光外差检测系统
外差检测概要
此电压在负载电阻 R L 上流过的电流为
Vs g d jCd iIF is Z d RL g d jCd 1 RL g d jCd ( RL RS )
1 RL g d
RL
iIF jCd ( RL RS )
SNR po
PS hf IF
2 * * EL ES dA EL EL dA * * * EL EL dA ES ES dA EL EL dA
PS meff eff hf IF
SNR po
(2.2.18)
式中
g d 1 Rd
'
为半导体光电二极管的电导,通常有 Rs g d 1
Rd Rs jCd Rd Rs 1 Rs g d jCd Rs Z d Z Rs 1 jCd Rd g d jCd
1 jC d Rs g d jC d
则光外差信号流过光电二极管的中频电流 i IF 产生的光生电压为
等效电路及等效电压发生器电路见下图
图8.2 光伏探测器恒流源等效电路
图8.3 光伏探测器等效电压发生器电路
(2)先求信号功率
由图8.2知
1 Z' 1 jC d R d 1 1 Rd 1 ( jC d ) Rd
对等式两边取倒数
Z'
Rd 1 1 jCd Rd g d jCd
经带通滤波器后的霰弹噪声和热噪声功率为
2 e
2
2
(2.2.9)
Pno 2eG PS PL PB I d f IF RL 4kTf IF (2.2.10) h
第八章 光外差探测8.1-8.4
在完善的空间准直条件下,信号光电场和本振光 电场分别为
当信号光和本振光重合垂直入射到光混频器上 时,则光混频器输出的瞬时光电流为
相位差项不受短时间平均的影响,倍频项的平均值为零,第1和第2两项 直流项被滤波器滤除
因此,负载电阻上的信号电压为
峰值信号功率
在光零差探测系统中,如果仅限于考虑不可能消 除的散粒噪声和热噪萨,则噪声功卒
3 光外差探测的频率条件 光外差探测除了要求信号光和本振光必须保持 空间准直以外,还要求两者具有高度的单色性 和频率稳定度。 从物理光学的观点来看,光外差探测(或相干 探测)是两束光波达加后产生干涉的结果。 显然,这种干涉取决于信号光束和本扳光束 的单色性。
光的单色性:是指这种光只包含一种频率或光谱线 极窄的光。
在光外差探测系统中遇到的噪声与直接探测系统中 的噪声基本相同,存在多种可能的噪声源。在此只 考虑不能消除或难以抑制的散粒噪声和热噪声两种。
在带宽为Δ fIF的带通滤波器输出端,电噪声功率 为
式中,PB为背景辐射功率,ID是光混频器的暗 电流。 前一项为信号光、本振光、背景辐射和光混 频器暗电流所引起的散粒噪声项,后一项为 光混频器内阻和前置放大器负载电阻所引起 的热噪声项。
根据信号噪声比定义,中频滤波器输出端的信号 噪声(功率)比为
(10) 当本振光功率PL 足够大时,上式分母中由本振 光引起的散粒噪声远远大于所有其它噪声,则式 变为
这是光外差探测系统所能达到的最大信噪比,一般把这种情况称为 光外差探测的量子探测极限或量子噪声限。
从式(10)可导出实现量子噪声限探测的条件为
上述两种情况带宽之比
可见,相干探测对背景光谱有很好的抑制作用。
四、有利于微弱光信号的探测
在直接探测中光探测器输出的电功率正比于信号 光平均光功率的平方。 在相干探测中光混频器输出的中频信号功率正比 于信号光和本振光平均光功率的乘积 在一般的实际情况下,入射到光探测器上的信 号光功率是非常小的(尤其在远距离上应用,例 如光雷达、光通信等应用),
光电检测技术光电检测技术试卷(练习题库)(2023版)
光电检测技术光电检测技术试卷(练习题库)1、光电检测系统通常由哪三部分组成?2、光电效应包括哪些?3、外光电效应4、内光电效应5、简述内光电效应的分类?6、光电导效应7、光生伏特效应8、光电池是根据什么效应制成的将光能转换成电能的器件,按用途可分为哪几种?9、激光的定义,产生激光的必要条件有什么?10、热释电器件必须在什么样的信号的作用下才会有电信号输出?11、 CCD是一种电荷耦合器件,CCD的突出特点是以什么作为信号,CCD的基本功能是什么?12、根据检查原理,光电检测的方法有哪四种?13、光热效应应包括哪三种?14、一般PSD分为两类,一维PSD和二维PSD,他们各自用途是什么?15、真空光电器件是基于什么效应的光电探测器,它的结构特点是有一个真空管,其他元件都在真空管中,真空光电器16、响应度(或称灵敏度)17、亮电流18、光电信号的二值化处理19、亮态前历效应20、热释电效应21、暗态前历效应22、简述雪崩光电二极管的工作原理?23、简述光生伏特效应与光电导效应的区别?24、简述光生伏特效应与光电导效应的联系?25、什么是敏感器?26、简述敏感器与传感器的区别?27、简述敏感器与传感器的联系?28、简述发光二极管的工作原理?29、简述PIN型的光电二极管的结构?30、简述PIN型的光电二极管的工作原理?31、简述PIN型的光电二极管的及特点?32、简述光电检倍增管的结构组成?33、简述光电检倍增管的工作原理?34、简述CCD器件的结构?35、简述CCD器件的工作原理?36、举例说明补偿测量方法的原理?37、举例说明象限探测器的应用。
38、坎德拉(Candela,cd)39、象增强管40、本征光电导效应41、信息载荷于光源的方式信息载荷于透明体的方式、信息载荷于反射光的方式、信息载荷于遮挡光的方式、信息载荷42、光源选择的基本要求有哪些?43、光电倍增管的供电电路分为负__供电与正__供电,试说明这两种供电电路的特点,举例说明它们分别适用于哪44、为什么结型光电器件在正向偏置时,没有明显的光电效应?它必须在那种偏置状态?为什么?45、为什么发光二极管的PN结要加正向电压才能发光?而光电二极管要零偏或反偏才能有光生伏特效应?46、简述三种主要光电效应的基本工作原理?47、光电探测器与热电探测器在工作原理、性能上有什么区别?48、简述光电探测器的选用原则?49、简述光电池、光电二极管的工作原理及区别?50、叙述实现光外差检测必须满足的条件?51、光具有的一个基本性质是()。
外差(相干)探测系统 2013.4.26
初位相。
这二列波叠加的结果为:
x 1 2 Es {2 E cos[ (t ) ]} 2 c 2 1 2 x 1 2 cos[ (t ) ] 1 2 c / 1 2 c 2
iC t As AL cos L s
这是外差探测的一种特殊形式,称为零差探测。
外差检测与直接检测的性能比较
• 探测能力强:光波的振幅、相位及频率的变化 都会引起光电探测器的输出,因此外差探测不 仅能够检测出振幅和强度调制的光波信号,而 且可以检测出相位和频率调制的光信号
基本特性
fs fL
(8.1 - 16)
外差探测具有更窄的接收带宽,即对背景光有良好
的滤波性能。
• 滤波性能好
– 形成外差信号,要求信号光和本征信号空间严 格对准,而背景光入射方向是杂乱无章的,偏 振方向也不确定,不能满足外差空间调准要求, 不能形成有效的外差信号,因此该方法可以滤 掉背景光 – 同时通过检测通道的通频带刚好覆盖有用的外 差信号的频谱范围,这样杂散光形成的拍频信 号也可以被滤掉
那么测出这个低频的波速,也就测出了光速。
问题5:如何将光信号变成含低频成份的“光 拍”信号?
原理:根据振动叠加原理,两列速度相 同、振面相同、频差较小而同向传播的简谐
波的叠加即形成拍。
设有两列振幅相同、频率分别为f1和f2,且 频差△f= f1-f2很小的二列波:
E1 E cos(1t k1 x 1 ) E2 E cos( 2t k2 x 2 )
•
q / h ; :
两束光频率必须足够接近,差频信号才能处于探测器的通 频带范围内
光电检测技术与应用-7光电检测系统
2.3 直接检测系统的视场角
视场角表示系统能检测到的空间范 围,是检测系统的性能指标之一。对于检 测系统,被测物看作是在无穷远处,且物 方与像方介质相同。当检测器位于焦平面 上时,其半视场角为:
物镜
u'
检测器
D
d
5-19 f' Ad 直接检测系统视场角 或视场角立体角Ω为: 2 f 从观察角度讲,希望视场角愈大愈好,即大检测器面积或减小光学系统的焦
经大气传播后到达接收光学系统表面的光谱辐射照度
I e 1 E e 2 L
入射到检测器上的光谱功率
Ee 为:
1 为被测距离L内的大气光谱透过率;
L为目标到光电检测系统的距离
Pe Ee A0 0
I e 1 2 A0 0 L
2
1
Pe
为:
A0为接收光学系统的入射 孔径面积
1为接收光学系统的光谱 透过率
根据目标辐射强度最大的波段范围及所选取检测器光谱响应范围共同决定选取的 λ1―λ2的辐射波段,可得到检测器的输出信号电压为:
Vs
2
1
A0 Pe RV d 2 L
I e 1 0 RV d
RV为检测器的光谱响应度
3.1 被动检测系统的距离方程
RV
将上式代入2,可得:
式中Ad为检测器面积;Δf为系统的带 宽;D*为检测器的归一化检测度; AoIe=P0是入射到接收光学系统的平均 功率。考虑到系统的调制特性,入射 到探测器上的有效功率为:
距,但对检测器会带来不利影响: ① 增加检测器面积意味着增大系统噪声。因为对大多数检测器,噪声功率和 面积的平方根成正比。 ② 减小焦距使系统的相对孔径加大,引入系统背景辐射噪声,使系统灵敏方 式下降。 因此在系统设计时,在检测到信号的基础上尽可能减小系统视场角。
光电检测 名词解释 西安理工大学 光信
光电检测技术:是利用光电传感器实现各类检测。
它将被测量的量转换成光通量,再转换成电量,并综合利用信息传送和处理技术,完成在线和自动测量光电传感器:基于光电效应,将光信号转换成电信号的一种传感器光电传感器分类:直射式、反射式、辐射式光电检测系统:光源->光学系统->被测对象->光学变换->光电传感->变换电路->电信号处理->储存/显示/控制光电检测技术的特点:高精度,高速度,远距离、大量程,非接触式检测,寿命长,数字化和智能化光电检测方法:直接作用法、差动测量法、补偿测量法(指零法)、脉冲测量法发光强度Iv:发出波长为555nm的单色辐射,在给定方向上的发光强度规定为1cd。
单位:坎德拉(Candela)[cd],它是国际单位制中七个基本单位之一。
光通量Φv:光强度为1cd的均匀点光源在1sr内发出的光通量。
单位:流明[lm]。
光照度Ev:单位面积所接受的入射光的量,单位:勒克斯[lx],相当于1平方米面积上接受到1个流明的光通量。
半导体特性:温度敏感,受微量杂质影响显著,受光、热、磁影响显著半导体分类:本征半导体、N型半导体、P型半导体本征半导体:就是没有杂质和缺陷的半导体。
掺入的杂质可以分为施主杂质和受主杂质。
非平衡载流子:处于非平衡状态的半导体,其载流子浓度也不再是平衡载流子浓度,比它们多出一部分。
比平衡状态多出来的这部分载流子称为非平衡载流子。
平衡载流子浓度:处于热平衡状态的半导体,在一定温度下,载流子浓度一定。
这种处于热平衡状态下的载流子浓度,称为平衡载流子浓度。
非平衡载流子的产生:光注入;其它方法:电注入、高能粒子辐照等载流子的输运过程:扩散、漂移、复合半导体对光的吸收:吸收包括:本征吸收、杂质吸收、自由载流子吸收、激子吸收、晶体吸收本征吸收:由于光子作用使电子由价带跃迁到导带,本征激发:只有在入射光子能量大于材料的禁带宽度时,才能发生本征激发PN结:将P型和N型半导体采用特殊工艺制造成半导体半导体内有一物理界面,界面附近形成一个极薄的特殊区域,称为PN结光电效应:照射到物体表面上使物体发射电子、或导电率发生变化、或产生光电动势等,这种因光照而引起物体电学特性发生改变统称为光电效应光电效应包括:外光电效应和内光电效应外光电效应:物体受光照后向外发射电子—多发生于金属和金属氧化物内光电效应:物体受到光照后所产生的光电子只在物质内部而不会逸出物体外部—多发生在半导体内光电效应又分为光电导效应和光生伏特效应光电导效应:半导体受光照后,内部产生光生载流子,使半导体中载流子数显著增加而电阻减少的现象光生伏特效应:光照在半导体PN结或金属—半导体接触上时,会在PN结或金属—半导体接触的两侧产生光生电动势。
光外差探测系统-PPT
频率跟踪法:
混频器差频中频放大 鉴频器误差电压压 控振荡器改变fL
1、干涉测量技术 应用光的干涉效应进行测量的方法称为干涉 测量技术。 干涉测量系统主要由光源、干涉系统、信号 接收系统和信号处理系统组成。 优点:测量精度高(以波长为单位)
干涉测量基本原理:改变干涉仪中传输 光的光程而引起对光的相位调制,从而 表现为光强的调制。测量干涉条纹的变 化即可得到被测参量的信息。
干涉条纹是由于干涉场上光程差相同的 场点的轨迹形成。
可进行长度、角度、平面度、折射率、 气体或液体含量、光学元件面形、光学 系统像差、光学材料内部缺陷等几何量 和物理量的测量。
1) 激光干涉测长的基本原理 系统组成: (a)激光光源 (b)干涉系统 (c)光电显微镜 (d)干涉信号处理部分
位移 L N
解决方法:判别计数。当测量镜正向移动 时所产生的脉冲为加脉冲;反之为减脉 冲。
判向计数: 正向移动:
正向:1324 同理可得 反向:1423
位移长度为: L N
8
2、光外差通信
光外差通信基本上都是采用CO2激光器做 光源,光发射系统及接收系统两大部分组 成。
发射系统:
稳频原理: 发射波长增加,光通量亦增,输出电压 增大,压电陶瓷使腔长缩短,发射频率 提高,波长减短;反之,则波长加长
滤光片的滤光曲线
接收系统:
3、多卜勒测速 1)多卜勒测速原理
He-Ne激光器是经稳频后的单模激光,焦 点处光强分布为高斯分布。
焦点处干涉场条纹分布:
干涉条纹间距为:
i
2
1
sin
2
干涉条纹的空间频率为:
f
1
2 sin
2
i
当散射粒子以速度v,与条 纹垂线夹角为方向通过时, 则颗粒散射的光强频率为:
光外差探测系统课件
环境监测是光外差探测系统在环保领域的应用,主要用于气体浓度、温度、压力 等参数的测量。
光外差探测系统具有高灵敏度、高精度、实时性强的特点,对于环境监测和污染 治理具有重要的意义。
06
光外差探测系统发展趋势与展望
高性能探测器研究
1 2 3
高灵敏度 通过优化探测器结构、提高材料质量等方式,提 高探测器的光子吸收效率和响应速度,从而提高 探测器的灵敏度。
数据存储与备份
将采集到的数据存储在可靠的存储介质中,并定 期进行备份,以防数据丢失。
系统调试与优化
系统调试
在实验过程中对系统进行实时监 测和调试,确保系统工作正常并 达到预期的性能指标。
性能优化
根据实验结果和实际需求,对系 统的性能进行优化,如调整探测 器参数、改善信号质量等。
故障排查与维护
在系统出现故障时,及时排查故 障原因并进行修复,确保系统的 稳定性和可靠性。
实验设备布局
根据实验需求合理布置实 验设备,包括激光器、光 外差探测器、信号源等, 确保设备间的连接无误。
环境温湿度控制
保持实验环境的温湿度稳 定,以确保实验结果的准 确性和可靠性。
数据采集与处理
数据采集方式
采用高速数据采集卡或示波器等设备,对探测器 输出的信号进行采集。
数据处理算法
根据实验需求选择合适的数据处理算法,如滤波、 放大、解调等,以提取有用的信号信息。
光谱分析
用于光谱分析中,实现对气体、液体、固体 等物质的高精度光谱测量。
光通信
用于光通信系统中,实现高速、大容量、低 噪声的光信号接收。
激光雷达
用于激光雷达系统中,实现高精度、远距离 的激光测距和成像。
02
光外差探测系统组成
4.10 光频外差探测的基本原理
1
2 sin
S
则
ES t AS cos S t S 1x
入射到光混频器表面的总电场为
Et t ES t EL t
共23页 20
主讲:周自刚《光电子技术》§4.10 光频外差探测的基本原理
于是光混频器输出的瞬时光电流为
2 sin iP t AS cos S t S x AL cos L L dxdy d / 2 d / 2 S
2.光谱滤波性能
在直接探测过程中,光探测器除接收信号光以外,杂散背景 光也不可避免地同时入射到光探测器上。为了抑制杂散背景光的 干扰,提高信号噪声比,一般都要在光探测器的前面加上孔径光 阑和窄带滤光片。相干探测系统对背景光的滤波性能比直接探测 系统要高。因为相干接受是要求信号光和本地振荡光空间方向严 格调准,而背景光的入射方向是杂乱的,不能满足空间调准要求, 于是就不能得到输出。 如果取差频信号宽度ωc / 2π =ωL-ωs /2π为信息处理器 的通频带Δf,那么只有与本机振荡光束混频后在此频带内的杂光 可以进入系统,其他杂光所形成的噪声均被信号处理器滤掉。因 此,外差探测系统中不需要加光谱滤光片,其效果甚至比加滤光 片的直接探测系统还好得多。
共23页 12
主讲:周自刚《光电子技术》§4.10 光频外差探测的基本原理
对热噪声为主要噪声源的系统,要实现量子噪声限探测,满足
e 2 PL f IF RL 2kT f IF hv
由此得到
2kThv P L e 2 RL
S 若令 1 ,则可求得相干探测的噪声等效功率NEP值为 N IF
在中频滤波器输出端,瞬时中频电压为
VIF 2 AS AL RL cos L S t L S
光电检测系统
长度:直尺、游标卡尺、千分尺
电压:万用表
质量:天平
间接测量:测量几个与被测量相关的物理量,通过函数关系式 计算出被测量。例如:
电功率:P = I * V(电流/电压)
重力加速度:单摆测量(L:摆的线长,T:摆动的周
期)
g
4
T
2L
2
返回
光电探测器的种类
类型 PN结
非PN结 电子管类
以光电子学为基础,以光电器件为主体,研究和发展光电信 息的形成、传输、接收、变换、处理和应用。它涉及到:
1、光电源器件(包括激光器)和可控光功能器件及集成 2、光通信和综合信息网络 3、光频微电子 4、光电方法用于瞬态光学观测 5、光电传感、光纤传感和图象传感 6、激光、红外、微光探测,定向和制导 7、光电精密测试,在线检测和控制技术 8、混合光电信息处理、识别和图象分析
光信息量化的变换方式在位移量(长度、宽 度和角度)的光电测量系统中得到广泛的应 用。
若长度信息量L量化为条纹信息量,则长度 L=qn
q为量化单位,采用莫尔条纹变换时,其为光栅节距,达到微米 量级;若采用激光干涉时,其 等于激光波长的二分之一或四分之一;n为条纹个数。
信息载入光学信息的方式
光通讯方式的信息变换
光电检测系统
光 光 被 光 光变 电
源
学 系 统
测 对 象
学 变 换
电换 传电 感路
信 号 处 理
存储 显示 控制
光学变换
电路处理
Байду номын сангаас
光电检测系统
光学变换
时域变换:调制振幅、频率、相位、脉宽 空域变换:光学扫描 光学参量调制:光强、波长、相位、偏振 形成能被光电探测器接收,便于后续电学处理的光学信息。
第八章 外差(相干)探测系统
y
KL K Ly Ks
K Lx
y
θ θ
O
x l z
O
D
x
图8.3– 1
坐标关系
注意到在探测器面上x=0, 则有 es=Es cosωst eL=EL cos(ωLt+KL sinθ·y) 在(0,y)点上的中频电流 iIF (0,y,t)=α·EsEL cos(ωIFt+KL·y·sinθ) =α·E E =α Es·EL cos(ωIFt+KL·y·θ) y θ) (8.3 - 6) (8.3 - 4) (8.3 - 5)
∆f =
C
λ
∆λ = 3 × 109 Hz 2
(8.1 - 15)
在外差探测中, 情况发生了根本变化。 如果取差 频宽度作为信息处理器的通频带∆f, 即
ωs − ωL ∆ f IF = 2π
= fs − fL
(8.1 - 16)
外差探测具有更窄的接收带宽, 外差探测具有更窄的接收带宽,即对背景光有良好 的滤波性能。 的滤波性能。
这里c是光速。
ω IF
c
(8.3 - 16)
总的中频电流为
iIF (t ) =
α
D∫
D/2
−D / 2
iIF (0, x, y )dy
∆ K IF Dθ sin 2 = α Es E L cos ω IF t ⋅ ∆ K IF ⋅ Dθ 2
(8.3 - 17)
y
K
s
K
L
θ
Kcos θ
O l
θ
Ksin θ
D
x
图 8.3 - 2 两束光平行但不垂直于探测器
考虑到sinθ≈θ, y点产生的中频电流iIF (0,y,t)可 以写为 iIF (0,y,t)=αEsEL cos(ωIFt+∆KIFy sinθ) 式中 (8.3 - 15)
《光外差探测系统》课件
光源
提供光源,通常为激光器。
光纤
将光信号输送到探测器中。
探测器
用于检测光外差信号并将其转 化为电信号。
放大器
用于放大探测器输出的信号。
示波器
用于显示光外差信号的波形。
测试方法
1
测试流程
在实验室或其他需要测量电场的场合下,地面上设置好靶标板,根据所要测量的 物体,调整系统的各个参数。
2
实验步骤
将光信号输送到探测器中,探测器将光外差信号转化为电信号后通过放大器放大, 然后输入示波器显示。
3 光外差探测系统的应用领域
主要应用于生物医学、无线通信和光通信领域。
原理
光外差测量原理简介
光外差效应是指介质中电场的变化能够引起材 料的折射率发生变化。光外差探1 示波器测量电荷
示波器是光外差信号的最终接收器,可以显示光外差信号的波形。
系统组成
3
数据处理
根据波形特征可以了解光外差信号对物体表面电场变化的响应,从而推断测试目 标的电场分布。
应用案例
生物医学领域
用于研究生物体内电活动变 化和细胞膜的电生理活动。
无线通信领域
用于研究天线、微带线、衬 底等的电特性。
光通信领域
用于研究光纤、关键元器件 等的表面电场分布。
优缺点
优点
高灵敏度、高空间分辨率和高时间分辨率。
光外差探测系统
在这个演示中,我们将介绍光外差探测系统的应用和原理,以及其在生物医 学、无线通信和光通信领域的实际应用。
简介
1 什么是光外差探测系统
光外差探测系统是一种测量材料表面电场变化的高精度方法。
2 探测系统的发展历史
该技术最早由霍尔斯特于1964年提出,在光学、电子学和物理学领域得到广泛应用。
第八章 外差(相干)探测系统
}
后退
和频频率太高, 和频频率太高,光混频 器不响应, 器不响应,故均值为零
上页 下页
外差探测系统
从数学运算和相应物理过程考虑, 从数学运算和相应物理过程考虑,用平均信号光功率 Ps和平均本振光功率 L表示: 和平均本振光功率P 表示; Ps PL cos ωIF t + (φL − φs ) 2 2
∞ Es ( t ) = A0 1 + ∑ cos ( Ωn + φn ) cos(ωst + φs ) 调幅系数 n=1 ∞ mn A0 = A0 cos(ωst + φs ) + ∑ cos (ωs + Ωn ) t + (φs + φn ) 2 n =1 ∞ mn A0 +∑ cos (ωs − Ωn ) t + (φs − φn ) 2 n =1
2 IF
上页 下页 后退
外差探测系统
经推导
2 2
对中频周期求平均
PIF = 4α Ps PL cos [ωIF t + (φL − φs ) ] ⋅ RL = 2α 2 Ps PL RL
在直接探测中,探测器输出的电功率为: 在直接探测中,探测器输出的电功率为:
PL = is2 RL = α 2 Ps2 RL
上页 下页 后退
外差探测系统
若调幅信号光E 与本振光 与本振光E 相干后,瞬时中频电流为: 若调幅信号光 s(t)与本振光 L(t) 相干后,瞬时中频电流为:
iIF = α A0 AL cos (ωL −ωs ) t + (φL −φs ) mn A0 +α AL ∑ cos (ωL −ωs −Ωn ) t + (φL −φs −φn ) 2 n=1 ∞ mn A0 +α AL ∑ cos (ωL −ωs +Ωn ) t + (φL −φs +φn ) 2 n=1
第7章光外差检测系统
第7章 光外差检测系统光电直接检测的光强信号及光电探测器转换后的电信号通常情况下是直流量。
而直流漂移是形成误差的重要原因,信号处理及细分都比较困难。
光外差检测采用两束具有微小频率差的光产生干涉,产生的信号为交流电,不仅克服了上述光电直接检测的漂移问题,而且使细分变得更容易,显著提高了抗干扰性能。
光外差检测(Optical heterodyne detection )广泛应用于激光通信、干涉测长、测角、激光雷达和测速等当面。
光外差检测与光直接检测比较,其测量精度要高7-8个数量级。
它的灵敏度接近了量子噪声限,可以检测单个光子,进行光子计数。
使用外差技术的双频激光干涉仪早已实现商品化,大量用于长度、位移、速度等的超精密测量,相对测量精度可优于百万分之一。
使用外差检测通信技术的工作距离比直接检测远的多,在外层空间特别是卫星之间通信联系已达到实用阶段,能够做到上万公里的通信距离和1Gbps 以上的通信速率。
7.1 光外差检测原理光外差检测是将包含有被测信息的相干光调制波和作为基准的本机振荡光波在满足波前匹配的条件下,在光电探测器上进行光学混频(相乘)。
由于光电探测器的响应远远低于光波频率,其输出是频率为二光波的差频电信号。
这个输出信号包含有调制信号的振幅、频率和相位特征。
显然,外差检侧也是相干检测.与非相干检测的直接检测法相比,外差检测具有灵敏度高、输出信噪比高、精度高、探测目标的作用距高远等优点。
因而在精密测量中得到了广泛的应用。
如图7-1所示,考虑频率为νM 和νL 两束互相平行的平面光,其空间任意点P 的电分量分别表示为:)2cos()(M M M M t a t E ϕπν+= (7.1) 和)2cos()(L L L L t a t E ϕπν+= (7.2)图7-1外差检测原理示意图其中,a M 和a L 分别表示两光束的振幅,φM 和φL 分别表示两光束在P 点的相位。
则两光束相叠加所得到的光强为:)2cos()2cos(2)2(cos )2(cos )]()([)(22222L L L M M M L L L M M M L M t a t a t a t a t E t E t I ϕπνϕπνϕπνϕπν++++++=+= (7.3)使用三角函数对上述表达式进行变换可得:)]()(2cos[)]()(2cos[)]24cos()24cos([2/12/2/)(2222L M L M L M L M L M L M L L L M M M L M t a a t a a t a t a a a t I ϕϕννπϕϕννπϕπνϕπν-+-++++++++++= (7.4) 上式共分5项,其中前两项组成了光强的直流部分,我们注意到第3项和第4项的频率在光频量级(1014Hz ),现有的光探测器都无法达到这么高的响应速度(通常在1010Hz 以下),故这两项不对探测器产生影响,而最后一项为光强信号的交流部分,其信号振幅为a M a L ,频率νM - νL 为两束相干光的频率差,也叫拍频。
第6章 外差检测系统1
2 {As2 cos2 (S t s ) AL cos2 (Lt L ) As AL cos[(L S )t (s L )] As AL cos[(L S )t (L s )]}
如果把信号的测量限制在差频的通常范围内,则可以 得到通过以ωc为中心频率的带通滤波器的瞬时中频电 (6-6) 流为 ic (t ) As AL cos[(L S )t (L s )]
第6章 光外差检测系统
1、光外差检测 是将待测信号光与本振光同时入射到探测器的光 敏面上,形成光的干涉图样(光混频效应),探测 器响应光混频效应而输出光电流,该光电流不仅与 光强有关,还与输入光的频率和位相有关。 2、一般构成
3、用途 激光通信、雷达、测长、测速、测振和光谱学方面。 4、优点 (1)检测灵敏度高,可获得更多信息 (2)可检测单个光子、进行光子计数,作用距离比 直接检测远。 5、缺点 (1)对光源要求高(要求相干性好的光波—激光) (2)激光受大气湍流效应影响严重,因而远距离应用受 到限制。 (3)在光波频率很高时(γ>>1016Hz)每个光子能量很 大,光外差检测并不特别适用;在波长较长的情况下, 光外差检测显示了它的优越性。
r Dp / f
2.44 Dp Dd Dr
6.3.2 光外差检测的频率条件:
要求信号光和本振光具有高度的单色性和频率稳
定性。
1、为了获得单色性好的激光输出,必须选用
单纵模运转的激光器作为光外差检测的光源。
2、信号光和本振光的频率漂移如不能限制在
一定范围内,则光外差检测系统的性能就会变坏。
由上式可知,
l sin 2 1 l 2 中频电流i最大。此时应满足
l 0 2
直接探测和外差全面讲解
(3.1 - 7) (3.1 - 8)
从上式可以得出如下结论: (1) 若si/ni<<1, 则有
2
so no
si ni
(3.1 - 9)
输出信噪比近似等于输入信噪比的平方。 这说明直 接探测方式不适宜于输入信噪比小于1或者微弱信号的探 测。 实际上, 要想对弱光信号实施直接探测, 还必须在 探测体制上进行改革, 这个问题我们在后面分节中将进 行专门讨论。
除背景干扰的效果, 并使光学系统的信噪比为最大。
现举一例说明光谱滤光的作用。 图3.2 - 1示出了飞机涡轮
喷气发动机辐射的光谱曲线a, 典型的地面背景辐射的光谱辐射
通量密度曲线b, 大气透过率曲线c及某型号光电探测器光谱响
应曲线d, 根据这些曲线关系, 选择滤波片的截止波长λ1和λ2。
从图3.2 - 1可看出, 目标辐射通量相对值在0.8以上的波
的计算也和场镜直径的计算方法一致。 它的小端直径为探测器的
直径。 长度l与锥角β的大小要设计合理, 否则有的光线还未传播
到小端就被折返回大端, 如图3.2 - 5所示。
显然, 锥顶角2β与半视场角ω(即光线在光锥端面上的入
射角θ)以及光线与第一反射线的入射角i1的关系为
(90°-β)+(90°-i1)+(90°-θ)=180°
长区域约在2.7~5 μm的范围内, 而背景辐射通量相对值在0.2以
下的波长约在2.6~4.5 μm的范围内。 于是, 把滤光片的短波截
止波长选在大于2.7 μm处, 长波截止波长选在小于4.5 μm处。
因为在大于4.5 μm和小于2.7 μm的范围内, 目标辐射通量在减
小, 背景辐射通量急剧上升。 最后选定滤光片的截止波长为2.8
光外差检测的条件(精)
接检测的光电转换增益 为
G
PIF P直接
22 Ps PL RL 2 Ps 2 RL
2PL Ps
外差检测中 PL ~ 103W 量级; Ps ~ 1010W 量级;
代入上式,知: G 2 107 倍。
三、信噪改善比 SNIR
1、直接检测系统信噪比依(2.1.5)为
S NR p o
(SNRpi )2 1 2SNRpi
Es0
cos(st
s
2 s in s
x)
(2.2.30)
EL (t) EL0 cos(Lt L )
则入射到光敏面上的总光场为
(2.2.31)
E(t) Es (x,t) EL (t) 依探测器的平方律特性, 在探测器表面 x方向增量 dx 上产 生的微分电流为
dip [Es ( x, t) EL (t)]2dx
1、 SNRpo
当本振光足够强时,可认为系统噪声的主要成分为本振光电
流的霰弹噪声,有
式中
in2 2eiL f 2ePL f 2eidc f
idc
2
(E120
E220
EL20 )
2
EL2,0
PL
f为带通滤波器带宽
(2.2.42)
则 第一个滤波器输出端信噪比为
SNRpo
iI2F in2L
2idc
展开上式 ,并舍弃合频项, 得
dip
Es20
EL20 2
Es0EL0 cos[(L
s )t
k
x
x]dx
将余弦项展开后,从 d 2 到 d 2 积分,
ip
d
Es20
EL20 2
Es0EL0 cos(L
光外差检测系统
于是本振光波可表示为:
则检测器上x点的响应电流为
,并认为折射率n=1。
16
则整个光敏面总响应电流为
6.3.1 光外差检测旳空间条件(空间调准 )
从式中可知,当
时,即
即可得外差检测旳空间相位条件为:
时,中频电流i最大。
即:
这个角度也被称为失配角。
显然:波长愈短或口径愈大,规定相位差角θ愈小,愈难满足外差 检测旳规定。阐明红外光比可见光更易实现光外差检测。
光路中,采用角锥棱镜替代了平面反射镜作为反射器,首先防止了反射光
束反馈回激光器对激光器带来不利影响;另首先由于角锥棱镜具有“出射光
束与入射光束旳平行不受棱镜绕轴转动旳影响”旳特点。
24
干涉测长旳光路布局和光学倍数
• 一种角锥棱镜构造 • 双程干涉仪 • 立方分光棱镜 • 光学倍频布局
25
干涉信号旳方向鉴别与计数原理
• 空间条件: • θ:两束光旳夹角,l=d:
检测器光敏面线度.
• 波长越短或口径越大,
规定相位差角θ越小,越难 满足规定.
• 频率条件: • 规定信号光和本振光具
有高度旳单色性和频率稳 定性。
信号光与本振光并非平行 而成一夹角θ
4
光外差检测系统
光外差检测与直接检测系统相比,具有如下长处: 测量精度高7-8个数量级; 敏捷度到达量子噪声极限,其NEP值可达10-20W。 可用于光子计数。
信号光和本振光旳波前在光检测器光 敏面上保持相似旳相位关系,才得式:
实质上,由于光的波长比光检测器面积
小很多,混频作用是在一个个小面积元上产 生的,即总的中频电流是每个小微分面元所
光外差检测原理示意图
产生的微分电流之和,显然要使中频电流达到最大,这些微分中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均值,即:
____
PC
VC2 RL
2
e h
2
Ps PL RL
当ωL-ωs=0,即信号光频率等于本振光频率时,则瞬时中频 电流为:
iC t As AL cosL s
这是外差探测的一种特殊形式,称为零差探测。
2 光外差检测特性
2.1 光外差检测可获得全部信息
iC t As AL cosL s t L s
As2
______________
cos2 st s
_______________
AL2 cos2 Lt L
__________________________
________________________
As AL cosL s t L s As AL cosL s t L s
式中第一、二项为余弦函数平方的平均值,等于1/2。第三项 为和频项,频率太高,光混频器不响应,可略去,第四项为 差频项,频率低得多,当差频信号(ωL-ωs)/2π=ωC/2π低 于光检测器的上限截止频率时,检测器就有频率为ωC/2π的光 电流输出。
fs t As cosst s fL t AL cosLt L
那么,入射到检测器上的总光场为:
f t As cosst s AL cosLt L
光检测器的响应与光电场的平方成正比,所以光检测器的光 电流为:
_______
_____________
ip t f 2 t fs t fL t 2
1 光外差检测原理
直接检测系统中,检测器检测的光功率为平均光功率Pcp:
Pcp
1
2
2 A2 cos2 tdt A2
0
2
显然光波直接检测只能测量其振幅值。
光外差检测原理如图,两束平 行的相干光,经分光镜和可变 光阑入射到检测器表面进行混 频,形成相干光场,经检测器 变换后,输出信号包含差频信 号,故又称相干检测。
光外差检测系统
光外差检测与直接检测系统相比,具有如下优点:
1. 测量精度高7-8个数量级; 2. 灵敏度达到量子噪声极限,其NEP值可达10-20W。 3. 可用于光子计数。 4. 激光受大气湍流效应影响严重,破坏了激光的相干性,所
在外差检测在大气中应用受限,在外层空间已经达到实用 阶段。 5. 外差检测在高频(υ≥1016Hz)光波时不如直接检测有 用。而在长波长(近红外和中红外波段),光外差检测技 术就可实现接近量子噪声限的检测。
2.5 最小可检测功率—内增益型光电检测器件
内部增益为M的光外差检测器输出有效信号功率为:
PC
2
e h
M
2
Ps
PL
RL
检测系统中检测器本身的散粒噪声和热噪声是影响最大可难以
消除的。则外差检测输出的散粒噪声和热噪声表示为:
Pn
2M
2
e
e h
Ps
PB
PL
Id
fR
L
4k Tf
功率信噪比为:
极限下,光外差检测的NEP值为:
即SNR
1时的信号功率
Ps 最小
NEP
hf
SNRp
Ps hf
在光电直接检测系统的量子极限为: NEP 2hf
这里面需要说明的是:直接检测量子限是在理想光检测器的 理想条件下得到,实际中无法实现量子极限的。而对于光外 差检测,利用足够的本振光是容易实现的。
P0
Ps
可知,在微弱光信号下,外差检测更有用。
2.3 良好的滤波性能
光外差检测中,取信号处理器通频带为Δf=fL-fs,则只有此频带内的 杂光可进入系统,对系统造成影响,而其它的杂光噪声被滤掉。因 此外差检测系统不需滤光片,其效果也远优于直接检测系统。
例:目标沿光束方向运动速度υ=0-15m/s,对于CO2激光信号,
外差检测不仅可检测振幅和强度调制的光信号,还可检测频 率调制及相位调制的光信号。在直接检测系统是不可能的。
2.2 光外差检测转换增益G高 光外差检测中频输出有效信号功率为:
PC
2
e h
2
Ps PL RL
在直接检测中,检测器输出电功率为:
P0
e h
2
Ps2
RL
两种方法得到的信号功率比G为:
G PC 2PL
如果把信号的测量限制在差频的通常范围内,则可以得到通 过以ωC为中心频率的带通滤波器的瞬时中频电流为:
iC t As AL cosL s t L s
中频滤波器输出端,瞬时中频信号电压为:
VC t iC t RL As ALRL cosL s t L s
中频输出有效信号功率就是瞬时中频功率在中频周期内的平
为克服由信号光引起的噪声以外的所有其他噪声,从而获得高的转换 增益,增大本振光功率是有利的。但本振光本身也引起散粒噪声,本振功 率越大,噪声也越大,使检测系统信噪比反而降低。因此,应合理选择本 振光功率,以便得到最佳信噪比和较大的中频转换增益。
引入最小可检测功率(等效噪声功率)NEP表示,在量子检测
SNRp
M
2e
e h
Ps
e h
PB
2
M
Ps PL RL
PL
I
d
f
RL
2kTf
当本征功率PL足够大时,本征散粒噪声远超过所有其它噪声,则上式变为:
SNRpPs hf这就是光外差检测系统中所能达到的最大信噪比
极限,一般称为光外差检测的量子检测极限或 量子噪声限。
2.5 最小可检测功率—内增益型光电检测器件
分光镜 可变光阑
信号光束 fs
fL 本振 光束
fs fL
混 频 光
探测器 放大器
光外差检测原理示意图
如图,光源经过稳频 的二氧化碳激光器, 由分束镜把入射光分 成两路:一路经反射 作为本振光波,频率 为fL,另一路经偏心 轮反射,经聚焦到可 变光阑上作为信号光 束。
fs
转镜
ν
CO2激光器
分光镜
线栅偏振器
多普勒频率fs为:
fs
f
L
1
2
c
通频带Δf1取为:
f1
fs
fL
fL
2
c
c 2 L c
3MHz
而直接检测加光谱滤光片时,设滤光片带宽为1nm,所对应的带宽, 即通频带Δf2=3000MHz。
可见,外差检测对背景光有强抑制作用。
另:速度越快,多普勒频率越大,通频带越宽。
2.4 信噪比损失小
当不考虑检测器本身噪声影响,只包含输入背景噪声的情况下,外 差检测器的输出信噪比等于输出信噪比,输出信噪比没有损失。
fs fL
fL
可变光阑
反射镜
输出
光电检测器 放大器
外差检测实验装置图
偏心轮转动相当于目标沿光波方向并有一运动速度,光的
回波产生多普勒频移,其频率为fs。可变光阑用来限制两光束 射向光电检测器的空间方向,线栅偏振镜用来使两束光变为偏
振方向相同的相干光,然后两束光垂直投射到检测器上。
首先设入射到检测器上的信号光场和本机振荡光场分别为: