空间直角坐标系(必修2)
高中数学北师大版必修二2.3.1【教学课件】《空间直角坐标系的建立》
通过原点0,再增加一条与x0y平面垂直的z轴
空间直角坐标系
北京师范大学出版社 | 必修二
(2)空间直角坐标系的建系原则—右手螺旋法则
①伸出右手,让四指与大拇指垂直;
②四指先指向x轴正方向;
③让四指沿握拳方向旋转900指向y轴正方向; ④大拇指的指向即为z轴正向。
北京师范大学出版社 | 必修二
北京师范大学出版社 | 必修二
如图,以D为坐标原点,分别以DA,DC,DD1所在直线为x 轴
y 轴和z 轴建立 必修二
思考:空间直角坐标系中的坐标轴有什么特点? 解:(1)从建系流程图中可以得出x、y、z 轴,三条坐标轴两两垂直。 (2)从建系原则上分析,轴的方向通常这样选择:从z 轴的正方向上看,
② x,y,z轴统称为坐标轴。
③由坐标轴确定的平面叫作坐标平面。
x,y轴确定的平面记作xOy平面,
y,z轴确定的平面记作yOz平面, x,z轴确定的平面记作xOz平面。
北京师范大学出版社 | 必修二
质疑答辩,发展思维
如图,棱长为1的正方体ABCD-A1B1C1D1中,E是AB的中点,
F是BB1的中点,G是AB1的中点,试建立适当的坐标系。
x 轴的正半轴沿逆时针方向转90°能与y 轴的正半轴重合。
(3)从坐标轴的名称上分析,每两条坐标轴确定的平面为一个坐标平面, 且第三条坐标轴必垂直于该坐标平面。
北京师范大学出版社 | 必修二
例题讲解
例1 在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,所有 的棱长都是1,建立适当的坐标系。 解:取AC的中点O和A1C1的中点O1,可得
北京师范大学出版社 | 必修二
新课导入
下图是一个房间的示意图,空间中我们如何表示 板凳和气球的位置?
数学人教A必修2 4.3.1 空间直角坐标系 4.3.2 空间两点间的距离公式
即 N(4,3,
5 ). 2
数学 【备用例2】 (拔高)如图,三棱柱ABC-A1B1C1中,所有棱长都为2,侧棱 AA1⊥底面ABC,建立适当坐标系写出各顶点的坐标. (1)求点A、B、C、D、A1、B1、C1、D1的坐标; (2)求点N的坐标.
解:取 AC 的中点 O 和 A1C1 的中点 O1,可得 BO⊥AC,分别以 OB,OC,OO1 所在直线 为 x,y,z 轴建立空间直角坐标系. 因为三棱柱各棱长均为 2, 所以 OA=OC=1,OB= 3 , 可得 A(0,-1,0),B( 3 ,0,0),C(0,1,0),A1(0,-1,2), B1( 3 ,0,2),C1(0,1,2).
对应.
2.在空间直角坐标系中横坐标为0的点在y轴上吗? 提示:不一定.横坐标为0的点一定在yOz平面内,横坐标、竖坐标全为0的 点在y轴上.
数学
【例 1】 在棱长为 1 的正方体 ABCD A1B1C1D1 中,E、 F 分别是 D1D、 BD 的中点,G 在棱 CD 上, 且 CG=
1 CD,H 为 C1G 的中点,试建立适当的坐标系,写出 E、F、G、H 的坐标. 4 解:建立如图所示的空间直角坐标系.点 E 在 z 轴上,它的横坐标、纵坐标
1.空间直角坐标系 如图,以正方体OABCD′A′B′C′为载体,以O为原点,分别以射线OA,OC, OD′的方向为正方向,以线段OA,OC,OD′的长为单位长,建立三条数轴: x轴、y轴、z轴 ,这时我们说建立了一个空间直角坐标系Oxyz,其中点O叫
做 坐标原点 , x轴、y轴、z轴 叫做坐标轴,通过每两个坐标轴的平面叫 做坐标平面,分别称为 xOy平面 、 yOz平面 、 zOx平面 ,通常建立的坐标 系为 右手直角坐标系 ,即 右手拇指 指向x轴的正方向, 食指 指向y轴的 正方向, 中指 指向z轴的正方向.
高中数学 必修2:4.3 空间直角坐标系
4.3 空间直角坐标系一、空间直角坐标系二、空间直角坐标系中点的坐标1.空间中的任意点与有序实数组(),,x y z之间的关系如图所示,设点M为空间直角坐标系中的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴、y轴和z轴于点P、Q和R.设点P、Q和R在x轴,y轴和z轴上的坐标分别是x、y和z,那么点M就和有序实数组(x,y,z)是一一对应的关系,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M纵坐标,z叫做点M的竖坐标.2.空间直角坐标系中特殊位置点的坐标 3.空间直角坐标系中的对称点设点P (a ,b ,c )为空间直角坐标系中的点,则三、空间两点间的距离公式如图,设点11112222(,,),(,,)P x y z P x y z 是空间中任意两点,且点11112222(,,),(,,)P x y z Px y z 在xOy 平面上的射影分别为M ,N ,那么M ,N 的坐标分别为1122(,,0),(,,0)M x y N x y .在xOy 平面上,||MN = 在平面21MNP P 内,过点1P 作2P N 的垂线,垂足为H ,则11122||||,||||,||||PH MN MP z MP z ===,所以221||||HP z z =-.在12Rt △PHP 中,1||||PH MN == 根据勾股定理,得12||PP ==.因此,空间中点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)之间的距离是12||PP =特别地,点P (x ,y ,z )到坐标原点O (0,0,0)的距离为|OP |空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.1.确定空间任一点的坐标确定空间直角坐标系中任一点P 的坐标的步骤是:①过P 作PC ⊥z 轴于点C ;②过P 作PM ⊥平面xOy 于点M ,过M 作MA ⊥x 轴于点A ,过M 作MB ⊥y 轴于点B ;③设P (x ,y ,z ),则|x |=|OA |,|y |=|OB |,|z |=|OC |.当点A 、B 、C 分别在x 、y 、z 轴的正半轴上时,则x 、y 、z 的符号为正;当点A 、B 、C 分别在x 、y 、z 轴的负半轴上时,则x 、y 、z 的符号为负;当点A 、B 、C 与原点重合时,则x 、y 、z 的值均为0.空间中点的坐标受空间直角坐标系的制约,同一个点,在不同的空间直角坐标系中,其坐标是不同的.【例1】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.【名师点睛】空间中点P 坐标的确定方法 (1)由P 点分别作垂直于x 轴、y 轴、z 轴的平面,依次交x 轴、y 轴、z 轴于点P x 、P y ,P z ,这三个点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,那么点P 的坐标就是(x ,y ,z ).(2)若题所给图形中存在垂直于坐标轴的平面,或点P 在坐标轴或坐标平面上,则要充分利用这一性质解题.【例2】如图所示,在长方体ABCD-A 1B 1C 1D 1中,|AD|=3,|DC|=4,|DD 1|=2,E ,F 分别是BB 1,D 1B 1的中点,求点A ,B ,C ,D ,A 1,B 1,C 1,D 1,E ,F 的坐标.【例3】如图,在正方体1111ABCD A B C D -中,,E F 分别是111,BB D B 的中点,棱长为1. 试建立适当的空间直角坐标系,写出点,E F 的坐标.【解析】建立如图所示坐标系.方法一:E 点在xDy 面上的射影为,1,()1,0B B ,竖坐标为12.所以1(1,1,)2E .F 在xDy 面上的射影为BD 的中点G ,竖坐标为1.所以11(,,1)22F . 方法二:11,()1,1B ,10,()0,1D ,()1,1,0B ,E 为1B B 的中点,F 为11B D 的中点.故E 点的坐标为111110(,,)222+++即1(1,1,)2,F 点的坐标为101011(,,)222+++,即11(,,1)22. 2.求空间对称点的坐标求对称点的坐标一般依据“关于谁对称,谁保持不变,其余坐标相反”来解决.如关于横轴(x 轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.【例4】设点是直角坐标系中一点,则点关于轴对称的点的坐标为( A )A .B .C .D . 【例5】空间直角坐标系中,点关于点的对称点的坐标为( C ) A .B .C .D .【名师点睛】(1)求空间对称点的规律方法 空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.(2)空间直角坐标系中,任一点P (x ,y ,z )的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P 1(-x ,-y ,-z );②关于x 轴(横轴)对称的点的坐标是P 2(x ,-y ,-z );③关于y 轴(纵轴)对称的点的坐标是P 3(-x ,y ,-z );④关于z 轴(竖轴)对称的点的坐标是P 4(-x ,-y ,z );⑤关于xOy 坐标平面对称的点的坐标是P 5(x ,y ,-z );⑥关于yOz 坐标平面对称的点的坐标是P 6(-x ,y ,z );⑦关于xOz 坐标平面对称的点的坐标是P 7(x ,-y ,z ).(3)点关于点的对称要用中点坐标公式解决,即已知空间中两点111222(,,),(,,)A x y z B x y z ,则AB 的中点P 的坐标为121212(,,)222x x y y z z +++.3.空间两点间的距离公式(1)已知空间两点间的距离求点的坐标,是距离公式的逆应用,可直接设出该点坐标,利用待定系数法求解点的坐标.(2)若求满足某一条件的点,要先设出点的坐标,再建立方程或方程组求解.(3)利用空间两点间的距离公式判断三角形的形状时,需分别求出三边长,得到边长相等或者满足勾股定理;判断三点共线时,需分别求出任意两点连线的长度,判断其中两线段长度之和等于另一条线段长度.【例6】已知点()3,2,1M ,()1,0,5N ,求:(1)线段MN 的长度;(2)到,M N 两点的距离相等的点(),,P x y z 的坐标满足的条件.【例7】如图所示,建立空间直角坐标系Dxyz,已知正方体ABCD-A1B1C1D1的棱长为1,点P 是正方体的体对角线D1B的中点,点Q在棱CC1上.当2|C1Q|=|QC|时,求|PQ|.【例8】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,|AP|=|AB|=2,|BC|=2,E,F分别是AD,PC的中点.求证:PC⊥BF,PC⊥EF.【解析】如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.∵|AP|=|AB|=2,|BC|=2,四边形ABCD是矩形,∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),∴|PB|==2,∴|PB|=|BC|,又F为PC的中点,∴PC⊥BF.【例9】如图,已知正方体ABCD -A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a . 根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a . 【名师点睛】求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.4.混淆平面与空间直角坐标系【例10】已知空间中两点(3,1,1)(2,2,3)A B ---、,在z 轴上有一点C ,它到A B 、两点的距离相等,求点C 的坐标.【错解】由已知得,AB 的中点坐标为51(,,2)22-,且AB 所在直线的斜率为3,故AB 的垂直平分线的斜率为13-,则垂直平分线的方程为15112()()3232z x y -=-+--, 当0x y ==时,43z =,故点C 的坐标为4(0,0,)3. 【错因分析】上面解法照搬平面解析几何中的解题思路而出现错误.由于点C 到A B 、两点的距离相等,故可求AB 的垂直平分线.以目前所学知识只能用两点间的距离公式求解.【正解】设点C 的坐标为(0,0,)z ,则=,即2210(1)3()8z z +-=+-,解得32z =,所以点C 的坐标为3(0,0,)2. 基础训练1.在空间直角坐标系中,点P (1,2,3)关于x 轴对称的点的坐标为( B )A .(-1,2,3)B .(1,-2,-3)C .(-1,-2,3)D .(-1,2,-3)2.在空间直角坐标系中,点P (3,4,5)关于yOz 平面对称的点的坐标为( A )A .(-3,4,5)B .(-3,-4,5)C .(3,-4,-5)D .(-3,4,-5)3.如图,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为( D )A .(2,2,1)B .(2,2,23)C .(2,2,13)D .(2,2,43) 4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( B )A .9B .29C .5D .2 65.已知点A (1,a ,-5),B (2a ,-7,-2)(a ∈R )则|AB |的最小值是( B )A .3 3B .3 6C .2 3D .2 66.点(2,0,3)在空间直角坐标系中的( C )A .y 轴上B .xOy 面上C .xOz 面上D .第一象限内7.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为( B )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,0,0)8.如图所示,在长方体ABCO -A 1B 1C 1O 1中,OA =1,OC =2,OO 1=3,A 1C 1与B 1O 1交于P ,分别写出A ,B ,C ,O ,A 1,B 1,C 1,O 1,P 的坐标.9.(1)已知A (1,2,-1),B (2,0,2),①在x 轴上求一点P ,使|PA |=|PB |;②在xOz 平面内的点M 到A 点与到B 点等距离,求M 点轨迹.(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最小.(1)①设P (a ,0,0),则由已知得222(1)(2)1a -+-+=2(2)4a -+,即a 2-2a +6=a 2-4a +8,解得a =1,所以P 点坐标为(1,0,0).②设M (x ,0,z ),则有222(1)(2)(1)x z -+-++=22(2)(2)x z -+-,整理得2x +6z -2=0,即x +3z -1=0.故M 点的轨迹是xOz 平面内的一条直线.(2)由已知,可设M (x ,1-x ,0),则|MN |=222(6)(15)(01)x x -+--+-=22(1)51x -+.所以当x =1时,|MN |min =51,此时点M (1,0,0).能力10.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( A )A .62B . 3C .32D .6311.已知A 点坐标为(1,1,1),B (3,3,3),点P 在x 轴上,且|PA |=|PB |,则P 点坐标为( A )A .(6,0,0)B .(6,0,1)C .(0,0,6)D .(0,6,0)12.已知M (5,3,-2),N (1,-1,0),则点M 关于点N 的对称点P 的坐标为(-3,-5,2).13.在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长等于_2393_. 14.如图所示,正方形ABCD ,ABEF 的边长都是1,并且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N 在BF 上移动.若|CM |=|BN |=a (0<a <2).(1)求MN 的长度;(2)当a 为何值时,MN 的长度最短?因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB ,所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,过BA ,BE ,BC 的直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.因为|BC |=1,|CM |=a ,点M 在坐标平面xBz 内且在正方形ABCD 的对角线上, 所以点M (22a ,0,1-22a ).因为点N 在坐标平面xBy 内且在正方形ABEF 的对角线上,|BN |=a ,所以点N (22a ,22a ,0). (1(2)由(1),得|当a =22(满足0<a 即MN 15.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 在线段BC 1上,且|BM |=2|MC 1|,N 是线段D 1M 的中点,求点M ,N 的坐标.16.如图所示,V -ABCD 是正棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.∵底面是边长为2的正方形,∴|CE |=|CF |=1.∵O 点是坐标原点,∴C (1,1,0), 同样的方法可以确定B (1,-1,0),A (-1,-1,0),D (-1,1,0).∵V 在z 轴上,∴V (0,0,3).17.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz .(1)若点P 在线段BD 1上,且满足3|BP |=|BD 1|,试写出点P 的坐标,并写出P 关于y 轴的对称点P ′的坐标;(2)在线段C 1D 上找一点M ,使点M 到点P 的距离最小,求出点M 的坐标.(1)由题意知P 的坐标为⎝⎛⎭⎫23,23,13,P 关于y 轴的对称点P ′的坐标为⎝⎛⎭⎫-23,23,-13. (2)设线段C 1D 上一点M 的坐标为(0,m ,m ),则有|MP |=⎝⎛⎭⎫-232+⎝⎛⎭⎫m -232+⎝⎛⎭⎫m -132=2m 2-2m +1=2⎝⎛⎭⎫m -122+12. 当m =12时,|MP |取得最小值22,所以点M 为⎝⎛⎭⎫0,12,12. 18.如图,三棱柱ABC -A 1B 1C 1中,所有棱长都为2,侧棱AA 1⊥底面ABC ,建立适当坐标系写出各顶点的坐标.19.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标是(﹣4,3,2).。
北师大版高中高一数学必修2《空间直角坐标系》教案及教学反思
北师大版高中高一数学必修2《空间直角坐标系》教案及教学反思教案设计教学目标•能够理解一般空间直角坐标系的概念。
•能够掌握三维直角坐标系的表示方法。
•能够在三维直角坐标系中进行点、向量及直线的表示,并理解它们之间的关系。
•能够应用直角坐标系求解在空间中的几何问题。
教学重点•理解三维直角坐标系的表示方法。
•掌握点、向量及直线在三维直角坐标系中的表示方法。
•应用直角坐标系求解空间中的几何问题。
教学难点•向量与点的坐标化。
•空间直线的表示及其性质。
教学过程第一步:导入为了让学生更好地理解三维空间直角坐标系,我将引导学生回顾二维空间直角坐标系,并鼓励学生回忆二维空间中点、向量、直线和平面的定义及相关性质。
随着学生的回忆,我会巧妙引导学生理解三维空间坐标系。
第二步:讲解在此步骤中,我将详细解释三维空间坐标系的定义和相关概念。
让学生理解三维空间坐标系由三个相互垂直的坐标轴构成,学生应该能够掌握三维空间中点、向量及直线的表示方法,并理解它们之间的关系。
第三步:练习为了让学生更好地掌握三维空间坐标系的相关概念和求解能力,我会打出一些简单的练习题,让学生掌握三维空间中的点、向量及直线的表示方法,并熟悉它们之间的关系。
此处我会通过练习题,加深学生的印象,让学生更快地运用到实际中去。
第四步:课堂交流在此步骤之中,我将要求学生根据自己的认知和实际经验,来分享一些解题思路、技巧和心得。
此时我将提供充足的时间给学生进行交流和讨论。
这样能让学生相互交流,发现共同点和不同之处,锻炼学生的思维能力和语言表达能力。
第五步:总结在这一步骤中,我会对本节课所讲授的知识进行总结,并强调课程重点,确保学生掌握了本节课程所讲的内容。
同时,我会在总结中提到经常出现的错误或盲点,帮助学生加深印象,从而提高学习效果。
教学反思教学收获首先,本节课程所讲授的知识比较抽象,但是由于是空间三维坐标表示,便可以采取类似于平面几何的手段,通过练习题目,让学生更好地掌握相关知识点。
2019-2020人教A版数学必修2第4章 4.3 空间直角坐标系
4.3 空间直角坐标系1.空间直角坐标系 (1)空间直角坐标系的特征 ①三条轴两两相交且互相垂直; ②有相同的单位长度. (2)相关概念 ①坐标原点:O ;②坐标轴:x 轴、y 轴、z 轴;③坐标平面:xOy 平面、yOz 平面、xOz 平面. (3)右手直角坐标系要求右手拇指指向x 轴的正方向,食指指向y 轴的正方向,中指指向z 轴的正方向.2. 空间一点的坐标其中x →横坐标,y →纵坐标,z →竖坐标.思考:给定的空间直角坐标系下,空间任意一点是否与有序实数组(x ,y ,z )之间存在唯一的对应关系?[提示] 是.给定空间直角坐标系下,空间给定一点其坐标是唯一的有序实数组(x ,y ,z );反之,给定一个有序实数组(x ,y ,z ),空间也有唯一的点与之对应.3.空间两点间的距离公式(1)点P (x ,y ,z )到坐标原点O (0, 0, 0)的距离|OP|(2)任意两点P1(x1,y1,z1),P2(x2,y2,z2)间的距离|P1P2|思考:空间两点间的距离公式对在坐标平面内的点适用吗?[提示]适用.空间两点间的距离公式适用于空间任意两点,对同在某一坐标平面内的两点也适用.1.下列点在x轴上的是()A.(0.1,0.2,0.3)B.(0,0,0.001)C.(5,0,0) D.(0,0.01,0)C[x轴上的点的纵坐标和竖坐标为0.]2.点P(1,-2,5)到xOy平面的距离为()A.1 B.2C.-2D.5D[点P(1,-2,5)在xOy平面上的射影是P′(1,-2,0),则点P(1,-2,5)到xOy平面的距离为|PP′|=5.]3.已知点A(x,1,2)和点B(2,3,4),且|AB|=26,则实数x的值是() A.-3或4 B.6或2 C.3或-4 D.6或-2D[由题意得(x-2)2+(1-3)2+(2-4)2=26,解得x=-2或x =6.]【例1】如图,在棱长为1的正方体ABCD-A1B1C1D1中,M在线段BC1上,且|BM|=2|MC1|,N是线段D1M的中点,求点M,N的坐标.[解] 如图,过点M 作MM 1⊥BC 于点M 1,连接DM 1,取DM 1的中点N 1,连接NN 1.由|BM |=2|MC 1|,知|MM 1|=23|CC 1|=23,|M 1C |=13|BC |=13.因为M 1M ∥DD 1,所以M 1M 与z 轴平行,点M 1与点M 的横坐标、纵坐标相同,点M 的竖坐标为23,所以M ⎝ ⎛⎭⎪⎫13,1,23.由N 1为DM 1的中点,知N 1⎝ ⎛⎭⎪⎫16,12,0.因为N 1N 与z 轴平行,且|N 1N |=|M 1M |+|DD 1|2=56,所以N ⎝ ⎛⎭⎪⎫16,12,56.求某点P 的坐标的方法:先找到点P 在xOy 平面上的射影M ,过点M 向x 轴作垂线,确定垂足N .其中|ON |,|NM |,|MP |即为点P 坐标的绝对值,再按O →N →M →P 确定相应坐标的符号与坐标轴同向为正,反向为负,即可得到相应的点P 的坐标.1.已知正四棱锥P -ABCD 的底面边长为52,侧棱长为13,建立的空间直角坐标系如图,写出各顶点的坐标.[解] 因为|PO |=|PB |2-|OB |2=169-25=12, 所以各顶点的坐标分别为P (0,0,12),A ⎝ ⎛⎭⎪⎫522,-522,0,B ⎝ ⎛⎭⎪⎫522,522,0,C ⎝ ⎛⎭⎪⎫-522,522,0,D ⎝ ⎛⎭⎪⎫-522,-522,0.(1)求点P 关于x 轴对称的点的坐标; (2)求点P 关于xOy 平面对称的点的坐标;(3)求点P 关于点M (2,-1,-4)对称的点的坐标.[解] (1)由于点P 关于x 轴对称后,它在x 轴的分量不变,在y 轴,z 轴的分量变为原来的相反数,所以对称点坐标为P 1(-2,-1,-4).(2)由点P 关于xOy 平面对称后,它在x 轴,y 轴的分量不变,在z 轴的分量变为原来的相反数,所以对称点坐标为P 2(-2,1,-4).(3)设对称点为P 3(x ,y ,z ),则点M 为线段PP 3的中点, 由中点坐标公式,可得x =2×2-(-2)=6, y =2×(-1)-1=-3,z =2×(-4)-4=-12, 所以P 3的坐标为(6,-3,-12).求空间对称点的方法:空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.2.求点A(1,2,-1)关于坐标平面xOy及x轴的对称点的坐标.[解]如图所示,过点A作AM⊥坐标平面xOy交平面于点M,并延长到点C,使AM=CM,则点A与点C关于坐标平面xOy对称,且点C(1,2,1).过点A作AN⊥x轴于点N并延长到点B,使AN=NB,则点A与B关于x轴对称且点B(1,-2,1).∴点A(1,2,-1)关于坐标平面xOy对称的点为C(1,2,1);点A(1,2,-1)关于x轴对称的点为B(1,-2,1).1.已知两点P(1,0,1)与Q(4,3,-1),请求出P、Q之间的距离.[提示]|PQ|=(1-4)2+(0-3)2+(1+1)2=22.2.上述问题中,若在z轴上存在点M,使得|MP|=|MQ|,请求出点M的坐标.[提示]设M(0,0,z),由|MP|=|MQ|,得(-1)2+02+(z-1)2=42+32+(-1-z)2,∴z=-6.∴M(0,0,-6).【例3】如图所示,在长方体ABCD-A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N在D1C上且为D1C的中点,求线段MN 的长度.思路探究:建系→求点M、N坐标→两点间的距离公式求解[解]如图所示,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴建立空间直角坐标系.由题意可知C (3,3,0),D (0,3,0), ∵|DD 1|=|CC 1|=|AA 1|=2, ∴C 1(3,3,2),D 1(0,3,2), ∵N 为CD 1的中点,∴N ⎝ ⎛⎭⎪⎫32,3,1.M 是A 1C 1的三分之一分点且靠近A 1点, ∴M (1,1,2).由两点间距离公式,得 |MN |=⎝ ⎛⎭⎪⎫32-12+(3-1)2+(1-2)2=212.利用空间两点间的距离公式求线段长度问题的一般步骤为:3.若A (4,-7,1),B (6,2,z ),|AB |=11,则z =________.-5或7 [∵|AB |=11,∴(6-4)2+(2+7)2+(z -1)2=112,化简得(z -1)2=36,即|z -1|=6,∴z =-5或7.]1.结合长方体的长宽高理解点的坐标(x ,y ,z ),培养立体思维,增强空间想象力.2.学会用类比联想的方法理解空间直角坐标系的建系原则,切实体会空间中点的坐标及两点间的距离公式同平面内点的坐标及两点间的距离公式的区别和联系.3.在导出空间两点间的距离公式中体会转化化归思想的应用,突出了化空间为平面的解题思想.1.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .xOz 平面上D .第一象限内C [点(2,0,3)的纵坐标为0,所以该点在xOz 平面上.]2.在空间直角坐标系中,点P (3,4,5)与Q (3,-4,-5)两点的位置关系是( )A .关于x 轴对称B .关于xOy 平面对称C .关于坐标原点对称D .以上都不对A [点P (3,4,5)与Q (3,-4,-5)两点的横坐标相同,而纵、竖坐标互为相反数,所以两点关于x 轴对称.]3.以棱长为1的正方体ABCD -A 1B 1C 1D 1的棱AB ,AD ,AA 1所在的直线为坐标轴,建立空间直角坐标系,如图所示,则正方形AA 1B 1B 的对角线的交点坐标为( )A .⎝ ⎛⎭⎪⎫0,12,12B .⎝ ⎛⎭⎪⎫12,0,12C .⎝ ⎛⎭⎪⎫12,12,0D .⎝ ⎛⎭⎪⎫12,12,12B [由题图得A (0,0,0),B 1(1,0,1),所以对角线的交点即为AB 1的中点,由中点坐标公式,可得对角线的交点坐标为⎝ ⎛⎭⎪⎫12,0,12.]4.如图所示,V ABCD 是正四棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.[解]∵底面是边长为2的正方形,∴|CE|=|CF|=1.∵O点是坐标原点,∴C(1,1,0),同样的方法可以确定B(1,-1,0),A(-1,-1,0),D(-1,1,0).∵V在z轴上,∴V(0,0,3).。
【数学】2.3《空间直角坐标系》课件(北师大版必修2)
1、空间直角坐标系 、 2、空间直角坐标系中点和坐标的关系 、 3、应用 、 4、思想方法:类比、化归 、思想方法:类比、 作业: 作业:P147----A2
二、空间中点的坐标
有序实数组( 在此空间 有序实数组(x,y,z)叫做点 在此空间 )叫做点M在此 直角坐标系中的坐标,记作M( 直角坐标系中的坐标,记作 (x,y,z) ) 其中x叫做点 的横坐标, 叫做点 叫做点M的横坐标 叫做点M的 其中 叫做点 的横坐标,y叫做点 的 纵坐标,z叫做点 叫做点M的竖坐标 纵坐标 叫做点 的竖坐标
程学敏 山东 博兴二中
知识回顾
)、对于解析几何我们研究了那些问题 (1)、对于解析几何我们研究了那些问题? )、对于解析几何我们研究了那些问题? (2)、研究方法有什么共性? )、研究方法有什么共性? )、研究方法有什么共性
如何确定空中飞行 的飞机的位置? 的飞机的位置?
根据自己的感受, 根据自己的感受,设计 空间直角坐标系
D' A'
z C' B' O C y x A B
O为坐标原点, x轴,y轴,z轴叫坐标轴,通过每两 为坐标原点, 轴 轴 轴叫坐标轴 轴叫坐标轴, 为坐标原点 个坐标轴的平面叫坐标平面
)、空间直角坐标系中任意一点的位置 (1)、空间直角坐标系中任意一点的位置 )、 如何表示? 如何表示?
D' C' A' O C y x A B B' z
二、坐标轴上的点
x轴上的点纵坐标竖坐标为 轴上的点纵坐标竖坐标为0 轴上的点纵坐标竖坐标为 y轴上的点横坐标竖坐标为 轴上的点横坐标竖坐标为0 轴上的点横坐标竖坐标为 z轴上的点横坐标纵坐标为 轴上的点横坐标纵坐标为0 轴上的点横坐标纵坐标为
高一数学人教版A版必修二课件:4.3.1 空间直角坐标系
答案
1.空间直角坐标系及相关概念 (1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长 度的数轴:x轴、y轴、z轴,这样就建立了一个 空间直角坐标系Oxyz . (2)相关概念:点O 叫做坐标原点,x轴、y轴、z轴 叫做坐标轴,通过 每 两个坐标轴 的平面叫做坐标平面,分别称为xOy平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x轴 的正方向,食指指向 y轴 的正 方向,如果中指指向 z轴 的正方向,则称这个坐标系为右手直角坐标系.
解析答案
5.如图,正四棱柱ABCD-A1B1C1D1(底面为正方形的直 棱柱)中,|AA1|=2|AB|=4,点E在CC1上且|C1E|=3|EC|. 试建立适当的坐标系,写出点B,C,E,A1的坐标. 解 以点D为坐标原点,射线DA,DC,DD1 为x轴、y轴、z轴的正半轴, 建立如图所示的空间直角坐标系Dxyz. 依题设, B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).
高效学习模型-内外脑模型
2
内脑-思考内化
思 维 导 图 &超 级 记 忆 法 &费 曼 学 习 法
1
外脑-体系优化
知 识 体 系 &笔 记 体 系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆规律
记忆前
选择记忆的黄金时段 前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
类型一 求空间点的坐标 例1 (1)如图,在长方体ABCD-A1B1C1D1中,|AD|=|BC|=3,|AB|=5, |AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.
《空间直角坐标系》课件7 (北师大版必修2)
z
z .M (x, y, z) O y y
Ⅲ
z
zox 面
Ⅱ
yoz面
Ⅳ
xoy面
Ⅶ Ⅷ
o
y
Ⅵ Ⅴ
Ⅰ
x
空间直角坐标系共有三个坐标面、八个卦限
下图中,正方体OABC-D’A’B’C’的边长为1
建立空间直角坐标系
各顶点坐标如下: OБайду номын сангаас0,0,0) A(1,0,0) B(1,1,0) C(0,1,0) D’(0,0,1) A’(1,0,1) B’(1,1,1) C’(0,1,1)
x
A’
B’
O A B
C
y
在平面上画空间直角坐标 系Oxyz时,一般使
右手直角坐 标系
∠xOy=1350 ∠yOz=900
空间一点M的坐标可以用有 序实数组(x,y,z)来表示 有序实数组(x,y,z)叫做点M 在此空间直角坐标系中的 坐标 记作M(x,y,z) X叫做点M的横坐标 y叫做点M的纵坐标 z叫做点M的竖坐标 x x
O2 E2 F2 A2 B2 K2 H2 G2 C2
H O E A F K B G
C
y
x
练习P148 3
x A’ z D’ B’ C O A B y C’
例1 如图,长方体中,|OA|=3 , |OC|=4 , |OD’|=2 , 写出D’ , C , A’ , B’的坐标
z D’ A’
C’
B’
C O A x B y
练习
P148、2
例2 下图是食盐晶胞的示意图,可看成是八 个棱长为0.5的小正方体堆积成的正方体,求 z 图中各点的坐标
如图
OABC-D’A’B’C’是单位正方体.
(4.3.1空间直角坐标系)课件新人教版必修2
第2页,共28页。
第3页,共28页。
知识探究(一):空间直角坐标系
思考1:数轴上的点M的坐标用一个实数x 表示,它是一维坐标;平面上的点M的 坐标用一对有序实数(x,y)表示,它 是二维坐标.设想:对于空间中的点的 坐标,需要几个实数表示?
(x,y) y
Ox x
第4页,共28页。
O
x
思考2:平面直角坐标系由两条互相垂 直的数轴组成,设想:空间直角坐标 系由几条数轴组成?其相对位置关系 如何?
z
B
O
y
A
C
x
第21页,共28页。
思考2:在空间直角坐标系中,设点 P( x,y,z)在xOy平面上的射影为M,则 点M的坐标是什么?|PM|,|OM|的值分别 是什么?
M(x,y,0)
|PM|=|z|
z
O
P
y
x
M
| OM | x 2 y2
第22页,共28页。
思考3:基于上述分析,你能得到点 P( x,y,z)与坐标原点O的距离公式吗?
4.3 空间直角坐标系
4.3.1 空间直角坐标系
第1页,共28页。
问题提出
t
p
1 2
5730
对于直线上的点,我们可以通过数 轴来确定点的位置;对于平面上的点, 我们可以通过平面直角坐标系来确定点 的位置;对于空间中的点,我们也希望 建立适当的坐标系来确定点的位置. 因 此,如何在空间中建立坐标系,就成为 我们需要研究的课题.
z
xO A x
Байду номын сангаас
z
z M
C
M
z
y
O
y
x
By
M
数学:2.3《空间直角坐标系》课件(北师大版必修2)
例1:如图
在长方体 OABC DA BC 中 , OA 3, OC 4, OD 2, 写 出D,C,A ,B 四点的坐标 .
z
D' C'
A' O
B'
C y
例2:在空间直角坐标系中标出下列各点:
A(0,2,4)B(1,0,5) C(0,2,0)D(1,3,4)
x A
B
; / 三七粉的作用与功效 三七粉的正确吃法 三七粉价格
bgk839utb
莫艳艳大概是看不下去了无奈的叹了口气“我也是今天第一次见他,他跟我一哥们去了我工作的酒吧,闲聊的时候知道了他居 然跟你是同一个大学的,又是学历史的,关键更绝的是还姓了个‘司空’什么鬼的,你都不知道我废了多大的劲才让他肯送我 回来,你都不问问我什么情况就以为我又勾搭上他了,我要是不装醉,他哪能送我到家门口啊,他不送我到家门口,你又哪来 的机会见到他,我说你这个人简直就是狗咬吕洞宾不识好人心!” 孤独晓寂听她讲到这里,一颗心才算放了下来,她抱歉的冲莫艳艳笑了笑,莫艳艳赏了她一记栗子,悠哉哉的开口道“姐姐我 渴了!”孤独晓寂便赶忙去给她接了杯温水。 莫艳艳接过她递过来的水杯“我说你呀,你这个样子怎么能行呢,人家都不认识你,你还在这里傻呆呆的苦苦守候着人家,还 好、我听说他还没有结婚,目前应该也是单身,不然你就死守着吧,傻孩子,你得亏遇见了我!” 莫艳艳喝了口水砸吧着嘴“还有,他也是住这儿附近,你没事,就应该要去跟他装个偶遇什么的、好歹也混个脸熟,你一直傻 傻的待在他不知道的地方,万一被别人截了胡那你不哭死,又不是每个女人都像我这般善良!” 在莫艳艳的怂恿下,孤独晓寂便正式踏上了征爱之旅,虽然她内心的羞涩让她十分苦恼那样的行为,但是莫艳艳总是说“你再 不抓紧时间,他就被别人截胡了哦,特别是像我这样的女人!”她说得笑嘻嘻,孤独晓寂却听得浑身都不自在,那可不是她所 希望的结果。 莫艳艳说“你得知道,不是任何一个像我这样的女人都是活的这么有原则的,朋友夫不可俘!”莫艳艳每每总是躲在角落将孤 独晓寂推向了司空阳宇路过的地方,可惜孤独晓寂总是非常不争气的佯装跑步、或者路过的样子,匆匆从那位男子的身边溜了 过去。
高中数学必修二4.3.1空间直角坐标系课件
( 1 ,0, 1 ),(1, 1 , 1 ),( 1 ,1, 1 ),(0, 1 , 1 );
2 2 22 2 2 22
z
ቤተ መጻሕፍቲ ባይዱ
上层这五个钠原子所 在位置的坐标分别是
(0,0,1), (1,0,1), (1,1,1),
(0,1,1),( 1 , 1 ,1);
22
y
x
练习:在空间直角坐标系中描出下列各点, 并说明这些点的位置。
图:建立空间直角坐标系 O xyz 后,
试写出全部钠原子所在位置的坐标。
z
y x
解: 把图中的钠原子分成下,中,上三层来 写它们所在位置的坐标.
下层五个钠原子所在位置的坐标分别是
(0,0,0),(1,0,0),(1,1,0),(0,1,0),( 1 , 1 ,0);
22
中层这四个钠原子所在位置的坐标分别是
A(0,1,1) B(0,0,2) C(0,2,0)
D(1,0,3) E(2,2,0) F(1,0,0)
解:
z
3 D•
2• B
1 •A C
F• O 1 •2 y 21
•E
x
课后练习:
z
解:
D
P
C
A
B
O xA
Cy B
解:
z
D A
O xA
C
B Q
Cy B
练习:点M(x,y,z)是空间直角坐标系Oxyz中的一点 ,写出满足下列条件的点的坐标.(课本138题1)
A
x -1
0
y
P
N
0
Mx
12
数轴上的点可用与 这个点对应的实数 x来表示。
平面直角坐标系上的点用 它对应的横纵坐标,即一 对有序实数对(x,y)表示。
人教A版高中数学必修二4.3.空间直角坐标系课件
【变式练习】 如图,在长方体OABC-D′A′B′C′中,|OA|
=3,|OC|=4,|OD′|=3,A′C′与B′D′相交于点P.
分别写出点C,B′,P的坐标. z
答案:ห้องสมุดไป่ตู้
D
A
P
C
B
AO x
Cy B
例2 结晶体的基本单位称为晶胞,如图(1)是食 盐晶胞的示意图(可看成是八个棱长为 1 的小正
z
在空间中,到定点的距离
等于定长的点的轨迹是 以原点为球心,
半径长为 r 的球面.
P
O y
x
2.如果是空间中任意一点P1(x1,y1,z1)到点P2 (x2,y2,z2)之间的距离公式会是怎样呢?
如图,设P1(x1,y1,z1)、P2(x2,y2,z2)
是空间中任意两点,且点P1(x1,y1,z1)、
轴,这三个平面的唯一交点就是有序实数组 (x, y, z)
确定的点M. z
R
pO x
M y
Q
这样,空间一点M的坐标可以用有序实数组 (x, y, z)
来表示,有序实数组 (x, y, z) 叫做点M在空间直角坐标 系中的坐标,记作M (x, y, z).其中 x, y, z
分别叫做点M的横坐标、纵坐标、竖坐标.
关于谁对称谁 不变
在空间直角坐标系中,若 已知两个点的坐标,则这两点 之间的距离是惟一确定的,我 们希望有一个求两点间距离的 计算公式,对此,我们从理论 上进行探究.
y
y2
P2(x2, y2)
y1 P1(x1,y1) Q(x2,y1)
O x1
x2 x
长a,宽b,高c的长方体的对角线,怎么求?
高中数学必修2(人教A版)教案—4.3.1空间直角坐标系
4. 3.1空间直角坐标系(教案)【教学目标】1.让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.3.进一步培养学生的空间想象能力与确定性思维能力.【教学重难点】重点:求一个几何图形的空间直角坐标。
难点:空间直角坐标系的理解。
【教学过程】一、情景导入1. 确定一个点在一条直线上的位置的方法.2. 确定一个点在一个平面内的位置的方法.3. 如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可.(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可.例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3).这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O—xyz,从而确定了空间点的位置.二、合作探究、精讲点拨1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.教师进一步明确:(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y 轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等.2. 空间直角坐标系O—xyz中点的坐标.思考1:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?在学生充分讨论思考之后,教师明确:(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)思考2:(1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).三、典型例题例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).变式练习:已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.注意:此题可以由学生口答,教师点评.解:A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5),C (12,8,0),B ′(12,0,5),D ′(0,8,5),C ′(12,8,5).讨论:若以C 点为原点,以射线CB ,CD ,CC ′方向分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?得出结论:建立不同的坐标系,所得的同一点的坐标也不同.例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标。
《空间直角坐标系》课件8 (北师大版必修2)
直线上的点M可以用实数表示:
O
M
x
x
平面的点M可以用有序实数对表示: 0 y 那么立体空间中 M (x0,y0) y0 的点又应该怎样 x 表示呢?
O x0
空间直角坐标系
y z
z
x
o
y x
右手系
y
平面的点M用实数对表示:
y0 空间坐标系中的点M的坐标用 有序实数组(x0,y0,z0)来表示 其中:
z
M (x0,y0)
x
O x0
x0是点M的横坐标,
y0是点M纵坐标, z0是点M的竖坐标
x
z0
M (x0,y0,z0)
x0
o
y0
y
例1,如图:长方形OABC-DEFG 中,|OA|=3 ,|OC|=4 ,|OD|=2.试写 出O,A,G,F四点的坐标.
解:如图
z
O点坐标为(0,0,0) A点为(3,0,0) E G点为(0,4,2) x A F点为(3,4,2)
特殊地:若两点分别为 M ( x , y , z ) , O(0,0,0)
d OM x 2 y 2 z 2 .
例 1 求证以 M 1 ( 4,3,1) 、 M 2 ( 7,1,2) 、 M 3 ( 5,2,3) 三点为顶点的三角形是一个等腰三角形.
解 M 1 M 2 (7 4)2 (1 3)2 ( 2 1)2 14,
2
M 2 M 3 (5 7)2 ( 2 1)2 ( 3 2)2 6,
2
M 3 M1
2
(4 5)2 ( 3 2)2 (1 3)2 6,
M 2 M 3 M 3 M1 ,
北师大版高中高一数学必修2《空间直角坐标系》评课稿
北师大版高中高一数学必修2《空间直角坐标系》评课稿一、课程简介《空间直角坐标系》是北师大版高中高一数学必修2教材中的一章,主要介绍空间直角坐标系的概念、性质和应用。
通过本章的学习,学生能够掌握空间直角坐标系的基本概念与表示方法,了解三维空间的特点以及直线、平面在空间直角坐标系中的表示方法。
二、教学目标1. 知识目标•掌握空间直角坐标系的基本概念。
•理解三维空间的特点和基本性质。
•学会在空间直角坐标系中描述直线和平面的方法。
2. 能力培养目标•能够独立绘制空间直角坐标系。
•能够利用空间直角坐标系解决实际问题。
•能够运用空间坐标系进行推理和证明。
3. 情感目标•培养学生对数学的兴趣和探究精神。
•提高学生的逻辑思维能力和空间想象力。
•培养学生的合作与沟通能力。
三、教学重难点1. 教学重点•空间直角坐标系的基本概念。
•直线和平面的空间直角坐标系中的表示方法。
2. 教学难点•运用空间直角坐标系描述平面的方程。
•运用空间直角坐标系解决实际问题。
四、教学内容与方法1. 教学内容•空间直角坐标系的引入和基本性质。
•直线和平面在空间直角坐标系中的表示方法。
•空间直角坐标系的应用于实际问题解决。
2. 教学方法•讲授与讲解:通过教师的讲解,向学生介绍空间直角坐标系的概念、性质和应用。
•示范与演示:教师采用示范和演示的方式,向学生展示如何绘制空间直角坐标系和描述直线、平面的方法。
•练习与讨论:通过课堂练习和讨论,巩固学生对空间直角坐标系的理解,培养学生的分析和推理能力。
•实践与应用:教师结合实际问题,引导学生运用空间直角坐标系解决问题,并鼓励学生主动探索和应用。
五、教学步骤1. 知识导入•引导学生回顾平面直角坐标系的概念和表示方法。
•向学生提出问题,探讨平面坐标系在现实生活中的应用。
2. 概念解释与讲解•通过幻灯片或黑板向学生介绍空间直角坐标系的概念和性质。
•讲解坐标轴的方向,平面的方程表示方法等基本知识。
3. 示范与演示•教师向学生展示如何绘制空间直角坐标系,并解释各个元素的含义和作用。
高中数学必修2课件:第二章 3 空间直角坐标系的建立 空间直角坐标系中点的坐标
(1)关于坐标平面、坐标轴及坐标原点对称的点有以下 特点:
(2)点的对称可简单记为“关于谁对称,谁不变,其他 的变为相反数;关于原点对称,都变”.
[活学活用]
在空间直角坐标系中,点 P(3,-2,4) 在 xOz 平面上的射影为 P′, 则 P′关于坐标原点的对称点的坐标是________.
解析:点 P 在 xOz 平面上的射影 P′的坐标为(3,0,4),P′关 于坐标原点的对称点的坐标为(-3,0,-4). 答案:(-3,0,-4)
3.1 & 3.2
空间直角坐标系的建立 空间直角坐标系中点的坐标
预习课本P89~91,思考并完成以下问题
(1)如何建立直角空间坐标系?建系原则是什么?它又有哪 些构成要素? (2)空间中的点由几个坐标参数确定?如何确定空间中的点 的位置?
1.空间直角坐标系 (1)建系方法:过空间任意的一点 O 作二条两两互相垂直 的 轴、有 相同 的长度单位. (2)建系原则:伸出右手,让四指与大拇指垂直,并使四指先 指向 x轴 正方向,然后让四指沿握拳方向旋转 90° 指向 y轴 正方 向,此时大拇指的指向即为 z轴 正向. (3)构成要素: O 叫作原点, x,y,z轴 统称为坐标轴,这 三条坐标轴中每两条确定一个坐标平面,分别称为 xOy 平面、
2.点 Q(0,0,3)的位置是 A.在 x 轴上 C.在 z 轴上 B.在 y 轴上 D.在面 xOy 上
(
)
答案:C
3.点 A(-3,1,5),点 B(4,3,1)的中点坐标是
7 A.2,1,-2 1 B.2,2,3 1 4 D.3,3,2
由点的坐标确定点位置的方法 (1)先确定点(x0,y0,0)在xOy平面上的位置,再由竖坐标 确定点(x0,y0,z0)在空间直角坐标系中的位置; (2)以原点O为一个顶点,构造棱长分别为|x0|,|y0|,|z0|的 长方体(三条棱的位置要与x0,y0,z0的符号一致),则长方体 中与O相对的顶点即为所求的点.
高中数学必修2《第四章:圆与方程.(4.3空间直角坐标系)》
个性化辅导教案学员姓名科目年级授课时间课时授课老师教学课题教学目标重点难点教学内容4.3空间直角坐标系空间直角坐标系的建立及坐标表示[导入新知]1.空间直角坐标系及相关概念(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系O-xyz.(2)相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫点M的横坐标,y叫点M的纵坐标,z叫点M的竖坐标.[化解疑难]1.空间直角坐标系的建立建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上,对于长方体或正方体,一般取相邻的三条棱所在的直线为x ,y ,z 轴建立空间直角坐标系.2.空间直角坐标系的画法(1)x 轴与y 轴成135°(或45°),x 轴与z 轴成135°(或45°).(2)y 轴垂直于z 轴、y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.3.特殊点在空间直角坐标系中的坐标表示如下点的位置 x 轴 y 轴 z 轴 xOy 平面 yOz 平面 xOz 平面 坐标表示 (x,0,0)(0,y,0)(0,0,z )(x ,y,0)(0,y ,z )(x,0,z )空间两点间的距离公式[导入新知]1.点P (x ,y ,z )到坐标原点O (0,0,0)的距离 |OP |=x 2+y 2+z 2.2.任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.[化解疑难]1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 2.空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.空间中点的坐标的确定[例1] 如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标. [解] 以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.分别设|AB |=1,|AD |=2,|AA 1|=4,则|CF |=|AB |=1,|CE |=12|AB |=12,所以|BE |=|BC |-|CE |=2-12=32.所以点E 的坐标为(1,32,0),点F 的坐标为(1,2,1).[类题通法]空间中点P 坐标的确定方法(1)由P 点分别作垂直于x 轴、y 轴、z 轴的平面,依次交x 轴、y 轴、z 轴于点P x 、P y 、P z ,这三个点在x 轴、y 轴、z 轴上的坐标分别为x 、y 、z ,那么点P 的坐标就是(x ,y ,z ).(2)若题所给图形中存在垂直于坐标轴的平面,或点P 在坐标轴或坐标平面上,则要充分利用这一性质解题.[活学活用]1.如图所示,V -ABCD 是正棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如右所示空间直角坐标系,试分别写出各个顶点的坐标.空间中点的对称[例2] (1)点A (1,2,-1)关于坐标平面xOy 及x 轴的对称点的坐标分别是________.(2)已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________.[解析] (1)如图所示,过A 作AM ⊥xOy 交平面于M ,并延长到C ,使AM =CM ,则A 与C 关于坐标平面xOy 对称且C 的坐标为(1,2,1).过A 作AN ⊥x 轴于N 并延长到点B ,使AN =NB ,则A 与B 关于x 轴对称且B 的坐标为(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C的坐标为(1,2,1);A(1,2,-1)关于x轴的对称点B的坐标为(1,-2,1).(2)点P(2,3-1)关于坐标平面xOy的对称点P1的坐标为(2,3,1),点P1关于坐标平面yOz的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).[答案](1)(1,2,1),(1,-2,1)(2)(2,-3,1)[类题通法]1.求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.2.空间直角坐标系中,任一点P(x,y,z)的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P1(-x,-y,-z);②关于x轴(横轴)对称的点的坐标是P2(x,-y,-z);③关于y轴(纵轴)对称的点的坐标是P3(-x,y,-z);④关于z轴(竖轴)对称的点的坐标是P4(-x,-y,z);⑤关于xOy坐标平面对称的点的坐标是P5(x,y,-z);⑥关于yOz坐标平面对称的点的坐标是P6(-x,y,z);⑦关于xOz坐标平面对称的点的坐标是P7(x,-y,z).[活学活用]2.在空间直角坐标系中,点P(3,1,5)关于平面yOz对称的点的坐标为()A.(-3,1,5)B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)3.点P(-3,2,-1)关于平面xOy的对称点是________,关于平面yOz的对称点是________,关于x轴的对称点是________,关于y轴的对称点是________.空间中两点间的距离[例3]如图,已知正方体ABCD-A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.[解] 由题意应先建立坐标系,以D 为原点,建立如图所示空间直角坐标系.因为正方体棱长为a ,所以B (a ,a,0),A ′(a,0,a ),C ′(0,a ,a ),D ′(0,0,a ).由于M 为BD ′的中点,取A ′C ′的中点O ′,所以M ⎝⎛⎭⎫a 2,a 2,a 2,O ′⎝⎛⎭⎫a 2,a2,a .因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a .根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a . [类题通法]求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.[活学活用]4.如图,在空间直角坐标系中,有一棱长为a 的正方体ABCD -A 1B 1C 1D 1,A 1C的中点E 到AB 的中点F 的距离为( )A.2aB.22a C .a D.12a12.空间直角坐标系的应用误区[典例] 如图,三棱柱ABC -A 1B 1C 1中,所有棱长都为2,侧棱AA 1⊥底面ABC ,建立适当坐标系写出各顶点的坐标.[解析] 取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,分别以OB 、OC 、OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.因为三棱柱各棱长均为2,所以OA =OC =1,OB =3,可得A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).[易错防范]1.解答此题不是以OB 、OC 、OO 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,而是以AB 、AC 、AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,进而错误地求出A (0,0,0),B (2,0,0),C (0,2,0).2.求空间点的坐标的关键是建立正确的空间直角坐标系,这也是正确利用坐标求解此类问题的前提.建立空间直角坐标系时要注意坐标轴必须是共点且两两垂直,且符合右手法则.[成功破障]如图,在棱长为1的正方体ABCD-A1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系O-xyz.(1)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标,并写出P关于y 轴的对称点P′的坐标;(2)在线段C1D上找一点M,使点M到点P的距离最小,求出点M的坐标.[随堂即时演练]1.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对2.在空间直角坐标系中,点P(-2,1,4)关于xOy平面的对称点的坐标是()A.(-2,1,-4) B.(-2,-1,-4)C.(2,-1,4) D.(2,1,-4)3.已知点A(4,5,6),B(-5,0,10),在z轴上有一点P,使|P A|=|PB|,则点P的坐标是________.4.在空间直角坐标系中,正方体ABCD-A1B1C1D1的顶点A的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长为________.5.如图所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度.课后作业教师课后赏识。
《空间直角坐标系》课件5 (北师大版必修2)
4.3 空间直角坐标系
4.3.1 空间直角坐标系
问题提出
1 5730 p 2
tห้องสมุดไป่ตู้
对于直线上的点,我们可以通 过数轴来确定点的位置;对于平面 上的点,我们可以通过平面直角坐 标系来确定点的位置;对于空间中 的点,我们也希望建立适当的坐标 系来确定点的位置. 因此,如何在 空间中建立坐标系,就成为我们需 要研究的课题.
知识探究(一):空间直角坐标系
思考1:数轴上的点M的坐标用一个实 数x表示,它是一维坐标;平面上的 点M的坐标用一对有序实数(x,y) 表示,它是二维坐标.设想:对于空 间中的点的坐标,需要几个实数表 示? (x,y) y
O x x O x
思考2:平面直角坐标系由两条互相 垂直的数轴组成,设想:空间直角 坐标系由几条数轴组成?其相对位 置关系如何? 三条交于一点且两 两互相垂直的数轴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O y
把图中的钠原子分成上、 下三层来写它们所在位置的坐标. 解:把图中的钠原子分成上、中、下三层来写它们所在位置的坐标.
x
典型例题
1 的小正方体堆积成的正方体), ),其 图(可看成是八个棱长为 的小正方体堆积成的正方体),其 2
结晶体的基本单位称为晶胞, 例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意
在平面yOz的点有哪些?
z
这些点的坐标有什么共性?
A' B' A B C C' D'
A(0,0,0) ( , , )
A’(0,0,5) ( , , )
( , , ) B(12,0,0) B’(12,0,5) ( , , )
D
y
( , , ) C(12,8,0) C’(12,8,5) ( , , ) D(0,8,0) ( , , ) D’(0,8,5) ( , , )
在平面xOy的点有哪些?
z
这些点的坐标有什么共性?
A' B' A B C C' D'
A(0,0,0) ( , , )
A’(0,0,5) ( , , )
( , , ) B(12,0,0) B’(12,0,5) ( , , )
D
y
( , , ) C(12,8,0) C’(12,8,5) ( , , ) D(0,8,0) ( , , ) D’(0,8,5) ( , , )
x
记为: ( 记为:M(a,b,c)
空间直角坐标系
反过来,给定有序实数组( , , ) 反过来,给定有序实数组(x,y,z),我们可以 轴和z 轴上依次取坐标为x, 和 的点 的点P、 在x 轴、y 轴和 轴上依次取坐标为 ,y和z的点 、Q 各作一个平面, 和R,分别过 、Q和R各作一个平面,分别垂直于 轴、 ,分别过P、 和 各作一个平面 分别垂直于x y 轴和 轴,这三个平面的唯一交点就是有序实数组 轴和z (x,y,z)确定的点 . , , )确定的点M. z
空间直角坐标系
南充二中 高二( 高二(四)
问题1 问题1: 数轴上的点M的坐标用一个实数x表示, 它是一维坐标 一维坐标; 一维坐标 平面上的点M的坐标用有序实数对(x,y) 表示,它是二维坐标 二维坐标. 二维坐标 y
(x,y) O x x O 空间内点位置能用两个数来描述吗? 空间内点位置能用两个数来描述吗? 该如何描述呢? 该如何描述呢? x
R M
P
O
M’
Q
y
x
例题选讲: 例题选讲:
例1:在空间直角坐标系中,作出点(5,4, :在空间直角坐标系中,作出点( 4 6). z 分析: 分析:
从原点出发沿x轴 O 从原点出发沿 轴 正方向移动5个单位 正方向移动5
P1
46 P(5,4,6) 6
沿与y轴平行的方向 沿与 轴平行的方向 5o P1 P P1 向右移动4 向右移动4个单位
O
中层的原子所在的平面平行于平面,与轴交点的竖坐标为, 中层的原子所在的平面平行于平面,与轴交点的竖坐标为, 所以, 所以,这四个钠原子所在位置的坐标分别是
x
1 1 1 1 1 1 1 1 ( ,0, ),( , , ),( ,1, ),( , , ); , ),(1, , ),(0, 2 2 2 2 2 2 2 2
x轴上的点的坐标的特点: 轴上的点的坐标的特点: y轴上的点的坐标的特点: 轴上的点的坐标的特点: 轴上的点的坐标的特点 z轴上的点的坐标的特点: 轴上的点的坐标的特点: 轴上的点的坐标的特点 xOy坐标平面内的点的特点: 坐标平面内的点的特点: 坐标平面内的点的特点 xOz坐标平面内的点的特点: 坐标平面内的点的特点: 坐标平面内的点的特点 yOz坐标平面内的点的特点: 坐标平面内的点的特点: 坐标平面内的点的特点
xoy 面
Ⅶ Ⅷ
Ⅰ(+,+,+) Ⅴ(+,+,-) Ⅱ(-,+,+) Ⅵ(-,+,-) Ⅲ(-,-,+) Ⅶ(-,-,-)
o
y
Ⅵ Ⅴ
Ⅰ
x
Ⅳ(+,-,+) 总结 在上方卦限 坐标为正 总结(1)在上方卦限 坐标为正; 在上方卦限Z坐标为正 Ⅷ(+,-,-)
(2)在下方卦限 坐标为负 在下方卦限Z坐标为负 在下方卦限 坐标为负.
在平面xOz的点有哪些?
z
这些点的坐标有什么共性?
A' B' A B C C' D'
A(0,0,0) ( , , )
A’(0,0,5) ( , , )
( , , ) B(12,0,0) B’(12,0,5) ( , , )
D
y
( , , ) C(12,8,0) C’(12,8,5) ( , , ) D(0,8,0) ( , , ) D’(0,8,5) ( , , )
z
下层的原子全部在平面上, 下层的原子全部在平面上,它们所 在位置的竖坐标全是0, 在位置的竖坐标全是 ,所以这五个钠 原子所在位置的坐标分别是(0, , , 原子所在位置的坐标分别是 ,0,0), (1,0,0),(1,1,0),(0,1,0), , , )( , , )( , , ) 1 1 ( , ,0). ) 2 2
x轴上的单位长度为y轴(或z 轴上的单位长度为y 的单位长度的一半. 轴)的单位长度的一半.
1350
y
x
Ⅲ
yOz
z
zOx
面 Ⅱ
面 Ⅰ Ⅵ Ⅴ
Ⅳ
xOy
面
o
y
Ⅶ Ⅷ
x
坐标面把空间分成 八个部分 每一个部分叫卦限 每一个部分叫卦限
合作探究: 合作探究:
有了空间直角坐标系, 有了空间直角坐标系,那空间中的 任意一点M怎样来表示它的坐标呢 怎样来表示它的坐标呢? 任意一点 怎样来表示它的坐标呢?
x
例题选讲: 例题选讲:
例2
如图,长方体 如图,长方体ABCD-A′B′C′D′的边长为 AB=12, 的边长为 , AD=8,AA′=5.以这个长方体的顶点 为坐标原点,射 , 以这个长方体的顶点A为坐标原点, 以这个长方体的顶点 为坐标原点 分别为, 轴 轴和z轴的正半轴 线AB,AD,AA′分别为,x轴、y轴和 轴的正半轴, , , 分别为 轴和 轴的正半轴, 坐标系,求长方体各个顶点的坐标。 建立空间直角 坐标系,求长方体各个顶点的坐标。
x
例题选讲: 例题选讲:
例2
如图,长方体 如图,长方体ABCD-A′B′C′D′的边长为 AB=12, 的边长为 , AD=8,AA′=5.以这个长方体的顶点 为坐标原点,射 , 以这个长方体的顶点A为坐标原点, 以这个长方体的顶点 为坐标原点 分别为, 轴 轴和z轴的正半轴 AB,AD,AA′分别为,x轴、y轴和 轴的正半轴, , , 分别为 轴和 轴的正半轴, 坐标系,求长方体各个顶点的坐标。 建立空间直角 坐标系,求长方体各个顶点的坐标。
z
c M
a
O
M’
b
y
经过M 经过M点作三个平面 分别垂直 垂直于 轴和z 分别垂直于x轴、y轴和z轴, 它们与x 轴和z 它们与x轴、y轴和z轴分别 交于三点, 交于三点,三点在相应的 坐标轴上的坐标a,b,c a,b,c组成 坐标轴上的坐标a,b,c组成 的有序数组(a,b,c)叫做 叫做点 的有序数组(a,b,c)叫做点 的坐标. M的坐标.
x
例题选讲: 例题选讲:
例2
如图,长方体 如图,长方体ABCD-A′B′C′D′的边长为 AB=12, 的边长为 , AD=8,AA′=5.以这个长方体的顶点 为坐标原点,射 , 以这个长方体的顶点A为坐标原点, 以这个长方体的顶点 为坐标原点 分别为, 轴 轴和z轴的正半轴 线AB,AD,AA′分别为,x轴、y轴和 轴的正半轴, , , 分别为 轴和 轴的正半轴, 坐标系,求长方体各个顶点的坐标。 建立空间直角 坐标系,求长方体各个顶点的坐标。
例题选讲: 例题选讲:
结晶体的基本单位称为晶胞, 例3 结晶体的基本单位称为晶胞,下图是食盐晶 胞的示意图(可看成是八个棱长为0.5 0.5的小正方体 胞的示意图(可看成是八个棱长为0.5的小正方体 堆积成的正方体),其中色点代表钠原子, ),其中色点代表钠原子 堆积成的正方体),其中色点代表钠原子,白点 代表氯原子.如图建立直角坐标系Oxyz Oxyz, 代表氯原子.如图建立直角坐标系Oxyz,试写出全 部钠原子所在位置的坐标. z 部钠原子所在位置的坐标.
P(x P(x,0,0) P(0 P(0,y,0) P(0 P(0,0,z) P(x P(x,y,0) P(x P(x,0,z) P(0 P(0,y,z)
再想一想?各个卦限中的点的符号是怎样的呢 再想一想 各个卦限中的点的符号是怎样的呢? 各个卦限中的点的符号是怎样的呢
Ⅲ
z
zox 面
Ⅱ
yoz 面
Ⅳ
中色点代表钠原子,黑点代表氯原子. 中色点代表钠原子,黑点代表氯原子. 如图建立空间直角坐标 系O-xyz后,试写出全部钠原子所在位置的坐标. 后 试写出全部钠原子所在位置的坐标.
z
O
y
x
解:把图中的钠原子分成上、中、下三层来写它们所在 把图中的钠原子分成上、 把图中的钠原子分成上 位置的坐标. 位置的坐标.
说明: 说明: ☆本书建立的坐标系
都是右手直角坐标系. 都是右手直角坐标系.
x o
z
y
空间直角坐标系的画法: 空间直角坐标系的画法:
z 1.X轴与y 1.X轴与y轴、x轴与z轴均成1350, 轴与z轴均成135 轴垂直于y 而z轴垂直于y轴.
1350 o 2.y轴和z轴的单位长度相同, 2.y轴和z轴的单位长度相同,
x