(通用版)中考数学二轮复习 专题6 最值问题
最新九年级中考数学专题复习: 最值问题-隐圆模型之瓜豆问题 课件
B
C
△BOC是等腰直角三角形,锐角顶点C的轨迹是以点A为圆
心,2为半径的圆,所以O点轨迹也是圆,以AB为斜边构造等
M
腰直角三角形,直角顶点M即为点O轨迹圆圆心.
连接AM并延长与圆M交点即为所求的点O,此时AO最大,
根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A
O
半径的比值,得到MO,相加即得AO.
E
MN
AD
B
当堂训练---轨迹之线段篇
3.如图,∠AOB=60º,OA=OB,动点C从点O出发,沿射线OB方向移动,
D
,D是定点,E点满足EO=2,故E点
轨迹是以O为圆心,2为半径的圆.
当DE⊥DF且DE=DF,故作DM⊥DO
且DM=DO,F点轨迹是以点M为圆心
,2为半径的圆.
连接OM,与圆M交点即为F点,此 E
时OF最小.可构造三垂直全等求
线段长,再利用勾股定理求得OM,
减去MF即可得到OF的最小值. B
O
C
M F
接得到M点的轨迹长为P点轨迹长一半,即可解 C
FB
决问题.
当堂训练---轨迹之圆篇
3.如图,正方形ABCD中,AB=2 5,O是BC边的中点,点E是正方形内一
动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90º得DF,连接AE、
CF.求线段OF长的最小值.5 2 - 2
【分析】E是主动点,F是从动点 A
连接DF.DF的最小值是_1___.
A
一个定点----垂线段最短
E
G
D
B
C
F
当堂训练---轨迹之线段篇
2.如图,已知等边三角形ABC的边长为8,点D为AB边上一动点,DE始
中考数学二轮复习 专题6 最值问题课件
(2)连结 MQ,∵PQ 为⊙M 的切线,点 Q 为切点,∴MQ⊥PQ, ∴在 Rt△PQM 中,有 PQ2=PM2-QM2=PM2-100, 当 MP⊥AB 时,MP 最短,PQ 取得最小值,如图②, 此时 MP=30+20=50,∴PQ= PM2-QM2= 502-102=20 6(dm); 当点 P 与点 A 重合时,MP 最长,PQ 取得最大值,如图③, 过点 M 作 MN⊥AB,垂足为 N,连结 AM,QM,
第十八页,共五十五页。
解方程组yy==43-x-34x324-,49x+3,得xy11==10,或yx22==--952,,
∴点 M 的坐标为(1,0)或(-5,-92)时, |PM-AM|的值最大,最大值为 5
第十九页,共五十五页。
第二十页,共五十五页。
6.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm,底面周长为10 cm, 在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁(mǎyǐ)正好在容器外壁, 且离容器上沿3 cm与饭粒相对的点A处,求蚂蚁吃到饭粒需爬行的最短路径. 【解析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知
第十五页,共五十五页。
第十六页,共五十五页。
5.(原创题)如图,在平面直角坐标(zhíjiǎo zuò biāo)系xOy中,点A,B,C分别为坐标轴上的 三个点,且OA=1,OB=3,OC=4. (1)求经过A,B,C三点的抛物线的解析式; (2)当点P的坐标为(5,3)时,若点M为该抛物线上一动点,请求出当|PM-AM|的最大值 时点M的坐标,并直接写出|PM-AM|的最大值.
第三十一页,共五十五页。
【解析】第(3)题中△PB1C的周长写成三条线段和时,其中(qízhōng)哪一条线段是不变的?转化 为两条线段和的最值问题,如何利用对称轴作出点P?
2021年中考数学二轮专题练习 二次函数最值问题
中考专题 二次函数最值问题教学目标1.掌握在全体实数上和在范围上求最值的方法. 2.掌握二次函数含参求最值问题的分类方法. 3.规范解题过程.4.提高数学思维能力,提升解题熟练度.知识梳理1.二次函数在全体实数上求最值若没有范围要求,即在全体实数x 上,求y 的最值: 方法一:转化为顶点式k h x a y +-=2)(;方法二:利用坐标公式(ab2-,a b ac 442-);方法三:先求出对称轴abx 2-=,再代入解析式求值; 2.二次函数在范围上求最值求范围内最值,需要结合函数图象进行判断: 如图,求21x x x ≤≤范围内y 的最值,方法一:通过图象可直接看出y 的最大值为2y ,最小值为3y ; 方法二:通过增减性,可判断在对称轴左侧13y y y ≤<,在对称轴右侧23y y y ≤<,所以在对称轴处y 取最小值3y ;然后根据开口向上,离对称轴越远,y 的值越大,所以12y y >,所以y 在2x 处取得最大值2y .3.二次函数含参求最值问题 对于定轴动区间,或动轴定区间问题,都需要分类讨论: (1)开口向上,单求最小值时需要分三种情况:如图1,当对称轴在m 左侧时,y 在m x =处取最小值; 如图2,当对称轴在mn 之间时,y 在对称轴处取得最小值. 如图3,当对称轴在n 右侧时,y 在n x =处取最小值;提示三种方法都要熟练掌握,在解题时选择适当的方法,才能更快的解题.提示在全体实数上y 只存在最大值或最小值其中的一个.提示若取值范围变为21x x x <<,则y 将只存在最小值3y ,没有最大值.提示开口向下时,离对称轴越远,y 的值越小.提示开口方向不定时也需要讨论.提示在书写时要注意规范,同时要注意取等号位置的分配,如可分成: ①m a b <-2;①n a b m ≤-≤2;①n a b >-2; 或者: ①m a b ≤-2;①n a b m <-<2;①n ab ≥-2;(2)开口向上,单求最大值时可以分两种情况:如图4,当对称轴在mn 中点左侧时,y 在n x =处取最大值;如图5,当对称轴在mn 中点右侧时,y 在m x =处取最大值;提示(1)依据的是开口向上,离对称轴越远,y 的值越大.(2)在书写时要注意规范,同时要注意取等号位置的分配,如可分成: ①22n m a b +<-;①22nm a b +≥- 或者:①22n m a b +≤-;①22n m a b +>- (3)开口向上,既求最大值又求最小值时,需要分四种情况(即将(1)中的第二种情况再次讨论):如图1,当对称轴在m 左侧时,y 在n x =处取最大值,y 在m x =处取最小值;如图4,当对称轴在mn 之间,且在mn 中点左侧时,y 在n x =处取最大值,y 在对称轴处取得最小值; 如图5,当对称轴在mn 之间,且在mn 中点右侧时,y 在m x =处取最大值,y 在对称轴处取得最小值; 如图3,当对称轴在n 右侧时,y 在m x =处取最大值,y 在n x =处取最小值; 提示在书写时要注意规范,同时要注意取等号位置的分配,做到不重不漏;思考①若开口向下,该如何进行分类?②若端点处取不到,最值问题存在着怎样的情况? 这些问题就留待同学们自己思考探究吧题型探究题型1 顶点处最值例1(★)已知二次函数1)3(22+-+=x m mx y ,当1-=x 时,y 取得最大值,则=m .例2(2021•道外区一模★)二次函数m x x y +-=22的最小值为2,则m 的值为 .例3(★)抛物线kx x k y 2)1(2+-=23-+k 的图象最高点在x 轴上,则k 的值为 .1-1(★)当0=x 时,函数c bx x y ++=22有最小值1,则=-c b .2-1(2020秋•阜平县期中★)二次函数142+-=x mx y 有最小值3-,则m 等于( ) A .1B .﹣1C .1±D .21±题型2 转化求最值例4(2020秋•中站区期末★)已知点P (m ,n )在抛物线332+--=x x y 上,则n m +的最大值是 .4-1(2021•铁岭二模★)点M (a ,b )在以y 轴为对称轴的二次函数22++-=mx x y 的图象上,则b a +的最大值为( ) A .49 B .49- C .2 D .4155(2020秋•仙居县期末★)已知两个整数a ,b ,有3132=+b a ,则ab 的最大值是( ) A .35B .40C .41D .426(2021•永嘉县模拟★)已知二次函数c bx x y ++=2的最小值是6-,它的图象经过点(4,c ),则c 的值是( ) A .2- B .2- C .2D .67(★★)已知关于n 的函数bn an S +=2(n 为自然数),当9=n 时,0<S ;当10=n 时,0>S .则n 取( )时,S 的值最小. A .3B .4C .5D .651(2020秋•丹阳期末★)若实数m 、n 满足2=+n m ,则代数式n m mn m -++22的最小值是 .52(2021•江夏区校级模拟★)已知非负数a ,b ,c 满足2=+b a ,43=-a c ,设c b a S ++=2的最大值为m ,最小值为n ,则n m -的值为( ) A .9B .8C .1D .31053(2020秋•丽水期末★)已知1-=t x ,3+=t y ,且22≤≤-t ,令xy S =,则函数S 的取值范围是( ) A .54≤≤-S B .53≤≤-S C .34-≤≤-SD .04≤≤-S61(2020•南通二模★)已知二次函数ax ax y 42-=12-+a ,当a x ≥时,y 随x 的增大而增大.若点A (1,c )在该二次函数的图象上,则c 的最小值为 .71(2021•天宁区校级模拟★)若定义一种新运算:⎩⎨⎧--=⊗22b a abb a )3()3(b a b a <≥,例如:41414=⨯=⊗;4241045=--=⊗.则函数)1()3(+⊗+-=x x y 的最大值是 .72(★★)已知:点A (m ,n )在函数k k x y +-=2)((0≠k )的图象上,也在函数k k x y -+=2)(的图象上,则n m +的最小整数值是 .73(★★)若min{a ,b ,c }表示a ,b ,c 三个数中的最小值,当=y min{2x ,2+x ,x -8}(0≥x )时,则y 的最大值是( ) A .4B .5C .6D .7题型3 动c 求最值8(2020秋•洪山区期中★)二次函数c x x y +--=22在23≤≤-x 的范围内有最大值为5-,则c 的值是( ) A .2- B .3C .3-D .6-81(2020•宝应县三模★)已知关于x 的二次函数m x x y +-=42在31≤≤-x 的取值范围内最大值7,则该二次函数的最小值是( ) A .2- B .1-C .0D .1题型4 “动开口”定轴定区间9(2021•瓯海模拟★)已知二次函数142--=ax ax y ,当1≤x 时,y 随x 的增大而增大,且61≤≤-x 时,y 的最小值为4-,则a 的值为( ) A .1 B .43 C .53-D .41-10(★)已知二次函数122++=mx mx y (0≠m )在22≤≤-x 时有最小值2-,则=m ( ) A .3B .3-或83C .3或83-D .3-或83-91(2020•乾县一模★)已知二次函数ax ax y 82-=(a 为常数)的图象不经过第二象限,在自变量x 的值满足32≤≤x 时,其对应的函数值y 的最大值为3,则a 的值为( ) A .41- B .41 C .51-D .5192(★)已知二次函数22322++-=m mx mx y ,当2-≤x ,y 随x 的增大而增大,且40≤≤x 时,y 的最小值是4,则m 的值为 .101(★)已知二次函数a ax ax y 342+-=,若当41≤≤x 时,y 的最大值是4,则a 的值为 .题型5 定开口定轴“动区间”11(★)已知函数322+-=x x y ,当m x ≤≤0时,有最大值3,最小值2,则m 的取值范围是( ) A .1≥m B .20≤≤m C .21≤≤mD .2≤m12(★)当1+≤≤a x a 时,函数122+-=x x y 的最小值为4,则a 的值为( ) A .2- B .4 C .4或3 D .2-或3111(2021•历城区一模★)函数342-+-=x x y ,当m x ≤≤0时,此函数的最小值为3-,最大值为1,则m 的取值范围是( ) A .20<≤mB .40≤≤mC .42≤≤mD .4>m112(★)已知函数12-+=x x y 在1≤≤x m 上的最大值是1,最小值是45-,则m 的取值范围是( ) A .2-≥mB .210≤≤mC .212-≤≤-mD .21-≤m113(2021•吴兴区校级模拟★)当a x ≤≤-7时,二次函数5)3(212++-=x y 恰好有最大值3,则=a .121(2020秋•马鞍山期末★)当a x a ≤≤-1时,函数122+-=x x y 的最小值为1,则a 的值为 .13(★★)求关于x 的二次函数222+-=x x y 在1+≤≤t x t 上的最小值(t 为常数).14(2021•泉州模拟★★)已知函数522+-=ax x y ,当2≤x 时,函数值y 随x 的增大而减小,且对任意的111+≤≤a x 和112+≤≤a x ,1x ,2x 相应的函数值1y ,2y 总满足921≤-y y ,则实数a 的取值范围是( )A .31≤≤-aB .21≤≤-aC .32≤≤aD .42≤≤a15(★★)阅读下面的材料:小明在学习中遇到这样一个问题:若m x ≤≤1,求二次函数762+-=x x y 的最大值.他画图研究后发现1=x 和5=x 时的函数值相等,于是他认为需要对m 进行分类讨论. 他的解答过程如下:①二次函数762+-=x x y 的对称轴为直线3=x , ①由对称性可知,1=x 和5=x 时的函数值相等. ①若51<≤m ,则1=x 时,y 的最大值为2; 若5≥m ,则m x =时,y 的最大值为762+-m m . 请你参考小明的思路,解答下列问题:(1)当42≤≤-x 时,二次函数1422++=x x y 的最大值为 ;(2)若2≤≤x p ,求二次函数1422++=x x y 的最大值;(3)若2+≤≤t x t 时,二次函数1422++=x x y 的最大值为31,则t 的值为 . 131(★★)已知二次函数332+-=x x y 在1+≤≤t x t 时有最小值t ,则t 的值是( ) A .1 B .3 C .1或43 D .3或43141(2021•历城区模拟★★)已知函数ax x y 22+-=,当2≤x 时,函数值y 随x 增大而增大,且对任意的111+≤≤a x 和112+≤≤a x ,1x ,2x 相应的函数值1y ,2y 总满足1621≤-y y ,则实数a 的取值范围是( )A .52≤≤aB .53≤≤-aC .2≥aD .32≤≤a题型6 定开口“动轴”定区间16(2020•浙江自主招生★★)求函数122+-=ax x y 当10≤≤x 时的最小值.17(★)当12≤≤-x 时,二次函数2)(m x y --=12++m 有最大值4,则实数m 的值为 .18(2020•吉林模拟★)已知,关于x 的二次函数2)1(2+-+=x a x y ,当x 的取值范围是40≤≤x 时,y仅在4=x 时取得最大值,则实数a 的取值范围是 . 161(2021•平阴一模★★)已知二次函数mx x y 22-=(m 为常数),当21≤≤-x 时,函数值y 的最小值为2-,则m 的值是( )A .23 B .2或23-C .23或2D .23或23-或2 162(生★★)二次函数a ax x y ++=22在21≤≤-x 上有最小值4-,则a 的值为 .171(★)已知二次函数m m x y 2)(2+-=(m 为常数),在自变量x 的值满足31≤≤x 的情况下,与其对应的函数值y 的最小值为4,则m 的值为( ) A .2B .2或3C .2或3-D .2或3或3-172(★)已知关于x 的二次函数11)(2+--=k x y ,当41≤≤x 时,函数有最小值k 2,则k 的值为 .173(★★)对于题目“二次函数m m x y +-=2)(43,当m x m 232≤≤-时,y 的最小值是1,求m 的值.”甲的结果是1=m ,乙的结果是2-=m ,则( ) A .甲的结果正确 B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确181(2020春•江夏区校级期中★)已知关于x 的二次函数5)2(2+-+=x a x y ,当31≤≤x 时,y 在1=x 时取得最大值,则实数a 的取值范围是( ) A .2≥a B .2-≤a C .6≥aD .0<a题型7 最大最小共存19(2021•朝阳区一模★★)在平面直角坐标系xOy 中,抛物线42-++=a bx ax y (0≠a )的对称轴是直线1=x .(1)求抛物线42-++=a bx ax y (0≠a )的顶点坐标;(2)当32≤≤-x 时,y 的最大值是5,求a 的值; (3)在(2)的条件下,当1+≤≤t x t 时,y 的最大值是m ,最小值是n ,且3=-n m ,求t 的值.191(★★)当11≤≤-x 时,函数1222++--=n mx x y 的最小值是4-,最大值是0,求m 、n 的值.课堂总结课后检测A 组 基础巩固1.(2020•资中县一模★,3分)二次函数a x x y ++=42的最小值是3,则a 的值是( ) A .3B .5C .6D .72.(★,3分)已知二次函数33222+++=a ax ax y ,当2≥x 时,y 随x 的增大而增大,且03≤≤-x 时,y 的最大值为9,则a 的值为( ) A .1或2- B .2或2- C .2D .13.(★★,3分)实数x ,y 满足0=+-m y x ,032=+-m xy ,若2)(y x a +=,则下列说法中正确的是( )A .a 只有最大值没有最小值B .a 只有最小值没有最大值C .a 既有最大值又有最小值D .a 既没最大值也没最小值4.(★,3分)已知二次函数122+-=mx x y (m 为常数),当自变量x 的值满足21≤≤-x 时,与其对应的函数值y 的最小值为2-,则m 的值为( ) A .47或3或2- B .47或2- C .3或2-D .以上均不对5.(2021•长清区二模★,3分)函数342-+-=x x y ,当m x ≤≤-1时,此函数的最小值为8-,最大值为1,则m 的取值范围是( )A .20<≤mB .50≤≤mC .5>mD .52≤≤m6.(★,3分)已知1)3(+-+=a x x y 是关于x 的二次函数,当x 的取值范围在51≤≤x 时,y 在1=x 时取得最大值,则实数a 的取值范围是( )A .9=aB .5=aC .9≥aD .5≥a 7.(★,3分)二次函数b ax ax y +-=22中,当41≤≤-x 时,32≤≤-y ,则a b -的值为( )A .6-B .6-或7C .3D .3或2- 8.(★,3分)已知二次函数342+-=x x y ,当5+≤≤a x a 时,函数y 的最小值为1-,则a 的取值范围是 . 9.(★,3分)已知二次函数222+-=x x y 在1+≤≤t x t 时的最小值是t ,则t 的值为 . 10.(★,3分)已知关于x 的二次函数ax ax y 62-= 382+-+a a ,当21≤≤-x 时,有最大值5,则a 的值是 .11.(★★,12分)已知函数n kx x m y +++=2)2( (1)若此函数为一次函数; ①m ,k ,n 的取值范围;②当12≤≤-x 时,30≤≤y ,求此函数关系式; ③当32≤≤-x 时,求此函数的最大值和最小值(用含k ,n 的代数式表示);(2)若1-=m ,2=n ,当22≤≤-x 时,此函数有最小值4-,求实数k 的值.12.(★★,5分)已知二次函数aa ax x y 26922+---=(3131≤≤-x )有最大值3-,求实数a 的值.B 组 进阶提升13.(★★,3分)已知点A (t ,1y ),B (2+t ,2y )在抛物线221x y =的图象上,且22≤≤-t ,则线段AB 长的最大值、最小值分别是( ) A .52,2 B .52,22C .102,2D .102,2214.(★★,3分)已知二次函数)5)(3(-++-=m x m x y n +,其中m ,n 为常数,则( )A .1>m ,0<n 时,二次函数的最小值大于0B .1=m ,0>n 时,二次函数的最小值大于0C .1<m ,0>n 时,二次函数的最小值小于0D .1=m ,0<n 时,二次函数的最小值小于0 15.(★★,3分)二次函数5)1(2+--=x y ,当n x m ≤≤且0<mn 时,y 的最小值为m 2,最大值为n 2,则n m +的值为 .16.(★★,5分)已知二次函数22b bx x y ++=(b 为常数),若在自变量x 的值满足3+≤≤b x b 的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.。
2024年中考数学复习 胡不归最值问题(原卷版+答案解析)
胡不归最值问题【专题说明】胡不归模型问题解题步骤如下;1、将所求线段和改写为“PA +b a PB ”的形式b a <1 ,若b a>1,提取系数,转化为小于1的形式解决。
2、在PB 的一侧,PA 的异侧,构造一个角度α,使得sin α=b a 3、最后利用两点之间线段最短及垂线段最短解题【模型展示】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使AC V 2+BC V 1的值最小.ACV 2+BC V 1=1V 1BC +V 1V 2AC ,记k =V 1V 2,即求BC +kAC 的最小值.构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【模型总结】在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段.【练习】1.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+12BD的最小值为( )A.32B.3C.1+32D.1+32.如图,在ΔABC中,∠A=15°,AB=10,P为AC边上的一个动点(不与A、C重合),连接BP,则22AP+PB的最小值是( )A.52B.53C.1033 D.83.ΔABC中,∠A=90°,∠B=60°,AB=2,若点D是BC边上的动点,则2AD+DC的最小值为( )A.4B.3+3C.6D.23+34.如图所示,菱形ABCO的边长为5,对角线OB的长为45,P为OB上一动点,则AP+55OP的最小值为( )A.4B.5C.25D.355.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AB=16,∠ABC=60°,D为弧AC的中点,M是弦AC上任意一点(不与端点A、C重合),连接DM,则12CM+DM的最小值是( )A.43B.33C.23D.46.在ΔABC中,∠ACB=90°,P为AC上一动点,若BC=4,AC=6,则2BP+AP的最小值为( )A.5B.10C.52D.1027.【问题探究】在等边三角形ABC中,AD⊥BC于点D,AB=2.(1)如图1.E为AD的中点,则点E到AB的距离为 34 ;(2)如图2,M为AD上一动点.则12AM+MC的最小值为 ;【问题解决】如图3,A,B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,中转站M应修在距A地 km处.8.如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+12PB的最小值是 .9.如图,直角三角形ABC中,∠A=30°,BC=1,AC=3,BD是∠ABC的平分线,点P是线段BD上的动点,求CP+12BP的最小值 .10.如图,已知RtΔABC中,∠ACB=90°,∠BAC=30°,延长BC至D使CD=BC,连接AD,且AD=4,点P为线段AC上一动点,连接BP.则2BP+AP的最小值为 .11.如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+32PD的最小值等于 .12.如图,在平面直角坐标系中,直线y=-x+4的图象分别与y轴和x轴交于点A和点B.若定点P的坐标为(0,63),点Q是y轴上任意一点,则12PQ+QB的最小值为 .13.如图,在ΔABC 中,AB =5,AC =4,sin A =45,BD ⊥AC 交AC 于点D .点P 为线段BD 上的动点,则PC +35PB 的最小值为 .14.如图,在ΔABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,那么:(1)AE = 25 ;(2)CD +55BD 的最小值是 .15.如图,在ΔABC 中,∠A =90°,∠B =60°,AB =2,若D 是BC 边上的动点,则2AD +DC 的最小值为 .16.如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象交x 轴于A 、B 两点,交y 轴于C 点,P 为y 轴上的一个动点,已知A (-2,0)、C (0,-23),且抛物线的对称轴是直线x =1.(1)求此二次函数的解析式;(2)连接PB ,则12PC +PB 的最小值是 ;17.已知:如图1,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点D(0,-6),直线y=-13x+2交x轴于点B,与y轴交于点C.(1)求抛物线的函数解析式;(2)在线段OB上有一动点P,直接写出10DP+BP的最小值和此时点P的坐标.18.如图,已知抛物线y=k8(x+2)(x-4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-33x+b与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)在(1)条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?19.抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(-1,0),C(0,3).(1)求抛物线的解析式;(2)如图,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D 处,且DD =2CD,点M是平移后所得抛物线上位于D 左侧的一点,MN⎳y轴交直线OD 于点N,连结CN.当55D N+CN的值最小时,求MN的长.20.如图,矩形ABCD的对角线AC,BD相交于点O,ΔCOD关于CD的对称图形为ΔCED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.胡不归最值问题【专题说明】胡不归模型问题解题步骤如下;1、将所求线段和改写为“PA +b a PB ”的形式b a <1 ,若b a>1,提取系数,转化为小于1的形式解决。
2024年中考数学专题复习定值与最值问题
定值与最值问题1、平面几何最值问题:在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
线段最值问题的解决通常方法:应用几何性质.①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长.基本类型有:将军饮马、选址造桥、线段之差的最大值,隐圆最值,瓜豆原理,胡不归最值,阿氏圆等。
2、立体几何最值问题:展开平面图形,根据平面几何最值问题方法去做!3、代数最值问题:无非就是根据完全平方公式或者二次函数的知识去求解!例1.如图,A、B两个机离线l的距离分别是3米,5米,CD=6米,若由l上一点分别向A,B连线,最短为()A.11米B.10米C.9米D.8米1.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED、EB,则△BDE周长的最小值为()A.2 5 B.2 3 C.25+2 D.23+22.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB 的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为__ .3.直线l1、l2交于点O,A、B是两直线间的两点,从点A出发,先到l1上一点P,再从点P到l2上一点Q,再回到点B,求作P、Q两点,使四边形APQB周长最小.4.A、B是位于河流两旁的两个村庄,要在这条宽度为d的河上建一条垂直的桥,使得从A村到B村的距离之和最短.试着画出桥应该建在何处?例2.如图,AC⊥BC于C,连接AB,点D是AB上的动点,AC=6,BC=8,AB=10,则点C到点D的最短距离是()A.6 B.8 C.403D.2451.如图,点A 的坐标为(1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为( )A .(0,0)B .(21-,21-)C .(22,22-)D .(22-,22-) 2.如图,在平面直角坐标系xOy 中,直线AB 经过点A (﹣4,0)、B (0,4),⊙O 的半径为1,点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为_________.例3.如图,在菱形ABCD 中,AB =4,∠A =135°,点P 、M 、N 分别为对角线BD 及边BC ,CD 上的动点,则PM +PN 的最小值为__ .1.如图,∠ABC =45°,BC =42,BD 平分∠ABC 交AC 于点D ,M 、N 分别是BD 和BC 上的动点(M 与B ,D 两点不重合,N 与B ,C 两点不重合),则CM +MN 的最小值为__ .2.如图,∠AOB =45°,P 是∠AOB 内一定点,PO =10,Q 、R 分别是OA ,OB 上的动点,则△PQR 周长的最小值为__ .例4.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PB PA -的最大值等于 .1.如图所示,已知11(,)2A y ,2(2,)B y 为反比例函数1y x =图象上的两点,动点(,0)P x 在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)2B .(1,0)C .3(,0)2D .5(,0)22.点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP *OQ = .例5.在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC =2.设tan ∠BOC =m ,则m 的取值范围是_________.1.如图, △ABC 中,∠ABC =90°,AB =6,BC =8,O 为AC 的中点,过O 作OE ⊥OF ,OE 、OF 分别交射线AB 、BC 于E 、F ,则EF 的最小值为 .2.如图,已知Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF =90°,则EF 的最小值是_____________.例6.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+1.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( )A .13cmB .12cmC .10cmD .8cm2.如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm .第1题 第2题例7.求二次三项式2x 2x +3的最小值.1.求代数式﹣2x 2+3x +5的最大值.例9.如果P 是边长为2的正方形ABCD 的边CD 上任意一点且PE ⊥DB ,PF ⊥CA ,垂足分别为E ,F ,则PE +PF =__ __.1.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定2.如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t =2秒时PQ =52.(1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E ,把AE 沿AD 翻折交CD 延长线于点F ,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.1.如图,在正方形ABCD 中,G 是正方形内一点,AD =4,P 是BC 的中点,且BG =BP ,则DG +12GC 的最小值是__________.(提示:考虑用相似转化,系数需要化成相同)。
中考数学专题复习-如何解答最值问题(含答案)
中考数学复习如何解答最值问题最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题。
下面绍如何利一次函数,二次函数的性质和对称性求最值。
◆一次函数的最值问题一、典型例题:1、(2010陕西)某蒜薹生产基地喜获丰收收蒜薹200吨。
经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:若经过一段时间,蒜薹按计划全部售出后获得利润为y(元)蒜薹x(吨),且零售是批发量的1/3。
(1)求y与x之间的函数关系;(2)由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润。
解:(1)由题意,批发蒜薹3x吨,储藏后销售(200-4x)吨则y=3x(3000-700)+x·(4500-1000)+(200-4x)·(5500-1200)=-6800x+860000,(2)由题意得200-4x≤80 解之得x≥30∵-6800x+860000 -6800<0∴y的值随x的值增大而减小当x=30时,y最大值=-6800+860000=656000元2、(广东清远2009)某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A 种果汁原料和B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?解:(1)依题意得:43(50)150y x x x =+-=+(2)依题意得:0.50.2(50)19(1)0.30.4(50)17.2(2)x x x x +-⎧⎨+-⎩≤…………≤………解不等式(1)得:30x ≤ 解不等式(2)得:28x ≥∴不等式组的解集为2830x ≤≤150y x =+,y 是随x 的增大而增大,且2830x ≤≤ ∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,28150178y =+=最小(元) ◆二次函数的最值问题 一、典型例题:1、(2010武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
2024成都中考数学二轮复习微专题 利用两点之间线段最短解决最值问题(含答案)
2024成都中考数学二轮复习微专题利用两点之间线段最短解决最值问题模型一“一线两点”型(一个动点+两个定点)类型一线段和最小值问题模型分析问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB的值最小.解题思路:根据两点之间线段最短,PA+PB的最小值即为线段AB的长.连接AB交直线l 于点P,点P即为所求.模型演变问题:两定点A、B位于直线l同侧,在直线l上找一点P,使PA+PB的值最小.解题思路:将两定点同侧转化为异侧问题,同“模型分析”即可解决.作点B关于l的对称点B′,连接AB′,与直线l交于点P.注:也可以作点A关于直线l的对称点A′,连接A′B,与直线l交于点P′.模型应用1.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,AC=63,BD=6,点P是AC上一动点,点E是AB的中点,则PD+PE的最小值为________.第1题图S矩形ABCD,2.如图,在矩形ABCD中,AB=5,AD=3,点P是矩形内一动点,满足S△P AB=13则PA+PB的最小值为________.第2题图模型迁移3.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(3,5)、B(a,-3)两点,与x轴交于点C.第3题图(1)求反比例函数和一次函数的表达式;(2)若点P为y轴上的动点,当PB+PC取最小值时,求△BPC的面积.4.如图,已知抛物线y=-x2-2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值.第4题图类型二线段差最大值问题模型分析问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.解题思路:根据两边之差小于第三边,|PA-PB|最大值即AB的长,连接AB并延长,与直线l交于点P,点P即为所求.模型演变问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.解题思路:将两定点异侧转化为同侧问题,同“模型分析”即可解决.作点B关于l的对称点B′,连接AB′并延长与直线l交于点P.模型应用5.如图,在△ABC中,AB=3,AC=4,BC=5,EF是BC的垂直平分线,点P是EF上的动点,则|PA-PB|的最大值为________.第5题图6.如图,在等边△ABC中,AB=4,AD是中线,点E是AD的中点,点P是AC上一动点,则BP-EP的最大值为________.第6题图7.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6,P为对角线BD上一动点,则PM-PN的最大值为________.第7题图模型迁移8.已知抛物线y=x2-2x-8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,P 是抛物线对称轴上的一个动点,当|PB-PC|有最大值时,求点P的坐标.模型二“一点两线”型(两个动点+一个定点)类型一两条线段的和最小值问题模型分析问题:点P是∠AOB的边OB上一定点,在OA上找一点M,在OB上找一点N,使得PM +MN的值最小.解题思路:要使PM+MN的值最小,设法将PM、MN转化到同一条直线上,利用垂线段最短即可解决.作点P关于OA的对称点P′,过点P′作OB的垂线,分别与OA,OB交于点M、N.模型应用9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q 分别是AD,AC上的动点,则PC+PQ的最小值为________.第9题图10.如图,在菱形ABCD中,AB=6,∠A=120°,点M,N分别为BD,CD上的动点,则CM+MN的最小值为________.第10题图类型二周长最小值问题模型分析问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得△PMN 的周长最小.解题思路:要使△PMN的周长最小,即PM+MN+PN的值最小,根据两点之间线段最短,将三条线段转化到同一直线上即可解决.分别作点P关于OA、OB的对称点P′、P″,连接P′P″交OA、OB于点M、N.模型应用11.如图,在△ABC中,AB=AC,∠BAC=90°,点D为AB上一定点,点E,F分别为边AC,BC上的动点,当△DEF的周长最小时,则∠FDE=________.第11题图12.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D在BC上,且AD=4,点E,F分别为边AC,AB上的动点,则△DEF周长的最小值为________.第12题图模型三“一定长+两定点”型类型一异侧线段和最小值问题(“造桥”问题)模型分析问题:已知l1∥l2,l1,l2之间距离为d,在l1,l2上分别找M,N两点,使得MN⊥l1,且AM +MN+NB的值最小.解题思路:要求AM+MN+NB的最小值,MN为定值,即要求AM+NB的最小值,通过平移构造平行四边形,将AM、NB转化到同一条直线上.将点A向下平移d个单位到点A′,连接A′B交直线l2于点N,过点N作MN⊥l1于点M.模型应用13.如图,已知直线a∥b,a,b之间的距离为4,点P到直线a的距离为4,点Q到直线b的距离为2,PQ=241.在直线a上有一动点A,直线b上有一动点B,满足AB⊥b,且PA +AB+BQ最小,则PA+BQ=________.第13题图类型二同侧线段和最小值问题(平移型问题)模型应用14.如图,菱形ABCD的边长为3,∠BAD=60°,点E,F在对角线AC上(点E在点F的左侧),且EF=1,则DE+BF的最小值为________.第14题图15.如图,四边形ABCD是平行四边形,AB=4,BC=12,∠ABC=60°,点E、F是AD边上的动点,且EF=2,则四边形BEFC周长的最小值为________.第15题图模型迁移16.如图,已知点A(3,1),B(1,0),PQ是直线y=x上的一条动线段,且PQ=2(点Q在点P的下方),当AP+PQ+QB取得最小值时,求点Q的坐标.第16题图参考答案1.33【解析】如解图,连接DE ,则PD +PE ≥DE ,设DE 交AC 于点M ,当点P 与点M 重合时PD +PE 取得最小值,且最小值为DE .∵在菱形ABCD 中,AC =63,BD =6,∴AO =33,OD =3,AC ⊥BD ,∴AD =OA 2+OD 2=6,∴AD =BD =AB ,∴∠BAD =60°,∵点E 为AB 的中点,∴DE ⊥AB ,∴DE =AD ·sin60°=3 3.第1题解图2.41【解析】如解图,设△PAB 底边AB 上的高为h ,∵S △P AB =13S 矩形ABCD ,∴12AB ·h =13AB ·AD ,∴h =2,即h 为定值,在AD 上截取AE =2,作EF ∥AB ,交CB 于点F ,故点P 在直线EF 上运动,作点A 关于直线EF 的对称点A ′,连接A ′B ,交直线EF 于点P ,此时PA +PB 最小,即为A ′B 的长.由对称得AA ′=2AE =4,∴A ′B =AA ′2+AB 2=42+52=41,即PA +PB 的最小值为41.第2题解图3.解:(1)把点A (3,5)代入y =m x可得m =3×5=15,∴反比例函数的表达式为y =15x,把点B (a ,-3)代入y =15x,可得a =-5,∴B (-5,-3).把点A (3,5),B (-5,-3)代入y =kx +b k +b =55k +b =-3=1=2,∴一次函数的表达式为y =x +2;(2)∵一次函数的表达式为y =x +2,令y =0,则x =-2,∴C (-2,0),如解图,作点C 关于y 轴的对称点C ′,则C ′(2,0),即CC ′=4,连接BC ′交y 轴于点P ,此时PC +PB 有最小值,最小值为BC ′,设直线BC ′的表达式为y =k ′x +b ′,5k ′+b ′=-3k ′+b ′=0,′=37′=-67,则BC ′的表达式为y =37x -67,∴P (0,-67),即OP =67,此时S △BPC =S △BCC ′-S △PCC ′=12×4×3-12×4×67=307.第3题解图4.解:当y =0时,-x 2-2x +3=0,解得x 1=-3,x 2=1,∴点A 坐标为(-3,0),点B 坐标为(1,0).当x =0时,y =3,∴点C 坐标为(0,3).∵△PBC 的周长为PB +PC +BC ,BC 为定值,∴当PB +PC 最小时,△PBC 的周长最小.∵点A ,点B 关于抛物线的对称轴l 对称,∴连接AC ,交l 于点P ,点P 即为所求的点.∵AP =BP ,∴PB +PC +BC =AC +BC .∵A (-3,0),B (1,0),C (0,3),∴AC =32,BC =10,∴△PBC 周长的最小值为32+10.5.3【解析】如解图,延长BA 交EF 于P ′,当点P 位于P ′处时|PA -PB |的值最大,∴|PA -PB |的最大值为AB =3.第5题解图6.7【解析】如解图,连接BE 并延长交AC 于点P ′,此时BP -EP 取得最大值为BE ,在等边△ABC 中,AD 是中线,∴BD =DC =2,∴AD =BD ·tan60°=2×3=23,∵E 为AD的中点,∴DE =12AD =3.∴在Rt △BDE 中,BE =BD 2+DE 2=22+(3)2=7,∴BP -EP 的最大值为7.第6题解图7.2【解析】如解图,以BD 为对称轴作点N 的对称点N ′,连接MN ′并延长交BD 于点P ,连接NP ,根据轴对称性质可知PN =PN ′,∴PM -PN =PM -PN ′≤MN ′,当P ,M ,N ′三点共线时,PM -PN 取得最大值,最大值为MN ′的长,∵正方形的边长为8,∴AC =2AB =82,∵O 为AC 中点,∴AO =OC =42,∵N 为OA 中点,∴ON =22,∴ON ′=CN ′=22,∴AN ′=62,∵BM =6,∴CM =AB -BM =8-6=2,∴CM BM =CN ′AN ′=13,∵∠MCN ′=∠BCA ,∴△CMN ′∽△CBA ,∴∠CMN ′=∠CBA =90°,∵∠N ′CM =45°,∴△N ′CM 为等腰直角三角形,∴MN ′=CM =2,即PM -PN 的最大值为2.第7题解图8.解:如解图,连接PA ,则PA =PB ,当x =0时,y =x 2-2x -8=-8,则C (0,-8),当y =0时,x 2-2x -8=0,解得x 1=-2,x 2=4,则A (-2,0),B (4,0),∴抛物线的对称轴为直线x =1,∴|PB -PC |=|PA -PC |≤AC (当点A 、C 、P 共线时取等号),延长AC 交直线x =1于点P ′,设直线AC 的解析式为y =mx +n (m ≠0),把A (-2,0),C (0,-8)代入得2m +n =0=-8=-4=-8,∴直线AC 的解析式为y =-4x -8,当x =1时,y =-4-8=-12,即P ′(1,-12),∴当|PB -PC |有最大值时,点P 的坐标为(1,-12).第8题解图9.245【解析】如解图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC 于点Q,∵AD是∠BAC的平分线.∴PQ=PM,∴PC+PQ=PC+PM=CM,根据垂线段最短可知,此时PC+PQ有最小值,即为CM,∵AC=6,BC=8,∠ACB=90°,∴AB=AC2+BC2=62+82=10,∵S△ABC=12AB·CM=12AC·BC,∴CM=AC·BCAB=6×810=245.第9题解图10.33【解析】如解图,过点A作CD的垂线,垂足为N,与DB的交点记为M,∵四边形ABCD为菱形,∴点A与点C关于对角线BD对称,∴AM=CM,∴CM+MN=AM+MN =AN,根据垂线段最短可知,此时CM+MN有最小值,最小值为AN.∵AB=6,∠A=120°,∴∠ADC=60°,AD=6,∴AN=AD·sin60°=33,∴CM+MN的最小值为3 3.第10题解图11.90°【解析】如解图,作D关于AC的对称点D′,关于BC的对称点D″,连接D′D″交AC于点E,交BC于点F,此时,△DEF的周长最小,最小为D′D″,∵AB=AC,∠BAC =90°,∴∠B=45°,DD′⊥AC,DD″⊥BC,∴∠BDD′=45°,∴∠D′DD″=135°,∴∠D′+∠D″=45°,∵ED′=ED,DF=D″F,∴∠D′=∠D′DE,∠D″=∠D″DF,∴∠D″DF+∠D′DE=45°,∴∠FDE=90°.第11题解图12.4【解析】如解图,作点D关于直线AC的对称点D′,点D关于直线AB的对称点D″,连接D′D″交AC于点E,交AB于点F,此时△DEF的周长最小,最小值为D′D″的长,连接AD′、AD″,在Rt△ABC中,∵∠C=90°,∠B=60°,∴∠BAC=30°,∵∠DAB=∠D″AB,∠DAC=∠D′AC,∴∠D′AD″=2∠BAC=60°,∵AD′=AD,AD″=AD,∴AD′=AD″,∴△AD′D″是等边三角形,∴D′D″=AD′=AD=4,∴△DEF的周长的最小值为4.第12题解图13.10【解析】如解图,过点P作PF⊥b交a于点E,交b于点F,在PF上截取PC=4,连接QC交b于点B,过点B作BA⊥a于点A,此时PA+AB+BQ最短.过点Q作QD⊥PF 于点D.在Rt△PQD中,∵∠D=90°,PQ=241,PD=10,∴DQ=PQ2-PD2=8,CD =PD-PC=6,∵AB=PC=4,AB∥PC,∴四边形ABCP是平行四边形,∴PA=BC,∴PA +BQ=CB+BQ=QC=DQ2+CD2=10.第13题解图14.10【解析】如解图,作DM∥AC,使得DM=EF=1,连接BM交AC于点F,连接BD,∵DM∥AC,∴∠BDM=90°,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,AB=3,∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=3,在Rt△BDM中,BM=12+32=10,∴DE+BF的最小值为10.第14题解图15.14+237【解析】如解图,将点B沿BC向右平移2个单位长度得到点B′,作点B′关于AD的对称点B″,连接CB″,交AD于点F,在AD上截取EF=2,连接B′F,四边形EBB′F为平行四边形,则BE=B′F,B″F=B′F,此时四边形BEFC的周长为BE+EF+FC+BC=B″F+EF+FC+BC=B″C+EF+BC,当点C、F、B″三点共线时,四边形BEFC的周长最小.∵AB=4,BB′=2,∠ABC=60°,∴B′B″经过点A.∴AB′=2 3.∴B′B″=4 3.∵BC=12,∴B ′C =10.∴B ″C =B ′B ″2+B ′C 2=237.∴B ″C +EF +BC =14+237.∴四边形BEFC 周长的最小值为14+237.第15题解图16.解:如解图,过点A 作直线MN ∥直线y =x ,将点A (3,1)沿MN 向下平移2个单位后得到A ′(2,0),作点B (1,0)关于直线y =x 的对称点B ′(0,1),连接A ′B ′交直线y =x 于点Q .∵AA ′=PQ =2,AA ′∥PQ ,∴四边形APQA ′是平行四边形,∴AP =A ′Q .∴AP +PQ +QB =A ′Q +PQ +B ′Q ,且PQ =2,∴当A ′Q +B ′Q 值最小时,AP +PQ +QB 值最小,根据两点之间线段最短,即A ′,Q ,B ′三点共线时A ′Q +B ′Q 值最小.∵B ′(0,1),A ′(2,0),∴直线A ′B ′的解析式y =-12x +1,=x=-12x +1,=23=23,∴点Q 的坐标为(23,23).第16题解图。
人教版中考数学总复习微专题六 几何最值问题 模型三 线段和差——造桥选址
微专题六 几何最值问题
目录
01 基本模型 02 针对训练 03 针对巩固
返回目录
基本模型
图示
问题概述:A,B两地在一条河的两岸,现要在河上造一座桥 MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的 模型总结 两岸是平行的直线,桥要与河垂直) 解决方法:过点B作BB′⊥l2,且BB′等于河宽,连接AB′交 l1于点M,作MN⊥l1交l2于点N,则MN就是桥所在的位置
返回目录
谢谢
返回目录
返回目录
针对训练 例3 如图W-6-5,已知直线a∥b,且a与b之间的距离为4, 点A到直线a的距离为2,点B到直线b的距离为3,试在直线a上 找一点C,直线b上找一点D,满足CD⊥a,AC+CD+DB的长度和 最短,且AC+DB=8.求AB的长度.
返回目录
解:如答图W-6-5,过点A作AE⊥a,使得线段AE=4,连接 EB交直线b于点D,过点D作DC⊥b交直线a于点C,连接AC,过 点B作BF⊥AE交AE的延长线于点F. ∵CD=AE=4,CD∥AE, ∴四边形AEDC是平行四边形. ∴AC=ED. ∴AC+CD+BD=ED+BD+CD=BE+CD, 此时AC+CD+DB的值最小. 由题意,得AF=2+4+3=9,EF=9-4=5,BE=AC+BD=8. ∴BF= BE2-EF2= 82-52= 39, ∴AB= BF2 + AF2= 39 + 81=2 3至点A′,使得AA′=35 m,连 接A′B,交公路b于点D,过点D作CD⊥公路a于点C,连接AC, BD,过点B作BF⊥AA′,交AA′的延长线于点H. 则天桥建在CD处能使由A经过天桥走到B的路程最短,最短路 线的长为AC+CD+DB=A′B+CD. 由题意,得AB=100,AH=20+25+35=80, A′H=80-35=45. ∴BH= AB2-AH2= 1002-802=60. ∴A′B= BH2 + A′H2= 602 + 452=75. ∴这个最短距离为A′B+CD=75+35=110(m).
2022年中考数学二轮专题复习-最值问题
1 最值问题知识点一:最值问题最值问题分代数最值和几何最值两类,其中代数最值主要考查方程与不等式及函数的性质,而几何最值涉及到图形的性质、图形的变化、图形与坐标多个维度. 解决几何最值问题的通常思路: 1. 两点之间线段最短2. 直线外一点到直线上,垂线段最短3. 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 解决代数最值问题的通常思路: 1. 利用非负数的性质 2. 利用不等式的性质 3. 利用函数的图像与性质【例1-1】 如图,在直线MN 的异侧有A 、B 两点,按要求画图取点,并写出画图的依据. (1)在直线MN 上取一点C ,使线段AC 最短.依据是 .(2)在直线MN 上取一点D ,使线段AD +BD 最短.依据是 .【例1-2】如图,当四边形P ABN 的周长最小时,a = .N (a +2,0)P (a ,0)B (4,-1)A (1,-3)Oyx【例1-3】 如图,已知AB =10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .A BCDPAB OPxy【例1-4】 在平面直角坐标系中,抛物线()k x k x y --+=12与直线1+=kx y 交于A ,B 两点,点A 在点B 的左侧.(1)如图1,当1=k 时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点C 为抛物线上的一个动点,且在直线AB 下方,过点C 作x 轴的垂线,交于直线AB 于点D ,求CD 线段的最大值及此时点C 的坐标;(3)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标.举一反三1. 如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )A .21B .1C .2D .2 2. 在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为 .F DCBA xy OE3. 如图,点P 在第一象限,△ABP 是边长为2的等边三角形,当点A 在x 轴的正半轴上运动时,点B 随之在y 轴的正半轴上运动,运动过程中,点P 到原点的最大距离是________.若将△ABP 中边PA 的长度改为22,另两边长度不变,则点P 到原点的最大距离变为_________.4. 如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M (0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标.知识点二:隐形圆借助“隐圆”解决几何最值问题的理论依据有两个:①定圆的所有弦中,直径最长;②圆外一点与圆心的连线上,该点和此直线与圆的近交点距离最短、远交点距离最长.这类最值问题,首先要判断动点是否在圆上运动,通常有两种判断方法:①无论动点在何处,动点到某一定点的距离不变,则可判断出该动点在以定点为圆心的圆上运动;②运动轨迹是圆,才能借助“隐圆”求最值.【例2-1】如图,在矩形ABCD中,AB=4,AD=6,点E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.210-2 B.6 C.213-2 D.4【例2-2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=D F,连接CF交BD于点G,连接BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是.【例2-3】 如图,∠XOY = 45°,等边三角形ABC 的两个顶点A 、B 分别在OX 、OY 上移动,AB = 2,那么OC 的最大值为 .【例2-4】如图,△ABC 中,∠ABC =90°, AB =6,BC =8,O 为AC 的中点,过O 作OE ⊥OF ,OE 、OF 分别交射线AB 、BC 于E 、F ,则EF 的最小值为 .举一反三1. 如图,在△ABC 中,∠ACB =90°,AC =8,BC =6,P 是直线AB 上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B ′CP ,连接B ′A ,B ′A 长度的最小值是m ,B ′A 长度的最大值是n ,则m +n 的值等于 .2. 如图,Rt △ABC 中,A B ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )A .23 B .2 C .13138 D .131312 3. 已知A (2,0),B (4,0)是x 轴上的两点,点C 是y 轴上的动点,当∠ACB 最大时,则点C 的坐标为_____.4. 如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6,点D 在AB 边上,点E 是BC 边上一点 (不与点B 、C 重合),且DA =DE ,则AD 的取值范围是 。
新课标九年级数学中考复习强效提升分数精华版中考数学二轮专题复习关于最值问题分析
中考数学二轮专题复习关于最值问题分析最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
一、“最值”问题大都归于以下几类基本模型:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值。
(本专题主要涉及以下几种类型)Ⅱ、归于几何模型,这类模型又分为三种情况:(1)归于“两点之间,线段最短”。
凡属于求“变动的两线段或三线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之和大于第三边,三角形两边之差小于第三边”凡属于求“变动的两线段之差(和)的最值”时,大都应用这一模型。
(3)归于“垂线段最短”凡是属于点到直线距离最值问题时,大都应用这一模型。
Ⅲ、不等式模型:0)ax xx+≥>Ⅳ、因圆上的动点引起的最值问题Ⅴ、非常规问题几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA PB+的值最小.方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'+=的值最小(不必证明).一、填空题1、如图1,正方形ABCD的边长为2,Q为BC的中点,P是AC上一动点.连结PB,PQ,则PB+PQ的最小值是___________;2、如图,在边长为1的等边三角形ABC中,点D是AC的中点,点P是BC边的中垂线MN上一动点,则PC+PD的最小值为.3、.如图所示,正方形ABCD的面积为12,ABE△是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD PE+的和最小,则这个最小值为____________4、要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?请你以街道旁为x轴,建立了平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是 __________________ ;5、如图18在直角坐标系中有四个点A(-6,3),B(-2,5),C(0D(n,0),当四边形ABCD周长最短时,则m+n= ______6、如图,当四边形PABN的周长最小时,a=.7、已知边长为4的正三角形ABC,两顶点A、B系的x轴、y轴的正半轴上滑动,点C在第一象限,OC的最大值为8、已知两直角边长为分别5,12的直角三角形ABC,两顶点A、B分别在平面ABA'PlDNMPCBAA DEPB CxA BCDNM(第10题A 直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,OC的最大值为____________9. (山东济南)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,_________________10、如图,45AOB∠=°,P是AOB∠内一点,10PO=,Q R、分别是OAOB、上的动点,则PQR△周长的最小值=_____________________11.如图,在锐角ABC△中,45AB BAC=∠=°,BAC∠的平分线交BC于点D M N,、分别是AD和AB上的动点,则BM MN+的最小值是___________ .12、△ABC中,∠C = 90°,AB = 10,tan A =43,过AB边上一点P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于.13.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为14、(草桥二模)如图,∠AOB=60°,点P在∠AOB的角平分线上,OP=10cm,点E、F是∠AOB两边OA,OB上的动点,当△PEF的周长最小时,点P到EF距离是____________________15、(江苏扬州)如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是.16.如图,在ABC△中,10AB=,8AC=,6BC=,经过点C且与边AB相切的动圆与CA CB,分别相交于点P Q,,则线段PQ长度的最小值是()A. 7B. 6C. 5D.4.817. (宁波) 如图,△ABC中,︒=∠60BAC,︒=∠45ABC,AB=22,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为。
2020年中考数学二轮专项冲刺复习——动点、最值问题、压轴题型(含详细解答)
2020年中考数学二轮专项冲刺复习——动点、最值问题、压轴题型1、(2019陕西•中考 第25题•12分)问题提出:(1)如图1,已知ABC ∆,试确定一点D ,使得以A ,B ,C ,D 为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD 中,4AB =,10BC =,若要在该矩形中作出一个面积最大的BPC ∆,且使90BPC ∠=︒,求满足条件的点P 到点A 的距离;问题解决:(3)如图3,有一座草根塔A ,按规定,要以塔A 为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE .根据实际情况,要求顶点B 是定点,点B 到塔A 的距离为50米,120CBE ∠=︒,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE ?若可以,求出满足要求的平行四边形BCDE 的最大面积;若不可以,请说明理由.(塔A 的占地面积忽略不计)【考点】四边形综合题【分析】(1)利用平行四边形的判定方法画出图形即可.(2)以点O 为圆心,OB 长为半径作O e ,O e 一定于AD 相交于1P ,2P 两点,点1P ,2P 即为所求.(3)可以,如图所示,连接BD ,作BDE ∆的外接圆O e ,则点E 在优弧¶BD 上,取·BED 的中点E ',连接E B ',E D ',四边形BC DE ''即为所求.【解答】解:(1)如图记为点D 所在的位置.(2)如图,4AB =Q ,10BC =,∴取BC 的中点O ,则OB AB >.∴以点O 为圆心,OB 长为半径作O e ,O e 一定于AD 相交于1P ,2P 两点,连接1BP ,1PC ,1PO ,90BPC ∠=︒Q ,点P 不能再矩形外; BPC ∴∆的顶点1P 或2P 位置时,BPC ∆的面积最大,作1PE BC ⊥,垂足为E ,则3OE =, 1532AP BE OB OE ∴==-=-=,由对称性得28AP =.(3)可以,如图所示,连接BD ,A Q 为BCDE Y 的对称中心,50BA =,120CBE ∠=︒,100BD ∴=,60BED ∠=︒作BDE ∆的外接圆O e ,则点E 在优弧¶BD 上,取·BED 的中点E ',连接E B ',E D ',则E B E D '=',且60BE D ∠'=︒,∴△BE D '为正三角形.连接E O '并延长,经过点A 至C ',使E A AC '=',连接BC ',DC ',E A BD '⊥Q ,∴四边形E D '为菱形,且120C BE ∠''=︒,作EF BD ⊥,垂足为F ,连接EO ,则EF EO OA E O OA E A +-'+='…, 1122BDE E BD S BD EF BD E A S ∆'∴='=V g g g g …,()2221006050003E BD BCDE BC DE S S S sin m '''∴==⋅︒=V 平行四边形平行四边形…所以符合要求的BCDE Y 的最大面积为250003m .2、(2019宁夏•中考 第26题•10分)如图,在ABC ∆中,90A ∠=︒,3AB =,4AC =,点M ,Q 分别是边AB ,BC 上的动点(点M 不与A ,B 重合),且MQ BC ⊥,过点M 作BC 的平行线MN ,交AC 于点N ,连接NQ ,设BQ 为x .(1)试说明不论x 为何值时,总有QBM ABC ∆∆∽;(2)是否存在一点Q ,使得四边形BMNQ 为平行四边形,试说明理由; (3)当x 为何值时,四边形BMNQ 的面积最大,并求出最大值.【考点】相似形综合题【分析】(1)根据题意得到MQB CAB ∠=∠,根据相似三角形的判定定理证明; (2)根据对边平行且相等的四边形是平行四边形解答;(3)根据勾股定理求出BC ,根据相似三角形的性质用x 表示出QM 、BM ,根据梯形面积公式列出二次函数解析式,根据二次函数性质计算即可. 【解答】解:(1)MQ BC ⊥Q , 90MQB ∴∠=︒,MQB CAB ∴∠=∠,又QBM ABC ∠=∠, QBM ABC ∴∆∆∽;(2)当BQ MN =时,四边形BMNQ 为平行四边形, //MN BQ Q ,BQ MN =,∴四边形BMNQ 为平行四边形;(3)90A ∠=︒Q ,3AB =,4AC =,5BC ∴==, QBM ABC ∆∆Q ∽,∴QB QM BM AB AC BC ==,即345x QM BM==, 解得,43QM x =,53BM x =,//MN BC Q ,∴MN AM BC AB=,即53353x MN -=, 解得,2559MN x =-, 则四边形BMNQ 的面积21254324575(5)()2932782x x x x =⨯-+⨯=--+,∴当458x =时,四边形BMNQ 的面积最大,最大值为752.3、如图,在平面直角坐标系中,O 为原点,已知A (0,8),D (24,8),C (26,0),动点P 从点A 开始沿AD 边向点D 以1 cm/s 的速度运动;动点Q 从点C 开始沿CO 边向点O 以3 cm/s 的速度运动,若P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.(1)求经过多少时间后,四边形PQCD 为平行四边形;(2)当四边形PQCD 为平行四边形时,求PQ 所在直线的函数解析式.解:(1)设t 秒后四边形PQCD 为平行四边形,∵当PD =QC 时,四边形PQCD 为平行四边形,∴24-t =3t ,解得,t =6;(2)6秒时,点P 的坐标为(6,8),点Q 的坐标为(8,0),设直线PQ 的解析式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧6k +b =8,8k +b =0,解得⎩⎪⎨⎪⎧k =-4,b =32,∴直线PQ 的解析式为y =-4x +32.4、在平面直角坐标系xOy 中,抛物线y =mx 2-2mx +m +4与y 轴交于点A (0,3),抛物线的对称轴与x 轴交于点B ,直线l 1:y =kx +b 经过点B 和点C (-1,-2).(1)求直线l 1及抛物线的表达式;(2)已知点P (t,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线l 1于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围;(3)将l 1向上平移两个单位得到直线l 2,与抛物线交于点D ,E (点D 在点E 左侧),若Q 是抛物线上位于直线l 2上方的一个动点,求△DEQ 的面积.解:(1)把A (0,3)代入y =mx 2-2mx +m +4,得到3=m +4,∴m =-1,∴抛物线的解析式为y =-x 2+2x +3,∵抛物线的对称轴为x =1,∴点B 坐标为(1,0),把B (1,0),C (-1,-2)代入y =kx +b ,得到⎩⎪⎨⎪⎧k +b =0,-k +b =-2,)解得⎩⎪⎨⎪⎧k =1,b =-1.)∴直线l 1的解析式为y =x -1;(2)如图1中,由图象可知当过P 点的直线MN 在抛物线的对称轴左侧时,点M 和点N 中至少有一个点在x 轴下方,此时t <1,当t >3时,点M 和点N 中至少有一个点在x 轴下方,综上所述,符合条件的t 的范围是t <1或t >3;(3)如图2中,∵直线l 1的解析式为y =x -1,∴直线l 1向上平移2个单位后的直线l 2的解析式为y =x +1,由⎩⎪⎨⎪⎧y =x +1,y =-x 2+2x +3,)解得⎩⎪⎨⎪⎧x =-1,y =0)或⎩⎪⎨⎪⎧x =2,y =3.)∴D (-1,0),E (2,3),作EG ⊥x 轴于G ,设点Q (m ,-m 2+2m +3),∵S △QDE =S △QDG +S △QEG -S △DEG ,∴S △QED =12×3×(-m 2+2m +3)+12×3×(2-m )-12×3×3=-32m 2+32m +3.5、如图,在矩形ABCD 中,∠BAC =30°,对角线AC ,BD 交于点O ,∠BCD 的平分线CE 分别交AB ,BD 于点E ,H ,连接OE .(1)求∠BOE 的度数;(2)若BC =1,求△BCH 的面积; (3)求S △CHO ∶S △BHE 的值.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD ,AO =CO =BO =DO ,∴∠DCE =∠BEC ,∵CE 平分∠BCD ,∴∠BCE =∠DCE =45°,∴∠BCE =∠BEC =45°,∴BE =BC ,∵∠BAC =30°,AO =BO =CO ,∴∠BOC =60°,∠OBA =30°,∵∠BOC =60°,BO =CO ,∴△BOC 是等边三角形,∴BC =BO =BE ,且∠OBA =30°,∴∠BOE =75°;(2)如解图①,过点H 作FH ⊥BC 于F ,∵△BOC 是等边三角形,∴∠FBH =60°,FH ⊥BC ,∴BH =2BF ,FH =3BF ,∵∠BCE =45°,FH ⊥BC ,∴CF =FH =3BF ,∴BC =3BF +BF =1, ∴BF =3-12,∴FH =3-32,∴S △BCH =12×BC ×FH =3-34;(3)如解图②,过点C 作CN ⊥BO 于N ,∵△BOC 是等边三角形,∴∠FBH =60°,FH ⊥BC ,∴BH =2BF ,FH =3BF ,∵∠BCE =45°,FH ⊥BC ,∴CF =FH =3BF ,∴BC =3BF +BF =BO =BE ,∴OH =OB -BH =3BF -BF ,∵∠CBN =60°,CN ⊥BO ,∴CN =32BC =3+32BF ,∵S △CHO ∶S △BHE =12×OH ×CN ∶12×BE ×BF ,∴S △CHO ∶S △BHE =3-32.6、(2019乐山模拟)如图,正方形ABCD 的边长为2,点E 、F 分别是边BC ,CD 的延长线上的动点,且CE =DF ,连接AE 、BF ,交于点G ,连接DG ,则DG 的最小值为________.解:5-1在正方形ABCD 中,AB =BC ,∠ABC =∠BCD =90°,在△ABE 和△BCF 中,∵⎩⎪⎨⎪⎧AB =BC ∠ABC =∠BCD BE =CF,∴△ABE ≌△BCF (SAS),∴∠BAE =∠CBF ,∵∠CBF +∠ABF =90°,∴∠BAE +∠ABF =90°,∴∠AGB =90°,∴点G 在以AB 为直径的圆上,如解图,连接OG ,当O 、G 、D 在同一直线上时,DG 有最小值,∵在正方形ABCD 中,AD=BC =2,∴AO =1=OG ,∴OD =AD 2+AO 2=22+12=5,∴DG =5-1.7、(2019威海•中考 )如图,在正方形ABCD 中,AB =10 cm ,E 为对角线BD 上一动点,连接AE ,CE ,过E 点作EF ⊥AE ,交直线BC 于点F .E 点从B 点出发,沿着BD 方向以每秒2 cm 的速度运动,当点E 与点D 重合时,运动停止.设△BEF 的面积为y cm 2,E 点的运动时间为x 秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围; (3)求△BEF 面积的最大值.题图 备用图(1)证明:如解图,过点E 分别作AB 、BC 的垂线,垂足分别为点G 、H ,则四边形GBHE 为矩形. ∵四边形ABCD 是正方形, ∴AB =BC .∵BD 是对角线,∴BD 所在直线是正方形的对称轴, ∴CE =AE ,EG =EH , ∴四边形GBHE 为正方形. ∵EF ⊥AE ,∴∠AEF =∠GEH =90°.∵∠AEG +∠GEF =90°,∠FEH +∠GEF =90°, ∴∠AEG =∠FEH . ∵∠AGE =∠FHE =90°, ∴△AGE ≌△FHE (ASA), ∴AE =EF , ∴CE =EF ;解图(2)解:∵EF =EC ,EH ⊥BC , ∴FH =HC .∵△EHB 是等腰直角三角形,BE =2x , ∴EH =BH =2x ,∴HC =10-2x ,∴FH =HC =10-2x ,∴FB =10-22x , ∴y =12×(10-22x )×2x =-2x 2+52x (0≤x ≤52);(3)解:∵y =-2x 2+52x =-2(x -524)+254(0≤x ≤52),a =-2<0,∵x =524<52,∴当x =524时,y 有最大值,y 的最大值为0-(52)24×(-2)=254, 即△BEF 面积的最大值为254cm 2. 8、(2019•朝阳)如图,四边形ABCD 是正方形,连接AC ,将△ABC 绕点A 逆时针旋转α得△AEF ,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当α=45°时,请直接写出OE 与OD 的关系(不用证明). (2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB =4,请直接写出点O 经过的路径长.解:(1)OE =OD ,OE ⊥OD ;理由如下: 由旋转的性质得:AF =AC ,∠AFE =∠ACB ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD =∠FAC =45°,∴∠ACF =∠AFC =(180°﹣45°)=67.5°,∴∠DCF ═∠EFC =22.5°,∵∠FEC =90°,O 为CF 的中点,∴OE =CF =OC =OF ,同理:OD =CF ,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO到点M,使OM=EO,连接DM、CM、DE,如图2所示:∵O为CF的中点,∴OC=OF,在△COM和△FOE中,,∴△COM≌△FOE(SAS),∴∠MCF=∠EFC,CM=EF,∵四边形ABCD是正方形,∴AB=BC=CD,∠BAC=∠BCA=45°,∵△ABC绕点A逆时针旋转α得△AEF,∴AB=AE=EF=CD,AC=AF,∴CD=CM,∠ACF=∠AFC,∵∠ACF=∠ACD+∠FCD,∠AFC=∠AFE+∠CFE,∠ACD=∠AFE=45°,∴∠FCD=∠CFE=∠MCF,∵∠EAC+∠DAE=45°,∠FAD+∠DAE=45°,∴∠EAC=∠FAD,在△ACF中,∵∠ACF+∠AFC+∠CAF=180°,∴∠DAE+2∠FAD+∠DCM+90°=180°,∵∠FAD+∠DAE=45°,∴∠FAD+∠DCM=45°,在△ADE和△CDM中,,∴△ADE≌△CDM(SAS),∴DE=DM,∵OE=OM,∴OE⊥OD,在△COM和△COD中,,∴△COM≌△COD(SAS),∴OM=OD,∴OE=OD,∴OE=OD,OE⊥OD;(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=AB=×4=8,∴点O经过的路径长为:πd=8π.9、(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD=5,点M是线段AC 上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.解:(1)如图一(1)中,∴∠ADC=90°,∵tan∠DAC===,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴CM=CB=5,综上所述,满足条件的CM的值为5或5.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,∵AM=MC,∴BM=AM=CM,∴AC=2AB,∴△ABM是等边三角形,∴∠BAM=∠BMA=60°,∵∠BAN=∠BMN=90°,∴∠NAM=∠NMA=30°,∴NA=NM,∵BA=BM,∴BN垂直平分线段AM,∴FM=,∴NM==,∵∠NFM=90°,NH=HM,∴FH=MN=.10、(2019•贵阳)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.解:数学理解:(1)AB=(AF+BE)理由如下:∵△ABC是等腰直角三角形∵四边形DECF是正方形∴DE=DF=CE=CF,∠DFC=∠DEC=90°∴∠A=∠ADF=45°∴AF=DF=CE∴AF+BE=BC=AC∴AB=(AF+BE)问题解决:(2)如图,延长AC,使FM=BE,连接DM,∵四边形DECF是正方形∴DF=DE,∠DFC=∠DEC=90°∵BE=FM,∠DFC=∠DEB=90°,DF=ED∴△DFM≌△DEB(SAS)∴DM=DB∵AB=AF+BE,AM=AF+FM,FM=BE,∴AM=AB,且DM=DB,AD=AD∴△ADM≌△ADB(SSS)∴∠DAC=∠DAB=∠CAB同理可得:∠ABD=∠CBD=∠ABC∴∠CAB+∠CBA=90°∴∠DAB+∠ABD=(∠CAB+∠CBA)=45°∴∠ADB=180°﹣(∠DAB+∠ABD)=135°联系拓广:(3)∵四边形DECF是正方形∴DE∥AC,DF∥BC∴∠CAD=∠ADM,∠CBD=∠NDB,∠MDN=∠AFD=90°∵∠DAC=∠DAB,∠ABD=∠CBD∴∠DAB=∠ADM,∠NDB=∠ABD∴AM=MD,DN=NB在Rt△DMN中,MN2=MD2+DN2,∴MN2=AM2+NB2,11、(2019•通辽)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.解析:(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°﹣∠CPD﹣∠CPB=180°﹣75°﹣60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.。
中考数学专题复习-例说线段的最值问题 (共62张)
MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
2024年九年级中考数学专题复习之最值问题课件
10.如图,边长为 2 的等边三角形 ABC 的两个顶点 A,B 分别在两条射线 OM,
ON 上滑动.若 OM⊥ON,则 OC 的最大值是________.
1+ 3
解析:如图,取 AB 的中点 D,连 OD,DC, ∴OC≤OD+DC. 当 O,D,C 共线时,OC 有最大值,最大值是 OD+CD. ∵△ABC 为等边三角形,D 为 AB 的中点,BC=AB=2, ∴BD=1,∴CD= BC2-BD2= 3. ∵△AOB 为直角三角形,D 为斜边 AB 的中点, ∴OD=12AB=1, ∴OD+CD=1+ 3,即 OC 的最大值为 1+ 3.
6.如图,这是一个棱长为 1 的正方体纸盒.若一只蚂蚁要沿着正方体纸盒的表
面,从顶点 A 爬到顶点 B 去觅食,则需要爬行的最短路程是( ) C
A. 3 C. 5
B.2 D.3
7.(逆等线问题)如图,在 Rt△ACB 中,∠ACB=90°,AB=10,E,F 是线段 AB 上的动点,且满足 AE=BF,连接 CE 和 CF,则 CE+CF 的最小值为__1_0_____.
14.如图,在△ABC 中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为 D,P
∴BC=AB=AC=6,
∠ABD=∠CBD,
∴△ABC 是等边三角形,
∴∠ABC=∠ACB=60°,
图1
∴∠CBD=30°.
∵PE⊥BC,∴PE=12PB,
∴MP+12PB=PM+PE, ∴当点 M,P,E 共线且 ME⊥BC 时,PM+PE 有最小值, 为 ME,如图 2 所示. ∵AM=2,AC=6,∴MC=4.
由垂线段最短可得,当 CP⊥AB 时,线段 DE 的值最小, 此时,AP=BP, ∴CP=21AB=3 2, ∴DE 的最小值为 3 2.
2023年中考数学专题复习:二次函数最值问题训练(含答案)
2023年中考数学专题复习:二次函数最值问题一、单选题1.已知2()=++≠的对称轴为直线230y ax bx ax=,与x轴的其中一个交点为(1,0),该x的取值范围,下列说法正确的是()函数在14A.有最小值0,有最大值3 B.有最小值1-,有最大值3C.有最小值3-,有最大值4 D.有最小值1-,有最大值42.若二次函数24=++的最小值是3,则a的值是()y ax x aA.4 B.-1或3 C.3 D.4或-13.已知二次函数y=﹣x2+2x+4,则下列说法正确的是()A.该函数图象开口向上B.该函数图象向右平移2个单位长度是y=﹣(x+1)2+5C.当x=1时,y有最大值5D.该函数的图象与坐标轴有两个交点4.函数2(0)=++≠的图象如图所示,则该函数的最小值是()y ax bx c aA.1-B.0C.1D.25.在关于n 的函数2=+中,n 为自然数.当n =9 时,S< 0;当n =10 时,S an bnS > 0.则当S 取值最小时,n 的值为()A.3 B.4 C.5 D.66.代数式22 5-+的最小值为()a aA.2 B.3 C.4 D.57.若两个图形重叠后.重叠部分的面积可以用表达式表示为y=﹣(x﹣2)2+3,则要使重叠部分面积最大,x的值为()A.x=2 B.x=﹣2 C.x=3 D.x=﹣38.某商品现在的售价为每件35元,每天可卖出50件.市场调查反映:如果调整价格,每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,求最大销售额是( )A .2500元B .2000元C .1800元D .2200元二、填空题9.如图,四边形ABCD 的两条对角线互相垂直,16AC BD +=,则四边形ABCD 的面积最大值是_________10.已知二次函数242y x x =-+,当13x -≤≤时,y 的取值范围内是_______. 11.已知抛物线22(1)1y x =-+,当03x 时,y 的最小值是 __,y 的最大值是 __. 12.当02x ≤≤时,22y x x a =++有最小值为4,则a 为 _____.13.某商品的销售利润y 与销售单价x 的关系为y =﹣21(50)10x -+2650,则当单价定价为每件____元时,可获得最大利润____元.14.已知二次函数223y x x =-+的图象经过点()11A x y , 和点()122B x y +,,则12y y +的最小值是________.15.设抛物线2(1)y x a x a =+++,其中a 为实数.(1)不论a 为何值,该抛物线必经过一定点 _____;(2)将抛物线2(1)y x a x a =+++向上平移2个单位,所得抛物线顶点的纵坐标的最大值是 _____.16.如图是二次函数2y ax bx c =++(a ≠0)图象的一部分,对称轴是直线x =-1,下列判断:①b -2a =0;②4a -2b +c <0;③abc >0;④当x =0和x =-2时,函数值相等; ⑤3a +c <0;⑥a -b >m (ma +b );⑦若自变量x 的取值范围是-3<x <2,则函数值y >0.其中正确的序号是________.三、解答题17.如图,在▱ABCD中,AB=6,BC=8,∠B=60°,E为BC上一动点(不与B重合),作EF⊥AB于F,FE,DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求用x表示S的函数解析式,并写出x的取值范围.(2)当E运动到何处时,S有最大值,最大值为多少?18.如图,抛物线经过A(﹣1,0),B(3,0),C(0,32)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点的坐标;若不存在,请说明理由.19.端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,设这种水果每千克降价x元,解决下面所给问题:(1)设该水果超市一天销量y千克,写出y与x之间的关系式;(2)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果每千克降价多少元?(3)设该水果超市一天可获利润w元.求当该商品每千克降价多少元时,该超市一天所获利润最大?并求最大利润值.20.春节即将到来,某水果店进了一些水果,在进货单上可以看到:每次进货价格没有变化,第一次进货苹果400千克和梨500千克,共支付货款6200元;第二次进货苹果600千克和梨200千克,共支付货款6000元;为了促销,该店推出一款水果礼盒,内有3千克苹果和2千克梨,包装盒每个4元.市场调查发现:该礼盒的售价是70元时,每天可以销售80盒;每涨价1元,每天少销售2盒.(1)求每个水果礼盒的成本(成本=水果成本+盒子成本);(2)若每个礼盒的售价是a元(a是整数),每天的利润是w元,求w关于a的函数解析式(不需要写出自变量的取值范围);(3)若每个礼盒的售价不超过m元(m是大于70的常数,且是整数),直接写出每天的最大利润.参考答案:1.B2.A3.C4.A5.C6.C7.A8.C9.3210.27y -≤≤11. 1 912.413. 50 265014.615. (-1,0) 216.①③④⑥17.(1)S 2+(0<x ≤8)(2)18.(1)21322y x x =-++ (2)(1,1)(3)存在,3(2,)2,(13)2,(13)219.(1)y =40x +160;(2)这种水果每千克降价9元;(3)当该商品每千克降价6元时,该超市一天所获利润最大,最大利润值为4000元.20.(1)40元(2)2=-+-23008800w a a(3)当75m时,每天的最大利润为2450元;当7075<<时,每天的最大利润为m2-+-m m23008800。
中考数学《最值问题》及参考答案
中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。
2024成都中考数学二轮复习专题:几何最值之将军饮马问题
“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现.【抽象模型】如图,在直线上找一点P使得PA+PB最小?【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)题型一:两定一动模型模型作法结论当两定点A、B在直线l异侧时,在直线l上找一点P,使PA+PB最小.连接AB交直线l于点P,点P即为所求作的点.PA+PB的最小值为AB当两定点A、B在直线l同侧时,在直线l上找一点P,使得PA+PB最小.作点B关于直线l的对称点B',连接AB'交直线l于点P,点P即为所求作的点.PA+PB的最小值为AB'当两定点A、B在直线l同侧时,在直线l上找一点P,使得PA PB-最大.连接AB并延长交直线l于点P,点P即为所求作的点.PA PB-的最大值为AB当两定点A 、B 在直线l 异侧时,在直线l 上找一点P,使得PA PB -最大.作点B 关于直线I 的对称点B ',连接AB '并延长交直线l 于点P ,点P 即为所求作的点.PA PB -的最大值为AB '当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB -最小.连接AB ,作AB 的垂直平分线交直线l 于点P ,点P 即为所求作的点.PA PB -的最小值为0【例1】如图,点C 的坐标为(3,y ),当△ABC 的周长最短时,求y 的值.【解析】解:解:(1)作A 关于x =3的对称点A′,连接A′B 交直线x =3与点C .∵点A 与点A′关于x =3对称,∴AC=A′C .∴AC+BC=A′C+BC .当点B 、C 、A′在同一条直线上时,A′C+BC 有最小值,即△ABC 的周长有最小值.∵点A 与点A′关于x =3对称,∴点A′的坐标为(6,3).设直线BA′的解析式y =kx +b ,将点B 和点A′的坐标代入得:k =34,b =−32.∴y =34x -32.将x =3代入函数的解析式,∴y 的值为34【例2】如图,正方形ABCD 中,AB =7,M 是DC 上的一点,且DM =3,N 是AC 上的一动点,求|DN -MN |的最小值与最大值.【解析】解:当ND=NM 时,即N 点DM 的垂直平分线与AC 的交点,|DN-MN|=0,因为|DN-MN|≤DM ,当点N 运动到C 点时取等号,此时|DN-MN|=DM=3,所以|DN-MN|的最小值为0,最大值为3【例3】如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)【答案】(1)2545442y x x -+=,函数的对称轴为:3x =;(2)点8(3)5P ,;(3)存在,点E 的坐标为12(2,5-或12,)5(4-.【解析】解:1()根据点0(1)A ,,(50)B ,的坐标设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,∵抛物线经过点4(0)C ,,则54a =,解得:45a =,抛物线的表达式为:()()2224416465345555245y x x x x x --+--+===,函数的对称轴为:3x =;2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,设BC 的解析式为:y kx b +=,将点B C 、的坐标代入一次函数表达式:y kx b +=得:05,4k bb =+⎧⎨=⎩解得:4,54k b ⎧=-⎪⎨⎪=⎩直线BC 的表达式为:4y x 45=-+,当3x =时,85y =,故点835P (,);3()存在,理由:四边形OEBF 是以OB 为对角线且面积为12的平行四边形,则512E E OEBF S OB y y ⨯⨯四边形===,点E 在第四象限,故:则125E y =-,将该坐标代入二次函数表达式得:()24126555y x x -+==-,解得:2x =或4,故点E 的坐标为122,5(-或12,5(4-).题型二:一定两动模型模型作法结论点P 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得△PCD 周长最小.分别作点P 关于OA、OB 的对称点P ′、P ″,连接P ′P ″,交OA 、OB 于点C 、D ,点C 、D 即为所求.△PCD 周长的最小值为P ′P ″点P 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得PD +CD 最小.作点P 关于OB 的对称点P ′,过P ′作P ′C ⊥OA 交OB 于D ,点C 、点D 即为所求.PD +CD 的最小值为P ′C【例4】如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.【分析】△PMN 周长即PM +PN +MN 的最小值,此处M 、N 均为折点,分别作点P 关于OB 、OA 对称点P ’、P ’’,化PM +PN +MN 为P ’N +MN +P ’’M .当P’、N、M、P’’共线时,得△PMN周长的最小值,即线段P’P’’长,连接OP’、OP’’,可得△OP’P’’为等边三角形,所以P’P’’=OP’=OP=8.【例5】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.【例6】如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E 作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【答案】(1)结论:CF=2DG,理由见解析;(2)△PCD的周长的最小值为26.【详解】(1)结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴DGCF=DEDC=12,∴CF=2DG.(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG=52,552,DH=DE DGEG⋅5∴EH=2DH=25∴HM=DH EHDE⋅=2,∴=1,在Rt△DCK中,,∴△PCD的周长的最小值为.【例7】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.【答案】(1)抛物线解析式为y=﹣16x2+56x+4;D点坐标为(3,5);(2)M点的坐标为(0,169)或(0,119);(3)AM+AN.【详解】(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得91504a a cc++=⎧⎨=⎩,解得164ac⎧=-⎪⎨⎪=⎩,∴抛物线解析式为y=﹣16x2+56x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣16×9+56×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,=,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当CM CNCO CB=时,△CMN∽△COB,则∠CMN=∠COB=90°,即4145m m-+=,解得m=169,此时M点坐标为(0,169);当CM CNCB CO=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即4154m m-+=,解得m=119,此时M点坐标为(0,119);综上所述,M点的坐标为(0,169)或(0,119);(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值==,∴AM+AN.题型三:两定两动模型模型作法结论点P 、Q 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得四边形PQDC 周长最小.分别作点P 、Q 关于OA 、OB 的对称点P ′、Q ′,连接P ′Q ′,分别交OA 、OB 于点C 、D ,点C 、D 即为所求.PC +CD +DQ 的最小值为P ′Q ′,所以四边形PQDC 周长的最小值为PQ +P ′Q ′【例8】如图,在矩形ABCD 中,4AB =,7BC =,E 为CD 的中点,若P Q 、为BC 边上的两个动点,且2PQ =,若想使得四边形APQE 的周长最小,则BP 的长度应为__________.【答案】103【详解】解:如图,在AD 上截取线段AF=DE=2,作F 点关于BC 的对称点G ,连接EG 与BC 交于一点即为Q 点,过A 点作FQ 的平行线交BC 于一点,即为P 点,过G 点作BC 的平行线交DC 的延长线于H 点.∵E 为CD 的中点,∴CE=2∴GH=DF=5,EH=2+4=6,∠H=90°,∵BC//GH∴QCE~GHE,∴CQ EC GH EH=,∴2 56 CQ=,∴CQ=5 3,∴BP=CB-PQ-CQ=7-2-510 33 =.故答案为10 3.【例9】如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=304,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=______.【答案】16.【详解】作PE⊥l1于E交l2于F,在PF上截取PC=8,连接QC交l2于B,作BA⊥l1于A,此时PA+AB+BQ最短.作QD⊥PF于D.在Rt△PQD中,∵∠D=90°,PQ=,PD=18,∴DQ==,∵AB=PC=8,AB∥PC,∴四边形ABCP是平行四边形,∴PA=BC,CD=10,∴PA+BQ=CB+BQ=QC===16.故答案为16.题型四:两定点一定长正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2.当四边形BDEF的周长最小时,求点E的坐标.【解析】如图,将点D向右平移2个单位得到D'(2,2),作D'关于x轴的对称点D"(2,-2),连接BD"交x轴于点F,将点F向左平移2个单位到点E,此时点E和点F为所求作的点,且四边形BDEF周长最小.理由:∵四边形BDEF的周长为BD+DE+EF+BF,BD与EF是定值.∴BF+DE最小时,四边形BDEF周长最小,∵BF +ED =BF +FD '=BF +FD "=BD "设直线BD "的解析式为y =kx +b ,把B (6,4),D "(2,-2)代入,得6k +b =4,2k +b =-2,解得k =32,b =-5,∴直线BD "的解析式为y =32x -5.令y =0,得x =103,∴点F 坐标为(103,0).∴点E 坐标为(43,0).【例11】村庄A 和村庄B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A 与B 之间的距离最短?ABl 2l 1【解答】设l 1和l 2为河岸,作BD ⊥l 2,取BB '等于河宽,连接AB '交l 1于C 1,作C 1C 2⊥l 2于C 2,则A →C 1→C 2→B 为最短路线,即A 与B 之间的距离最短.提分作业1.如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为()A .3B .4C .33D .3【解析】此处E点为折点,可作点C关于AD的对称,对称点C’在AB上且在AB中点,化折线段CE+EF为C’E+EF,当C’、E、F共线时得最小值,C’F为CB的一半,故选C.2.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是()A3B.2C.3D.4【解析】此处M点为折点,作点N关于BD的对称点,恰好在AB上,化折线CM+MN为CM+MN’.因为M、N皆为动点,所以过点C作AB的垂线,可得最小值,选C.3.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9D.92【答案】A【详解】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=13CD=3,∴BE2293 =310.故选A.4.如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE 的最小值_____.【答案】10【详解】解:如图:连接DE交AC于点P,此时PD=PB,PB+PE=PD+PE=DE为其最小值,∵四边形ABCD为正方形,且BE=2,AB=8,∴∠DAB=90°,AD=AB=8,AE=AB-BE=6,在Rt△ADE中,根据勾股定理,得DE22AD AE+2286+=10.∴PB+PE的最小值为10.故答案为10.5.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB 上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.【答案】(32,32).【详解】解:作N 关于OA 的对称点N ′,连接N ′M 交OA 于P ,则此时,PM +PN 最小,∵OA 垂直平分NN ′,∴ON =ON ′,∠N ′ON =2∠AON =60°,∴△NON ′是等边三角形,∵点M 是ON 的中点,∴N ′M ⊥ON ,∵点N (3,0),∴ON =3,∵点M 是ON 的中点,∴OM =1.5,∴PM =2,∴P (32,2).故答案为:(32,2).6.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF +CF 取得最小值时,则∠ECF 的度数为多少?【答案】∠ECF =30º【解析】过E 作EM ∥BC ,交AD 于N ,如图所示:∵AC =4,AE =2,∴EC =2=AE ,∴AM =BM =2,∴AM =AE ,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD ⊥BC ,∵EM ∥BC ,∴AD ⊥EM ,∵AM =AE ,∴E 和M 关于AD 对称,连接CM 交AD 于F ,连接EF ,则此时EF +CF 的值最小,∵△ABC 是等边三角形,∴∠ACB =60º,AC =BC ,∵AM =BM ,∴∠ECF =∠ACB =30º.7.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点.(1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.【解析】(1)如图,作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,连接DE ,由模型可知△CDE 的周长最小.∵在矩形OACB 中,OA =3,OB =4,D 为OB 的中点,∴D (0,2),C (3,4),D '(0,-2).设直线CD '为y =kx +b ,把C (3,4),D '(0,-2)代入,得3k +b =4,b =-2,解得k =2,b =-2,∴直线CD '为y =2x -2.令y =0,得x =1,∴点E 的坐标为(1,0).∴OE =1,AE =2.利用勾股定理得CD =13,DE =5,CE =25,∴△CDE 周长的最小值为13+35.(2)如图,将点D 向右平移1个单位得到D '(1,2),作D '关于x 轴的对称点D ″(1,-2),连接CD ″交x 轴于点F ,将点F 向左平移1个单位到点E ,此时点E 和点F 为所求作的点,且四边形CDEF 周长最小.理由:∵四边形CDEF 的周长为CD +DE +EF +CF ,CD 与EF 是定值,∴DE +CF 最小时,四边形BDEF 周长最小,∴DE +CF =D 'F +CF =FD ″+CF =CD ″,设直线CD ″的解析式为y =kx +b ,把C (3,4),D (1,-2)代入,得3k +b =4,k +b =-2,解得k =3,b =-5.∴直线CD ″的解析式为y =3x -5,令y =0,得x =53,∴点F 坐标为(53,0),∴点E 坐标为(23,0).8.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小值1;(3)12(4,5),(8,45)P P --【详解】(1)∵OB=OC ,∴点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,故-3a=3,解得:a=-1,故抛物线的表达式为:y=-x 2+2x+3…①;对称轴为:直线1x =(2)ACDE 的周长=AC+DE+CD+AE ,其中、DE=1是常数,故CD+AE 最小时,周长最小,取点C 关于函数对称点C (2,3),则CD=C′D ,取点A′(-1,1),则A′D=AE ,故:CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,四边形ACDE 的周长的最小值=AC+DE+CD+AE=;(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分,又∵S △PCB :S △PCA =12EB×(y C -y P ):12AE×(y C -y P )=BE :AE ,则BE :AE ,=3:5或5:3,则AE=52或32,即:点E 的坐标为(32,0)或(12,0),将点E 、C 的坐标代入一次函数表达式:y=kx+3,解得:k=-6或-2,故直线CP 的表达式为:y=-2x+3或y=-6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P 的坐标为(4,-5)或(8,-45).9.如图,在平面直角坐标系中,矩形OABC 的边BC 交x 轴于点D ,AD x ⊥轴,反比例函数(0)k y x x=>的图象经过点A ,点D 的坐标为(3,0),AB BD =.(1)求反比例函数的解析式;(2)点P 为y 轴上一动点,当PA PB +的值最小时,求出点P 的坐标.【答案】(1)9y x =;(2)12(0,)5【详解】解:(1)∵OABC 是矩形,∴90B OAB ︒∠=∠=,∵AB DB =,∴45BAD ADB ︒∠=∠=,∴45OAD ∠=,又∵AD x ⊥轴,∴45OAD DOA ︒∠=∠=,∴OD AD =,∵(3,0)D ∴3OD AD ==,即(3,3)A 把点(3,3)A 代入的k y x=得,9k =∴反比例函数的解析式为:9y x=.答:反比例函数的解析式为:9y x =.(2)过点B 作BE AD ⊥垂足为E ,∵90B =∠,AB BD =,BE AD⊥∴1322AE ED AD ===,∴39322OD BE +=+=,∴93(,)22B ,则点B 关于y 轴的对称点193(,22B -,直线1AB 与y 轴的交点就是所求点P ,此时PA PB +最小,设直线AB 1的关系式为y kx b =+,将(3,3)A ,193(,)22B -,代入得,339322k b k +=⎧⎪⎨-+=⎪⎩解得:15k =,125b =,∴直线1AB 的关系式为11255y x =+,当0x =时,125y =,∴点12 (0,)5 P答:点P的坐标为12 (0,)5.10.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【详解】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).。
初中数学中考二轮专题专题6 动点最值之瓜豆模型(老师版)
专题6 动点最值之瓜豆模型模型一、运动轨迹为直线问题1:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?解析:当P 点轨迹是直线时,Q 点轨迹也是一条直线.理由:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP=2AQ ,所以QN 始终为AM 的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线.问题2:如图,点C 为定点,点P 、Q 为动点,CP=CQ ,且∠PCQ 为定值,当点P 在直线AB 上运动,Q 的运动轨迹是?解析:当CP 与CQ 夹角固定,且AP =AQ 时,P 、Q 轨迹是同一种图形,且PP 1=QQ 1理由:易知△CPP 1≌△CPP 1,则∠CPP 1=CQQ 1,故可知Q 点轨迹为一条直线.模型总结:条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:① 主动点、从动点的运动轨迹是同样的图形;② 主动点路径做在直线与从动点路径所在直线的夹角等于定角③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;例1.如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.【解析】求OP 最小值需先作出P 点轨迹,根据△ABP 是等边三角形且B 点在直线上运动,故可知P 点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.根据∠ABP =60°,可知:与y 轴夹角为60°,作OP ⊥,所得OP 长度即为最小值,OP 2=OA =3,所以.例2.如图,已知点A 是第一象限内横坐标为的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.【分析】∵∠PAB =90°,∠APB =30=,故且P 点轨迹路径长之比也为,P 点轨迹长ON ,故B .【变式训练1】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG,求CG 的最小值是多少?【答案】【解析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在位置,最终G 点在位置(不一定在CD 边),即为G 点运动轨迹.CG 最小值即当CG ⊥的时候取到,作CH ⊥于点H ,CH 即为所求的最小值.根据模型可知:与AB 夹角为60°,故⊥.过点E 作EF ⊥CH 于点F ,则HF ==1,因此CG .【变式训练2】如图,△ABC 是边长为6的等边三角形,点E 在AB 上,点D 为BC 的中点,△EDM 为等边三角形.若点E 从点B 运动到点A ,则M 点所经历的路径长为 6 .GABCDEF 22【解答】解:当点E在B时,M在AB的中点N处,当点E与A重合时,M的位置如图所示,所以点E从点B运动到点A,则M点所经历的路径为MN的长,∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,∠BAD=30°,∵AB=6,∴AD==3,∵△EDM是等边三角形,∴AM=AD=3,∠DAM=60°,∴∠NAM=30°+60°=90°,∵AN=AB=3,在Rt△NAM中,由勾股定理得:MN===6,则M点所经历的路径长为6,故答案为:6.【变式训练3】如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF 为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E 的运动路径长是 .【解答】解:E的运动路径是线段EE'的长;∵AB=4,∠DCA=30°,∴BC=,当F与A点重合时,在Rt△ADE'中,AD=,∠DAE'=30°,∠ADE'=60°,∴DE'=,∠CDE'=30°,当F与C重合时,∠EDC=60°,∴∠EDE'=90°,∠DEE'=30°,在Rt△DEE'中,EE'=;故答案为.【变式训练4】如图,已知线段AB=12,点C在线段AB上,且△ACD是边长为4的等边三角形,以CD为边的右侧作矩形CDEF,连接DF,点M是DF的中点,连接MB,则线段MB的最小值为 .【答案】6【解析】如图所示,∵∠FCB=30º,∴F的路径是定射线DF,又∵点M是DF的中点,∴∵D点为定点,F点为主动点,M点为从动点,由瓜豆原理内容可知M点的路径亦是一条射线,取CD的中点N,连接NM并延长,则射线NM就是M点的路径,且NM∥CF,作BG⊥NM于点G,交CF于点H,则BG⊥CF,故BG=BH+HG=BH+CN=4+2=6,∴线段BM的最小值即为BG,最小值为6.模型二、运动轨迹为圆问题1.如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?解析:Q点轨迹是一个圆理由:Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,.问题2.如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?解析:Q点轨迹是一个圆理由:∵AP⊥AQ,∴Q点轨迹圆圆心M满足AM⊥AO;又∵AP:AQ=2:1,∴Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.模型总结:条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.例1.如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.Q1=2QM AQPO AP【答案】1.5【解析】由题意可知M 点为主动点,C 点为从动点,B 点为定点.∵C 是BM 中点,可知C 点轨迹为取BP 中点F ,以F 为圆心,FC 为半径作圆,即为点C 轨迹,如图所示:由题中数据可知OP =5,又∵点A 、F 分别是OB 、BP 的中点,∴AF 是△BPO 的中位线,∴AF =2.5,当M 运动到如图位置时,AC 的值最小,此时A 、C 、O 三点共线,∴AC =2.5-1=1.5.例2.如图,A 是⊙B 上任意一点,点C 在⊙B 外,已知AB =2,BC =4,△ACD 是等边三角形,则的面积的最大值为( )A .4B .4C .8D .6【答案】A【详解】解:如图,以BC 为边向上作等边三角形BCM ,连接DM ,∵,∴,即在和中,,∴,∴,∴点D 的运动轨迹是以点M 为圆心,DM 长为半径的圆,要使面积最大,则求出点D 到线段BC 的最大距离,∵是边长为4的等边三角形,∴点M 到BC 的距离是∴点D 到BC 的最大距离是,∴的面积最大值是.故选:A .例3.如图,正方形ABCD 中,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE FBCD △60DCA MCB ∠=∠=︒DCA ACM MCB ACM ∠-∠=∠-∠DCM ACB=∠∠DCM △ACB △DC AC DCM ACB MC BC =⎧⎪∠=∠⎨⎪=⎩()DCM ACB SAS ≅V V 2DM AB ==BCD △BCM V 2BCD △()14242⨯⨯=AB =【解析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.考虑DE ⊥DF 且DE =DF ,故作DM ⊥DO 且DM =DO ,F 点轨迹是以点M 为圆心,2为半径的圆.直接连接OM ,与圆M 交点即为F 点,此时OF 最小.可构造三垂直全等求线段长,再利用勾股定理求得OM ,减去MF 即可得到OF 的最小值.答案为【变式训练1】如图,在等腰Rt △ABC 中,AC =BC =,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【答案】π【解析】当点AB 的中点时,M 为AB的中点,,设分别为AC 、BC 的中点,连接交CP 于点O,如图所示:∵,当点P 沿半圆从点A 运动至点B 时,点M 的运动路径是以O 为圆心,1为半径的半圆,如图蓝色半圆,∴点M的运动路径长为π.【变式训练2】如图,AB 为的直径,C 为上一点,其中,,P 为上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为( )O e O e 6AB =120AOC ∠=︒O eA.B.C.D.【答案】D【详解】如图,连接OQ,作CH⊥AB于H.∵AQ=QP,∴OQ⊥PA,∴∠AQO=90°,∴点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,∵∴∠COH=60°在Rt△OCH中,∵∠COH=60°,OC=AB=3,∴OH=OC=,CH,在Rt△CKH中,CKCQ的最大值为,故选:D.【变式训练3】如图,中,于点是半径为2的上一动点,连结,若是的中点,连结,则长的最大值为()A.3B.C.4D.【答案】B【详解】解:如图,可知P在BA延长线与的交点时此时长的最大,证明如下:连接BP,∵,∴BD=DC,∵是的中点,∴DE//BP, ,32+2+32120AOC∠=︒121232==32ABCV,6,AB AC BC AD BC==⊥,4,D AD P=Ae PC E PC DE DE3.54.5Ae DE,6,AB AC BC AD BC==⊥E PC12DE BP=所以当BP 的长最大时,长的最大,由题意可知P 在BA 延长线与的交点时BP 的长最大此时长的最大,∵BC =6,AD =4,∴BD =DC =3,BA =5,∵的半径为2,即AP =2,∴BP =5+2=7,∴.故选:B.课后训练1.如图,在△ABC 中,∠ACB =90º,∠A =30º,BC =2,D 是AB 上一动点,以DC 为斜边向右侧作等腰Rt △DCE ,使∠CED =90º,连接BE ,则线段BE 的最小值为 .【解答】【解析】由题意可知C 为定点,DAB ,点E 为从动点,∵△DCE 是等腰直角三角形,∴∠DCE =45º,,E 的路径为一条线段,可以看成是由线段AB先绕着定点C 逆时针旋转45º,再以定点C 为位似中心,以为位似比缩小来的,如图,将BE的最小距离转化为点到线的最小距离(点B 的最短距离),,中,有∴线段BE 的最小值为3.如图,,点O 在线段上,,的半径为1,点P 是上一动点,以为一边作等边,则的最小值为_____.DE A e DE A e 13.52DE BP ==6AB =AB 2AO =O e O e BP BPQ V AQ【答案】【详解】解:如图,在上方以为一边作等边,连接,和都是等边三角形,,,即,在和中,,,,点在以点为圆心,长为半径的圆上,如图,设与交于点,过点作于点,则,则当点与点重合时,取得最小值,最小值为,,,是等边三角形,,,,在中,,即的最小值为,故答案为:.4.点A是双曲线在第一象限上的一个动点,连接AO并延长交另一交令一分支点B ,以AB 为斜边作等腰Rt△ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也在不断变化,但始终在某函数图像上运动,则这个函数的解析式为.【答案】【解析】连接OC ,作CD ⊥轴于点D ,AE ⊥轴于点E ,如图所示:设点A 的坐标为,∵A 、B 两点是正比例函数图像与反比例函数图像的交点,∴点A 与点B 关于原点对称,∴OA =OB ,∵△ABC 为等腰直角三角形,∴OC =OA ,OC ⊥OA ,∴∠DOC +∠AOE =90º,∵∠DOC +∠DCO =90º,∴∠DCO =∠AOE ,1AB OB OBC V ,,OP CQ AC V OBC BPQ V ,,60OB CB BP BQ OBC PBQ ∴==∠=∠=︒OBC PBC PBQ PBC ∴∠-∠=∠-∠OBP CBQ ∠=∠OBP V CBQ △OB CB OBP CBQ BP BQ =⎧⎪∠=∠⎨⎪=⎩()OBP CBQ SAS ∴≅V V 1CQ OP ∴==∴Q C CQ AC C e D C CM AB ⊥M 1CD =Q D AQ AD 2,6AO AB ==Q 4OB AB AO ∴=-= V OBC CM AB ⊥14,22OC OB OM OB ∴====4CM AM AO OM ∴===+=Rt ACM △AC ==1AD AC CD =-=-AQ 11在△COD与△OAE中,,∴△COD≌△OAE(AAS),,,∴点C在反比例函数的图像上.7.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=2,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为____________.【详解】解:如图,连接OQ,作CH⊥AB于H.∵AQ=QP,∴OQ⊥PA,∴∠AQO=90°∴点Q的运动轨迹为以AO为直径的⊙K,连接CK当点Q在CK的延长线上时,CQ的值最大,在中,∵∠COH=60°,OC=1,∴OH=,在中,CQ8.如图,已知点M(0,4),N(4,0),开始时,△ABC的三个顶点A、B、C分别与点M、N、O重合,点A在y轴上从点M开始向点O滑动,到达点O结束运动,同时点B沿着x轴向右滑动,则在此运动过程中,点C的运动路径长 4 .【解答】解:过点C'作C'D⊥x轴,C'E⊥y轴∵点M(0,4),N(4,0),∴OM=ON,∵∠CA'C'+45°=∠EAB+∠MGB=45°+∠MGB,∴∠EA'C'=∠B'GB,∵∠B'GB+∠GB'B=45°,∠GB'B+∠DB'C'=45°,∴∠EA'C'=∠DB'C',又∵A'C'=B'C',∴Rt△A'C'E≌Rt△B'C'D(HL),∴EC'=DC',∴C'在第四象限的角平分线上,∴C的运动轨迹是线段AC,∴C的运动路径长为4;故答案为4;Rt OCHn1122OC=CH=Rt CKHn CK==9.如图,已知在扇形AOB中,OA=3,∠AOB=120º,C是在上的动点,以BC为边作正方形BCDE,当点C从点A移动至点B时,求点D运动的路径长?【解析】将圆O补充完整,延长BO交圆O于点F,取的中点H,连接FH、HB、BD,如图所示:由题意可得△FHB是等腰直角三角形,HF=HB,∠FHB=90º,∵∠FDB=45FHB,∴点D在圆H上运动,轨迹如图中蓝色虚线,∴∠HFG=∠HCF=15CHB=120º,∴∴点D。
2023年安徽中考数学总复习专题:最值问题(PDF版,有答案)
2023年安徽中考物理总复习专题:最值问题类型一单动点求两线段和的最小值将军饮马问题:两点在一直线同侧时,作一个点的对称点与另一个点连接,所得线段的长即为所求。
典例1如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,点P是边BC上一动点,点D在边AB上,且BD=14AB,则PA+PD的最小值为( )A.8B.43C.213D.833【思路】作D关于BC的对称点E,连接AE交BC于P,则PA+PD的值最小,过E作EF⊥AC交AC的延长线于F,过D作DH⊥AC于H,则DH=EF,DH∥BC,根据勾股定理即可得到结论.解:作D关于BC的对称点E,连接AE交BC于P,则PA+PD的值最小,过E作EF⊥AC 交AC的延长线于F,过D作DH⊥AC于H,则DH=EF,DH∥BC,∵∠ACB=90°,∠B=30°,AB=8,∴AC=12AB=4,∠ADH=∠B=30°,∵BD=14AB=2,∴AD=6,CF=12DE=12BD=1,∴AF=5,∴DH=AD2―AH2=33,∴EF=33,∴AE=AF2+EF2=213,∴PA+PD的最小值为213.【总结】本题考查了轴对称﹣最短路线问题,含30°角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.针对训练1如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,AD=5,BE=6,P是AD上的一个动点,连接PE,PC,则PC+PE的最小值是( )A.5B.6C.7D.8类型二求一条线段的最小值垂线段最短典例2如图,OP平分∠AOB,PD⊥OA于点D,点E是射线OB上的一个动点,若PD=3,则PE的最小值是 .【思路】过P作PE⊥OB于E,根据垂线段最短得出此时PE的长最小,根据角平分线的性质得出PE=PD,再求出答案即可.解:过P作PE⊥OB于E,此时PE的长最小,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PE=PD,∵PD=3,∴PE=3,即PE的最小值是3.【总结】本题考查了垂线段最短和角平分线的性质,能找出当PE最小时点E的位置是解此题的关键.针对训练2如图,在△ABC中,∠C=90°,BD为△ABC的角平分线,过点D作直线l∥AB,点P为直线l上的一个动点,若△BCD的面积为16,BC=8,则AP最小值为 .类型三双动点求两线段和的最小值将军饮马问题与垂线段最短的综合典例2如图,在Rt△ABC中,∠ABC=90°,AB=6,∠BAC=30°,∠BAC的平分线交BC 于点D,E,F分别是线段AD和AB上的动点,则BE+EF的最小值是 .【思路】根据对称性,过点F作FG⊥AC交AD于点Q,连接BG交AD于点E,此时BG=BE+EF,当BG垂直于AC30°直角三角形的边的性质即可求解.解:方法一:如图1所示:在AC边上截取AB′=AB,作B′F⊥AB于点F,交AD于点E,∵AD平分∠BAC,∴∠BAE=∠B′AE,AE=AE,∴△ABE≌△AB′E(SAS).∴BE=B′E,∴B′F=B′E+EF=BE+EF,∵垂线段最短,∴此时BE+EF最短.∵AB=AB′=6,∠BAC=30°,∴B′F=12AB′=3.方法二:如图2所示:在AC边上截取AG=AF,连接BG交AD于点E,作BH⊥AC于点H,同方法一:得△AEG≌△AFG(SAS)∴EG=EF,∴BG=BE+EG=BE+EF,当BG垂直于AC时最短,即BH的长最短,∵AB=6,∠BAC=30°,∴BH=3.【总结】本题考查了最短路线问题、角分线的性质、含30度角的直角三角形,解决本题的关键是作对称点.针对训练3 已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是( )A.5B.3C.245D.72针对训练4 在四边形ABCD中,∠ABC=60°,∠BCD=45°,BC=23+2,BD平分∠ABC,若P,Q分别是BD,BC上的动点,则CP+PQ的最小值是( )A.23+2B.3+3C.22+2D.2+4类型四一点两线求周长最小值根据轴对称的性质,结合三角形三边关系定理典例4 如图,∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是( )A.5B.15C.20D.30【思路】根据题意画出符合条件的图形,求出OD=OE=OP,∠DOE=60°,得出等边三角形DOE,求出DE=15,求出△PMN的周长=DE,即可求出答案.解:作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB 于N,连接PM,PN,则此时△PMN的周长最小,连接OD,OE,∵P、D关于OA对称,∴OD=OP,PM=DM,同理OE=OP,PN=EN,∴OD=OE=OP=15,∵P、D关于OA对称,∴OA⊥PD,∵OD=OP,∴∠DOA=∠POA,同理∠POB=∠EOB,∴∠DOE=2∠AOB=2×30°=60°,∵OD=OE=15,∴△DOE是等边三角形,∴DE=15,即△PMN的周长是PM+MN+PN=DM+MN+EN=DE=15.【总结】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.针对训练5 如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,∠EAF的度数为( )A.60°B.90°C.100°D.120°类型五求两条线段差的最大值两点在一直线两侧时,作一个点的对称点,再将对称点与另一点连接所得线段的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得 y=-15x+1,∴yy==12-x,15x+1,解得yx==5717,0,
∴点 P 的坐标为(170,57)
4.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动, 当点P到A,B两点距离之差的绝对值最大时,求点P的坐标.
【解析】由三角形两边之差小于第三边可知,当A,B,P三点不共线时, |PA-PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A,B,P 三点共线时,|PA-PB|=AB,即|PA-PB|≤AB,所以本题中当点P到A,B 两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直 线AB的解析式,再令y=0,求出x的值即可.
解:(1)设抛物线的解析式为 y=ax2+bx+c, 将 A(1,0),B(0,3),C(-4,0)代入, 解得 a=-34,b=-94,c=3,∴y=-34x2-94x+3
(2)设直线 PA 的解析式为 y=kx+b(k≠0),将 A(1,0),P(5,3)代入解得 k=34,
b=-34,∴y=34x-34,当点 M 与点 P,A 不在同一直线上时,根据三角形的三 边关系|PM-AM|<PA,当点 M 与点 P,A 在同一直线上时,|PM-AM|=PA, 此时|PM-AM|的值最大,即点 M 为直线 PA 与抛物线的交点,
专题6 最值问题
1.如图,MN 是⊙O 的直径,MN=4,点 A 在⊙O 上, ∠AMN=30°,B 为A︵N的中点,P 是直径 MN 上一动点. (1)利用尺规作图,确定当 PA+PB 最小时点的位置 (不写作法,但要保留作图痕迹); (2)求 PA+PB 的最小值.
【解析】A,B的位置与直线MN有什么关系?根据这种关系最小值是一 个什么模型?如何作图?
解方程组yy==43-x-34x324-,49x+3,得xy11==10,或yx22==--952,,
∴点 M 的坐标为(1,0)或(-5,-92)时, |PM-AM|的值最大,最大值为 5
பைடு நூலகம்
6.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm,底面周长 为10 cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁 正好在容器外壁,且离容器上沿3 cm与饭粒相对的点A处,求蚂蚁吃到饭 粒需爬行的最短路径. 【解析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段 最短可知A′B的长度即为所求.
【解析】C,D的位置与直线OA有什么关系? 作点D还是点C关于x轴的对称点方便求解?
解:作点 D 关于 x 轴的对称点 D′,连结 CD′交 x 轴于点 P, 此时 PC+PD 值最小,如图所示.点 B 的坐标为(0,4), 点 A 的坐标为(-6,0).∵点 C,D 分别为线段 AB,OB 的中点, ∴点 C(-3,2),点 D(0,2).∵点 D′和点 D 关于 x 轴对称, ∴点 D′的坐标为(0,-2).设直线 CD′的解析式为 y=kx+b,
将点 C(-3,2),D′(0,-2)代入,解得k=-43, b=-2,
∴直线 CD′的解析式为 y=-43x-2. 令 y=0,解得 x=-32,∴点 P 的坐标为(-32,0)
3.(原创题) 已知菱形 OABC 在平面直角坐标系的位置如图所示, 顶点 A(5,0),OB=4 5,点 P 是对角线 OB 上的一个动点, D(0,1),当 CP+DP 最短时,求点 P 的坐标.
解:由题意可知,当点 P 到 A,B 两点距离之差的绝对值最大时, 点 P 在直线 AB 上.设直线 AB 的解析式为 y=kx+b, ∵A(0,1),B(1,2),∴bk=+1b,=2,解得kb==11,,∴y=x+1, 令 y=0,得 0=x+1,解得 x=-1,∴点 P 的坐标是(-1,0)
5.(原创题)如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的 三个点,且OA=1,OB=3,OC=4. (1)求经过A,B,C三点的抛物线的解析式; (2)当点P的坐标为(5,3)时,若点M为该抛物线上一动点,请求出当|PM- AM|的最大值时点M的坐标,并直接写出|PM-AM|的最大值.
易知 Rt△OEF∽Rt△OAE,∴OOAE=AEEF,∴EF=OEO·AAE=2
5× 5
5=2,
∴OF= OE2-EF2= (2 5)2-22=4,∴E 点坐标为 E(4,2).
设直线 OE 的解析式为 y=k1x,将 E(4,2)代入,得 y=12x,
设直线 AD 的解析式为 y=k2x+b,将 A(5,0),D(0,1)代入,
解:如图,P点即为所求的点.(找B点关于直径MN的对称点也可,或用尺规 过直线外一点作已知直线的垂线,找A点或B点的对称点即可)
(2)PA+PB 的最小值即为 A′B 的长.连结 OA′,OB,OA. ∵A′点为点 A 关于直线 MN 的对称点,∠AMN=30°, ∴∠AON=∠A′ON=2∠AMN=2×30°=60°,又∵B 为A︵N的中点,
∴A︵B=B︵N,∴∠BON=∠AOB=12∠AON=12×60°=30°, ∴∠A′OB=∠A′ON+∠BON=60°+30°=90°,又∵MN=4,
∴OA′=OB=12MN=12×4=2,∴在 Rt△A′OB 中, A′B= 22+22=2 2,即 PA+PB 的最小值为 2 2
2.如图,直线 y=23x+4 与 x 轴,y 轴分别交于点 A 和点 B, 点 C,D 分别为线段 AB,OB 的中点,点 P 为 OA 上一动点, 求 PC+PD 值最小时点 P 的坐标.
解:如图,连结 AD,交 OB 于点 P,P 即为所求的使 CP+DP 最短的点. 连结 CP,AC,AC 交 OB 于点 E,过 E 作 EF⊥OA,垂足为 F. ∵点 C 关于 OB 的对称点是点 A,∴CP=AP,∴AD 即为 CP+DP 最短距离.
∵四边形 OABC 是菱形, OB=4 5,∴OE=12OB=2 5,AC⊥OB, 又∵A(5,0),∴在 Rt△AEO 中,AE= OA2-OE2= 52-(2 5)2= 5.