人教版八年级下册 第十七章测试卷(解析版)
【带答案】人教版八年级数学下册第十七章测试题(附答案)
人教版八年级数学下册第十七章测试题(附答案)学校: 姓名: 班级: 考号:1.如图AB=AC ,则数轴上点C 所表示的数为( )A .+1B .-1C .-+1D .--12.已知x 、y 为正数,且|x-4|+(y-3)=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .153.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为( )A .2 B. 3 C .D .+1 4.如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.4 B.5 C.D. 5.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,126.如右下图所示,在□ABCD中,已知∠ODA=90º, AC=10cm,BD=6cm,则AD的长为().A、4cmB、5cmC、6cmD、8cm7.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线上,且之间的距离为1,之间的距离为2,则AC的长是()A. B. C. D. 58.已知Rt△ABC中,∠C=90°,若cm,cm,则S为().A.24cmB.36cmC.48cmD.60cm9.给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a+c=b,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,假命题的个数为()A.1个 B.2个 C.3个 D.4个10.如图,在的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形的边长为()A、B、C、D、11.如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G 为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.B.C.D.二、填空题12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了 cm.13.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=5,CD=3,则△ABC的周长是.14.已知直角三角形两边的长x、y满足|x-4|+=0,则第三边长为 .15.如图,△ABC是边长6的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V=2cm/s, V=1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t= s时,△PBQ为直角三角形.16.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B 落在矩形内点F处,连接CF,则CF的长为.17.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.18.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为。
(人教版)初中数学八下 第十七章综合测试01-答案
且 a 172≥0 ,|b 15 |≥0 , c 82≥0 ,
所以 a 17 0 , b 15 0 , c 8 0 . 所以 a 17 , b 15 , c 8 . 又因为 82 152 289 172 ,
初中数学 八年级下册 1 / 4
所以 △ABC 是以 a 为斜边的直角三角形. 7.【答案】A 【解析】在 Rt△ABC 中, CD BC 2 BD2 172 152 8 .
在 Rt△ACD 中, AC AD2 CD2 62 82 10 . 8.【答案】D 【解析】由题意可得吸管的最大长度为 52 +122 =13 . 二、
9.【答案】如果Βιβλιοθήκη ac>bc c 0 ,那么 a>b
【解析】根据命题写出它的逆命题,即原命题的题设是逆命题的结论,原命题的结论是逆命题的题设. 10.【答案】 3 5+3 2+ 13 【解析】在网格中分别以 AB , BC , CD , AD 为斜边沿格线构造直角三角形,根据勾股定理,得 DA 22 +12 = 5 , AB 32 +32 =3 2 , BC 22 +32 = 13 , CD 22 +42 =2 5 .
3
3
解得 x ,即 BD .
2
2
12.【答案】2 【解析】由勾股定理,得 AB AC 2 BC 2 32 42 5 . 又因为 AD AC 3 ,所以 BD AB AD 5 3 2 . 13.【答案】96 【解析】因为 AB2 AC 2 BC2 1602 1282 962 ,所以 AB 96 m .
n
14.【答案】 2
初中数学 八年级下册 2 / 4
【解析】第 1 个等腰直角三角形,直角边长是 1,则斜边长为 12 +12 = 2 ,第 2 个等腰直角三角形,直角
八年级数学下《第十七章勾股定理》单元测试卷(人教版含答案)
《勾股定理》单元提升测试卷•选择题1以下列各组数为三角形的三边,能构成直角三角形的是( )3.如图所示,一根树在离地面9米处断裂,树的顶部落在离底部4.如图,AD 丄CD , CD = 4, AD = 3, / ACB = 905.在△ ABC 中,/ A ,/ B ,/ C 的对边分别记为 a , b , c , A .如果/ A -Z B =Z C ,那么△ ABC 是直角三角形2 2 2B .如果a 2= b 2- c 2,那么△ ABC 是直角三角形且Z C = 90° C .如果Z A :Z B :Z C = 1 : 3: 2,那么△ ABC 是直角三角形C .D . 24 C . 12D . 16A • 4, 5, 6B • 1, 1, 72•一个直角三角形的斜边长比一条直角边长多 三角形的斜边长为( ) C . 6, 8, 11 D . 5, 12, 23 A . 4cmB . 8cm2 cm ,另一条直角边长C . 10cm :6cm ,那么这个直角D . 12cm12米处.树折断之前,AB = 13,贝U BC 的长是(F 列结论中不正确的是(置相接触,则容器中液体的高度至少应为()D .如果a 2: b 2: c 2= 9: 16 : 25,那么△ ABC 是直角三角形 6•由下列条件不能判定厶 ABC 为直角三角形的是( )A . Z A+Z C =ZB B . a =, b = —, c = —34 5C . (b+a ) (b -a )= c 2D . Z A : :Z B : Z C = 5: 3: 27.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为 6尺,则水是()尺.C . 4.5D . 58如图,是一扇高为2m ,宽为1.5m 的门框,现有3块薄木板,尺寸如下:①号木板长3m , 宽2.7m ;②号木板长4m ,宽2.4m ;③号木板长2.8m ,宽2.8m .可以从这扇门通过的 木板是()2wA .①号B .②号C .③号D .均不能通过9. 如图:在△ ABC 中,CE 平分Z ACB , CF 平分Z ACD ,且EF // BC 交AC 于M ,若CM =5,则 CE 2+CF 2 等于()BC DA. 75 B . 100C . 120D . 12510. 某一实验装置的截面图如图所示, 上方装置可看做一长方形,其侧面与水平线的夹角为A . 3.545°,下方是一个直径为70cm,高为100cm的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()45°A . 30cmB . 35cm C. 35 7cm D. 65cm二.填空题11. 如图,在四边形ABCD 中,/ ABC = 90°, AB = 3, BC= 4, CD = 15, DA = 5 —,则BD的长为________ .12. 如图,一架长5米的梯子A i B i斜靠在墙A i C上,B i到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了 1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了________ 米.13. 如图,在△ ABC 中,/ C= 90°, AD 平分/ CAB, AC = 6, AD = 7,则点D 到直线AB2 2 2 214. 如图,三角形ABC三边的长分别为AB = m - n , AC= 2mn, BC= m +n,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S f、S2、S3,那么S1、S2、S3之间的数量关系为_______ .SiBr----------- Ye15. 如图,在△ ABC 中,/ C = 90°, AB= 10, BC= 8, AD 是/ BAC 的平分线,于点丘,则厶BED的周长为_______ .17•如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形E的面积是18. 在△ ABC 中,CD 是AB 边上的高,AC = 4, BC= 3, DB = 1.8.(1 )求CD的长;(2 )求AB的长;(3)△ ABC是直角三角形吗?请说明理由. DE 丄AB16. 如图,Rt△ ABC 中,/ B = 90°, AB = 8cm, BC= 6cm, D 点从A 出发以每秒度向B点运动,当D点运动到AC的中垂线上时,运动时间为____________ 秒.1 cm的速6, 8, 3, 4,则最大正方形19•阅读下列一段文字:在直角坐标系中,已知两点的坐标是M (X1, y i), N (X2, y2)), M ,N两点之间的距离可以用公式MN 计算•解答下列问题:(1)若点P (2, 4), Q (- 3, - 8),求P, Q两点间的距离;(2)若点A (1 , 2), B (4,- 2),点0是坐标原点,判断△ AOB是什么三角形,并说明理由.20. 如图,已知Rt△ ABC 中,/ C= 90°,/ A = 60°, AC= 3cm, AB = 6m,点P 在线段AC上以1cm/s的速度由点C向点A运动,同时,点Q在线段AB上以2cm/s的速度由点A向点B运动,设运动时间为t (s).(1 )当t = 1时,判断△ APQ的形状,并说明理由;备用图21. 在一条东西走向河的一侧有一村庄C,河边原有两个取水点A, B,其中AB = AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H (A、H、B在一条直线上),并新修一条路CH,测得CB= 3千米,CH = 2.4千米,HB = 1.8 千米.(1 )问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.22. 如图,已知AD = 4, CD = 3, BC = 12, AB = 13,/ ADC = 90°,求四边形ABCD 的面积.C B23. 交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验•如图,先在笔直的公路1旁选取一点P,在公路1上确定点0、B,使得PO丄I, PO = 100米,/ PBO = 45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得/ AP0 =60°.此路段限速每小时80千米,试判断此车是否超速?请说-•明理由(参考数据:.一 =1.41, _= 1.73).参考答案一•选择题1解:A、42+52工62,故不是直角三角形,故此选项错误;B、12+12=( _) 2,故是直角三角形,故此选项正确;C、62+82工112,故不是直角三角形,故此选项错误;D、52+122工232,故不是直角三角形,故此选项错误.故选:B•2. 解:设直角三角形的斜边是xcm,则另一条直角边是(x-2) cm. 根据勾股定理,得2 2(X- 2) +36 = x ,解得:x= 10.则斜边的长是10cm.故选:C.3. 解:因为AB = 9米,AC= 12米,根据勾股定理得BC = :;、、w'j= 15米,于是折断前树的高度是15+9= 24米.设/ A= x,则/ B = 2x,/ C = 3x,则x+3x+2x=180° ,解得,x= 30°,则3x= 90 ° ,那么△ ABC是直角三角形,C正确;如果a2:b2:c2= 9:16: 25,则如果a2+b2= c2,那么△ ABC是直角三角形,D正确;故选:B.6. A、•••/ A+ / C=Z B,:丄 B = 90°,故是直角三角形,正确;2 i 2 i 2B、—()"),故不能判定是直角三角形;2C 、 •••( b+a ) ( b - a )= c , ••• b 2- a 2= c 2,2 2.2即 a +c = b ,故是直角三角形,正确; D 、 •••/ A :Z B :Z C = 5: 3: 2,R•••/ A =X 180 ° = 90°,10故是直角三角形,正确. 故选:B .7. 解:红莲被吹至一边,花朵刚好齐及水面即 设水深h 尺,由题意得:Rt △ ABC 中,AB = h , AC = h+3, BC = 6,2 2 2由勾股定理得:AC 2=AB 2+BC 2, 即(h+3) 2= h 2+62, 解得:h = 4.5. 故选:C .&解:由题意可得:门框的对角线长为:』工’• I :> = 2.5 (m ), •••①号木板长 3m ,宽 2.7m , 2.7>2.5, •••①号不能从这扇门通过;T ②号木板长4m ,宽2.4m , 2.4v 2.5,•-②号可以从这扇门通过;T ③号木板长 2.8m ,宽 2.8m , 2.8 >2.5,AC 为红莲的长.•③号不能从这扇门通过.故选:B.9.解:T CE 平分/ ACB, CF 平分/ ACD,•••/ACE= / ACB,/ ACF = / ACD,即/ ECF = (/ACB+ / ACD )= 90°,2 2 2EFC为直角三角形,又••• EF // BC, CE 平分/ ACB , CF 平分/ ACD ,•••/ ECB=/ MEC = / ECM , / DCF =/ CFM =/ MCF ,CM = EM = MF = 5, EF = 10,2 2 2 由勾股定理可知CE2+CF2= EF2= 100.故选:B.10•解:如图,•••圆桶放置的角度与水平线的夹角为45°,/ BCA = 90°,•依题意得厶ABC是一个斜边为70cm的等腰直角三角形,•••此三角形中斜边上的高应该为35cm,•水深至少应为100- 35= 65cm.故选:D./\•填空题(共7小题)11. 解:作DM丄BC,交BC延长线于M,连接AC,如图所示:则/ M = 90°,•••/ DCM+Z CDM = 90°,•••/ABC= 90° , AB = 3, BC = 4,•AC2= AB2+BC2= 25,■「CD = 15, AD = 5甘[八•AC2+CD:2=AD2,•••△ACD是直角三角形,/ ACD = 90°,•••/ ACB+ / DCM = 90°,•/ ACB=Z CDM ,•••/ ABC=Z M = 90°,•••△ABC s^ CMD ,.趣=翌=翌=丄m=花==:,•CM = 3AB = 9 , DM = 3BC = 12 ,•BM = BC+CM = 13 ,•BD= !叮T 丁仁丫= —~,故答案为:".12. 解:在Rt△ ABO中,根据勾股定理知,A1O= ■ •= 4 C:m),在Rt △ ABO 中,由题意可得: BO = 1.4 (m ),根据勾股定理知,AO = ; . = 4.8 (m ),所以 AA i = AO - A i O = 0.8 (米).•••/ C = 90°, AC = 6, AD = 7,••• CD =L = ,•/ AD 平分/ CAB ,/ C = 90°, DE 丄 AB ,• DE = DC = •; I ..故答案为:—.2 2 2 214. 解:T AB = m - n , AC = 2mn , BC = m+n,••• CD = ED, AE = AC= 6,又••• AB= 10,•BE=4,• △ BED 的周长=BD+CD + BE= BD+CD + BE= BC+BE = 8+4= 12, 故答案为:12.AB = 8cm, BC= 6cm,••• AC= 「- J.••• ED'是AC的中垂线,•••CE= 5,连接CD',• CD'= AD',在Rt△ BCD'中,CD'2= BD'2+BC2,2 2 2 即AD^= 62+ ( 8 - AD'),解得:AD'= ,4•••当D点运动到AC的中垂线上时,运动时间为.秒,故答案为:417. 解:根据勾股定理的几何意义,可知S E=S F+S G=S A+S B+S C+S D=62+82+32+42=125;故答案为:125.18•解:(1)v CD是AB边上的高,•••△BDC是直角三角形,CD = 一(2)同(1)可知△ ADC也是直角三角形,•AD=「宀】_1一_:4S 匚•・AB = AD + BD = 3.2+1.8 = 5;(3)△ ABC是直角三角形,理由如下:又AC = 4, BC = 3, AB= 5,•AC2+BC2= AB2,•△ ABC是直角三角形.19. "解:(1) P, Q 两点间的距离= 二_ ;_工丄―_:::_[ | 二=13;(2)△ AOB是直角三角形,理由如下:AO2=( 1 - 0) 2+ (2 —0) 2= 5,2 2 2BO =( 4—0) + (—2 —0) = 20,AB2=( 4—1) 2+ (—2—2) 2= 25,2 2 2 则A02+B02= AB2,•△ AOB是直角三角形.20•解:(APQ是等边三角形,理由是:T t= 1 ,AP= 3 —1X 1 = 2, AQ = 2 X 1 = 2,•AP= AQ,•••/ A= 60°,•△ APQ是等边三角形;(2)存在t,使△ APQ和厶CPQ全等.当t = 1.5s时,△ APQ和厶CPQ全等.理由如下:•••在Rt△ ACB 中,AB= 6, AC = 3,•••/ B= 30°,/ A= 60°,当t = 1.5,此时AP= PC时,'/1= 1.5s,•AP = CP = 1.5cm,•/ AQ= 3cm,••• AQ= AC.又•••/ A = 60°,•△ ACQ是等边三角形,•- AQ= CQ,在厶APQ和厶CPQ中,f AQ=CQ•4CP,PQ=PQ•••△ APQ BA CPQ (SSS);即存在时间匚使厶APQ和厶CPQ全等,时间t= 1.5 ;21•解:(1)是,理由是:在△ CHB中,•••CH2+BH2=( 2.4) 2+ (1.8) 2= 92BC = 9CH2+BH2= BC2• CH 丄AB,所以CH是从村庄C到河边的最近路'(2 )设AC = x在Rt△ ACH 中,由已知得AC = x, AH = x— 1.8, CH = 2.4 由勾股定理得:AC2= AH2+CH 2x2=( x- 1.8) 2+ ( 2.4) 2解这个方程,得x= 2.5,答:原来的路线AC的长为2.5千米.22. 解:如图,连接AC,•/ AD = 4, CD = 3,/ ADC = 90°,•. AC= 5,△ ACD的面积=6,在厶ABC 中,••• AC= 5, BC = 12, AB = 13, •AC2+BC2= AB2,即厶ABC为直角三角形,且/ ACB = 90°,•直角△ ABC的面积=30 ,•四边形ABCD的面积=30 - 6= 24.23. 解:此车超速,理由:•••/ POB= 90°,/ PBO = 45°,•△ POB是等腰直角三角形,•OB= OP= 100 米,•// APO= 60 ° ,•OA=甘=OP = 100“ 二〜173 米,•AB = OA —OB = 73 米,73•一〜24米/秒〜86千米/小时〉80千米/小时,•此车超速.4. 解:T AD 丄CD , CD = 4 , AD= 3,二AC= •:; = 4 5 * *,•••/ ACB= 90 ° , AB = 13 ,二BC=拓1 M …h= 12.故选:C.5. 解:如果/ A -/ B=Z C,那么△ ABC是直角三角形,A正确;如果a2= b2- c2,那么△ ABC是直角三角形•「且/ B = 90°, B错误;如果/ A:/ B:/ C= 1 : 3:2,2 2 2•AB2+AC2= BC2,•••△ ABC是直角三角形,设Rt△ ABC的三边分别为a、b、c,•S[ = c2, S2= b2, S3 = a?,•••△ ABC是直角三角形,•b2+c2= a2,即S i+S?= S3.故答案为:S i+S2= S3.15. 解:•••/ C = 90°, AB= 10, BC = 8,•由勾股定理可得,Rt△ ABC中,AC = 6,••• AD :是/ BAC 的平分线,DE 丄AB,/ C = 90°, AD = AD , • △ ADE 也厶ADC (AAS),。
最新人教版数学八年级下册第十七章测试卷(含答案解析)
人教版数学八年级下册第十七章测试卷姓名:分数:一、选择题1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm25.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.56.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:17.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.210.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185二、填空题11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.17.命题:“同角的余角相等”的逆命题是.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.三、解答题21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.答案1.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个【考点】勾股定理的逆定理;三角形内角和定理.【专题】选择题.【分析】计算出三角形的角利用定义判定或在知道边的情况下利用勾股定理的逆定理判定则可.【解答】解:①,根据勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,根据勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,根据勾股定理的逆定理不是直角三角形,故不是.故选A.【点评】本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【考点】勾股定理的逆定理;完全平方公式.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.【点评】本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.3.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45° D.60°【考点】勾股定理.【专题】选择题.【分析】根据斜边的平方等于两条直角边乘积的2倍,以及勾股定理可以列出两个关系式,直接解答即可.【解答】解:设直角三角形的两直角边是a、b,斜边是c.根据斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,根据勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则这个三角形是等腰直角三角形,因而这个三角形的锐角是45°.故选C.【点评】已知直角三角形的边长问题,不要忘记三边的长,满足勾股定理.4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【考点】勾股定理;翻折变换(折叠问题).【专题】选择题.【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.5.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1: B.1::2 C.1::D.1:4:1【考点】勾股定理.【专题】选择题.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选B.【点评】本题考查了三角形的内角和定理和勾股定理,通过知道角的度数计算特殊三角形边的比.7.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A. B.3 C.+2 D.【考点】勾股定理;含30度角的直角三角形.【专题】选择题.【分析】根据直角三角形的性质及勾股定理即可解答.【解答】解:如图所示,Rt△ABC中,∠B=60°,AB=1,则∠A=90°﹣60°=30°,故BC=AB=×1=,AC===,故此三角形的周长是.故选D.【点评】考查了勾股定理和含30度角的直角三角形,熟悉直角三角形的性质:直角三角形中,30°所对的直角边是斜边的一半.熟练运用勾股定理.8.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】选择题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2【考点】勾股定理.【专题】选择题.【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.10.直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185【考点】勾股定理.【专题】选择题.【分析】设出另一直角边和斜边,根据勾股定理列出方程,再根据边长都是自然数这一特点,写出二元一次方程组,求解即可.【解答】解:设另一直角边长为x,斜边为y,根据勾股定理可得x2+132=y2,即(y+x)(y﹣x)=169×1因为x、y都是连续自然数,可得,∴周长为13+84+85=182;故选A.【点评】本题综合考查了勾股定理与二元一次方程组,解这类题的关键是利用勾股定理来寻求未知系数的等量关系.11.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.【考点】勾股定理;等腰三角形的性质.【专题】填空题.【分析】根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.【解答】解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.【点评】注意等腰三角形的三线合一,熟练运用勾股定理.12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为m.【考点】勾股定理的应用.【专题】填空题.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480米.【点评】考查了勾股定理的应用,是实际问题但比较简单.13.小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为米.【考点】勾股定理的应用.【专题】填空题.【分析】根据题意画出图形根据勾股定理解答.【解答】解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,根据勾股定理得AB====15m.【点评】本题很简单,只要根据题意画出图形即可解答,体现了数形结合的思想.14.如果一个三角形的三个内角之比是1:2:3,且最小边的长度是8,最长边的长度是.【考点】勾股定理;三角形内角和定理.【专题】填空题.【分析】根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.【解答】解:设一份是x,则三个角分别是x,2x,3x.再根据三角形的内角和定理,得:x+2x+3x=180°,解得:x=30°,则2x=60°,3x=90°.故此三角形是有一个30°角的直角三角形.根据30°的角所对的直角边是斜边的一半,得,最长边的长度是16.【点评】此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为度.【考点】勾股定理的逆定理.【专题】填空题.【分析】一个三角形的三边符合a2+b2=c2,根据勾股定理的逆定理,这个三角形是直角三角形,依此可得这个三角形中最大的角的度数.【解答】解:设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形.则这个三角形中最大的角为90度.故答案为:90.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.【考点】勾股定理.【专题】填空题.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.17.命题:“同角的余角相等”的逆命题是.【考点】互逆命题.【专题】填空题.【分析】先把同角的余角相等写成“如果…那么…”的形式,然后交换题设和结论即可得到逆命题.【解答】解:“同角的余角相等”的逆命题为“如果两个角相等,那么这两个角是同一个角的余角”.故答案为:如果两个角相等,那么这两个角是同一个角的余角.【点评】本题考查了命题与定理,正确理解原命题与逆命题的关系是解题关键.18.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到 B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)【考点】勾股定理的应用.【专题】填空题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.19.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.【考点】勾股定理的应用.【专题】填空题.【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.【点评】本题主要是考查学生对勾股定理的熟练掌握,解题的关键是从实际问题中整理出直角三角形并正确的利用勾股定理.20.一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,则上午10:00,两小船相距海里.【考点】勾股定理的应用.【专题】填空题.【分析】正东方向与正南方向正好构成直角,因而两船所经过的路线,与10:00时,两船之间的连线正好构成直角三角形.根据勾股定理即可求解.【解答】解:在直角△OAB中,OB=2×8=16海里.OA=12海里,根据勾股定理:AB===20海里.故答案为:20.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.21.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】解答题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.22.三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所示的图形,则△ABC一定是直角三角形吗?说明理由.【考点】勾股定理的逆定理.【专题】解答题.【分析】根据S1、S2、S3,可得出AC2,BC2及AB2,根据勾股定理的逆定理可得出三角形是直角三角形.【解答】解:∵S1=π()2=4.5π,S2=π()2=8π,S3=π()2=12.5π,∴AC2=36,BC2=64,AB2=100,又∵AC2+BC2=AB2,∴△ABC一定是直角三角形.【点评】本题考查了勾股定理的逆定理的知识,关键是根据面积表示出AC2,BC2及AB2,要求熟练掌握勾股定理的逆定理.23.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【考点】勾股定理的应用;勾股定理的逆定理.【专题】解答题.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC 为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查了勾股定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?【考点】勾股定理的应用.【专题】解答题.【分析】先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.【解答】解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.【点评】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.25.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.【考点】勾股定理的应用.【专题】解答题.【分析】红莲在水中的长度,花离原位的长度和花的总长可构成直角三角形,设出湖水的深度为x,根据勾股定理列出方程可求出.【解答】解:设湖水深为x尺,则红莲总长为(x+0.5)尺,根据勾股定理得:在Rt△ABC中,有:x2+s2=(x+0.5)2,在Rt△ADC中,有:0.52+s2=22,由以上两式解得:x=3.5,即湖水深3.5尺.【点评】本题的关键是读懂题意,找出题中各个量之间的关系,建立等式进行求解.26.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【考点】勾股定理的应用.【专题】解答题.【分析】(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【解答】解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).【点评】此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.27.一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.【考点】勾股定理;平面展开﹣最短路径问题.【专题】解答题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将正方体展开,然后利用两点之间线段最短解答.【解答】解:如图:根据题意,如上图所示,最短路径有以下三种情况:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,所以AB′2=25,即AB′=5cm.【点评】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
人教版八年级数学下册单元测试《第17章 勾股定理》(B卷)(解析版)
《第17章勾股定理》卷B一、选择题1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形三边长分别是()A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,103.若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.154.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm二、填空题5.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.6.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.三、解答题7.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).8.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.9.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?10.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交于D,E为垂足,连接CD,若BD=1,求AC的长.11.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),求这束光从点A到点B所经过路径的长.《第17章勾股定理》卷B一、选择题1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.12【考点】勾股定理.【分析】设斜边长为x,则一直角边长为x﹣2,再根据勾股定理求出x的值即可.【解答】解:设斜边长为x,则一直角边长为x﹣2,根据勾股定理得,62+(x﹣2)2=x2,解得x=10,故选C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形三边长分别是()A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,10【考点】勾股定理.【分析】由斜边与一直角边比是13:5,设斜边是13k,则直角边是5k.根据勾股定理,得另一条直角边是12k.根据题意,求得三边的长即可.【解答】解:设斜边是13k,直角边是5k,根据勾股定理,得另一条直角边是12k.根据题意,得:13k+5k+12k=60解得:k=2.则三边分别是26,24,10.故选D.【点评】用一个未知数表示出三边,根据已知条件列方程即可.熟练运用勾股定理.3.若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.15【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选B.【点评】如果给的数据没有明确,此类题一定要分情况求解.4.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.二、填空题5.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为 4.8 cm.【考点】勾股定理.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.6.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10 .【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.【解答】解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.【点评】注意等腰三角形的三线合一,熟练运用勾股定理.三、解答题7.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.8.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.【考点】勾股定理.【分析】由已知可以利用勾股定理求得EC的长,从而可得到CD的长,再根据勾股定理求得AC的长即可.【解答】解:∵AC⊥CE,AD=BE=13,BC=5,DE=7,∴EC==12,∵DE=7,∴CD=5,∴AC==12.【点评】此题考查学生对直角三角形的性质及勾股定理的运用.9.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.10.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交于D,E为垂足,连接CD,若BD=1,求AC的长.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】几何图形问题;数形结合.【分析】由DE垂直平分斜边AC,可得AD=CD,又由在Rt△ABC中,∠A=30°,即可求得∠BCD的度数,继而求得AB的长,则可求得答案.【解答】解:∵DE垂直平分斜边AC,∴AD=CD,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∵在Rt△BCD中,BD=1,∴CD=2BD=2,∴AD=CD=2,∴AB=AD+BD=3,∴AC==2.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),求这束光从点A到点B所经过路径的长.【考点】勾股定理的应用.【专题】计算题.【分析】首先过点B作BD⊥x轴于D,由A(0,2),B(4,3),即可得OA=2,BD=3,OD=4,由题意易证得△AOC∽△BDC,根据相似三角形的对应边成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得这束光从点A到点B所经过的路径的长.【解答】解:如图,过点B作BD⊥x轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为.【点评】本题考查的是勾股定理的应用,解此题的关键是掌握辅助线的作法,掌握入射光线与反射光线的关系.。
八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)
八年级数学下册第十七章《勾股定理》测试题-人教版(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。
【3套】人教版数学八年级下册第十七章测试(含解析答案)
人教版数学八年级下册第十七章测试(含解析答案)一、选择题1.在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2的值是()A.4B.6C.8D.92.下列各组数是勾股数的是()A.2,4,5B.8,15,17C.11,13,15D.4,5,63.下列命题:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边分别是12,25,21,那么此三角形必是直角三角形;④如果一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1.其中正确的是()A.①②B.①③C.①④D.②④4.△ABC中,如果三边满足关系:BC2=AB2+AC2,那么△ABC的直角是()A.∠CB.∠AC.∠BD.不能确定5.把直角三角形的两直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.3倍D.5倍6.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4或87.(2013·衢州)如图17-19所示,将一个含有45°角的三角板的直角顶点放在一张宽为3 cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板的最大边的长为()A.3 cmB.6 cmC.3 cmD.6 cm图17-198.(2013·潍坊)如图17-20所示,一艘渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时图17-209.一个等腰三角形的底边长为10,腰长为13,则此三角形的面积为()A.40B.50C.60D.7010.下列命题中,其逆命题正确的是()A.对顶角相等B.两直线平行,同位角相等C.全等三角形对应角相等D.等腰三角形是轴对称图形二、填空题11.在△ABC中,若a2+b2=25,a2-b2=7,c=5,则最大边上的高为.12.三角形的两边长分别为5和4,要使它成为直角三角形,则第三边的平方为.13.如图17-21所示,在四边形ABCD中,AB=1,BC=,CD=,AD=3,且AB⊥BC,则四边形ABCD的面积为.图17-2114.如图17-22所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm.点P从点A开始沿AB边向点B以每秒1 cm的速度移动,点Q从点B沿BC边向点C以每秒2 cm 的速度移动.如果同时出发,那么过3秒时,△BPQ的面积为cm2.图17-2215.(2014·巴中模拟)若直角三角形的两直角边长分别为a,b,且满足+|b-4|=0,则该直角三角形的斜边长为.16.(2013·鄂州)如图17-23所示,△AOB中,∠AOB=90°,AO=3,BO=6.△AOB绕顶点O逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,则线段B'E的长度为.图17-23三、解答题17.“中华人民共和国道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过70 km/h.如图17-24所示,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30 m的C处,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?(参考数据转换:1 m/s=3.6 km/h)图17-2418.如图17-25所示,将长方形ABCD沿直线AE折叠,顶点D恰好落在BC边上点F处.已知CE=3 cm,AB=8 cm,求图中阴影部分的面积.图17-2519.如图17-26所示,在梯形ABCD中,AB∥CD,∠ABC=90°,AB=9 cm,BC=8 cm,CD=7 cm,M 是AD的中点,过点M作AD的垂线交BC于点N,则BN的长是多少?图17-2620.如图17-27所示,已知长方体的长为AC=2 cm,宽为BC=1 cm,高为AA'=4 cm.一只蚂蚁如果沿长方体的表面从点A爬到点B',那么沿哪条路最近?最短路程是多少?图17-2721.小强家有一块三角形的菜地,量得两边长分别为41 m,15 m,第三边上的高为9 m,请你帮小强计算这块菜地的面积.22..如图17-28所示,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向上,办公楼B位于南偏东45°方向上.小明沿正东方向前进60 m到达C处,此时测得教学楼A恰好位于正北方向,办公楼B恰好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1 m).图17-28参考答案1.答案:C解析:因为AB=2,所以AB2=BC2+AC2=4,所以AB2+BC2+AC2=4+4=8.2.答案:B解析:A中22+42=20≠52,故不是;B中82+152=289=172,故是勾股数;C中112+132=290≠152,故不是;D中42+52=41≠62,故不是.故选B.3.答案:C解析:①正确,因为a2+b2=c2,所以(4a)2+(4b)2=(4c)2;②错误,因为“如果直角三角形的两直角边是3,4,那么斜边必是5”;③错误,因为122+212≠252,所以不是直角三角形;④正确,因为b=c,c2+b2=2b2=a2,所以a2∶b2∶c2=2∶1∶1.4.答案:B解析:因为BC2=AB2+AC2,所以△ABC是直角三角形.又因BC是斜边,所以∠A=90°.5.答案:A解析:设一直角三角形的直角边分别为a,b,斜边为c,则a2+b2=c2;另一直角三角形的直角边分别为2a,2b,则根据勾股定理知(2a)2+(2b)2=4(a2+b2)=4c2=(2c)2,即斜边为2c.所以直角三角形的两直角边同时扩大到原来的2倍时,斜边也扩大为原来的2倍.6.答案:B解析:当高AD在△ABC内部时,得CD2=152-122=81,所以CD=9,又BD2=132-122=25,所以BD=5,所以BC=14;当AD在△ABC外部时,易得BC=9-5=4.所以BC的长为14或4.7.答案:D解析:如图17-10所示,过点C作CD⊥AD,∴CD=3.在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6.又三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=6.图17-108.答案:D解析:过点C作CD⊥AB于点D.设AC=x海里.在△ACD中,∠ADC=90°,∠CAD=10°+20°=30°,AC=x海里,∴CD=AC=x海里,AD=CD=x海里.在△BCD中,∠BDC=90°,∠CBD=80°-20°=60°.∴BD=CD=x海里.∵AD+BD=AB,∴x+x=20,解得x=10.∴救援船航行的速度为10÷=30(海里/小时).9.答案:C解析:过顶点作底边上的高,根据等腰三角形“三线合一”的性质可得高也是中线,进而根据勾股定理求得高为12,故面积是60.10.答案:B解析:A的逆命题是:相等的角是对顶角,假命题; B的逆命题是:同位角相等,两直线平行,真命题; C的逆命题是:对应角相等的两个三角形全等,假命题; D的逆命题是:轴对称图形是等腰三角形,假命题.11.答案:解析:由a2+b2=25,a2-b2=7建立方程组,求得a=4,b=3.因为32+42=52,根据勾股定理的逆定理可知,三角形为直角三角形,c为斜边,设c上的高为h,由面积公式S=ab=ch,可求得h=.12.答案:9或41解析:①设第三边长x<5,所以x2+42=52,所以x2=52-42=9;②设第三边长x>5,所以x2=52+42=41.所以第三边长的平方为9或41.图17-1113.答案:解析:连接AC,因为AB⊥BC,所以△ABC是直角三角形,所以AC2=AB2+BC2=12+=,所以AC=,所以S△ABC=AB·BC=×1×=.因为在△ACD中,AC2+AD2=+32==CD2,所以△ACD是直角三角形,所以S△ACD=AC·AD=××3=,所以四边形ABCD的面积=S△ABC+S△ACD=+=.14.答案:18解析:设AB为3x cm,BC为4x cm,AC为5x cm,因为周长为36 cm,所以3x+4x+5x=36,解得x=3,所以AB=9 cm,BC=12 cm,AC=15 cm.因为AB2+BC2=AC2,所以△ABC是直角三角形.经过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),所以S△2).PBQ=BP·BQ=×6×6=18(cm15.答案:5解析:∵+|b-4|=0,∴a2-6a+9=0,b-4=0,解得a=3,b=4.∵直角三角形的两直角边长为a,b,∴该直角三角形的斜边长===5.图17-1216.答案:解析:∵∠AOB=90°,AO=3,BO=6,∴AB===3.∵△AOB绕顶点O逆时针旋转到△A'OB'处,∴AO=A'O=3,A'B'=AB=3.∵点E为BO的中点,∴OE=BO=×6=3,∴OE=A'O.过点O作OF⊥A'B'于点F,S△A'OB'=×3·OF=×3×6,解得OF=.在Rt△EOF中,EF===.∵OE=A'O,OF⊥A'B',∴A'E=2EF=2×=(等腰三角形三线合一),∴B'E=A'B'-A'E=3-=.17.解:在Rt△ABC中,AC=30 m,AB=50 m,根据勾股定理可得BC2=AB2-AC2=502-302=402.所以BC=40 m,所以小汽车的速度v=40÷2=20(m/s)=20×3.6=72(km/h).因为72 km/h>70 km/h,所以这辆小汽车超速行驶了.18.解:由折叠可知△ADE和△AFE关于AE成轴对称,故AF=AD,EF=DE=DC-CE=8-3=5(cm).所以CF=4 cm.设BF=x cm,则AF=AD=BC=(x+4)cm.在Rt△ABF中,由勾股定理得82+x2=(x+4)2,解得x=6,故BC=10(cm).所以阴影部分的面积=10×8-2S△ADE=80-50=30(cm2).图17-1319.解:连接DN,AN,由于MN是AD的中垂线,所以ND==BC-BN,根据勾股定理知,AN2=AB2+BN2,ND2=CD2+CN2,∴AB2+BN2=CD2+CN2,有92+BN2=72+(8-BN)2,解得BN=2 cm.20.解:根据题意,如图17-14所示,可行路径有以下三种情况:图17-14(1)沿BC,AC,AA',A'C',C'B',B'B剪开,得图(1),AB'2=AB2+BB'2=(2+1)2+42=25;(2)沿AC,CC',C'B',B'D',D'A',A'A剪开,得图(2),AB'2=AC2+B'C2=22+(4+1)2=4+25=29;(3)沿AD,DD',B'D',C'B',C'A',AA'剪开,得图(3),AB'2=AD2+B'D2=12+(4+2)2=1+36=37.综上所述,最短路径应为图(1)所示,所以AB'2=25,AB'=5 cm,即最短路程是5 cm.21.解:①当∠ACB为钝角时,如图(1)所示,AB=41 m,BC=15 m,BD=9 m.所以AD2=AB2-BD2=412-92=402,CD2=BC2-BD2=152-92=122.所以AC=AD-CD=40-12=28(m).所以S△ABC=AC·BD=×28×9=126(m2).图17-15②当∠ACB为锐角时,如图(2)所示,AC=AD+CD=40+12=52(m).所以S△ABC=AC·BD=×52×9=234(m2).综上所述,这块菜地的面积是126 m2或234 m2.22.解:由题意知∠APC=30°,∠BPC=45°,AB⊥PC.在Rt△APC中,PC=60 m,∠APC=30°.设AC=x m,则AP=2x m.由勾股定理,得AP2-AC2=PC2.即(2x)2-x2=602,解得x≈34.64.在Rt△BPC中,PC=60 m,∠BPC=45°.∴∠B=45°,∴BC=PC=60 m.∴AB=AC+BC≈34.64+60≈94.6(m).人教版八年级下册第十七章勾股定理单元测试一、选择题1、下列各组线段能构成直角三角形的一组是()A.5cm,9cm,12cm B.7cm,12cm,13cm C.30cm,40cm,50cm D.3cm,4cm,6cm2、三角形的三边长分别为6,8,10,它的最长边上的高为()A.6 B.2.4 C.8 D.4.83、有下面的判断:①若△ABC中,a2+b2≠c2,则△ABC不是直角三角形;②△ABC是直角三角形,∠C=90°,则a2+b2=c2;③若△ABC中,a2-b2=c2,则△ABC是直角三角形;④若△ABC是直角三角形,则(a+b)(a-b)=c2.其中判断正确的有( )A.4个 B.3个 C.2个 D.1个4、在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或845、有长度为9cm、12cm、15cm、36cm、39cm的五根木棒,可搭成(首尾连接)直角三角形的个数为()A.1个 B.2个 C.3个 D.4个6、如图所示,AB=BC=CD=DE=1,AB⊥BC、AC⊥CD,AD⊥DE,则AE等于()A.1 B.2 C.3 D.27、在某岛A 的正东方向有台风,且台风中心B 距离小岛A 240km ,台风中心正以30km/h 的速度向西北方向移动,距离中心50公里以内圆形区域(包括边界)都受影响,则小岛A受到台风影响的时间为( )A .不受影响B .1小时C .2小时D .3小时8、在Rt △ABC 中,∠ACB =90°,点D 是AB 的中点,且CD =25,如果Rt △ABC 的面积为1,则它的周长为( ) A .215 B .5+1 C .5+2 D .5+3 9、如图,有一个由传感器控制的灯A 装在门上方离地高4.5 m 的墙上,任何东西只要移至距该灯5 m 及5 m 以内时,灯就会自动发光,请问一个身高1.5 m 的学生要走到离墙多远的地方灯刚好发光?( )A .4 mB .3 mC .5 mD .7 m10、如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所爬行的最短路线的长是( )A .(32+8)cmB .10 cmC .14 cmD .无法确定11、如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米.A.0.5 B.1 C.1.5 D.212、园丁住宅小区有一块草坪如图所示.已知AB=3m,BC=4m,CD=12m,DA=13m,且AB⊥BC,这块草坪的面积是( )A.24m2 B.36m2C.48m2 D.72m213、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了该图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2016次后形成的图形中所有的正方形的面积和是()A. 1B. 2015C. 2016D. 2017二、填空题14、如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子长度为 cm.15、直角三角形的斜边长是5,一直角边是3,则此三角形的周长是.16、,阴影部分是一个正方形,则此正方形的面积为.17、若一个三角形的周长为12cm,一边长为33c m,其他两边之差为3cm,则这个三角形是______18、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:.19、如图,∠AOB=90°,OA=25m,OB=5m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是m.20、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.Array三、简答题21、如图,△ABC中,AD⊥BC,垂足为D.如果AD=6,BD=9,CD=4,那么∠BAC是直角吗?证明你的结论.22、从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?23、如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知该纸片宽AB=3cm,长BC=5cm.求EC的长.24、如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?25、15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.26、如图,△ABC中,∠C=90°,AB=10 cm,BC=6 cm,动点P从点C出发,以每秒2 cm的速度按C→A的路径运动,设运动时间为t秒.(1)出发2秒时,△ABP的面积为cm2;(2)当t为何值时,BP恰好平分∠ABC?参考答案一、选择题1、C2、D3、C4、C5、B6、D7、C8、D9、A 10、B 11、A 12、B13、D二、填空题14、.8.5;15、12;16、6417、直角三角形.18、13,84,85 ;19、13 m..20、10三、简答题21、解:是直角.∵AD⊥BC∴∠ADB=∠ADC=90°∴AD2+BD2=AB2,AD2+CD2=AC2…………………2分∵AD=6,BD=9,CD=4∴AB2=117,AC2=52,…………………4分∵BC=BD+CD=13∴AB2+AC2=BC2…………………6分∴∠BAC=90°…………………7分22、【解答】解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.23、解:由折叠可知AD=AF=5cm ,DE=EF …………………1分 ∵∠B =90°∴ AB 2+BF 2= AF 2, ∵AB=3cm ,AF=5cm∴BF=4cm ,∵BC=5cm ,∴FC=1cm …………………3分 ∵∠C =90°,∴ EC 2+FC 2= EF 2设EC =x ,则DE=EF=3-x∴(3-x )2=12+x 2…………………5分∴ x =34…………………6分 24、【解答】解:∵甲轮船向东南方向航行,乙轮船向西南方向航行, ∴AO ⊥BO ,∵甲轮船以16海里/小时的速度航行了一个半小时, ∴OB=16×1.5=24海里,AB=30海里, ∴在Rt △AOB 中,AO===18,∴乙轮船每小时航行18÷1.5=12海里. 25、:连接AC . ∵∠ADC =90°, ∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2, 解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2, ∴△ACB 是直角三角形,∠ACB =90° ∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=21×10×24-21×6×8 =96(m 2).故这块空白地的面积为96 m 2.26、(1)12.······························· 3分 (2)解:过点P 作PG ⊥AB 于G ,则∠BGP =90°. ∵∠C =90°,∴∠BGP =∠C .···························· 4分 ∵BP 平分∠ABC ,∴∠CBP =∠ABP .··························· 5分 又∵BP =BP ,∴△BCP ≌△BGP .··························· 6分 ∴BG =BC =6,PG =PC =2t .∴PA =8-2t ,AG =10-6=4.······················ 8分 在Rt △APG 中, AG 2+PG 2=AP 2.∴42+(2t )2=(8-2t )2 ························· 9分 解得t =1.5.····························· 10分 (说明:用面积法求解类似给分)人教版八年级数学下册第十七章勾股定理复习检测试题含答案一、选择题。
人教版初中数学八年级下学期第十七章测试卷(含答案)
初中数学人教版八年级下学期第十七章测试卷一、单选题(共7题;共14分)1. ( 2分) 三角形各边长度如下,其中不是直角三角形的是()A. 3,4,5B. 6,8,10C. 5,11,12D. 8,15,172. ( 2分) 在RtDABC 中,ÐC = 90°,AB = 3 ,AC = 2, 则BC 的值()A. √5B. √6C. √7D. √133. ( 2分) 如图,在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是( )A. 4.8B. 4.8或3.8C. 3.8D. 54. ( 2分) 如图,开口玻璃罐长、宽、高分别为16、6和6,在罐內点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外长方形ABCD的中心H处,蚂蚁到达饼干的最短距离是多少()A. √277B. 17C. √205D. √1455. ( 2分) 如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A. (4,0)B. (0,4)C. (0,5)D. (0,√31)6. ( 2分) 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A. 2.2米B. 2.3米C. 2.4米D. 2.5米7. ( 2分) 如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为().A. 13cmB. √61cmC. 2 √61cmD. 20cm二、填空题(共6题;共6分)8. ( 1分) 一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距________km9. ( 1分) 如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC 为等腰三角形时,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于________.10. ( 1分) 如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为________m.11. ( 1分) 如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中A,B,C,D四个小正方形的面积之和等于8,则最大正方形的边长为________.12. ( 1分) 如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,已知S1+S2+S3=10,则S2的值是________.13. ( 1分) 如图,要为一段高为5米,长为13米的楼梯铺上红地毯,则红地毯至少要________米长.三、解答题(共1题;共5分)14. ( 5分) 如图在四边形ABCD中,AD=1,AB=BC=2,DC=3,AD⊥AB,求S四边形ABCD四、综合题(共2题;共16分)15. ( 6分) 如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为________,BC的长为________,CD的长为________;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.16. ( 10分) 一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)若蜘蛛还走前面和右面这两个面,你认为“AD-DB"是最短路线吗?如果不是,请求出最短路程,如果是,请说明理由答案解析部分一、单选题1.【答案】C【考点】勾股定理的逆定理【解析】【解答】解;A、∵32+42=52,∴5,4,3能构成直角三角形;B、∵62+82=102,∴6,8,10能构成直角三角形;C、∵52+112≠122,∴5,11,12不能构成直角三角形;D、∵82+152=172,∴8,15,17能构成直角三角形.故答案为:C.【分析】根据勾股定理的逆定理,一个三角形的三边如果满足较小两边的平方和等于最大边长的平方,那么这个三角形就是直角三角形,从而即可一一判断得出答案.2.【答案】A【考点】勾股定理【解析】【解答】由勾股定理得,BC=√AB2−AC2=√5.故答案为:A.【分析】直接利用勾股定理计算即可.3.【答案】A【考点】勾股定理【解析】【解答】解:如下图,过点A作AF⊥BC于点F,连接AP,∵在△ABC中,AB=AC=5,BC=8,∴BF=4,∴在△ABF中,AF=√AB2−BF2=3,∵S△ABC=S△ABP+S△ACP,∴12×8×3=12×5·PD+12×5·PE,∴12=12×5·(PD+PE),即:PD+PE=4.8.【分析】过点A作AF⊥BC于点F,连接AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S△ABC=S△ABP+S△ACP,代入数值解答即可. 本题运用了转化思想,将一个三角形的面积转化为两个三角形的面积的和是解题的关键.4.【答案】A【考点】平面展开﹣最短路径问题【解析】【解答】解:①若蚂蚁从平面ABCD和平面CDFE经过,蚂蚁到达饼干的最短距离如图1:H′E=√(8+6)2+(6+3)2=√277,②若蚂蚁从平面ABCD和平面BCEH经过,则蚂蚁到达饼干的最短距离如图2:H′E=√82+(3+6+6)2=17∵17>√277∴蚂蚁到达饼干的最短距离是√277,故答案为:A.【分析】做此题要把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.5.【答案】B【考点】勾股定理【解析】【解答】解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,所以OB= √52-32=4 ,所以点B的坐标为(0,4),【分析】根据勾股定理算出OB的长,再根据点的坐标与图形的性质即可得出点B的坐标.6.【答案】A【考点】勾股定理【解析】【解答】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+2.42=6.25在Rt△A'BD中,∵∠A'BD=90°,A'D=2米,BD2+A′D2=A′B2∴BD2+22=6.25∴BD2=2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案为:A.【分析】如图,在Rt△ACB中,genuine勾股定理表示出AB2,在Rt△A'BD中,利用勾股定理即可求出BD的长,进而根据CD=BC+BD算出答案.7.【答案】D【考点】平面展开﹣最短路径问题【解析】【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B= √A′D2+BD2= √122+162=20(cm).故答案为:D.【分析】立体图形上的最短问题,如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B 即为最短距离,从而根据勾股定理即可算出答案.二、填空题8.【答案】10【考点】勾股定理的应用【解析】【解答】解:∵16×12=8,12×12=6∴它们离开港口半小时后相距√62+82=10千米.故答案为:10.【分析】先求出半小时后各自行驶的路程,再根据勾股定理即可求得结果.9.【答案】15【考点】勾股定理的应用【解析】【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC= 12×4×3=6,SΔABC′=3×5−12×3×2×2−12×5×1=15−6−2.5=6.5,SΔABC′′=3×3−12×3×2×2−12×1×1=9−6−0.5=2.5,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案为:15.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB= √13,然后即可确定C点的位置;然后分别计算三个三角形的面积,相加即可.10.【答案】3【考点】勾股定理【解析】【解答】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB=√AB2−A02=√152−122=9m.同理,在Rt△COD中,DO=√CD2−CO2=√152−92=12m,∴BD=OD﹣OB=12﹣9=3(m).故答案是:3.【分析】先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.11.【答案】 2【考点】勾股定理的应用【解析】【解答】分别设A ,B ,C ,D 四个小正方形的边长为a ,b ,c ,d ,根据题意得:{a 2+b 2+c 2+d 2=8①√a 2+c 2=√b 2+d 2②题目中需要求 √a 2+c 2 的值,则由①式得 a 2+c 2=4 ,则最大正方形的边长为 √a 2+c 2=2【分析】分别设A ,B ,C ,D 四个小正方形的边长为a ,b ,c ,d ,根据题图可得出相应等式。
人教版数学八年级下册第十七章勾股定理测试卷附答案
人教版数学八年级下册第十七章考试试题评卷人得分一、单选题1.下列四组线段中,可以构成直角三角形的是()A .3,5,6B .2,3,4C .1,2D .3,42.下列命题中是假命题的是()A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形B .△ABC 中,若a 2=(b +c)(b -c),则△ABC 是直角三角形C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形D .△ABC 中,若a ∶b ∶c =5∶4∶3,则△ABC 是直角三角形3.如图:图形A 的面积是()A .225B .144C .81D .无法确定4.图1中,每个小正方形的边长为1,ABC 的三边a ,b ,c 的大小关系是:A .a<c<bB .a<b <cC .c<a<bD .c<b<a5.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达该建筑物的最大高度是()A .12米B .13米C .14米D .15米6.如图:在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于()A.75B.100C.120D.125 7.三角形的三边长满足关系:(a+b)2=c2+2ab,则这个三角形是() A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形8.在Rt△ABC中,∠C=90°,AC=9,BC=12,则AB边上的高是()A.365B.1225C.94D.3349.如图,将一个含有45 角的直角三角板的直角顶点放在一张宽为2cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30 角,则三角板最长的长是()A.2cm B.4cm C.D.10.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A cm B.4cm C D.3cm11.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.12.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是()A.3B.154C.5D.152评卷人得分二、填空题13.一个直角三角形的两边为6,8,第三边为__.14.若三角形三边之比为3:4:5,周长为24,则三角形面积_____________.15.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为______米.16.如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为_____.17.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.评卷人得分三、解答题18.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是_____________19.如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?20.已知a,b,c为△ABC的三条边的长,且满足b2+2ab=c2+2ac.(1)试判断△ABC的形状,并说明理由;(2)若a=6,b=5,求△ABC的面积.21.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?22.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.求证:(1)△ACE ≌△BCD ;(2)222AD DB DE +=.23.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107千米/时的速度向北偏西60°的BF 方向移动,距台风中心200千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A 市受这次台风影响,那么受台风影响的时间有多长?24.如图l ,在AABC 中,∠ACB=90°,点P 为ΔABC 内一点.(1)连接PB ,PC ,将ABCP 沿射线CA 方向平移,得到ΔDAE ,点B ,C ,P 的对应点分别为点D 、A 、E ,连接CE.①依题意,请在图2中补全图形;②如果BP ⊥CE ,BP=3,AB=6,求CE 的长(2)如图3,以点A 为旋转中心,将ΔABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.参考答案1.C【解析】3+56≠,不能构成直角三角形,故不符合题意;A、2222+34≠,不能构成直角三角形,故不符合题意;B、2221+=2,能构成直角三角形,故符合题意;C、222D 、2223+4≠,不能构成直角三角形,故不符合题意.故选C .2.C【解析】【分析】有一个角是直角的三角形是直角三角形,两边的平方和等于第三边的平方的三角形是直角三角形,逐一分析即可.【详解】解:A 、∠B+∠A=∠C ,所以∠C=90°,所以△ABC 是直角三角形,故本选项不符合题意.B 、若a 2=(b+c )(b-c ),所以a 2+c 2=b 2,所以△ABC 是直角三角形,故本选项不符合题意.C 、若∠A :∠B :∠C=3:4:5,最大角为75°,故本选项符合题意.D 、若a :b :c=5:4:3,则△ABC 是直角三角形,故本选不项符合题意.故选C .【点睛】本题考查直角三角形的概念,和勾股定理的应用.3.C【解析】试题解析:由勾股定理可得:图形A 的面积22514481.=-=故选C.4.C【解析】通过小正方形网格,可以看出AB=4,AC 、BC 分别与三角形外构成直角三角形,再利用勾股定理可分别求出AC 、BC ,然后比较三边的大小即可.解答:解:∵AC=,=∴b >a >c ,即c <a <b .故选C .5.A【解析】【分析】由题意可知消防车的云梯长、地面和建筑物的高度构成了一个直角三角形,斜边为消防车的云梯长,根据勾股定理就可求出建筑物的高度.【详解】如图所示,=12米,故选A.6.B【解析】【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.7.B【解析】【分析】根据题意,对(a+b)2=c2+2ab进行化简、整理,可得a2+b2=c2;接下来,由勾股定理的逆定理即可判断出三角形的形状.【详解】解:∵(a+b)2=c2+2ab,∴a2+2ab+b2=c2+2ab,∴a2+b2=c2,由勾股定理的逆定理可知,这个三角形是直角三角形.故选B.【点睛】本题是判断三角形形状的题目,解题的关键是掌握勾股定理的逆定理;8.A【解析】试题解析:设点C到AB的距离为h,在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,BC=12,∴,∵S△ABC =12AC•BC=12AB•h,∴h=12936 155⨯=.故选A.9.D 【解析】【分析】过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×2=4,又∵三角板是有45°角的三角板,∴AB=AC=4,∴BC2=AB2+AC2=42+42=32,∴BC=,故选D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.10.A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222+++=,x=x(65)(5)10(负值已舍),故选A11.B【解析】【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选B.【点睛】本题考查勾股定理、点与圆的位置关系,根据火车行驶的方向,速度,以及它在以A为圆心,200米为半径的圆内行驶的BD的弦长,求出对A处产生噪音的时间,解题关键是根据勾股定理求BD的长..12.C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.13.或10【解析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】当8是斜边时,第三边长==当6和8是直角边时,第三边长10.故第三边的长为或10故答案为或10【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.14.24【解析】本题主要考查了三角形.设三角形的三边是3x,4x,5x,根据周长公式可求得三边的长,再根据面积公式即可求得其面积.解:设三角形的三边是3x,4x,5x,则3x+4x+5x=24,解得x=2∴三角形的三边是6,8,10∴三角形的面积=12×6×8=2415.7【解析】,所以地毯的长度为4+3=7米.故答案为7.考点:勾股定理的应用.16.30【解析】【分析】根据勾股定理可得:AB=13,根据图形可得:阴影部分的面积=以BC为直径的半圆的面积+以AC为直径的半圆的面积+△ABC的面积-以AB为直径的半圆的面积,由此进行计算即可.Rt△ABC中,AC=5,BC=12,∴=13,∴S阴影=222 1121511135122222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=30,故答案为30.17.15.【解析】【分析】过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:,故答案为15.18.50【解析】【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.19.木杆断裂处离地面6米.【解析】【分析】设木杆断裂处离地面x米,由题意得x2+82=(16-x)2,求出x的值即可.【详解】解:设木杆断裂处离地面x米,由题意得x2+82=(16-x)2,解得x=6米.答:木杆断裂处离地面6米.【点睛】本题考查勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(1)△ABC是等腰三角形,理由见解析;(2)12.【解析】【分析】(1)由已知条件得出b 2-c 2+2ab-2ac=0,用分组分解法进行因式分解得出(b-c )(b+c+2a )=0,得出b-c=0,因此b=c ,即可得出结论;(2)作△ABC 底边BC 上的高AD .根据等腰三角形三线合一的性质得出BD=DC=12BC=3,利用勾股定理求出,再根据三角形的面积公式即可求解.【详解】(1)△ABC 是等腰三角形,理由如下:∵a ,b ,c 为△ABC 的三条边的长,b 2+2ab=c 2+2ac ,∴b 2﹣c 2+2ab ﹣2ac=0,因式分解得:(b ﹣c)(b+c+2a)=0,∴b ﹣c=0,∴b=c ,∴△ABC 是等腰三角形;(2)如图,作△ABC 底边BC 上的高AD.∵AB=AC=5,AD ⊥BC ,∴BD=DC=12BC=3,∴,∴△ABC 的面积=12BC•AD=12×6×4=12.【点睛】本题考查因式分解的应用、等腰三角形的判定、勾股定理以及面积的计算;运用因式分解求出b=c 是解决问题的关键.21.收购站E 应建在离A 点10km 处.【解析】【分析】根据使得C ,D 两村到E 站的距离相等,需要证明DE=CE ,再根据△DAE ≌△EBC ,得出AE=BC=10km ;【详解】∵使得C ,D 两村到E 站的距离相等.∴DE=CE ,∵DA ⊥AB 于A ,CB ⊥AB 于B ,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB−AE=(25−x),∵DA=15km,CB=10km,∴x2+152=(25−x)2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.【点睛】此题考查勾股定理的应用,解题关键在于证明DE=CE.22.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EC,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB,从而求出AD2+DB2=DE2.【详解】(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD.(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°.∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=BD,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2,∴AD2+DB2=DE2.【点睛】本题考查了三角形全等的判定方法,及勾股定理的运用.23.过点A作AC⊥BF于C,则AC=150千米,150〈200,故A市会受到台风的影响,以A为圆心,200km为半径作弧交BF于C1、C2两点,连接AC1=AC2∵AC⊥BF,∴C1C2=2C1C.在Rt△ACC1中,有C1C=2002−1502=507,∴C1C2=1007km,∴A城受台风干扰的时间为:1007107=10(小时).【解析】(1)会.理由如下:如图所示,过点A作AD⊥BF于D,在Rt△ABD中,∠ABD=30°,AB=300千米.∴A=12A=12×300=150(千米).又∵AD=150千米<200千米,∴A市会受台风影响.(2)设C点刚好受台风影响,E点刚好不受台风影响,则AC=AE=200千米.在Rt△ADC中,由勾股定理得A=B2−A2=2002−1502=507(千米),∴C=2A=1007千米.∴A=10(小时).24.(1)①补图见解析;②33;(2)37【解析】(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.解:(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,CE=CD2−DE2=36−9=27=33;(2)证明:如图所示,当C、P、M、N四点共线时,PA+PB+PC最小由旋转可得,△AMN≌△APB,∴PB=MN易得△APM、△ABN都是等边三角形,∴PA=PM∴PA+PB+PC=PM+MN+PC=CN,∴BN=AB=6,∠BNA=60°,∠PAM=60°∴∠CAN=∠CAB+∠BAN=60°+60°=120°,∴∠CBN=90°在Rt△ABC中,易得BC=AB2−AC2=62−32=33∴在Rt△BCN中,CN=BC2+BN2=27+36=63=37“点睛”本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定和性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.。
人教版八年级数学下册第十七章测试卷及答案
人教版八年级数学下册第十七章测试卷及答案一.选择题(共10小题,每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,其中不能构成直角三角形的是( )A.3,4,5 B.6,8,10 D.5,12,132.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )A.3 C.53. 已知三角形三边长为a,b,c,|b-8|+(c-10)2=0,则△ABC是( )A.以a为斜边的直角三角形 B.以b为斜边的直角三角形C.以c为斜边的直角三角形 D.不是直角三角形4. 如图所示的数轴上的四点E,F,G,H中,( )A.点E B.点F C.点G D.点H5.如图为某楼梯示意图,测得楼梯长为5 m,高为3 m.计划在楼梯表面铺地毯,则地毯长度至少需要( )A.5 m B.7 m C.8 m D.12 m6.如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,-2).下列各地点中,离原点最近的是( )A.超市B.医院C.体育场D.学校7.下列命题的逆命题正确的是( )A.如果a>0,b>0,那么a+b>0B.全等三角形的周长相等C.两直线平行,内错角相等D.若a=6,则|a|=68.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米 B.120米 C.140米 D.150米9.如图是一块长.宽.高分别是6 cm,4 cm,3 cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需爬行的最短路程是( )A.(3+B C D10. "赵爽弦图"巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的"赵爽弦图"是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9 B.6 C.4 D.3二.填空题(共8小题,每小题3分,共24分)11.如图,已知正方形ABCD的面积为8,则对角线BD的长为________.12. 平面直角坐标系中,点P(-3,4)到原点的距离是________.13.游泳员小明横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达的点B处60 m,结果他在水中实际游了100 m,则这条河的宽为________m.14.如图,车高4 m(AC=4 m),货车卸货时后面的支架AB弯折落在地面上的点A1处,经过测量得到A1C=2 m,则弯折点B到地面的距离是_______m.15.将一根长为24 cm的筷子置于底面直径为12 cm,高为16 cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为________cm.16.习总书记提出的"绿水青山就是金山银山"这一科学论断,成为树立生态文明观,引领中国走向绿色发展之路的理论之基.小张在数学活动课上用正方形纸片制作成图①的"七巧板",设计拼成了图②的水杉树树冠,如果已知图①中正方形纸片的边长为2 cm,则图②中水杉树树冠的高(即点A到线段BC的距离)是________cm.17.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的一个锐角顶点与另一个三角尺的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB则CD=________.18.如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE,BC于点H,G,则BG=________.三.解答题(共7小题, 66分)19.(8分) 如图,在△ABC中,CD⊥AB于D,AB=AC=13,BD=1.求:(1)CD的长;(2)BC的长.20.(8分) 如图,某港口A有甲.乙两艘渔船,若甲船沿北偏东60°方向以每小时8 n mile的速度前进,乙船沿南偏东某个角度以每小时15 n mile的速度前进,2 h后,甲船到达M岛,乙船到达P岛,两岛相距34 n mile,你知道乙船是沿哪个方向航行的吗?21.(8分) 我国古代数学著作《九章算术》中有这样一个问题:"今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐,问水深几何?"(注:1丈=10尺),其意思为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度是多少?请你求出水的深度.22.(8分) 如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB于点E.求证:BE2-EA2=AC2.23.(10分)在《算法统宗》中有一道"荡秋千"的问题:"平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几."此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前水平推送10尺时,即A′C=10尺,则此时秋千的踏板离地的距离A′D就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA 的长.24.(10分)如图,长方形OABC绕顶点C按逆时针方向旋转,当旋转到长方形O′A′B′C的位置时,边O′A′交边AB于点D,且A′D==4,CO=5.(1)求BC的长;(2)求阴影部分的面积.25.(14分)在△ABC中,BC=a,AC=b,AB=c,如图①,若∠C=90°,则有a2+b2=c2;若△ABC为锐角三角形,小明猜想:a2+b2>c2.理由如下:如图②,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2-x2;在Rt△ADB中,AD2=c2-(a-x)2,∴b2-x2=c2-(a-x)2,即a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0.∴a2+b2>c2.∴当△ABC为锐角三角形时,a2+b2>c2.故小明的猜想是正确的.请你猜想,当△ABC为钝角三角形时,如图③,a2+b2与c2的大小关系,并证明你猜想的结论.参考答案1-5CBCAB 6-10ACCCD11. 412. 513. 8014.1.515.41 118. 1 19. 解:(1)∵AB =13,BD =1,∴AD =13-1=12.在Rt△ACD 中,CD 5.(2)在Rt△BCD 中,BC 20.解:由题意知,AM =8×2=16(n mile),AP =15×2=30(n mile).∵两岛相距34 n mile,∴MP =34 n mile.∵162+302=342,∴AM 2+AP 2=MP 2.∴∠MAP =90°.又∵∠NAM =60°,∴∠PAS =30°.∴乙船航行的方向是南偏东30°.21. 解:设水的深度为h 尺,根据勾股定理,得(h +1)2=h 2+(102)2,解得h =12,∴水的深度为12尺22. 证明:连接CE,∵ED 垂直平分BC,∴BE =EC,又∵∠A =90°,∴EA 2+AC 2=EC 2,∴EA 2+AC 2=BE 2.∴BE 2-EA 2=AC 223. 解:设绳索OA 的长为x 尺,则OA′=OA =x 尺,OC =x +1-5=(x -4)(尺).在Rt△OA′C 中,∵A′C 2+OC 2=OA′2,∴102+(x -4)2=x 2,解得x =14.5,∴绳索OA 的长为14.5尺24. 解:(1)由题意易得BC =O′A′,AB=CO′=CO =5,∠B =∠O′=90°.∵AD =4,AB =5,∴BD =5-4=1.设BC =x,则DO′=O′A′-A′D=x -2.如图,连接CD,则BC 2+BD 2=CD 2=CO′2+DO′2,即x 2+12=52+(x -2)2,解得x =7,∴BC =7.(2)∵BC =7,BD =1,CO′=5,DO′=7-2=5,∠B =∠O′=90°,∴阴影部分的面积=△BCD 的面积+△O′CD 的面积=12×7×1+12×5×5=16.25.解:当△ABC 为钝角三角形时,a 2+b 2与c 2的大小关系为a 2+b 2<c 2.证明如下:如图,过点A 作AD ⊥BC,交BC 的延长线于点D.设CD =y.在Rt△ADC 中,由勾股定理得AD 2=AC 2-DC 2=b 2-y 2;在Rt△ADB 中,由勾股定理得AD 2=AB 2-BD 2=c 2-(a +y)2.∴b 2-y 2=c 2-(a +y)2,整理,得a 2+b 2=c 2-2ay.∵a >0,y >0,∴2ay >0.∴a2+b2=c2-2ay<c2.∴当△ABC为钝角三角形时,a2+b2<c2.。
人教版八年级下册《第17章 勾股定理》单元测试试卷及答案(共五套)
人教版八年级下册《第17章勾股定理》单元测试试卷(一)一、认真选一选,你一定很棒!(每题3分,共30分)1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组 A.2B.3C.4D.52,已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( ) A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶13,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )A.52B.3C.3+2D.334,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B. 800米C.1000米D.不能确定6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( ) A.L 1 B.L 2 C.L 3 D.L 47,如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线ABABC图25m BCAD图1BCED图3左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,109,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( ) A.1 B.2 C.3 D.210,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( ) A.182 B.183 C.184 D.185 二、仔细填一填,你一定很准!(每题3分,共24分)11,根据下图中的数据,确定A =_______,B =_______,x =_______.12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________. 14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm. 17,如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .图5图418,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.三、细心做一做,你一定会成功!(共66分)19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.图620,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21,如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22,(1)四年一度的国际数学家大会日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m;第二步:m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.A B 小河东北 牧童小屋 图7图8图924,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.参考答案:一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt△ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,12x ,所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9,D .点拨:AE2;10,A . 二、11,15、144、40;12,1360;13,6、8、10;14,24;15,16;16,17;17,:76;18,30.三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形. 20,15m.北A图1021,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt△A ′DB 中,由勾股定理求得A ′B =17km.22,( 1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab =6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23,(1)当S =150时,k =m=1502566S ===5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =12(3k )·(4k )=6k 2,所以k 2=6S,k =6S (取正值),即将面积除以6,然后开方,即可得到倍数.24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).ABDPNM人教版八年级下册《第17章勾股定理》单元测试试卷(二)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25 B .14 C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的,斜边长为10,则它的面积为( )A.10B.15C.20D.303. 如图,已知正方形的面积为144,正方形的面积为169,那么正方形的面积是( )A.313B.144C.169D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以222c b a =+D.在Rt△中,∠°,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.5cm C.5.5 cmD.1 cm6.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A. B. C. D.7. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B. 3+1 C. 5-1 D. 5+1 8. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( )A.6B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A.B.3C.1D.二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________.15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm, cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC ,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C 2.B 3.A 4.A 5.A6.C7.C8.D9.D 10.A二、11.37012.直角;24 分析:解方程得x1=6,x2=8.∵+=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.4 cm 分析:过点A作AE⊥BC于点E,AF⊥CD交CD的延长线于点F.易得△ABE≌△ADF,所以AE=AF,进一步证明四边形AECF是正方形,且正方形AECF与四边形ABCD的面积相等,则AE==2(cm),所以AC=AE=×2=4 (cm).14.略15.分析:如图,设这一束光与x轴交于点C,作点B关于x轴的对称点B',过B'作B'D⊥y轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.=·BC·AD≈×7×5.8=20.3≈20.所以S△ABC17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC== =10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C 作CE⊥AD 于点E,由题意得AB=30 m,∠CAD=30°,∠C BD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m. 在Rt△BCE 中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15 m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S △ABC =ab,S △C'A'D'=ab,S 直角梯形A'D'BA =(a+b)(a+b)=(a+b)2,S △ACA'=c 2. (2)由题意可知S △ACA'=S 直角梯形A'D'BA-S △ABC -S △C'A'D'=(a+b)2-ab-ab=(a 2+b 2),而S △ACA'=c 2.所以a 2+b 2=c 2.21.解:(1)MN 不会穿过原始森林保护区.理由如下: 过点C 作CH⊥AB 于点H. 设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°. 在Rt△ACH 中,AH=CH=x m,在Rt△HBC 中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN 不会穿过原始森林保护区.(2)设原计划完成这项工程需要y 天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.人教版八年级下册《第17章勾股定理》单元测试试卷(三)一、选择题(每小题4分,共28分)1.一个直角三角形的斜边长比一条直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.已知三角形的三边长之比为1∶1∶,则此三角形一定是( )A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形3.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4B.8C.16D.644.如图,一个高1.5m,宽3.6m的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A.3.8 mB.3.9 mC.4 mD.4.4 m5. 设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是( )A.1.5B.2C.2.5D.36.如图所示,要在离地面5m处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2m,L2=6.2m,L3=7.8m,L4=10m四种备用拉线材料中,拉线AC最好选用( )A.L1B.L2C.L3D.L47.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为( )A. B. C. D.二、填空题(每小题5分,共25分)8.定理“全等三角形的对应边相等”的逆命题是,它是命题(填“真”或“假”).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE= .10.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若PA=AB=5,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程的平方应该是.11.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s时,△BPQ的面积为cm2.12.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三、解答题(共47分)13.(10分)已知△ABC的三边分别为a,b,c,且a+b=4,ab=1,c=,试判定△ABC 的形状,并说明理由.14.(12分)如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长.(2)求△ADB的面积.15.(12分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)16.(13分) 在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC 为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.答案解析1.【解析】选C.设斜边长为x,则一直角边为x-2,由勾股定理得,x2=(x-2)2+62,解得x=10.2.【解析】选D.由题意设三边长分别为x,x,x,∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.3.【解析】选D.由题意得,直角三角形的斜边为17,一条直角边为15,所以正方形A的面积为172-152=64.4.【解析】选B.设木板的长为xm,由题意知,x2=1.52+3.62,解得x=3.9(m).5.【解析】选D.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5①,∵a,b是直角三角形的两条直角边,∴a2+b2=2.52②,由①②可得ab=3.6.【解析】选B.在Rt△ACD中,AC=2AD,设AD=x,由AD2+CD2=AC2,即x2+52=(2x)2,得x=≈2.8868,2x=5.7736,所以最好选用L.27.【解析】选A.∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB,AC上的距离相等,设为h,则S=×3h+×4h=×△ABC5×,解得h=,S=×3×=BD·,△ABD解得BD=.8.【解析】“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.答案:三边分别对应相等的两个三角形全等真9.【解析】AE=====2.答案:210.【解析】如图,则AG=3.在Rt△APG中,PG2=PA2-AG2=52-32=16.在Rt△PGB中,PB2=PG2+GB2=16+(3+5)2=80.答案:8011.【解析】设AB为3xcm,BC为4xcm,AC为5xcm,因为周长为36 cm,AB+BC+AC=36,所以3x+4x+5x=36,得x=3,所以AB=9,BC=12,AC=15,因为AB2+BC2=AC2,所以△ABC是直角三角形,过3s时,BP=9-3×1=6,BQ=2×3=6,所以S=BP·BQ=×6×6=18(cm2).△PBQ答案:1812.【解析】当点D与C在AB同侧,BD=AB=2,作CE⊥BD于E,CE=BE=,ED=,由勾股定理得CD=(如图1);当点D与C在AB异侧,BD=AB=2,∠DBC=135°,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理得CD=(如图2).答案:或13.【解析】△ABC是直角三角形,理由:∵(a+b)2=16,a2+2ab+b2=16,ab=1,∴a2+b2=14.又∵c2=14,∴a2+b2=c2.∴△ABC是直角三角形.14.【解析】(1)∵A D平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3.(2)在Rt△ABC中,由勾股定理得,AB===10,=AB·DE=×10×3=15.∴S△ADB15.【解析】在Rt△ABC中,AC=30m,AB=50m,根据勾股定理可得:BC ===40(m).∴小汽车的速度为v==20m/s=20×3.6km/h=72km/h.∵72km/h>70km/h,∴这辆小汽车超速行驶.16.【解析】(1)锐角钝角.(2)> <.(3)∵a=2,b=4,∴2<c<6,且由题意,c为最长边,∴4<c<6,当a2+b2=c2,即c=2时,△ABC是直角三角形,∴当4<c<2时,△ABC是锐角三角形,当2<c<6时,△ABC是钝角三角形.人教版八年级下册《第17章勾股定理》单元测试试卷(四)(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.△ABC,∠C=90°,a=9,b=12,则c=__________.2.△ABC,AC=6,BC=8,当AB=__________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.△ABC中,∠C=90°,∠A=30°,则BC∶AC∶AB=__________.5.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.6.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为__________.7.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.8.等腰三角形的两边长为2和4,则底边上的高为__________.9.若等腰直角三角形斜边长为2,则它的直角边长为_______.10.测得一个三角形花坛的三边长分别为5cm,12cm,•13cm,•则这个花坛的面积是_____.11.已知△ABC的三边a、b、c满足(a-5)2+(b-12)2+c2-26c+169=0,则△ABC 是三角三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_____ .13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.14.若一个三角形的三边长分别为3,4,x ,则使此三角形是直角三角形的x 的值是___ _.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是( ) A .1,2,B .1,2,C .3,4,5D .6,8,1216.如图,△ABC 中AD ⊥BC 于D ,AB =3,BD =2,DC =1, 则AC 等于( ) A .6B .C .D .417.已知三角形的三边长之比为1∶1∶,则此三角形一定是( ) A .锐角三角形 B .钝角三角形 C .等边三角形D .等腰直角三角形18.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ) A .4 cmB .8 cmC .10 cmD .12 cm三、解答题(共60分)19.(5分)如图,每个小正方形的边长是1. ①在图中画出一个面积是2的直角三角形; ②在图中画出一个面积是2的正方形.A B C D53652 第13题 第16题第19题②第19题①20.(5分)如图,一次“台风”过后,一根旗杆被台风从离地面米处吹断,倒下的旗杆的顶端落在离旗杆底部米处,那么这根旗杆被吹断裂前至少有多高?21.(5分)在某山区需要修建一条高速公路,在施工过程中要沿直线AB 打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD =150°,∠D =60°,BD =32 k m ,请根据上述数据,求出隧道BC 的长(精确到0.1 k m).22.(6分)如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.8.26.9 2.8米9.6米23.(6分)如图,△ABC 中,AB=13,BC=14,AC=15,求BC 边上的高AD .24.(6分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方米B 处,过了秒后,测得小汽车C 与车速检测仪A 间距离为米,这辆小汽车超速了吗?25.(6分)如图,△ABC 中,CD ⊥AB 于D . (1)图中有__________个直角三角形; A .0B .1C .2D .3(2)若AD =12,AC =13则CD =__________. (3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.26.(6分)小明把一根长为160 cm 的细铁丝剪成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?BC AD 703025027.(7分)去年某省将地处A、B两地的两所大学合成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修建一条笔直公路(即图中的线段),经测量在A地的北偏东60°方向,B地的西偏北方向处有一个半径为0.7千米的公园,问计划修建的这条公路会不会穿过公园?为什么?28.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a²+b²=c²,其它的三角形三边也有这样的关系吗?”.让我们来做一个实验:(1)在下列方框(1)中任意画出一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(2)在下列方框(2)中任意画出一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a²+ b²c²(填写“ >”,“ <”或“ =”).(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:.参考答案 一、填空题1.15 2.10 3.3cm 4.1∶∶2 5. 6.12+6 7. 96 8.910.30cm 2 11.直角 12.A A 不是直角三角形,B、C 、D 是直角三角形 13.2+2 14. 5或 二、选择题15.D 16.B 17.D 18.C 三、解答题19.略解 20.10米 21.7 k m 22.21 cm 23.5 24.超速了 25.(1)C ;(2)5;(3)略 26.AB =AC =50 cm ,BC =60 cm 27.不会穿过公园 28.(1)最后一格填“>”;(2)最后一格填“<”;(3)当三角形为锐角三角形时,三边满足 a ²+b ²>c ²;当三角形为钝角三角形时,三边满足 a ²+b ²<c ²新人教版八年级下册《第17章勾股定理》单元测试试卷(五)(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)33136031537 (1) (2)1.已知直角三角形的两边分别为3、4,则第三边为___ __.2.如图所示,某风景名胜区为了方便游人参观,计划从主峰A 处架设一条缆车线路到另一山峰C 处,若在A 处测得∠EAC =30°,两山峰的底部BD 相距900米,则缆车线路AC 的长为_______米.3.已知,如图所示,Rt△ABC 的周长为4+2,斜边AB 的长为2,则Rt△ABC •的面积为_____. 4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.•当电工师傅沿梯上去修路灯时,梯子下滑到了B ′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯______米.5.在△ABC 中,∠C=90°, AB =5,则++=_______. 6.已知三角形三边长为正整数,则此三角形是________三角形.7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________.8.如图,是北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .332AB 2AC 2BC n n n n n n ,122,22,1222++++第2题 第3题第4题3220A第7题9.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 10.直角三角形的三边长为连续偶数,则这三个数分别为__________. 11.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有___米.12.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .13.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 14.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .二、选择题(共4小题,每题3分,共12分)15.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5B .25C .D .5或16.已知Rt△ABC 中,∠C=90°,若a +b =14cm ,c =10cm ,则Rt△ABC 的面积是 ( ) A .24cm 2B .36cm 2C .48cm 2D .60cm 217.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121B .120C .90D .不能确定18.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小7760 12014060BAC第8题第11题第12题第13题图红和小颖家的直线距离为 ( )A .600米 B. 800米 C. 1000米 D. 不能确定 三、解答题(共60分)19.(5分)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?20.(5分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?21.(5分)已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F•处,•如果AB =8cm ,BC =10cm ,求EC 的长.22.(6分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?23.(6分)如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?24.(6分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB =90°,AC =80米,BC =60米,若线段CD 是一条小渠,且D 点在边AB 上,已知水渠的造价为10元/米,问D 点在距A 点多远处时,水渠的造价最低?最低造价是多少?25.(6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河26.(6分)印度数学家什迦逻(1141年-1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?” 请用学过的数学知识回答这个问题.27.(7分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?28.(8分)如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明; (2)如果A 市受这次台风影响,那么受台风影响的时间有多长?。
人教版八年级下册数学第17章测试卷及答案
第十七章 勾股定理一、填空题1.等腰三角形的腰长 5 cm,底长 8 cm,则底边上的高为 3 cm.2.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等”写出它的逆命题 如果两个三角形的面积相等,那么这两个三角形全等 .该逆命题是 假 命题(填“真”或“假”).3. 在 Rt△ABC 中, ∠C=90°,AB=15,BC:AC=3:4,则 BC= 9 。
4.△ABC 的两边分别为 5,12,另一边 c 为奇数,且 a+b+c 是 3 的倍数,则 c 应为 13 ,此三角形为 直角 三角形.5. 一座桥长 24 米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头 10米,则小船实际行驶了 26 米。
6. 如图,一菜农要修建一个育苗棚,棚宽 BE=2m ,棚高 AE=1.5m ,长 BC=20m 。
AE 所在的墙面与地面垂直,现要在棚顶覆盖一种农用塑料薄膜,请你为他计算一下,共需多少这种塑料薄膜 50 m 2。
二、选择题7.在下列长度的四组线段中,不能组成直角三角形的是( D ).A .B .C .D .8.下列三角形一定不是直角三角形的是( C )(A)三角形的三边长分别为 5,12,13(B)三角形的三个内角比为 1∶2∶3(C)三边长的平方比为 3∶4∶5(D)其中有两个角互余点滴学堂整理9.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(C)(A)米(B)米(C)(+1)米(D)3米10.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为(A)(A)7.5平方千米(B)15平方千米(C)75平方千米(D)750平方千米11.如图所示,圆柱的高AB=3,底面直径BC=3,现有一只蚂蚁想从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是(C)(A)31+π(B)3(C)π(D)3π12.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则(A)(A)∠A为直角(B)∠C为直角点滴学堂整理(C)∠B 为直角 (D)不是直角三角形13.如图,点 P 是以 AB 为半径的圆弧与数轴的交点,则数轴上点 P 表示的实数是( D )(A)-2(B)-2.2 (C)- (D)- +114.设三角形的三边长分别等于下列各组数,能构成直角三角形的是( D )(A) , , (B)4,5,6 (C)5,6,10 (D)6,8,1015.如图,在平面直角坐标系中,点 P 坐标为(-4,3),以点 B(-1,0)为圆心,以 BP 的长为半径画弧,交 x 轴的负半轴于点 A,则点 A 的横坐标介于( A )(A)-6 和-5 之间 (B)-5 和-4 之间(C)-4 和-3 之间 (D)-3 和-2 之间16.在直角三角形中,若勾为 3,股为 4,则弦为( A )(A)5 (B)6 (C)7 (D)8二、解答题17.如图,在△ABC 中,∠A=30°,AC=2 ,∠B=60°,求点 C 到 AB 的距离和△ABC 的面积.点滴学堂整理解:过点 C 作 CD⊥AB,则∠ADC=90°,因为∠A=30°,AC=2 ,所以 CD= ,在△ABC 中,因为∠A=30°,∠B=60°,所以∠ACB=90°,在 Rt△ABC 中,设 BC=x,则 AB=2x, 因为 AB 2=BC 2+AC 2,所以(2x)2=x 2+(2)2,x=2,所以 S △ABC = AC·BC= ×2 ×2=2 . 18.如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.解:连接 AC,则△ADC 为直角三角形,因为 AD=8,CD=6,所以 AC=10.在△ABC 中,AC=10,BC=24,AB=26.因为 102+242=262,点滴学堂整理所以△ABC 也是直角三角形.所以这块地的面积为 S=S △ABC -S △ADC = AC·BC - AD·CD= ×10×24- ×8×6=120-24=96 m 2.所以这块地的面积为 96 m 2 .19. 如图, 一架方梯长 25 米,斜靠在一面墙上,梯子底端离墙 7 米。
人教版八年级数学(下册)第十七章测试卷(附答案)
人教版八年级数学(下册)第十七章测试卷1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )A.4B.8C.10D.122.利用四个全等的直角三角形可以拼成如图1所示的图形,这个图形被称为弦图.观察图1,可以验证的公式是( )图1A.(a+b)(a-b)=a2-b2B.(a+b)2=a2+2ab+b2C.c2=a2+b2D.(a-b)2=a2-2ab+b23.一直角三角形的两边长为3和4,则第三边的长为( )A.5B.C.D.5或4.一个木工师傅测量了一个等腰三角形木板的腰、底边和底边上的高的长,但他把这三个数据与其他的数据弄混了,请你帮助他找出来,是第几组( )A.13,12,12B.12,12,8C.13,10,12D.5,8,45.适合下列条件的△ABC中,直角三角形的个数为( )①a=,b=,c=;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25;⑤a=2,b=2,c=4A.2B.3C.4D.56.如图2所示,每个小正方形的边长均为1,△ABC的三边a,b,c的大小关系是( )图2A.a<c<bB.a<b<cC.c<a<bD.c<b<a7.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 cmC.5.5 cmD.1 cm8.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5 m远的水底,竹竿高出水面0.5 m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )A.2 mB.2.5 mC.2.25 mD.3 m9.在△ABC中,∠C=90°,AB=10,则AB2+AC2+BC2=.10.王华从家出发,以100米/分钟的速度向西走5分钟,又以120米/分钟的速度向南走10分钟到达学校,则他家到学校的直线距离为米.11.如图3所示,正方体的棱长为 cm,用经过A,B,C三点的平面截这个正方体,所得截面的周长是cm.图312.如图4所示的一只圆柱形玻璃杯,高为8厘米,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米.图413.如图5所示,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行米.图514.等腰三角形的顶角为120°,底边上的高为3,则它的周长为.15.在△ABC中,∠C=90°,BC=60厘米,CA=80厘米,一只蜗牛从C点出发,以20厘米/分钟的速度沿CA→AB→BC的路径再回到C点,需要分钟的时间.16.如图6是一个外轮廓为长方形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.图617.如图7所示,甲轮船以16海里/小时的速度从港口A出发向东北方向航行,乙轮船以32海里/小时的速度从港口A出发向东南方向航行,甲轮船行驶了1.5小时后到达C地,乙轮船行驶了1小时后到达B地,则B,C相距多远?图718.如图8所示,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD的面积.图819.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC 的形状.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号;(2)写出该步正确的写法;(3)本题正确的结论是什么?20.图9是一个三级台阶,它的每一级的长、宽、高分别为55 cm,10 cm,6 cm,A和B是这个台阶的两个相对的端点,A点处有一只蚂蚁,那么这只蚂蚁从A点爬到B点的最短路程是多少?图921.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就是五.后人总结为“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;…;发现这些勾股数组第一个数都是奇数,且从3起就没有间断过,计算×(9-1),×(9+1)与×(25-1),×(25+1),并根据你发现的规律,分别写出能表示7,24,25这一组数的股和弦的算式;(2)观察3,4,5;5,12,13;7,24,25;…;可以发现各组的第一个数都是奇数且从3开始没有间断过.请用n(n为奇数,且n≥3)来表示它们的股和弦,探索它们之间的两种等量关系,并选取一种加以证明.参考答案1.C2.C3.D4.C5.A6.C7.A8.A9.20010.130011.612.613.1014. 12+615.1216.15017. 解:在Rt△ABC中,因为∠CAB=90°,AC=16×1.5=24(海里),AB=32×1=32(海里).所以BC2=AB2+AC2=322+242=402,所以BC=40海里.即B,C两地相距40海里.18. 解:如图所示:连接AC,过点C作CE⊥AD于点E,∵AB⊥BC,AB=5,BC=12,∴AC==13.∵CD=13,∴AC=CD=13.∵AD=10,∴AE=AD=5,∴CE==12.∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AD·CE=×5×12+×10×12=30+60=90.19. 解:因为a2c2-b2c2=a4-b4,①所以c2(a2-b2)=(a2+b2)(a2-b2),②所以c2=a2+b2,③所以△ABC为直角三角形.(1)③(2) 解:正确的写法如下:移项,得c2(a2-b2)-(a2+b2)(a2-b2)=0,因式分解,得(a2-b2)[c2-(a2+b2)]=0,所以a=b或a2+b2=c2.(3) 解:△ABC是直角三角形或等腰三角形或等腰直角三角形.20. 解:其示意图如图,将这个台阶展成一个平面图形,则最短路程就是AB的长.在Rt△ABC中,AC=3×(10+6)=48(cm),BC=55 cm.由勾股定理,得AB==73 (cm).所以这只蚂蚁从A点爬到B点的最短路程为73 cm.21.(1) 解:∵×(9-1)=4,×(9+1)=5,×(25-1)=12,×(25+1)=13;∴7,24,25的股的算式为×(49-1)=×(72-1),弦的算式为×(49+1)=×(72+1).(2) 当n为奇数且n≥3时,勾、股、弦的代数式分别为n,(n2-1),(n2+1).关系式1:弦-股=1;关系式2:勾2+股2=弦2.证明关系式1:弦-股=(n2+1)-(n2-1)=[(n2+1)-(n2-1)]=1;或者证明关系式2:勾2+股2=n2+[(n2-1)]2=n4+n2+(n2+1)2=弦2.所以猜想得证.。
人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)
人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。
当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。
2023年新人教版初中数学八年级下册第十七单元学习质量检测卷(附参考答案)
2023年新人教版初中数学八年级下册第十七单元学习质量检测卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)若直角三角形的三边长为5,12,m,则m2的值为()A.13B.119C.169D.119或1692.(3分)在平面直角坐标系xOy中,△ABC的顶点B,C的坐标分别为(−√2,0),(2√2,0)点A在y轴上,点D为AC的中点,DE⊥AB于点E,若∠ABD=∠DBC,则DE的长为()A.√6B.2C.2√2D.33.(3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21.大正方形的面积为13.则小正方形的面积为()A.3B.4C.54.(3分)意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是()A.S1=a2+b2+2ab B.S1=a2+b2+ababC.S2=c2D.S2=c2+125.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的三边为边向外做正方形ACDE,正方形CBGF,正方形AHIB,连结EC,CG,作CP⊥CG交HI于点P,记正方形ACDE 和正方形AHIB的面积分别为S1,S2,若S1=4,S2=7,则S△ACP:S△BCP等于()A.2:√3B.4:3C.√7:√3D.7:46.(3分)如图,在△ABC中,AB=AC=10,BC=12,AD是△ABC的中线,则AD长为()A.2√2B.6C.8D.2√617.(3分)如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是()A.76B.57C.38D.198.(3分)如图,在3×3的正方形网格中,每个小正方形的边长为1,A,B,C均为格点(网格线的交点),以点A为圆心,AB的长为半径作弧,交格线于D,则CD的长为()A.3−√7B.√7−2C.3﹣2√2D.2√2−29.(3分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.∠CED=∠FDB B.DC=3C.AE=5D.AC=10 10.(3分)将一个等腰三角形ABC纸板沿垂线段AD,DE进行剪切,得到三角形①②③,再按如图2方式拼放,其中EC与BD共线.若BD=6,则AB的长为()A.223B.152C.√50D.711.(3分)如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC长为半在作弧交数轴正半轴于点M,则点M所表示的数为()A.√10B.√10−1C.√10+1D.212.(3分)赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形(如图所示).某次课后服务拓展学习上,小浔绘制了一幅赵爽弦图,她将EG延长交CD于点I.记小正方形EFGH的面积为S1,大正方形ABCD的面积为S2,若DI=2,CI =1,S2=5S1,则GI的值是()A.√105B.920√2C.√58D.34二、填空题(共6小题,满分18分,每小题3分)13.(3分)在△ABC中,∠ACB=135°,AC=2,BC=√2,AC、BC的中垂线分别交AB 于D、E两点,则△CDE的周长为.14.(3分)如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2√3,则AC的长是.15.(3分)如图,为测量学校A与河对岸超市B之间的距离,在A附近选一点C,利用测量仪器测得∠BAC=60°,∠ACB=90°,AC=2km,则可求得学校与超市之间的距离AB 等于km.16.(3分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,且CD=2,AC =6,则AB=.17.(3分)如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E.若∠B=30°,AE=1.(1)BE的长为;(2)在△ABC的腰上取一点M,当△DEM是等腰三角形时,BM长为.18.(3分)如图,在平面直角坐标系中,四边形ABCO的四个顶点分别为点A(1,2),B(10,2),C(10,0),O(0,0),点D是线段OC的中点,点P在AB边上,若△OPD是腰为5的等腰三角形,则点P的坐标为.三、解答题(共7小题,满分66分)19.(8分)已知,如图,Rt△ABC中,∠B=90°,AB=6,BC=4,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足AD∥BC,并作腰上的高AE.(1)求证:AB=AE;(2)求等腰三角形的腰长CD.20.(8分)暑假中,小明到某海岛探宝,如图,他到达海岛登陆点后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅1km就找到宝藏,问登陆点到埋宝藏点的直线距离是多少?21.(8分)一架梯子AB长5.2米,如图斜靠在墙上,梯子的底部离墙的底端的距离BC为5.1米.(1)求梯子的顶端与地面的距离AC;(2)如果梯子的顶端上升了4.0米,那么梯子底部在水平方向是不是也向墙的底端靠近了4.0米?为什么?22.(9分)如图,已知△ABC,AB=AC,∠B=50°,点D在线段BC上,点E在线段AC 上,设∠BAD=α,∠CDE=β.(1)如果α=20°,β=10°,那么△ADE是等边三角形?请说明理由;(2)若AD=AE,试求α与β之间的关系.23.(10分)阅读下列文字,然后回答问题.已知在平面内有两点P1(x1,y1),P2(x2,y2),它们之间的距离P1P2=√(x1−x2)2+(y1−y2)2.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离.(2)已知△DEF各顶点的坐标为D(1,6),E(﹣2,2),F(4,2),请判断此三角形的形状,并说明理由.24.(11分)已知△ABC一张直角三角形纸片,其中∠BAC=90°,∠ABC=30°,小亮将它绕点A逆时针旋转β后得到△AED,直线AD交直线BC于点F.(1)如图1,当β=90°时,ED所在直线与线段BC有怎样的位置关系?请说明理由;(2)如图2,当0°<β<180°时,若△ABF为等腰三角形,直接写出β的度数;(3)当0°<β<180°时,若直线ED直线与直线BC所夹锐角为30°,直接写出β的度数.25.(12分)如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋千AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)根据题意,BF=m,BC=m,CD=m;(2)根据(1)中求得的数据,求秋千的长度.(3)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送m.参考答案一、选择题(共12小题,满分36分,每小题3分)1.D2.B3.C4.B5.A6.C7.A8.B9.D10.B11.B12.A;二、填空题(共6小题,满分18分,每小题3分)13.14.15.416.7.517.3;3或18.(5,2)或(,2);三、解答题(共7小题,满分66分)19.(1)证明:∵DA=DC,∴∠DAC=∠DCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠ACB=∠DCA,又∵AE⊥CD,∴∠AEC=90°,∴∠A=∠AEC=90°,在△ABC和△AEC中,{∠B=∠AEC∠ACB=∠DCAAC=AC,∴△ABC≌△AEC(AAS),∴AB=AE;(2)解:由(1)得:AE=AB=6,CE=CB=4,设DC=x,则DA=x,DE=x﹣4,由勾股定理得:DE2+AE2=DA2,即(x﹣4)2+62=x2,解得:x=132,即CD=132.20.解:过点B作BD⊥AC于点D,根据题意可知,AD=8﹣3+1=6千米,BD=2+6=8千米,在Rt△ADB中,由勾股定理得AB=√AD2+BD2=10千米,答:登陆点到宝藏处的距离为10千米.21.(1)解:根据勾股定理可得,梯子的顶端与地面的距离为:AC=√AB2−BC2=√(5.2)2−(5.1)2≈1.0(米),答:梯子的顶端与地面的距离为1.0米.;(2)解:梯子的顶端上升4.0米后,梯子的顶端与地面的距离为:A'C=1.0+4.0=5(米),此时梯子的底部离墙的底端的距离为:B′C=√A′B′2−A′C2=√(5.2)2−52≈1.4(米),梯子底部在水平方向移动的距离为:BB'=5.1﹣1.4=3.7(米),∵3.7≠4.0,∴梯子底部在水平方向不是也向墙的底端靠近了4.0米.22.解:(1)△ADE是等边三角形,理由:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠BAC=180°﹣∠B﹣∠C=80°,∴∠DAE=∠BAC﹣∠BAD=80°﹣α=80°﹣20°=60°,∵β=10°,∴∠DAE=∠C+β=60°,∴△ADE是等腰三角形;(2)若AD=AE时,则α=2β,证明:∵AB=AC,∴∠B=∠C,∵∠ADC=∠B+∠BAD,∴∠ADE+∠CDE=∠B+∠BAD,∴∠ADE+β=∠B+α,∴∠ADE=∠B+α﹣β,∵∠AED=∠C+∠CDE=∠B+β,∵AD=AE,∴∠ADE=∠AED,∴∠B+α﹣β=∠B+β,∴α=2β.23.解:(1)根据两点的距离公式得,AB=√(2+3)2+(4+8)2=13;(2)△DEF为等腰三角形.理由:∵D(1,6),E(﹣2,2),F(4,2),∴DE=√(1+2)2+(6−2)2=5,EF=√(4+2)2+(2−2)2=6,DF=√(4−1)2+(2−6)2=5,∴DE=DF,∴△DEF为等腰三角形.24.解:(1)ED⊥BC,理由如下:如图1,延长ED交BC于点G,当β=90°时,则∠DAC=∠BAC=90°,∴点D在AB上,由旋转得∠EAD=∠BAC=90°,∠E=∠B=30°,∴∠EAD+∠BAC=180°,∠C=60°,∴E、A、C三点在同一直线上,∴∠E+∠C=90°,∴∠EGC=90°,∴ED⊥BC.(2)当AB=FB,且点F在线段BC上,如图2,=75°,∵∠BAF=∠BF A=180°−30°2∴β=∠DAC=90°﹣75°=15°;当点D落在BC上,如图3,则点F与点D重合,∵AD=AC,∠C=60°,∴△ACD是等边三角形,∴DAC=60°,∴∠B=∠DAB=30°,∴AD=BD,即AF=BF,∴β=∠DAC=60°,当AB=FB,且点F在CB的延长线上,如图4,则∠BAF=∠F,∴∠BAF+∠F=2∠BAF=∠ABC=30°,∴∠BAF=15°,∴β=∠DAC=90°+15°=105°;当AF=AB时,如图5,点F在BC的延长线上,则∠F=∠B=30°∴∠BAD=∠F+∠B=60°,∴β=∠DAC=90°+60°=150°,综上所述,β的度数为15°或60°或105°或150°.(3)设直线DE与直线BC相交于点H,如图6,∠DHC=30°,且点H在线段BC上,设AD交BC于点I,∵∠D=∠C=60°,∴β=∠DAC=∠DIC﹣∠C=∠DIC﹣∠D=∠DHC=30°;如图7,∠H=30°,且点H在线段CB的延长线上,∵∠ADH=180°﹣∠ADE=180°﹣60°=120°,∴β=∠DAC=360°﹣120°﹣30°﹣60°=150°,综上所述,β的度数为30°或150°.25.解:(1)由题意得:BF=1.6m,BC=3m,DE=0.6m,∵BF⊥EF,AE⊥EF,BC⊥AE,∴四边形BCEF是矩形,∴CE=BF=1.6m,∴CD=CE﹣DE=1.6﹣0.6=1(m),故答案为:1.6,3,1;(2)∵BC⊥AC,∴∠ACB=90°,设秋千的长度为xm,则AB=AD=xm,AC=AD﹣CD=(x﹣1)m,在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即(x﹣1)2+32=x2,解得:x=5(m),即秋千的长度是5m;(3)当BF=2.6m时,CE=2.6m,∵DE=0.6m,∴CD=CE﹣DE=2.6﹣0.6=2(m),由(2)可知,AD=AB=5m,∴AC=AD﹣CD=5﹣2=3(m),在Rt△ABC中,由勾股定理得:BC=√AB2−AC2=√52−32=4(m),即需要将秋千AD往前推送4m,故答案为:4.。
人教版数学八年级下册第十七单元 测试试卷(含答案)
人教版数学8年级下册第17单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)以下列各组数为边长,不能构成直角三角形的是( )A.5,12,13B.1,2C.12D.4,5,6 2.(3分)在△ABC中,若AC2﹣BC2=AB2,则( )A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定3.(3分)下列说法中正确的是( )A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以BC2+AC2=AB2D.在Rt△ABC中,∠B=90°,所以BC2+AC2=AB24.(3分)满足下列条件的△ABC,不是直角三角形的是( )A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:155.(3分)如图,一架2.5m长的梯子,斜立在一竖直的墙上,这时梯子的底部距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯子的底部将平滑( )A.0.9m B.1.5m C.0.5m D.0.8m6.(3分)在△ABC中,AB=15,AC=20,BC边上高AD=12,则BC的长为( )A.25B.7C.25或7D.不能确定7.(3分)直角三角形两直角边长度为5,12,则斜边上的高( )A.6B.8C.1813D.60138.(3分)下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为( )A.2B.3C.4D.59.(3分)在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是( )A B C.13D.510.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是( )A.1B C.2D二.填空题(共5小题,满分15分,每小题3分)11.(3分)若一直角三角形的两边长为4、5,则第三边的长为 .12.(3分)若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为 cm2.13.(3分)平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为 .14.(3分)如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是 m.15.(3分)在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2= .三.解答题(共8小题,满分75分)16.(9分)如图,已知CD是△ABC中AB边上的高,AC=10,CD=8,BC=3AD.求BC的长.17.(9分)如图,在△ABC中,AB=AC=13,BC=10,求BC边上高的长.18.(9分)如图,在△ABC中,点D是BC边上一点,连接AD.若AB=10,AC=17,BD =6,AD=8.(1)求∠ADB的度数;(2)求BC的长.19.(9分)已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB= ,BC= ,AC= ;(2)试判断△ABC的形状,并说明理由.20.(9分)如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距多少海里?21.(10分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50km,DA=20km,CB=10km,请你设计出E站的位置,并计算车站E距A点多远?22.(10分)如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=(1)求证:∠C=90°;(2)求BD的长.23.(10分)如图,已知CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m.(1)求AC的长.(2)求图中着色部分的面积.参考答案1.D;2.B;3.C;4.D;5.D;6.C;7.D;8.A;9.A;10.B;11和3;12.120;13.5;14.16;15.8;16.∵CD是△ABC中AB边上的高,∴CD⊥AB,∴∠ADC=90°,在Rt△ACD中,由勾股定理得:AD==6,∴BC=3AD=18,∴BC的长为18.17.如图,等腰△ABC中,AB=AC=13,BC=10,过A作AD⊥BC于D,则BD=5,在Rt△ABD中,AB=13,BD=5,则AD==12.故BC边上高的长的高为12.18.(1)∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴∠ADB=90°;(2)在Rt△ACD中,CD=15,∴BC=BD+CD=6+15=21,答:BC的长是21.19.(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=BC=AC=故答案为(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.20.由题意可得:BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,AB15(海里),答:甲、乙两渔船相距15海里.21.设AE=xkm,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得202+x2=102+(50﹣x)2,x=22.故:E点应建在距A站22千米处.22.(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)解:∵在Rt△ABC中,∠C=90°,∴BC==8,∴BD=BC﹣CD=8﹣3=5.23.(1)在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m(取正值).(2)在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=12AC×BC―12AD×CD=12×10×24―12×8×6=96(m2).。
人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)
人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。
人教版八年级数学下册第17章【 勾股定理】单元测试卷(二)含答案与解析
人教版八年级数学下册第17章单元测试卷(二)勾股定理学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,∠ACB=90°,AC=40,CB=9,M 、N 在AB 上且AM=AC ,BN=BC ,则MN 的长为( )A .6B .7C .8D .92.如图,AE ,AD 分别是ABC 的高和角平分线,30B ∠=︒,70C ∠=︒,则DAE ∠的度数为( )A .40°B .20°C .10°D .30° 3.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,垂足为E ,AB=23,AC=4,BD=8,则点D 到线段BC 的距离为( )A 3B .3C 221D 421 4.如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB EF =,3FG =,4GC =.有以下四个结论:①BGF CHG ∠=∠;②BFG DHE △△≌;③1tan 3BFG ∠=;④矩形EFGH 的面积是92.其中正确的结论为( )A .①②B .①②③C .①②④D .①②③④ 5.如图:点E 、F 为线段BD 的两个三等分点,四边形AECF 是菱形,且菱形AECF 的周长为20,BD 为24,则四边形ABCD 的面积为( )A .24B .36C .72D .1446.如图,在四边形ABCD 中,如果AD//BC ,AE//CF ,BE=DF ,那么下列等式中错误的是( )A .∠DAE=∠BCFB .AB=CDC .∠BAE=∠DCFD .∠ABE=∠EBC 7.如图,在长方形ABCD 中,点E 在边BC 上,过点E 作EF ⊥AD ,垂足为F ,若EF=BE ,则下列结论中正确的是( )A .EF 是∠AED 的平分线B .DE 是∠FDC 的平分线 C .AE 是∠BAF 的平分线D .EA 是∠BED 的平分线8.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ,则PQ的长为()A.12B.13C.14D.159.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=214,则∠AED的度数是()A.30°B.60°C.45°D.36°10.在平面直角坐标系中,已知直线与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是()A.(0,) B.(0,) C.(0,3) D.(0,4)11.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( )A.2016B.2017C.2018D.201912.如图,已知AB∥CD,∠A=60°,∠C =25°,则∠E等于()A .60°B .25°C .35°D .45°二、填空题(本大题共6小题,每小题3分,共18分)13.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,若AB=8,则BD=__________.14.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.15.如图所示,把长方形纸片ABCD 沿EF 折叠后,点D 与点B 重合,点C 落在点C '的位置上若160︒∠=,1AE =.则长方形纸片ABCD 的面积为________.16.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是_____.17.如图,一系列等腰直角三角形(编号分别为①,②,③,④,…)组成了一个螺旋形,其中第 1 个三角形的直角边长为 1,则第 n 个等腰直角三角形的面积为_____________18.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB′C′D′,若CD =2,DA=2,那么CC′=____________.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,AO=CO .(1)求证:四边形ABCD 是平行四边形;(2)若AC ⊥BD ,AB=10,求BC 的长.20.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2,火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连结CF ,AB =a ,BC =b ,AC =c .(1)请你结合图1用文字和符号语言分别叙述勾股定理;(2)请利用直角梯形BCFG 的面积证明勾股定理:222+=a b c .21.如图,一次函数y kx b =+的图象与直线34y x =交于点()4,3A ,与y 轴交于点B ,且OA OB =.(1)求一次函数的表达式;(2)求两直线与y 轴围成的三角形的面积.(3)在x 轴上是否存在点C ,使AOC △是以OA 为腰的等腰三角形,若存在,直接写出C 的坐标;若不存在,说明理由.22.如图,一棵高32m 的大树在一次暴风雨中被刮断,树顶C 落在离树根B 点16m 处.研究人员要查看断痕A 处的情况,在离树根5m 的D 处竖起一架梯子AD ,请问这架梯子的长是多少?23.如图,在平面直角坐标系中,抛物线2y ax bx c =++的图象与x 轴交于A B 、两点(点A在点B 的左边),与y 轴交于点C ,点A 的坐标为()1,0-,抛物线顶点D 的坐标为()1,4-,直线BC 与对称轴相交于点E .(1)求抛物线的解析式;(2)点M 为直线1x =右方抛物线上的一点(点M 不与点B 重合),设点M 的横坐标为m ,记A B C M 、、、四点所构成的四边形面积为S ,若3BCD S S ∆=,请求出m 的值; (3)点P 是线段BD 上的动点,将DEP ∆沿边EP 翻折得到'D EP ∆,是否存在点P ,使得'D EP ∆与BEP ∆的重叠部分图形为直角三角形?若存在,请直接写出BP 的长,若不存在,请说明理由.24.如图,在一条东西走向河流的一侧有一村庄,C 河边原有两个取水点,A ,B 其中,AB AC =由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H A H B (、、在同一条直线上),并新修一条路,CH 测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路.请通过计算加以说明;(2)求新路CH 比原路CA 少多少千米. 参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
2022-2023学年新人教版八年级数学下册第十七单元学习质量检测卷(附参考答案)
2022-2023学年新人教版八年级数学下册第十七单元学习质量检测卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各组数中,能构成直角三角形的一组是()A.2,3,4B.1,2C.5,8,11D.5,11,13 2.(3分)△ABC的三边长分别为a,b,c.下列条件,其中能判断△ABC是直角三角形的个数有()①∠A=∠B﹣∠C②a2=(b+c)(b﹣c)③∠A:∠B:∠C=3:4:5④a:b:c=5:12:13A.1个B.2个C.3个D.4个3.(3分)在平面直角坐标系中,点P(x,4)到原点O的距离等于5,则x的值是()A.±3B.5C.﹣3D.34.(3分)如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是()A.16B.25C.144D.1695.(3分)如图,已知∠CAB和∠ACD的平分线相交于点O,OE⊥AC,垂足为E,若OE =4,则点O到AB与CD的距离之和为()A.4B.8C.12D.166.(3分)如图所示的网格是正方形网格,点A,B,C,D,E是网格线交点,则∠BAC﹣∠DAE的度数为()A.45°B.40°C.30°D.25°7.(3分)如图,有两棵树,一棵高9米,另一棵高4米,两树相距12米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?()A.11 B.12 C.13 D.148.(3分)小明想知道学校旗杆的高度,她发现旗杆上的绳子刚好垂到地面,当她把绳子的下端拉开5米后,发现绳子下端距离地面1米,则旗杆的高是()A.8米B.10米C.12米D.13米9.(3分)如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.6410.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3.12.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是.13.(3分)在Rt△ABC中,∠A=90°,BC=5,AB=3.如果点P在AC边上,且点P到Rt△ABC的两个顶点的距离相等,那么AP的长为.14.(3分)如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接P A,当△ABP为等腰三角形时,t的值为.15.(3分)在△ABC中,∠C=90°,BC=2,AC=AB=.三.解答题(共8小题,满分75分)16.(9分)在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.17.(9分)如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.求四边形ABDC的面积.18.(9分)如图所示的一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.19.(9分)如图,教学楼走廊左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜在右墙时,顶端距离地面2米,求教学楼走廊的宽度.20.(9分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?21.(10分)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.(10分)如图,在四边形ABCD中,AB=13,BC=5,CD=15,AD=9,对角线AC⊥BC.(1)求AC的长;(2)求四边形ABCD的面积.23.(10分)如图是用硬纸板做成的四个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.请你开动脑筋,用它们拼出正方形图案,要求拼图时直角三角形纸片不能互相重叠.(1)请你画出拼成的这个图形的示意图;(2)利用(1)中画出的图形证明勾股定理.参考答案1.B;2.C;3.A;4.B;5.B;6.A;7.C;8.D;9.D;10.D;11.2或;12.直角三角形;13.2或78;14.16或10或254;15.16.∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD22AC AD15,∴BC=BD+CD=6+15=21,∴S △ABC 12BC•AD1221×8=84.因此△ABC的面积为84.故答案为84.17.∵∠A=90°,AB=9,AC=12,∴BC2222912AB AC15,∵BC=15,BD=8,CD=17,∴BC2+BD2=CD2,∴△BCD是直角三角形,∴S 四边形ABCD=S△BCD+S△ABC 1215×8129×12=114.18.连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,∵AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S △ABC﹣S△ACD12AC•BC12AD•CD1215×361212×9=270﹣54=216.答:这块地的面积是216平方米.19.在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).答:教学楼走廊的宽度是2.2米.20.设旗杆在离底部x米的位置断裂,在给定图形上标上字母如图所示.∵AB=x米,AB+AC=16米,∴AC=(16﹣x)米.在Rt△ABC中,AB=x米,AC=(16﹣x)米,BC=8米,∴AC2=AB2+BC2,即(16﹣x)2=x2+82,解得:x=6.故旗杆在离底部6米的位置断裂.21.(1)∵AB=25米,BE=7米,梯子距离地面的高度AE2225724米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE22222520CD CE15,∴DB=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)∵AB=13,BC=5,AC⊥BC,∴AC222213512AB BC,(2)∵AC=12,CD=15,AD=9,∴CD2=AC2+AD2,∴△ADC是直角三角形,∴四边形ABCD的面积111151291284 2222BC AC AD AC.23.(1)(答案不唯一)如图;(2)证明:∵大正方形的面积可表示为(a+b)2,大正方形的面积也可表示为:c2+412 ab,∴(a+b)2=c2+412 ab,即a2+b2+2ab=c2+2ab,∴a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学人教版八年级下学期第十七章测试卷一、单选题(共7题;共14分)1.三角形各边长度如下,其中不是直角三角形的是()A. 3,4,5B. 6,8,10C. 5,11,12D. 8,15,172.在RtDABC 中,ÐC = 90°,AB = 3 ,AC = 2, 则BC 的值()A. B. C. D.3.如图,在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是( )A. 4.8B. 4.8或3.8C. 3.8D. 54.如图,开口玻璃罐长、宽、高分别为16、6和6,在罐內点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外长方形ABCD的中心H处,蚂蚁到达饼干的最短距离是多少()A. B. 17 C. D.5.如图,点A坐标为(3,0),B是y轴正半轴上一点,AB=5,则点B的坐标为()A. (4,0)B. (0,4)C. (0,5)D. (0,)6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A. 2.2米B. 2.3米C. 2.4米D. 2.5米7.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为().A. 13cmB. cmC. 2 cmD. 20cm二、填空题(共6题;共6分)8.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12km/h的速度向东南方向航行,它们离开港口半小时后相距________km9.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于________.10.如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为________m.11.如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中A,B,C,D四个小正方形的面积之和等于8,则最大正方形的边长为________.12.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为,已知,则的值是________.13.如图,要为一段高为5米,长为13米的楼梯铺上红地毯,则红地毯至少要________米长.三、解答题(共1题;共5分)14.如图在四边形ABCD中,AD=1,AB=BC=2,DC=3,AD⊥AB,求四、综合题(共2题;共16分)15.如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为________,BC的长为________,CD的长为________;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.16.一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)若蜘蛛还走前面和右面这两个面,你认为“AD-DB"是最短路线吗?如果不是,请求出最短路程,如果是,请说明理由答案解析部分一、单选题1.【答案】C【解析】【解答】解;A、∵32+42=52,∴5,4,3能构成直角三角形;B、∵62+82=102,∴6,8,10能构成直角三角形;C、∵52+112≠122,∴5,11,12不能构成直角三角形;D、∵82+152=172,∴8,15,17能构成直角三角形.故答案为:C.【分析】根据勾股定理的逆定理,一个三角形的三边如果满足较小两边的平方和等于最大边长的平方,那么这个三角形就是直角三角形,从而即可一一判断得出答案.2.【答案】A【解析】【解答】由勾股定理得,.故答案为:.【分析】直接利用勾股定理计算即可.3.【答案】A【解析】【解答】解:如下图,过点A作AF⊥BC于点F,连接AP,∵在△ABC中,AB=AC=5,BC=8,∴BF=4,∴在△ABF中,,∵,∴,∴,即:PD+PE=4.8.故答案为:A.【分析】过点A作AF⊥BC于点F,连接AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得,代入数值解答即可. 本题运用了转化思想,将一个三角形的面积转化为两个三角形的面积的和是解题的关键.4.【答案】A【解析】【解答】解:①若蚂蚁从平面ABCD和平面CDFE经过,蚂蚁到达饼干的最短距离如图1:H′E=,②若蚂蚁从平面ABCD和平面BCEH经过,则蚂蚁到达饼干的最短距离如图2:H′E=∵17>∴蚂蚁到达饼干的最短距离是,故答案为:A.【分析】做此题要把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.5.【答案】B【解析】【解答】解:因为点A坐标为(3,0),B是y轴正半轴上一点,AB=5,所以OB= =4 ,所以点B的坐标为(0,4),故答案为:B.【分析】根据勾股定理算出OB的长,再根据点的坐标与图形的性质即可得出点B的坐标.6.【答案】A【解析】【解答】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴在Rt△A'BD中,∵∠A 'BD=90°,A'D=2米,∴∴∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案为:A.【分析】如图,在Rt△ACB中,genuine勾股定理表示出AB2,在Rt△A'BD中,利用勾股定理即可求出BD的长,进而根据CD=BC+BD算出答案.7.【答案】D【解析】【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B= = =20(cm).故答案为:D.【分析】立体图形上的最短问题,如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B 即为最短距离,从而根据勾股定理即可算出答案.二、填空题8.【答案】10【解析】【解答】解:,∴它们离开港口半小时后相距千米.故答案为:10.【分析】先求出半小时后各自行驶的路程,再根据勾股定理即可求得结果.9.【答案】15【解析】【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC= ×4×3=6,,,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案为:15.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB= ,然后即可确定C点的位置;然后分别计算三个三角形的面积,相加即可.10.【答案】3【解析】【解答】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB==9m.同理,在Rt△COD中,DO==12m,∴BD=OD﹣OB=12﹣9=3(m).故答案是:3.【分析】先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.11.【答案】2【解析】【解答】分别设A,B,C,D四个小正方形的边长为a,b,c,d,根据题意得:题目中需要求的值,则由①式得,则最大正方形的边长为【分析】分别设A,B,C,D四个小正方形的边长为a,b,c,d,根据题图可得出相应等式。
12.【答案】【解析】【解答】∵八个直三角形全等,四边形ABCD,EFGH,MNKT是正方形∴CG=NG,CF=DG=NF∴∴∴故故答案为:.【分析】根据八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,得出CG=NG,CF=DG=NF,再根据,,,,即可得出答案.13.【答案】18【解析】【解答】解:根据勾股定理,楼梯水平长度为米,则红地毯至少要12+5=17米长,故答案为:17.【分析】首先根据勾股定理算出楼梯水平长度,进而根据平移的方法可知红毯的长度就等于楼梯的水平长度与竖直高度的和即可算出答案.三、解答题14.【答案】解:连接BD,在直角△ABD中,AC为斜边,且AB=BC=2,AD=1则BD= = ,,∴BC2+BD2=CD2,即△ACD为直角三角形,且∠DAC=90°,四边形ABCD的面积=S△ABD+S△BCD= AB×AD+ BD×BC= .=1+答:四边形ABCD的面积为1+ .【解析】【分析】连接BD,则可以计算△ABD的面积,根据AB、BD可以计算BD的长,根据CD,BC,BD 可以判定△BCD为直角三角形,根据BC,BD可以计算△BCD的面积,四边形ABCD的面积为△ABD和△BCD 面积之和.四、综合题15.【答案】(1);5;(2)解:∵AC==2 ,AD==2 ,∴AC=AD,∴△ACD是等腰三角形;∵AB2+AC2=5+20=25=BC2,∴△ABC是直角三角形.【解析】【解答】解:如图,;(1)由勾股定理得AB==,BC==5,CD==2 ;【分析】(1)把线段AB、BC、CD、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC=AD,即可判断△ACD的形状;由勾股定理的逆定理得出△ABC是直角三角形.16.【答案】(1)解:从点A爬到点B所走的路程为AD+BD= + =5+(2)解:不是,分三种情况讨论:①将下面和右面展到一个平面内,AB= = =2 (cm);②将前面与右面展到一个平面内,AB= = =6 (cm);③将前面与上面展到一个平面内,AB= =4 (cm),∴蜘蛛从A点爬到B点所走的最短路程为6 cm【解析】【分析】(1)利用勾股定理求出AD、BD即可;(2)分三种情形讨论即可,分别利用勾股定理求出AB的长即可解决问题;。