)26株;[117,119)20株;[119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?解:分组频数频率累积频率[107,109)30.030.03[109,111)90.090.12[111,113)130.130.25[113,115)160.160.41[115,117)260.260.67[117,119)200.200.87[119,121)70.070.94[121,123)40.040.98[123,125]20.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(12分)(2012·福建六校联考)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲8281797895889384乙9295807583809085(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x甲=18(78+79+81+82+84+88+93+95)=85,x乙=18(75+80+80+83+85+90+92+95)=85.2s甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85) 2+(95-85) 2]=35.5,2s乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85) 2+(95-85) 2]=41,∵x甲=x乙,2s甲<2s乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(12分)某个服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这些服装件数x之间有如下一组数据:x 3456789y 66697381899091已知∑i=17x2i=280,∑i=17x i y i=3 487,(1)求x,y;(2)求纯利y与每天销售件数x之间的回归直线方程;(3)每天多销售1件,纯利y增加多少元?解:(1)x=17(3+4+5+…+9)=6,y=17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×6?≈4.75.a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用]分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5. ∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25人.。
2020学年高中数学第二章统计单元质量测评新人教A版必修3(2021-2022学年)
第二章统计单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知总体的个数为111,若用随机数表法抽取一个容量为12的样本,则下列对总体的编号正确的是()A.1,2,…,111ﻩB.0,1,…,111C.000,002,…,111ﻩD.001,002,…,111答案D解析在使用随机数表法抽取样本时,必须保证编号的位数一致,同时要规范编号,不能多也不能少,结合所给选项,选D.2.如图所示的4个散点图中,两个变量具有相关关系的是()A.①② B.①③ C.②④D.③④答案C解析由图可知①是一次函数关系,不是相关关系;②的所有点在一条直线附近波动,是线性相关关系;③不具有相关关系;④在某曲线附近波动,是非线性相关关系.所以两个变量具有相关关系的是②④。
3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1365石答案Bﻬ解析根据样本估计总体,可得这批米内夹谷约为错误!未定义书签。
×1534≈169(石),故选B.4.对一个样本容量为100的数据分组,各组的频数如下:估计小于29的数据大约占总体的()A.42% B.58% C.40% D.16%答案A解析小于29的数据频数为1+1+3+3+18+16=42,所以小于29的数据大约占总体的42×100%=42%。
1005.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是()A.x=9B.y=9C.乙的成绩的中位数为26D.乙的成绩的方差小于甲的成绩的方差答案B解析因为甲的成绩的极差为31,所以其最高成绩为39,所以x=9;因为乙的成绩的平均值为24,所以y=24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小.6.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A.1B.1.8 C.2.4 D.3答案B解析错误!=1。
(完整版)人教版高一数学必修三第二章统计全部教案和测试题
人教版高一数学必修三第二章统计目录简单随机抽样(新讲课)系统抽样(新讲课)分层抽样(新讲课)2用样本的频次散布预计整体散布(2 课时 ) (新讲课)用样本的数字特色预计整体的数字特色(2 课时 ) (新讲课)变量之间的有关关系(新讲课)两个变量的线性有关(第一课时)(新讲课)两个变量的线性有关(第二课时)(新讲课)生活中线性有关实例(第三课时)(新讲课)第二章统计单元检测题(一)第二章统计单元检测题(一)参照答案第二章统计单元检测题(二)第二章统计单元检测题(二)参照答案第二章统计单元检测题(三)第二章统计单元检测题(三)参照答案第二章统计一、课程目标:本章主要介绍最基本的获得样本数据的方法,以及集中从样本数据中提守信息的统计方法,此中包含用样本预计整体散布、数字特色和线性回归等内容。
本章经过实质问题,进一步介绍随机抽样、样本预计整体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其余学科中提出拥有一订价值的统计问题。
(2)联合详细的实质问题情境,理解随机抽样的必需性和重要性。
(3)在参加解决统计问题的过程中,学会用简单随机抽样从整体中抽取样本;经过对实例的剖析,认识分层抽样和系统抽样方法。
(4)经过试验、查阅资料、设计检盘问卷等方法采集数据。
2、用样本预计整体(1)经过实例领会散布的意义和作用,在表示样本数据的过程中,学会列频次散布彪、花频次散布直方图、频次折线图、茎叶土,领会它们各自的特色。
(2)经过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能依据实质问题的需求合理地选用样本,从样本数据中提取基本的数字特色,并做出合理的解说。
(4)进一步领会用样本预计整体的思想。
(5)会用随机抽样的基本方法和样本预计整体的思想,解决一些简单的实质问题。
(6)形成对数据办理过程进行初步评论的意识。
3、变量的有关性(1)经过采集现实问题中两个有关系变量的数据作出散点图,并利用散点图直观认识变量间的有关关系。
人教A版高中数学必修三 第2章 统计 单元检测(A)
人教A版高中数学必修三第2章《统计》单元检测(A)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A.1 000名学生是总体B.每个被抽查的学生是个体C.抽查的125名学生的体重是一个样本D.抽取的125名学生的体重是样本容量2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样3.为了调查参加运动会的500名运动员的身高情况,从中抽查了50名运动员的身高,就这个问题来说,下列说法正确的是()A.50名运动员是总体B.每个运动员是个体C.抽取的50名运动员是样本D.样本容量是504.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是()A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是245.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.217.两个变量之间的相关关系是一种()A.确定性关系B.线性关系C.非确定性关系D.非线性关系8.下列有关线性回归的说法,不正确的是()A.相关关系的两个变量不一定是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归直线方程9.某年级有1 000名学生,现从中抽取100人作为样本,采用系统抽样的方法,将全体学生按照1~1 000编号,并按照编号顺序平均分成100组(1~10号,11~20号,…,991~1 000号).若从第1组抽出的编号为6,则从第10组抽出的编号为()A.86 B.96 C.106 D.97 10.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到的次数13 8 5 7 6 13 18 10 11 9A.0.53 B.0.5 C.0.47 D.0.37 11.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2700,3 000]的频率为( )A .0.001B .0.01C .0.003D .0.3 12.下图是根据《**统计年鉴2010》中的资料作成的2000年至2009年某省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 二、填空题(本大题共5小题,每小题4分,共20分)13.已知一个回归直线方程为y ^=1.5x +45(x i ∈{1,5,7,13,19}),则y =________. 14.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________.15.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)年份 2005 2006 2007 2008 2009 收入x 11.5 12.1 13 13.3 15 支出Y6.88.89.81012家庭年平均收入与年平均支出有________线性相关关系.16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.17.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的产品件数为________.由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.三、解答题(本大题共6小题,共70分)18.(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元) 12 28 42 56(1)(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?19.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内?(2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?20.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85) [85,90) [90,95) [95,100)频数(个) 5 10 20 15(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[90,100)中各有1个的概率.21.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号 1 2 3 4 5 6 7 8 9 10x i收入)0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8千元y i(支出)0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5千元(1)(2)若二者线性相关,求回归直线方程.22成绩1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90(单位m)人数 2 3 2 3 4 1 1 1;(2)分析这些数据的含义.23.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.第2章《统计》单元检测(A)解答一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A.1 000名学生是总体B.每个被抽查的学生是个体C.抽查的125名学生的体重是一个样本D.抽取的125名学生的体重是样本容量[答案] C[解析] 在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A、B错误,样本容量应为125,故D错误.2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样[答案] C[解析] 由分层抽样的定义知,合理的抽样方法是分层抽样,要按学段分层,故选C.3.为了调查参加运动会的500名运动员的身高情况,从中抽查了50名运动员的身高,就这个问题来说,下列说法正确的是()A.50名运动员是总体B.每个运动员是个体C.抽取的50名运动员是样本D.样本容量是50[答案] D[解析] 在这个问题中所要考察的对象是身高,另一方面,样本容量是指样本中的个体数目.4.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是()A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高D.甲的中位数是24[答案] D[解析] 甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是22+242=23.5.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关[答案] C[解析] 由点的分布知x与y负相关,u与v正相关.6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()A.13 B.17 C.19 D.21[答案] C[解析] 用系统抽样法从56名学生中抽取4人,则分段间隔为14,若第一段抽出的号为5,则其他段抽取的号应为:19,33,47,故选C.7.两个变量之间的相关关系是一种()A.确定性关系B.线性关系C.非确定性关系D.非线性关系[答案] C8.下列有关线性回归的说法,不正确的是()A.相关关系的两个变量不一定是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.任一组数据都有回归直线方程[答案] D[解析]根据两个变量具有相关关系的概念,可知A正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B、C正确.只有线性相关的数据才有回归直线方程,所以D不正确.9.某年级有1 000名学生,现从中抽取100人作为样本,采用系统抽样的方法,将全体学生按照1~1 000编号,并按照编号顺序平均分成100组(1~10号,11~20号,…,991~1 000号).若从第1组抽出的编号为6,则从第10组抽出的编号为()A.86 B.96 C.106 D.97[答案] B[解析] 由题意,可知系统抽样的组数为100,间隔为10,由第一组抽出的号码为6,则由系统抽样的法则,可知第n组抽出个数的号码应为6+10(n-1),所以第10组应抽出的号码为6+10×(10-1)=96.10.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到的次数13 8 5 7 6 13 18 10 11 9A.0.53 B.0.5 C.0.47 D.0.37 [答案] A[解析]1100(13+5+6+18+11)=0.53.11.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2 700,3 000]的频率为()A.0.001 B.0.01 C.0.003 D.0.3[答案] D[解析] 频率=频率组距×组距,由图易知:频率组距=0.001,组距=3 000-2 700=300,∴频率=0.001×300=0.312.下图是根据《**统计年鉴2010》中的资料作成的2000年至2009年某省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 [答案] B二、填空题(本大题共4小题,每小题5分,共20分)13.已知一个回归直线方程为y ^=1.5x +45(x i ∈{1,5,7,13,19}),则y =________. [答案] 58.5[解析] 回归直线方程为y ^=1.5x +45经过点(x ,y ),由x =9,知y =58.5. 14.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________. [答案] 15[解析] 由题意知,青年职工人数中年职工人数老年职工人数=350250150=753.由样本中青年职工为7人得样本容量为15.15.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)年份 2005 2006 2007 2008 2009 收入x 11.5 12.1 13 13.3 15 支出Y6.88.89.81012家庭年平均收入与年平均支出有________线性相关关系. [答案] 13 正16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.[答案] 217.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的产品件数为________.由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.[答案] 50 1015[解析]第一分厂应抽取的产品件数为100×50%=50.该产品的平均使用寿命为1 020×0.5+980×0.2+1 030×0.3=1 015(小时).三、解答题(本大题共6小题,共70分)18.(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元) 12 28 42 56(1)(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?解(1)作出的散点图如图所示(2)序号x y x2xy1 1 12 1 122 2 28 4 563 3 42 9 1264 4 56 16 224∑10 138 30 418易得x =52,y =692,所以b ^=∑4i =1x i y i-4x y ∑4i =1x 2i-4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y -b ^x =692-735×52=-2. 故y 对x 的回归直线方程为y ^=735x -2.(3)当x =9时,y ^=735×9-2=129.4.故当广告费为9万元时,销售收入约为129.4万元.19.(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)学生跳绳次数的中位数落在哪个小组内? (2)第二小组的频率是多少?样本容量是多少?(3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?解 (1)∵前三组的频率和为2+4+1750=2350<12,前四组的频率之和为2+4+17+1550=3850>12,∴中位数落在第四小组内.(2)频率为:42+4+17+15+9+3=0.08,又∵频率=第二小组频数样本容量,∴样本容量=频数频率=120.08=150.(3)由图可估计所求良好率约为:17+15+9+32+4+17+15+9+3×100%=88%.20.(12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85) [85,90) [90,95) [95,100) 频数(个)5102015(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[90,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n =50,在[90,95)的频数是20,所以苹果的重量在[90,95)的频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x 个,则从重量在[95,100)的苹果中抽取(4-x)个.因为表格中[80,85),[95,100)的频数分别是5,15,所以515=x (4-x),解得x =1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a ,重量在[95,100)的有3个,记为b 1,b 2,b 3,任取2个,有ab 1,ab 2,ab 3,b 1b 2,b 1b 3,b 2b 3共6种不同方法.重量在[80,85)和[95,100)中各有1个的事件记为A ,事件A 包含的基本事件为ab 1,ab 2,ab 3,共3个,由古典概型的概率计算公式得P(A)=36=12.21.(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号 1 2 3 4 5 6 7 8 9 10 x i 收入)千元 0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8y i (支出)千元0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5(1)(2)若二者线性相关,求回归直线方程.解 (1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系.(2)x =110(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =110(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,∑10i =1x i y i =27.51,∑10i =1x 2i=33.72, b ^=∑10i =1x i y i -10x y ∑10i =1x 2i-10x 2≈0.813 6,a ^=1.42-1.74×0.813 6≈0.004 3,∴回归方程为y ^=0.813 6x +0.004 3.22成绩 (单位m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90 人数23234111; (2)分析这些数据的含义.解 (1)在17个数据中,1.75出现了4次,次数最多,即众数是1.75; 把成绩从小到大排列,中间一个数即第9个数据是1.70中的一个,即中位数是1.70;平均数x =117(1.50×2+1.60×3+…+1.90×1)≈1.69(m)因此,17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m.(2)众数是1.75说明了跳1.75 m 的人数最多;中位数是1.70 m 说明了1.70 m 以下和1.70 m 以上的成绩个数相等;平均数是1.69 m 说明了所有参赛运动员平均成绩是1.69 m.23.(12分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20 乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图; (2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.解 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67,s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.。
(完整版)人教版高一数学必修三第二章统计全部教案和测试题
人教版高一数学必修三第二章统计目录2.1.1 简单随机抽样(新授课)2.1.2 系统抽样(新授课)2.1.3 分层抽样(新授课)2.2.1用样本的频率分布估计总体分布(2课时)(新授课)2.2.2用样本的数字特征估计总体的数字特征(2课时)(新授课)2.3.1 变量之间的相关关系(新授课)2.3.2 两个变量的线性相关(第一课时)(新授课)2.3.2 两个变量的线性相关(第二课时)(新授课)2.3.2 生活中线性相关实例(第三课时)(新授课)第二章统计单元检测题(一)第二章统计单元检测题(一)参考答案第二章统计单元检测题(二)第二章统计单元检测题(二)参考答案第二章统计单元检测题(三)第二章统计单元检测题(三)参考答案第二章统计一、课程目标:本章主要介绍最基本的获取样本数据的方法,以及集中从样本数据中提取信息的统计方法,其中包括用样本估计总体分布、数字特征和线性回归等内容。
本章通过实际问题,进一步介绍随机抽样、样本估计总体、线性回归的基本方法。
二、学习目标:1、随机抽样(1)能从现实生活或其他学科中提出具有一定价值的统计问题。
(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性。
(3)在参与解决统计问题的过程中,学会用简单随机抽样从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
(4)通过试验、查阅资料、设计调查问卷等方法收集数据。
2、用样本估计总体(1)通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布彪、花频率分布直方图、频率折线图、茎叶土,体会它们各自的特点。
(2)通过实例理解样本数据标准差的意义和作用,学会计算数据样本差。
(3)能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并做出合理的解释。
(4)进一步体会用样本估计总体的思想。
(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。
(6)形成对数据处理过程进行初步评价的意识。
人教A版高中数学必修三试卷高中第二章《统计》自测题.docx
2016年高中数学人教版必修三第二章《统计》自测题(满分150分,时间120分钟)一、选择题(每小题5分,共50分)1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A .a>b>cB .b>c>aC .c>a>bD .c>b>a3.2014年某大学自主招生面试环节中,七位评委为一考生打出分数的茎叶图如图21,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为( )图2 1A .84,4.84B .84,1.6C .85,1.6D .85,44甲 乙 丙 丁平均环数x8.6 8.9 8.9 8.2 方差s 2 3.5 3.5 2.1 5.6A .甲B .乙C .丙D .丁5.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n =( )A .660B .720C .780D .8006气温/℃ 18 13 10 4 -1杯数/杯 24 34 39 51 63若热茶杯数y ( )A .y =x +6B .y =x +42C .y =-2x +60D .y =-3x +787.x 是x 1,x 2,…,x 100的平均数,a 是x 1,x 2,…,x 40的平均数,b 是x 41,x 42,…,x 100的平均数,则下列各式正确的是( )A.x =40a +60b 100B.x =60a +40b 100C.x =a +bD.x =a +b 28.在抽查某产品的尺寸过程中,将其尺寸数据分成若干组,[a ,b ]是其中一组,抽查出的个体数在该组上的频率是m ,该组上的直方图的高为h ,则|a -b |=( )A .h ·m B.h m C.m hD .与m ,h 无关9.甲、乙、丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图22,图23和图24,若s 甲,s 乙,s 丙分别表示他们测试成绩的标准差,则( )A .s 甲<s 乙<s 丙B .s 甲<s 丙<s 乙C .s 乙<s 甲<s 丙D .s 丙<s 甲<s 乙图2 2 图2 3 图2 4 10.图25是某县参加2014年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1,A2,…,A m(如A2表示身高(单位:cm)在[150,155)内的学生人数).图26是统计图中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )图2 5 图2 6A.i<9? B.i<8? C. i<7? D.i<6?二、填空题(每小题5分,共20分)11.下列四种说法中,①数据4,6,6,7,9,3的众数与中位数相等;②一组数据的标准差是这组数据的方差的平方;③数据3,5,7,9的标准差是数据6,10,14,18的标准差的一半;④频率分布直方图中各小长方形的面积等于相应各组的频数.其中正确的有__________(填序号).12.将参加数学竞赛的1000名学生编号如下:0001,0002, 003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,那么抽取的第40个号码为________.13.超速行驶已成为马路上最大杀手之一,已知某中段属于限速路段,规定通过该路段的汽车时速不超过80 km/h,否则视为违规.某天,有1000辆汽车经过了该路段,经过雷达测速得到这些汽车运行时速的频率分布直方图如图27,则违规的汽车大约为________辆.图2714.已知回归直线斜率估计值为 1.23,样本点中心为(4,5),则回归方程是____________.三、解答题(共80分)15.(12分)某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,用分层抽样的方法抽取一个容量为20的样本,则各种血型的人分别抽多少?写出抽样过程.16.(12分)对甲、乙两名自行车赛手在相同条件下进行了8次测试,测得他们的最大速度(单位:(1)(2)分别求出甲、乙两名自行车赛手最大速度(单位:m/s)的数据的平均数、中位数、标准差,并判断选谁参加比赛更合适(可用计算器).17.(14分)有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)数据落在[18.5,27.5)范围内的可能性为百分之几?18.(14分)为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00~12:00间各自的车流量(单位:百辆),得如图28所示的统计图,根据统计图:(1)甲、乙两个交通站的车流量的极差分别是多少?(2)甲交通站的车流量在[10,40]间的频率是多少?(3)甲、乙两个交通站哪个更繁忙?并说明理由.图2819.(14分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如图29),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.(1)求第四小组的频率和参加这次测试的学生人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?图2920.(14分)(1)(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;(3)据(2)的结果估计当销售额为1亿元时的利润额.第二章自主检测1.D 2.D3.C 解析:平均分为80+15(4×3+6+7)=85,s 2=15[3×(84-85)2+(86-85)2+(85-87)2]=1.6.4.C 5.B 6.C 7.A 8.C 9.D 10.B 11.①③12.0795 解析:抽取的第40个号码为0015+39×20=0795.13.28014.y ^=1.23x +0.0815.解:用分层抽样方法抽样.∵20500=250,∴200×250=8,125×250=5,50×250=2. 故O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人.16.解:(1)茎叶图如图D31,中间数为数据的十位数.图D31从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是35,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好.(2)利用科学计算器,得x 甲=34,x 乙=35.75;s 甲≈7.55,s 乙≈5.70;甲的中位数是33,乙的中位数是35. 综合比较,选乙参加比赛更合适.17.解:(1)(2)图D32(3)0.18+0.22+0.20=0.60=60%.18.解:(1)甲交通站的车流量的极差为73-8=65;乙交通站的车流量的极差为71-5=66.(2)甲交通站的车流量在[10,40]间的频率为414=27. (3)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方.从数据的分布情况来看,甲交通站更繁忙.19.解:(1)第四小组的频率=1-(0.1+0.3+0.4)=0.2,因为第一小组的频数为5,其频率为0.1,所以参加这次测试的学生人数为5÷0.1=50(人).(2)0.3×50=15,0.4×50=20,0.2×50=10,则第一、第二、第三、第四小组的频数分别为5,15,20,10.所以学生跳绳次数的中位数落在第三小组内.(3)跳绳成绩的优秀率为(0.4+0.2)×100%=60%.20.解:(1)销售额和利润额的散点图如图D33.图D33(2)所以b ^=112200-5×62=0.5, a ^=y -b ^x =3.4-6×0.5=0.4.从而得回归直线方程y ^=0.5x +0.4.(3)当x =10时,y ^=0.5×10+0.4=5.4(百万元).故当销售额为1亿元时,利润额估计为540万元.。
2021-2022年高中数学 第二章《统计》复习同步练习 新人教A版必修3
21.某中学甲乙两班各有60名同学,现从两个班级中各随机抽取10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如右图.
16.某工厂生产的产品用传送带将其送入包装车间之前,质检员每隔5分钟从传送带某一位置取一件产品检测,则这种抽样方法是_____________.
17.某工厂生产A、B、C三种不同型号的产品,产品数量这比依次为1600,1600,4800.现用分层抽样的方法抽出一个容量为N的样本,样本中A种型号的产品共有16件,那么此样本的容量N=__________件.
②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;
③它是一种不放回抽样;
④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样检查过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.
A.①②③ B.①②④ C.①③④ D.①②③④
3.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查研究为⑴;从丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为⑵.则完成⑴、⑵这两项调查宜采用的抽样方法依次是 ( )
12.下列两个变量之间的关系是相关关系的是 ( )
A.正方体的棱长和体积
B.单位圆中角的度数和所对弧长
C.单产为常数时,土地面积和总产量
D.日照时间与水稻的亩产量
人教版高中数学必修三第二章《统计》综合检测
(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法错误的是( )A .在统计里,最常用的简单随机抽样方法有抽签法和随机数法B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大 解析:选B.平均数不大于最大值,不小于最小值.2.已知某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩.现抽取农田480亩估计全乡农田粮食平均亩产量,则采用________抽样比较合适.( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法解析:选D.该乡农田由差异明显的四种类型组成,应采用分层抽样法.故选D.3.有一个容量为80的样本,数据的最大值是140,最小值是51,组距为10,则可以分为( ) A .10组 B .9组 C .8组D .7组解析:选B.据题意:最大值与最小值的差为89,8910=8.9,故应分9组较合适.4.某学校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,已知女学生一共抽取了80人,则n 的值是( )A .193B .192C .191D .190解析:选B. 1 000×n200+1 200+1 000=80,解得n =192.5.某班学生父母年龄的茎叶图如图,左边是父亲年龄,右边是母亲年龄,则该班同学父亲的平均年龄比母亲的平均年龄大( )A .2.7岁B .3.1岁C .3.2岁D .4岁解析:选C.分别求出父亲年龄和母亲年龄的平均值,可得父亲的平均年龄比母亲的平均年龄大3.2岁,故选C.6.在某项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .92,2 B .92,2.8 C .93,2D .93,2.8解析:选B.去掉最高分95,最低分89,所剩数据的平均值为15(90×2+93×2+94)=92,方差s 2=15[(90-92)2×2+(93-92)2×2+(94-92)2]=2.8.7.(2014·高考湖北卷)根据如下样本数据x 3 4 5 6 7 8 y4.02.5-0.50.5-2.0-3.0得到的回归方程为y ^=bx +a ,则( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b >0D .a <0,b <0解析:选B.作出散点图如下:观察图象可知,回归直线y^=bx+a的斜率b<0,当x=0时,y^=a>0.故a>0,b<0.8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1图2A.1% B.2%C.3% D.5%解析:选C.由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.9.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()A.高一的中位数大,高二的平均数大B.高一的平均数大,高二的中位数大C.高一的平均数、中位数都大D.高二的平均数、中位数都大解析:选A.由茎叶图可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为6477,所以高二的平均数大.故选A.10.(2014·高考山东卷)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8C.12 D.18解析:选C.志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.(2014·高考天津卷)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.解析:根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.答案:6012.(2015·广州调研)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的数字特征(众数、中位数、平均数、方差)对应相同的是________.解析:由s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],可知B 样本数据每个变量增加2,平均数也增加了,但s 2不变,故方差不变.答案:方差13.某校开展“爱我济宁,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数如茎叶图所示,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x 应该是________.解析:最低分为88,最高分若为90+x ,则计算平均分x -=6407≠91,所以最高分应为94,则有91×7-(89×2+92×2+93+91)=91,∴x =1.答案:114.已知回归方程y =4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 解析:x 与y 的增长速度之比应是回归方程斜率的倒数,即522.答案:52215.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.解析:在频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x =0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:71三、解答题(本大题共5小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分8分)有以下三个案例:案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;案例二:某公司有员工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入情况;案例三:从某校1 000名高一学生中抽取10人参加一项主题为“学雷锋,树新风”的志愿者活动.(1)你认为这些案例应采用怎样的抽样方式较为合适? (2)在你使用的分层抽样案例中写出抽样过程;(3)在你使用的系统抽样案例中按以下规定取得样本编号:如果在起始组中随机抽取的号码为L(编号从0开始),那么第K 组(组号K 从0开始,K =0,1,2,…,9)抽取的号码的百位数为组号,后两位数为L +31K 的后两位数.若L =18,试求出K =3及K =8时所抽取的样本编号.解:(1)案例一用简单随机抽样,案例二用分层抽样,案例三用系统抽样. (2)①分层,将总体分为高级职称、中级职称、初级职称及其余人员四层; ②确定抽样比例k =40800=120;③按上述比例确定各层样本数分别为8人、16人、10人、6人; ④按简单随机抽样方式在各层确定相应的样本; ⑤汇总构成一个容量为40的样本.(3)K =3时,L +31K =18+31×3=111,故第三组样本编号为311.K =8时,L +31K =18+31×8=266,故第8组样本编号为866.17.(本小题满分8分)某制造商为运动会生产一批直径为40 mm 的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm ,保留两位小数)如下:40.02 40.00 39.98 40.00 39.9940.0039.9840.0139.9839.9940.0039.9939.9540.0140.0239.9840.0039.9940.0039.96(1)完成下面的频率分布表,并画出频率分布直方图;分组频数频率频率组距[39.95,39.97)[39.97,39.99)[39.99,40.01)[40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02 mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.解:(1)分组频数频率频率组距[39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10[39.99,40.01) 10 0.50 25[40.01,40.03] 4 0.20 10合计20 1 50(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只, ∴合格率为1820×100%=90%,∴10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000.18.(本小题满分10分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.解:(1)作出茎叶图如下:(2)x -甲=18(78+79+81+82+84+88+93+95)=85,x -乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x-甲=x-乙,s2甲<s2乙,∴甲的成绩较稳定,派甲参赛比较合适.19.(本小题满分12分)有5名学生的数学和化学成绩如下表所示:学生学科 A B C D E数学成绩(x) 88 76 73 66 63化学成绩(y) 78 65 71 64 61(1)如果y与x具有相关关系,求线性回归方程;(2)预测如果某学生数学成绩为79分,他的化学成绩为多少(结果保留整数)?20.(本小题满分12分)(2015·河南三市调研)PM2.5是指环境空气中直径小于等于25微米的颗粒物,对人体健康及环境影响很大.某市2014年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解:(1)频率分布表:分组频数频率[41,51) 2 2 30[51,61) 1 1 30[61,71) 4 4 30[71,81) 6 6 30[81,91) 10 10 30[91,101) 5 5 30[101,111] 2 2 30(2)频率分布直方图:(3)答对下述两条中的一条即可:(ⅰ)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.(ⅱ)轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.高中数学-打印版精校版。
2021-2022年高中数学 第二章统计检测题 新人教A版必修3
精品文档2021-2022年高中数学第二章统计检测题新人教A版必修3本试卷分第I卷(选择题)和第Ⅱ卷(非选择题),全卷满分100分,检测时间120分钟.一.选择题(共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现从80件产品中随机抽出10件进行质量检验,下列说法正确的是()A.80件产品是总体 B.10件产品是样本 C.样本容量是80 D.样本容量是102.为了了解某校1252名中学生对某一电视节目的喜好,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.3C.4D.53. 要从已编号(1~50)的50枚最新研制的奥运会特型烟花中随机抽取5枚来进行燃放试验。
用每部分选取的号码间隔一样的系统抽样的方法确定所选取的5枚烟花的编号可能是()A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,324.某工厂生产某种产品,用传送带将产品送至下一工序,质量员每隔10分钟在传送带某一位置取一件产品进行检验,这种抽样的方法为()A.分层抽样 B.简单随机抽样 C.系统抽样 D.其它抽样方式5.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性占总体的()A. B. C. D.6.在频率分布直方图中,各个长方形的面积表示( )A.落在相应各组内的数据的频数B.相应各组的频率C.该样本可分的组数D.该样本的样本容量A . B. C. D.8.由小到大排列的一组数据,其中每个数据都小于,则对于样本的中位数是( ) A . B. C. D.9.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为,中位数为,众数为,则有: A. B. C. D.10. 一个容量为32的样本,已知某组的频率为0.125,则该组的频数为( ) A. B. C.D.11.下列两个变量不是相关关系的是( ) A .人的身高和体重 B .降雪量和交通事故发生率C .匀速行驶的车辆的行驶距离和时间D .每亩施用肥料量和粮食亩产量12. 右图所示茎叶统计图表示某城市一台自动售货机的销售额情况,那么这组数据的极差是:A. B. C. D. 13. 为了解某校高二学生的视力情况,随机地抽查了该校100名高二学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为,视力在4.6到5.0之间的学生数为,则的值分别为A .B .C .D .14.对于线性回归方程,下列说法中不正确...的是( ) A .直线必经过点 B .增加一个单位时,平均增加个单位C .样本数据中时,可能有D .样本数据中时,一定有参考公式:回归直线方程中公式 1221ˆni ii nii x y nx ybxnx==-=-∑∑,参考答案2 81 23 80 2 3 70 2 89第Ⅱ卷(非选择题,共58分)二 填空题(共4道小题,每题4分,共16分. 把答案填在题中横线上.)15.为了了解名在校就餐的学生对学校食堂饭菜质量的意见,打算从中抽取一个容量为的样本,采取选取的号码间隔一样的系统抽样的方法来确定所选取的样本,则抽样的间隔应该是 40 。
高中数学人教版A版必修三单元检测卷及答案:第二章 统计
高中数学人教版A版必修三单元检测卷第二章统计(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1,从某年级1 000名学生中抽取125名学生进行体重的统计分析,就这个问题来说,下列说法正确的是()A,1 000名学生是总体B,每个被抽查的学生是个体C,抽查的125名学生的体重是一个样本D,抽取的125名学生的体重是样本容量2,由小到大排列的一组数据x1,x2,x3,x4,x5,其中每个数据都小于-1,那么对于样本1,x1,-x2,x3,-x4,x5的中位数可以表示为()A.12(1+x2)B.12(x2-x1)C.12(1+x5)D.12(x3-x4)3,某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36的样本,则老年人,中年人,青年人分别应抽取的人数是()A,7,11,19 B.6,12,18C,6,13,17 D.7,12,174,对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B,变量x与y正相关,u与v负相关C,变量x与y负相关,u与v正相关D,变量x与y负相关,u与v负相关5,已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数,方差分别是()A,2,13 B.2,1C,4,23 D.4,36,某学院有4个饲养房,分别养有18,54,24,48只白鼠供实验用.某项实验需抽取24只白鼠,你认为最合适的抽样方法是()A,在每个饲养房各抽取6只B,把所有白鼠都加上编有不同号码的颈圈,用随机抽样法确定24只C,从4个饲养房分别抽取3,9,4,8只D,先确定这4个饲养房应分别抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样的方法确定7,下列有关线性回归的说法,不正确的是()A,相关关系的两个变量不一定是因果关系B,散点图能直观地反映数据的相关程度C,回归直线最能代表线性相关的两个变量之间的关系D,任一组数据都有回归直线方程8,已知施肥量与水稻产量之间的回归直线方程为y^=4.75x+257,则施肥量x=30时,对产量y的估计值为()A,398.5 B.399.5C,400 D.400.59,在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲,乙,丙,丁四地新增疑似病例数据,一定符合该标志的是()A,甲地:总体均值为3,中位数为4B,乙地:总体均值为1,总体方差大于0C,丙地:中位数为2,众数为3D,丁地:总体均值为2,总体方差为310,某高中在校学生2 000人,高一与高二人数相同并都比高三多1人.为了响应“阳光体育运动”号召,学校举行了“元旦”跑步和登山比赛活动.每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如下表:高一高二高三跑步 a b c登山x y z其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高二参与跑步的学生中应抽取() A,36人B.60人C,24人D.30人11,某赛季,甲,乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如右图所示的茎叶图表示,则甲,乙两名运动员得分的中位数分别为()A,19,13 B.13,19C,20,18 D.18,2012,从一堆苹果中任取了20个,并得到它们的质量(单位:克)数据分布表如下:分组[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]频数123103 1则这堆苹果中,质量不小于120克的苹果数约占苹果总数的()A,30% B.70%C,60% D.50%题号123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分)13,甲,乙,丙,丁四名射击手在选拔赛中的平均环数x及其标准差s如下表所示,则14.一组数据.15,某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:年份 2005 2006 2007 2008 2009收入x 11.5 12.1 13 13.3 15支出Y 6.8 8.8 9.8 10 12根据统计资料,居民家庭年平均收入的中位数是________,家庭年平均收入与年平均支出有________线性相关关系.16,某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃)14 12 8 6 用电量(度) 22 26 34 38由表中数据得回归直线方程y ^ =b ^ x +a ^ 中b ^=-2,据此预测当气温为5℃时,用电量的度数约为______.三、解答题(本大题共6小题,共70分)17,(10分)一批产品中,有一级品100个,二级品60个,三级品40个,用分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程.18,(12分)为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12. (1)学生跳绳次数的中位数落在哪个小组内? (2)第二小组的频率是多少?样本容量是多少? (3)若次数在110以上(含110次)为良好,试估计该学校全体高一学生的良好率是多少?19,(12分)为了研究三月下旬的平均气温(x)与四月棉花害虫化蛹高峰日(y)的关系,某地区观察了2003年至2008年的情况,得到下面数据:年份200320042005200620072008x(℃)24.429.632.928.730.328.9y 19611018已知x与y之间具有线性相关关系,据气象预测该地区在2010年三月下旬平均气温为27℃,试估计2010年四月化蛹高峰日为哪天?20,(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x 345 6y 2.534 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归直线方程y^=b^x+a^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)21,(12分)农科院的专家为了了解新培育的甲,乙两种麦苗的长势情况,从甲,乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲,乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲,乙两种麦苗株高的平均数与方差,并由此判断甲,乙两种麦苗的长势情况.22,(12分)从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数.(2)这50名学生的平均成绩.第二章 统 计(A)1.C [在初中学过:“在统计中,所有考察对象的全体叫做总体,其中每一个所要考察的对象叫做个体,从总体中抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量.”因此题中所指的对象应是体重,故A 、B 错误,样本容量应为125,故D 错误.] 2,C [由题意把样本从小到大排序为x 1,x 3,x 5,1,-x 4,-x 2,因此得中位数为12(1+x 5).] 3,B [因27∶54∶81=1∶2∶3,16×36=6,26×36=12,36×36=18.] 4,C [由点的分布知x 与y 负相关,u 与v 正相关.] 5,D [因为数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是13,所以x =2,15∑5i =1(x i -2)2=13, 因此数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数为: 15∑5i =1 (3x i -2)=3×15∑5i =1x i -2=4, 方差为:15∑5i =1 (3x i -2-x )2=15∑5i =1 (3x i -6)2=9×15∑5i =1 (x i -2)2=9×13=3.]6,D [因为这24只白鼠要从4个饲养房中抽取,因此要用分层抽样决定各个饲养房应抽取的只数,再用简单随机抽样法从各个饲养房选出所需白鼠.C 虽然用了分层抽样,但在每个层中没有考虑到个体的差异,也就是说在各个饲养房中抽取样本时,没有表明是否具有随机性,故选D.]7,D [根据两个变量具有相关关系的概念,可知A 正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以B 、C 正确.只有线性相关的数据才有回归直线方程,所以D 不正确.]8,B [成线性相关关系的两个变量可以通过回归直线方程进行预测,本题中当x =30时,y ^=4.75×30+257=399.5.]9,D [由于甲地总体均值为3,中位数为4,即中间两个数(第5、6天)人数的平均数为4,因此后面的人数可以大于7,故甲地不符合.乙地中总体均值为1,因此这10天的感染人数总和为10,又由于方差大于0,故这10天中不可能每天都是1,可以有一天大于7,故乙地不符合.丙地中中位数为2,众数为3,3出现的最多,并且可以出现8,故丙地不符合.故丁地符合.]10,A [由题意知高一、高二、高三的人数分别为667,667,666.设a =2k ,b =3k ,c =5k ,则a +b +c =35×2 000,即k =120.∴b =3×120=360.又2 000人中抽取200人的样本,即每10人中抽取一人,则360人中应抽取36人,故选A.]11,A [分别将甲、乙两名运动员的得分从小到大排列,中间位置的分数则为中位数.] 12,B [由数据分布表可知,质量不小于120克的苹果有10+3+1=14(个),占苹果总数的1420×100%=70%.]13,乙解析 平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 14,2215,13 正 16,40解析 ∵x =14(14+12+8+6)=10, y =14(22+26+34+38)=30,∴a ^ =y -b ^ x =30+2×10=50.∴当x =5时,y ^ =-2×5+50=40. 17,解 分层抽样方法:先将总体按其级别分为三层,一级品有100个,产品按00,01,…,99编号,二级品有60个,产品按00,01,…,59编号,三级品有40个,产品按00,01,…,39编号.因总体个数∶样本容量为10∶1,故用简单随机抽样的方法,在一级品中抽10个,二级品中抽6个,三级品中抽4个.这样就可得到一个容量为20的样本.18,解 (1)∵前三组的频率和为2+4+1750=2350<12, 前四组的频率之和为2+4+17+1550=3850>12, ∴中位数落在第四小组内.(2)频率为:42+4+17+15+9+3=0.08, 又∵频率=第二小组频数样本容量, ∴样本容量=频数频率=120.08=150. (3)由图可估计所求良好率约为: 17+15+9+32+4+17+15+9+3×100%=88%. 19,解 由题意知: x ≈29.13,y =7.5,∑6i =1x 2i =5 130.92, ∑6i =1x i y i =1 222.6,∴b ^ =∑6i =1x i y i -6x y ∑6i =1x 2i -6x 2≈-2.2, a ^ =y -b ^ x ≈71.6,∴回归方程为y ^ =-2.2x +71.6.当x =27时,y ^ =-2.2×27+71.6=12.2,据此,可估计该地区2010年4月12日或13日为化蛹高峰日.20,解 (1)散点图如下:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5, ∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5, ∑4i =1x 2i =32+42+52+62=86, ∴b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=66.5-4×3.5×4.586-4×4.52=0.7, a ^=y -b ^ x =3.5-0.7×4.5=0.35.∴y ^=0.7x +0.35. ∴所求的回归直线方程为y ^ =0.7x +0.35. (3)现在生产100吨甲产品用煤y ^=0.7×100+0.35=70.35,∴90-70.35=19.65.∴生产能耗比技改前降低约19.65吨标准煤.21,解 (1)茎叶图如图所示: (2)x 甲=9+10+11+12+10+206=12, x 乙=8+14+13+10+12+216=13, s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈13.67, s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈16.67. 因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐. 22,解 (1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形框的中间值的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小矩形的面积一分为二的直线所对应的成绩即为所求. ∵0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,∴前三个小矩形面积的和为0.3.而第四个小矩形面积为0,03×10=0.3,0.3+0.3>0.5, ∴中位数应位于第四个小矩形内.设其底边为x ,高为0.03,∴令0.03x =0.2得x ≈6.7,故中位数约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,取每个小矩形底边的中点值乘以每个小矩形的面积即可.∴平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.021×10)+95×(0.016×10)≈74.第二章统计(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1,对于给定的两个变量的统计数据,下列说法正确的是()A,都可以分析出两个变量的关系B,都可以用一条直线近似地表示两者的关系C,都可以作出散点图D,都可以用确定的表达式表示两者的关系2,一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是()A,40.6,1.1 B.48.8,4.4C,81.2,44.4 D.78.8,75.63,某篮球队甲,乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是()A,甲的极差是29 B.乙的众数是21C,甲罚球命中率比乙高 D.甲的中位数是244,某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B 专业有420名学生,则在该学院的C专业应抽取的学生人数为()A,30 B.40C,50 D.605,在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为() A,9.4,0.484 B.9.4,0.016C,9.5,0.04 D.9.5,0.0166,两个变量之间的相关关系是一种()A,确定性关系 B.线性关系C,非确定性关系 D.非线性关系7,如果在一次实验中,测得(x,y)的四组数值分别是A(1,3),B(2,3.8),C(3,5.2),D(4,6),则y与x之间的回归直线方程是()A.y^=x+1.9B.y^=1.04x+1.9C.y^=0.95x+1.04D.y^=1.05x-0.98,现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A,①简单随机抽样,②系统抽样,③分层抽样B,①简单随机抽样,②分层抽样,③系统抽样C,①系统抽样,②简单随机抽样,③分层抽样D,①分层抽样,②系统抽样,③简单随机抽样9,从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119 则取到号码为奇数的频率是()A,0.53 B.0.5C,0.47 D.0.3710,某校对高一新生进行军训,高一(1)班学生54人,高一(2)班学生42人,现在要用分层抽样的方法,从两个班中抽出部分学生参加4×4方队进行军训成果展示,则(1)班,(2)班分别被抽取的人数是()A,9人,7人 B.15人,1人C,8人,8人 D.12人,4人11.右图是根据《山东统计年鉴2010》中的资料作成的2000年至2009年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到2000年至2009年我省城镇居民百户家庭人口数的平均数为()A,304.6 B.303.6C,302.6 D.301.612,甲,乙,丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如表所示:甲的成绩环数78910频数555 5乙的成绩环数78910频数644 6丙的成绩环数78910频数466 4s1,s2,s3分别表示甲,乙,丙三名运动员这次测试成绩的标准差,则有()A,s3>s1>s2 B.s2>s1>s3C,s1>s2>s3 D.s2>s3>s1题号123456789101112 答案二、填空题(本大题共4小题,每小题5分,共20分)13,已知一个回归直线方程为y^=1.5x+45(x i∈{1,5,7,13,19}),则y=________.14,若a1,a2,…,a20这20个数据的平均数为x,方差为0.21,则a1,a2,…,a20,x 这21个数据的方差为________.15,从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.16.某公司有员工49人,其中30岁以上的员工有14人,没超过30岁的员工有35人,为了解员工的健康情况,用分层抽样方法抽一个容量为7的样本,其中30岁以上的员工应抽取________人.三、解答题(本大题共6小题,共70分)17,(10分)某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元)123 4销售收入y(单位:万元)12284256(1)画出表中数据的散点图;(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?18,(12分)炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的一列数据如下表所示:x(0.01%)104180190177147134150191204121y(min)100200210185155135170205235125(1)作出散点图,你能从散点图中发现含碳量与冶炼时间的一般规律吗?(2)求回归直线方程;(3)预测当钢水含碳量为160时,应冶炼多少分钟?19,(12分)甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.20,(12分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号12345678910x i收入)0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8千元y i(支出)0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5千元(1)判断家庭平均收入与月平均生活支出是否相关?(2)若二者线性相关,求回归直线方程.21,(12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).(1)A类工人中和B类工人中各抽查多少工人?(2)从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2.表1生产能[100,110) [110,120) [120,130) [130,140) [140,150)力分组人数48x 5 3表2生产能[110,120) [120,130) [130,140) [140,150) 力分组人数6y 3618①先确定x,y,再补全下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).22,(12分)一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:零件数x(个) 10 20 30 40 50 60 70 80 90 100加工时间62 68 75 81 89 95 102 108 115 122y(分)(1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求回归直线方程;(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?第二章 统 计(B)1.C [给出一组样本数据,总可以作出相应的散点图,但不一定能分析出两个变量的关系,更不一定符合线性相关或有函数关系.] 2,A3,D [甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C 成立;甲的中位数应该是22+242=23.]4,B [由题知C 专业有学生1 200-380-420=400(名),那么C 专业应抽取的学生数为120×4001 200=40名.]5,D [去掉一个最高分9.9后再去掉一个最低分8.4,剩余的分值为9.4、9.4、9.6、9.4、9.7.求平均值9.4+9.4+9.6+9.4+9.75=9.5,代入方差运算公式可知方差为0.016.] 6,C 7.B8,A [①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差距较大,宜用分层抽样,故选A.]9,A [1100(13+5+6+18+11)=0.53.]10,A [高一(1)班与(2)班共有学生96人,现抽出16名学生参加方队展示,所以抽取(1)班人数为1696×54=9(人),抽取(2)班人数为1696×42=7(人).] 11,B12,B [∵s 21=1n (x 21+x 22+…+x 2n )-x 2, ∴s 21=120(5×72+5×82+5×92+5×102)-8.52=73.5-72.25=1.25=54, ∴s 1=2520.同理s 2=2920,s 3=2120,∴s 2>s 1>s 3,故选B.] 13,58.5解析 回归直线方程为y ^=1.5x +45经过点(x , y ),由x =9,知y =58.5. 14,0.215,0.030 3解析 因5个矩形面积之和为1,即(0.005+0.010+0.020+a +0.035)×10=1, ∴0.070×10+10a =1,∴a =0.030.由于三组内学生数的频率分别为:0.3,0.2,0.1,所以三组内学生的人数分别为30,20,10.因此从[140,150]内选取的人数为1060×18=3. 16,217,解 (1)作出的散点图如图所示(2)观察散点图可知各点大致分布在一条直线附近,列出下表:序号 x y x 2 xy 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 4 4 56 16 224 ∑10 13830 418易得x =52,y =692,所以b ^ =∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=418-4×52×69230-4× 522=735, a ^=y -b ^x =692-735×52=-2.故y 对x 的回归直线方程为y ^ =735x -2.(3)当x =9时,y ^ =735×9-2=129.4.故当广告费为9万元时,销售收入约为129.4万元.18,解 (1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示:从图中可以看出,各点散布在一条直线附近,即它们线性相关.设所求的回归直线方程为y =b x +a , b ^=∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2≈1.267,a ^ =y -b ^x ≈-30.47.所求回归直线方程为 y ^=1.267x -30.47.(3)当x =160时,y ^=1.267×160+(-30.47)=172.25. 即当钢水含碳量为160时,应冶炼约172.25分钟.19,解 (1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13, x 乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高. 20,解 (1)作出散点图:观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系.(2)x =110(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =110(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,∑10i =1x i y i =27.51,∑10i =1x 2i =33.72, b ^=∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2≈0.813 6,a ^=1.42-1.74×0.813 6≈0.004 3,∴回归方程为y ^=0.813 6x +0.004 3.21,解 (1)A 类工人中和B 类工人中分别抽查25名和75名.(2)①由4+8+x +5+3=25,得x =5,6+y +36+18=75,得y =15. 频率分布直方图如下:图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小.②x A =425×105+825×115+525×125+525×135+325×145=123,x B =675×115+1575×125+3675×135+1875×145=133.8,x =25100×123+75100×133.8=131.1. A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1. 22,解 (1)作出如下散点图:由图可知,y 与x 具有线性相关关系. (2)列出下表 i 1 2 3 4 5 6 7 8 9 10 x i 10 20 30 40 50 60 70 80 90 100 y i 62 68 75 81 89 95 102 108 115 122 x i y i 620 1 360 2 250 3 240 4 450 5 700 7 140 8 640 10 350 12 200x =55,y =91.7,∑10i =1x 2i =38 500,∑10i =1y 2i =87 777,∑10i =1x i y i =55 950, 设所求的回归直线方程为y ^ =b ^ x +a ^,则有b ^ =∑10i =1x i y i -10x y ∑10i =1x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668, a ^=y -b ^x =91.7-0.668×55=54.96,因此,所求的回归直线方程为y ^=0.668x +54.96.(3)这个回归直线方程的意义是当x 每增加1时,y 的值约增加0.668,而54.96是y 不随x 变化而变化的部分,因此,当x =200时,y 的估计值为 y ^=0.668×200+54.96=188.56≈189,因此,加工200个零件所用的时间约为189分.。
2021年新人教版高中数学必修3第二章统计测试题及答案
数学必修3 第二章 统计 测试题班级 姓名 学号 成绩第Ⅰ卷(选择题,共60分)一选择题:(本题共12小题,每小题5分,共60分)1. 对于随机抽样,个体被抽到的机会是 ( )A .相等B .不相等C .不确定D .与抽取的次数有关2. 用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是 ( )A .1001B .251C .51D .41 3.从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为 ( )A .n N B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4. 有50件产品编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的编号为 ( )A .5,10,15,20,25B .5,15,20,35,40C .5,11,17,23,29D .10,20,30,40,505.一个容量为20的样本数据,分组后组距与频数如下表:则样本在区间(-∞,50)上的频率为 ( )A .0.5B .0.25C .0.6D .0.76.用样本频率分布估计总体频率分布的过程中,下列说法正确的是 ( )A .总体容量越大,估计越精确B .总体容量越小,估计越精确C .样本容量越大,估计越精确D .样本容量越小,估计越精确7.对于两个变量之间的相关系数,下列说法中正确的是 ( )A .|r|越大,相关程度越大B .|r|()+∞∈,0,|r|越大,相关程度越小,|r|越小,相关程度越大C .|r|≤1且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小D .以上说法都不对8.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则对于样本x 1+2,x 2+2,…,x n +2,下列结论正确的是 ( )A .平均数为10,方差为2B .平均数为11,方差为3C .平均数为11,方差为2D .平均数为14,方差为49.甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下则两人射击成绩的稳定程度是 ( )A .甲比乙稳定B .乙比甲稳定C .甲、乙的稳定程度相同D .无法进行比较 10.已知一组数据为0,-1,x ,15,4,6,且这组数据的中位数为5,则数据的众数为 ( )A .5B .6C .4D .5.511.在统计中,样本的方差可以近似地反映总体的( )A .平均状态B .分布规律C .波动大小D .最大值和最小值12.线性回归方程 a bx y += 必经过点 ( )A .(0,0)B .)0,(xC .),0(yD .),(y x二填空题:(本题共4小题,每小题5分,共20分)13.条形图用 来表示各取值的频率,直方图用 来表示频率.14.若数据x 1,x 2,x 3,…,x n 的平均数为x ,方差为S 2,则3x 1+5,3x 2+5,…,3x n +5的平均数和方差为 , .15.右图是容量为100的样本的频率分布直方图,试根据图形中的数据计算样本数据落在[)10,6内的频率为16.某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为36的样本,用分层抽样方法应分别从老年人 中年人,青年人中各抽取 人, 人, 人.三解答题:(本题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有多少学生?18.有一容量为50的样本,数据的分组及各组的频数如下:[)15,10,4;[)35,30,9;[)20,15,5;[)40,35,8;[)25,20,10;[)45,40,3;[)30,25,11;(1)列出样本的频率分布表;(2)画出频率分布直方图。
人教A版高中数学必修三试卷第二章 统计.docx
高中数学学习材料马鸣风萧萧*整理制作第二章统计一、选择题1.某校有40个班,每班有50人,每班选派3人参加“学代会”,在这个问题中样本容量是().A.40 B.50 C.120 D.1502.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是().A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,323.某单位有老年人27人,中年人54人,青年人81人,为了调查他们身体状况的某项指标,需从他们中抽取一个容量为36的样本,适合抽取样本的方法是().A.抽签法B.系统抽样C.随机数表法D.分层抽样4.为了解某年级女生的身高情况,从中抽出20名进行测量,结果如下:(单位:cm) 149159142160156163145 150148151156144148149 153143168168152155在列样本频率分布表的过程中,如果设组距为4 cm,那么组数为().A.4 B.5 C.6 D.75.右图是由容量为100的样本得到的频率分布直方图.其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a ,在4.6到5.0之间的数据个数为b ,则a ,b 的值分别为( ).A .0.27,78B .0.27,83C .2.7,784D .2.7,836.在方差计算公式s 2=101[(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10和20分别表示( ).A .数据的个数和方差B .平均数和数据的个数C .数据的个数和平均数D .数据组的方差和平均数7.某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下: 行业名称 计算机 机械 营销 物流 贸易 应聘人数 215 830200 250154 67674 57065 280行业名称 计算机 营销 机械 建筑 化工 招聘人数124 620102 93589 11576 51670 436若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中的数据,就业形势一定是( ).A .计算机行业好于化工行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张8.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A .300克B .360千克C .36千克D .30千克9.为了考查两个变量x 和y 之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1,l 2,已知两人得的试验数据中,变量x 和y 的数据的平均值都分别相等,且值分别为s 与t ,那么下列说法正确的是( ).A .直线l 1和l 2一定有公共点(s ,t )B .直线l 1和l 2相交,但交点不一定是(s ,t )C .必有直线l 1∥l 2D .直线l 1和l 2必定重合10.工人工资(元)依相应产值(千元)变化的回归方程为yˆ=50+80x ,下列判断正确的是().A.产值为1 000元时,工资为130元B.产值提高1 000元时,工资提高80元C.产值提高1 000元时,工资提高130元D.当工资为250元时,产值为2 000元二、填空题:11.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2∶3∶5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号的产品有16件,那么此样本的容量n=___________.12.若总体中含有1 650个个体,现在要采用系统抽样,从中抽取一个容量为35的样本,分段时应从总体中随机剔除________个个体,编号后应均分为_________段,每段有______个个体.13.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有_______条鱼.14.已知x,y之间的一组数据:x 1.08 1.12 1.19 1.28y 2.25 2.37 2.40 2.55 y与x之间的线性回归方程yˆ=bx+a必过定点_________.15.假设学生在初一和初二数学成绩是线性相关的.若10个学生初一数学分数(x)和初二数学分数(y)如下:x 74 71 72 68 76 73 67 70 65 74y 76 75 71 70 76 79 65 77 62 72 初一和初二数学分数间的回归方程为___________.16.一家保险公司调查其总公司营业部的加班程度,收集了10周中每周加班工作时间y(小时)与签发新保单数目x的数据如下表,则用最小二乘法估计求出的线性回归方程是___________.x 825 215 1 070 550 480 920 1 350 325 670 1 215 y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0三、解答题:17.某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?18.某单位有118名员工,为了完成本月的生产任务,现要从中随机抽取16人加班.请用系统抽样法选出加班的人员.19.写出下列各题的抽样过程:(1)请从拥有500个分数的总体中用简单随机抽样方法抽取一个容量为30的样本.(2)某车间有189名职工,现在要按1∶21的比例选派质量检查员,采用系统抽样的方法进行.(3)一个电视台在因特网上就观众对某一节目喜爱的程度进行调查,被调查的总人数为12 000人,其中持各种态度的人数如下:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 072打算从中抽取60人进行详细调查,如何抽取?20.有一种鱼的身体吸收水银,水银的含量超过1.00 ppm(即百万分之一)时就会对人体产生危害.在30条鱼的样本中发现的水银含量是:0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.021.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.681.85 1.20 0.81 0.82 0.84 1.29 1.262.10 0.91 1.31(1)用前两位数作为茎,做出样本数据的茎叶图;(2)描述一下水银含量的分布特点;(3)从实际情况看,许多鱼的水银含量超标在于有些鱼在出售之前没有被检查过.那么,这种鱼的水银含量的平均水平都比1.00 ppm大吗?(4)求出上述样本数据的均值和标准差;(5)有多少条鱼的水银含量在均值减加两倍标准差的范围内?第二章 统计参考答案一、选择题 1.C解析:样本容量等于40×3=120. 2.B解析:根据系统抽样的规则,1到10一段,11到20一段,如此类推,每段10个号码,那么每一段上都应该有号码.3.D解析:总体是由差异明显的几部分组成的. 4.D解析:由于组距为4 cm ,故可分组为142~146,146~150,150~154,154~158,158~162,162~166,166~170.5.A解析:由题意共有100个人.前4组频率成等比数列,由图知:第一组频率为0.01;第二组频率为0.03;所以a =0.27.前3组有100×(0.01+0.03+0.09)=13人,后6组共87人,6组人数成等差数列,所以首项为27,s 6=87,得d =-5,s 4=78,即b =78.6.C解析:对照公式s 2=∑=ni i x -x n121)(即可知道.7.B解析:从表中可以看出,计算机行业应聘人数与招聘人数都比较多,但录用率约占58%.化工行业招聘名额70 436虽少,但应聘它的人数少于应聘贸易行业的人数(65 280),录用率大于58%,故A 不正确.对于建筑行业,应聘人数少于招聘人数,显然好于物流行业.机械行业录用率约46%,但物流、贸易招聘人数未知,无法比较得出机械行业最紧张.营销行业招聘人数与应聘人数的比约为1∶1.5,但贸易行业招聘数不详,无法比较.8.B解析:从草鱼240尾,中任选9尾,这9尾鱼具有代表性,由此可由样本估计总体的情况.9尾鱼中每尾鱼的平均质量为x =91(1.5+1.6+1.4+1.6+1.3+1.4+1.2+1.7+1.8)=1.5(千克), 240×1.5=360(千克). 9.A解析:线性回归直线方程为yˆ=a +bx ,而a =x b y -,即a =t -bs ,t =a +bs . ∴(s ,t )在回归直线上,即直线l 1和l 2必有公共点(s ,t ). 10.B解析:回归直线斜率为80,所以x 每增加1,yˆ增加80,即劳动生产率提高1千元时,工资提高80元.二、填空题: 11.答案:80. 解析:n =216×(2+3+5)=80. 12.答案:5;35;47. 解析:1 650除以35商 47余5, ∴ 剔除5个个体.分为35段,每段47个个体. 13.答案:750. 解析:30×250=750 (条). 14.答案:(1.167 5,2.392 5). 解析:必过四组数据的平均数, 即(1.167 5,2.392 5).15.答案:yˆ=1.218x -14.191. 解析:代入求a ,b 值的公式,解得 y ˆ=1.218x -14.191. 16.答案:yˆ=0.118 1+0.003 585x . 解析:∑∑===-==10121018602971)(762101i ii ix x ,xx ,6534))((85.2101=--=∑=i iiy y x x ,y .三、解答题:17.[解析] 简单随机抽样一般采用两种方法:抽签法和随机数表法.解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这10个号签对应的轴的直径.解法2:(随机数表法)将100件轴编号为00,01,…,99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个随机数为68,34,30,13,70,55,74,77,40,44,这10个号即所要抽取的样本号.18.解析:(1)对这118名员工进行编号; (2)计算间隔k =16118=7.375, 由于k 不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样.例如我们随机剔除了3,46,59,57,112,93这6名员工,然后再对剩余的112位员工进行编号,计算间隔k =7;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.19.解析:(1)①将总体的500个分数从001开始编号,一直到500号; ②从随机数表第1页第1行第2至第4列的347号开始使用该表; ③抄录入样号码如下:347 437 386 469 011 410 145 073 245 276 329 050 176 099 061 030 227 482 378 096 164 001 068 047 025 212 016 105 443 212 ④按以上编号从总体中将相应的分数提取出来组成样本,抽样完毕. (2)采取系统抽样.189÷21=9,所以将189人分成9组,每组21人,在每一组中随机抽取1人,这9人组成样本.(3)采取分层抽样.总人数为12 000人,12 000÷60=200, 2004352=12…35(人),2005674=22…167(人),2009263=19…126(人),2000721=5…72(人).所以从很喜爱的人中剔除35人,再抽取12人;从喜爱的人中剔除167人,再抽取22人;从一般喜爱的人中剔除126人,再抽取19人;从不喜爱的人中剔除72人,再抽取5人.20.解析: (1)茎叶图为:茎 叶 0.0 7 0.2 4 0.3 9 0.5 4 0.6 1 0.7 2 0.8 124 0.9 1588 1.0 228 1.1 4 1.2 0069 1.3 17 1.4 04 1.5 8 1.6 28 1.8 5 2.1(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.(3)不一定.因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同.即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm .(4)样本平均数x≈1.08,样本标准差s≈0.45.(5)有28条鱼的汞含量在平均数与两倍标准差的和(差)的范围内.马鸣风萧萧。
(新)高一数学必修3第二章统计复习题和答案
高一数学必修 3 第二章统计复习题1 .某机构进行一项市场调查,规定在某商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止,这种抽样方式是A .系统抽样B .分层抽样C.简单随机抽样 D .非以上三种抽样方法2.一个年级有12 个班,每个班的同学从 1 至 50 排学号,为了交流学习经验,要求每班学号为 14 的同学留下进行交流,这里运用的是A. 分层抽样B.抽签抽样C.随机抽样D.系统抽样3.某单位有职工750 人,其中青年职工350 人,中年职工250 人,老年职工150 人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本的青年职工为7 人,则样本容量为A. 7 B. 15 C. 25 D. 354.为了解 1200 名学生对学校教改试验的意见,打算从中抽取一个容量为 30 的样本,考虑采用系统抽样,则分段的间隔k 为A. 40B. 30C. 20D. 125.在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为A. 92, 2 B.92 , 2.8 C. 93, 2 D. 93, 2.86.变量 y 与 x 之间的回归方程A .表示y 与x 之间的函数关系B .表示y 和x 之间的不确定关系C.反映y与x之间的真实关系达到最大限度的吻合D.反映y和x之间真实关系的形式7.线性回归方程y? bx a 必过点A.(0, 0) B.(x, 0)C.(0,y)D.(x,y)8.在下列各图中,每个图的两个变量具有相关关系的图是9.一个容量为 40 的样本数据分组后组数与频数如下:[ 25, 25.3), 6;[ 25.3, 25.6), 10.容量为 100的样本数据,按从小到大的顺序分为8组,如下表:组号 1 2 3 4 5 6 7 84;[ 25.6,25.9), 10;[25.9, 26.2), 8;[25.9)上的频率为 26.2, 26.5), 8;[ 26.5, 26.8), 4;则样本在[ 25, C . D .频数 10 13 x 14 15 13 12 9第三组的频数和频率分别是 ( )A 14和 0.14 B0.14和 14 C 1 和 0.14 D 1 和 114 3 14211. 已知数据 a 1, a 2,..., a n 的平均数为 a ,方差为 S ,则数据 2a 1 ,2a 2,..., 2a n 的平均数和方 差为( )A . a,S 2B . 2a,S 2C . 2a,2S 2D . 2a,4S 212、在抽查产品尺寸的过程中,将其尺寸分成若干组,[ a , b ]是其中的一组,抽查出的个体在该组上的频率为 m ,该组上的直方图的高为 h ,则 | a b | ( )mhA .B . hmC .D . h mhm0, 1, 2, ⋯ , 59,现要从中抽取一个容量为 10 的样本, 请根据编号按被 6 除余 3 的方法,取足样本,则抽取的样本号码是14. 甲、乙两人在 10 天中每天加工零件的个数用茎叶图表示(如下图),中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这零件的平均数分别为和.甲115315. 已知样本9,10,11, x, y 的平均数是 10, 标准差是2 , 则 xy16. 如果数据 x 1, x 2, ⋯ , x n 的平均数为 4, 方差为 0.7, 则 3x 1 5, 3x 2 5 , ⋯, 3x n 5的平 均数是,方差是.17. 某市居民2005~ 2009 年家庭年平均收入 x (单位: 万元) 与年平均支出Y (单位: 万元)的统计资料如下表所示:13. 一个总体的 60 个个体的编号为 10 天甲、乙两人日加工 98101320 2971 1424 020根据统计资料,居民家庭年平均收入的中位数是,家庭年平均收入与年平均支出有线性相关关系.应为.三、解答题19.在 2007 全运会上两名射击运动员甲、乙在比赛中打出如下成绩:甲:9.4, 8.7, 7.5, 8.4, 10.1 , 10.5, 10.7, 7.2, 7.8, 10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1, 9.2,10.1,9.1 ;( 1 )用茎叶图表示甲,乙两个成绩;并根据茎叶图分析甲、乙两人成绩;( 2)分别计算两个样本的平均数x和标准差s,并根据计算结果估计哪位运动员的成绩比较稳定.甲乙20.“你低碳了吗?”这是某市为倡导建设节约型社会而发布的公益广告里的一句话.活动组织者为了了解这则广告的宣传效果,随机抽取了 120 名年龄在[10, 20) , [20, 30) ,⋯,[50, 60) 的市民进行问卷调查,由此得到的样本的频率分布直方图如图所示.(1)根据直方图填写右面频率分布统计表;(2)根据直方图,试估计受访市民年龄的中位数(保留整数);(3)按分层抽样的方法在受访市民中抽取n 名市民作为本次活动的获奖者,若在[10,20)的年龄组中随机抽取了6人,则的n 值为多少?分组频数频率[10,20) 18 0.15[20,30) 30[30,40)[40,50) 0.2 [50,60) 6 0.0521.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x的数据:1 )画出数据对应的散点图;2)求线性回归方程;3)据(2)的结果估计当房屋面积为150m2时的销售价格.销售价格(万元)35 302520 1510 5房屋面积(m 2)0 70 80 90 100 110 120 130 14022.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:11 求出表中m, n, M , N 所表示的数;2)画出频率分布直方图;频率0.1组距0.090.080.070.060.050.040.030.020.01O 145.5 149.5 153.5 157.5 161.5 165.5 身高一数学必修3第二章统计复习题答案一、选择题DDBAB CDDCA DA二、填空题13.3, 9, 15, 21, 27, 33, 39, 45, 51, 5714.24 ,2315.9616.17 ,6.317.13 ,正18.0.030 3三、解答题19.( 1)如图所示,茎表示成绩的整数环数,叶表示小数点后的数字.由上图知,甲中位数是9.05,乙中位数是9.15,乙的成绩大致对称,可以看出乙发挥稳定性好,甲波动性大.2)解:x甲1( 9.4+8.7+7.5+8.4+10.1+10.5+10.7+7.2+7.8+10.8 )=9.11.10s甲 1 [(9.4 9.11)2 3 (8.7 9.11)2 ... (10.8 9.11) 2] =1.3.x乙 1 ( 9.1+8.7+7.1+9.8+9.7+8.5+10.1+9.2+10.1+9.1 )=2 ([ 9.1 9.14) 2( 8.7 9.14) 2( 9.1 9.14) 20.9.s甲s乙,这说明了甲运动员的波动大于乙运动员的波动,所以我们估计,乙运动员比较稳定.9.14.1020. 解:(1 )分组频数频率[10,20) 18 0.15 [20,30) 30 0.25 [30,40) 42 0.35 [40,50) 24 0.2 [50,60) 6 0.052)由已知得受访市民年龄的中位数为设所求回归直线方程为y bx a ,则blxylxx30815700.1962;a y bx 23.23081091.816 61570故所求回归直线方程为y 0.1962x 1.81663)据( 2),当x 150m 2时,销售价格的估计值为:y 0.1962 150 1.816631.2466(万元) 22. 解:( 1)M 150,m0.02 50 (1 4 20 15 8) 2N 1,n 20.04502)如右图频率组距0.090.070.060.050.040.030.020.01。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计
1、 某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他
们中抽取一个容量为36的样本,最适合抽取样本的方法是( ) A .简单随机抽样 B .系统抽样
C .分层抽样
D .先从老年人中剔除一人,然后分层抽样 2、下列说法中,正确的是( )
(1)数据4、6、6、7、9、4的众数是4。
(2)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势。
(3)平均数是频率分布直方图的“重心”。
(4)频率分布直方图中各小长方形的面积等于相应各组的频数。
A .(1)(2)(3) B.(2)(3) C.(2)(4) D.(1)(3)(4)
3、某地区共有10万户居民,该地区城市住户与农村住户之比为4:6,根据分层抽样方法,调查了该地区1000户居民冰箱拥有情况,调查结果如表所示,那么可以估计该地区农村住户
A .1.6万户
B .4.4万户
C .1.76万户
D .0.24万户 4、下列正确的个数是( )
(1) 在频率分布直方图中,中位数左边和右边的直方图的面积相等。
(2) 如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变。
(3)一个样本的方差是_s 2
=1/20[(x 1一3)2
+-(X 2—3) 2
+…+( X n 一3) 2
],则这组数据等总和等于60.
(4) 数据123,,,...,n a a a a 的方差为2σ,则数据1232,2,2,...,2n a a a a 的方差为24σ
A . 4 B. 3 C .2 D . 1 5、 为了解某校高三学生的视力情况,
随机地抽查了该校200名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最多一组学生数为a ,视力在4.6到5.0
之间的频率为b ,则a , b 的值分别为( ) A .0.27, 78 B .54 , 0.78
C .27, 0.78
D .54, 78
6、在调查高一年级1500名学生的身高的过程中,抽取了一个样本并将其分组画成频率颁直方图,[160cm ,165cm]组的小矩形的高为a ,[165cm ,170cm]组小矩形的高为b,试估计该高一年集学生身高在[160cm ,170cm]范围内的人数
7、从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为
8、一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出200人作进一步调查,则在[1500,3000](元)月收入段应抽出 人. 9、用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是
10、进行系统抽样时,若确定分段间隔为k ,在第1段用简单随机抽样确定第一个个体编号为
l ,则第n 个个体编号为 11、已知右图所示的一组数据:
y 与x 之间的线性回归方程ˆy
a bx =+必过定点
(精确到小数后面两位)。
(横坐标为X 平均数,纵坐标为Y 平均数)
12、 对某电子元件进行寿命追踪调查,情况如下.
(1)列出频率分布表;(2)画出频率分布直方图及频率分布折线图; (3)估计元件寿命在100~400 h 以内的在总体中占的比例; (4)从频率分布直方图可以看出电子元件寿命的众数是多少
13、甲、乙两台机床在相同的技术条件下,同时生产一种零件,现在从中抽测10个,它们的尺寸分别如下(单位:mm ).
甲机床:10.2 10.1 10 9.8 9.9 10.3 9.7 10 9.9 10.1; 乙机床:10.3 10.4 9.6 9.9 10.1 10.9 8.9 9.7 10.2 10. (1)用茎叶图表示甲,乙台机床尺寸;
(2)分别计算上面两个样本的平均数和方差.如图纸规定零件的尺寸为10 mm ,从计算的结果来看哪台机床加工这种零件较合适?(要求写出公式,并利用公式笔算)
14、已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:
设y 对x 呈线性相关关系,试求:
(1)线性回归方程a bx y +=
的回归系数b a ,; (2)估计使用年限为10年时,维修费用是多少?
(线性回归方程a bx y += 中的系数b a ,可以用公式⎪⎪⎪
⎩⎪⎪
⎪
⎨⎧
-=--=∑∑==x
b y a x n x y x n y x b n i i i i i 21
21
)。