第三章 酶化学
生物化学第三章 酶
(四)酶的比活力(比活性) • 酶的比活力是指每单位质量样品中的酶 活力,即每毫克酶蛋白中所含的活力单 位数或每千克酶蛋白中所含的Kat数。
比活力=
酶活力单位数 酶蛋白质量(mg)
• 比活力是表示酶制剂纯度的一个重要指 标,对同一种酶而言,酶的比活力越高, 纯度越高。
七、酶促反应动力学
• 酶促反应动力学主要研究酶催化的反 应速度及影响反应速度的各种因素。 • 在探讨各种因素对酶促反应速度的影 响时,通常测定其初始速度来代表酶
单纯酶 酶→ 结合酶(全酶)→ 辅助因子→ 酶蛋白 辅酶 辅基 金属离子
●
●酶蛋白与辅助因子单独存在时均无催化活性,二 者只有结合成完整的分子时,才具有催化活性。 ●一种酶蛋白只与一种辅酶结合,组成一种全酶, 催化一种或一类底物进行某种化学反应。 ●一种辅酶可以和多种酶蛋白结合,组成多种全酶, 分别催化不同底物进行同一类反应。
(三) 诱导契合学说-关于酶作用专一性的假说 ●1890年,Emil Fischer提出“锁钥学说” :底 物的结构和酶活性部位的结构非常吻合,就象 锁和钥匙一样,这样它们就能紧密结合形成中 间产物。
底物
+
酶
酶 –底物复合物
●1958年,Koshland提出“诱导契合学说”: 酶活性部位的结构与底物的结构并不特别 吻合,但活性部位具有一定的柔性,当底 物与酶接近时,可以诱导酶活性中心的构 象发生改 变,使之 成为能与 底物分子 密切结合 的构象 。
促反应速度,即底物转化量 <5% 时的
反应速度。
(一)酶浓度对反应速度的影响 • 当反应系统中底物的浓度足够大时, 酶促反应速度与酶浓度成正比,即 ν =k[E]。
(二) 底物浓度对反应速度的影响
生物化学 第三章 酶(共65张PPT)
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
生物化学03 酶
1、酶的别构(变构)效应 •概念:有些酶分子表面除了具有活性中心外,还存在被称为调节位
点(或变构位点)的调节物特异结合位点,调节物结合到调 节位点上引起酶的构象发生变化,导致酶的活性提高或下降, 这种现象称为别构效应,具有上述特点的酶称别构酶。
效应剂
别
构 中
活性 中心
心
2、酶的多种分子形式——同工酶
最适 温度
温度
4、pH对酶促反应速度的影响
v
•过酸过碱导致酶蛋白变性
•酶的最适pH不是一个固定 不变的常数
最
pH
适
pH
5、激活剂对酶作用的影响
凡是能提高酶活力的物质,称为酶的激活剂。
类别
金属离子:K+、Na+、 Mg2+、Cu2+、Mn2+、Zn2+、Se3+ 、 Co2+、Fe2+ 阴离子: Cl-、Br有机分子 抗坏血酸、半胱氨酸、谷胱甘肽
v
Vm axS K m S
PE
(2)米氏常数Km的意义
① 当v=Vmax/2时,Km=[S]( Km的单位为浓度单位) ②是酶在一定条件下的特征物理常数,通过测定Km的数值,可
鉴别酶。 ③可近似表示酶和底物亲合力,Km愈小,E对S的亲合力愈大,
Km愈大,E对S的亲合力愈小。 ④在已知Km的情况下,应用米氏方程可计算任意[s]时的v,或
相对专一性:要求底物具有一定的化学键,且对键的某 一端所连的基团也有一定的要求,如胰蛋白酶。
键专一性:只作用于一定的键,而对键两端的基团并无 严格要求,如二肽酶。
2、 立体异构专一性 只能催化一种立体异构体,对另一种立体异构体无
作用,如乳酸脱氢酶能催化L-乳酸,而不能催化D-乳酸。
生物化学 第3章 酶
生物化学第3章酶生物化学第3章酶第3章酶自学建议1.掌握酶及所有相关的概念、酶的结构与功能的关系、酶的工作原理、酶促反应动力学特点、意义及应用。
2.熟识酶的分子共同组成与酶的调节。
3.了解酶的分类与命名及酶与医学的关系。
基本知识点酶是对其特异底物起高效催化作用的蛋白质。
单纯酶是仅由氨基酸残基组成的蛋白质,融合酶除所含蛋白质部分外,还所含非蛋白质辅助因子。
辅助因子就是金属离子或小分子有机化合物,后者称作辅酶,其中与酶蛋白共价紧密结合的辅酶又称辅基。
酶分子中一些在一级结构上可能相距很远的必需基团,在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。
同工酶就是指催化剂相同化学反应,酶蛋白的分子结构、化学性质乃至免疫学性质相同的一组酶,就是由相同基因编码的多肽链,或同一基因mRNA分解成的相同mrna所译者的相同多肽链共同组成的蛋白质。
酶促反应具有高效率、高度特异性和可调节性。
酶与底物诱导契合形成酶-底物复合物,通过邻近效应、定向排列、表面效应使底物容易转变成过渡态。
酶通过多元催化发挥高效催化作用。
酶促反应动力学研究影响酶促反应速率及其影响因素,后者包括底物浓度、酶浓度、温度、ph、抑制剂和激活剂等。
底物浓度对反应速率的影响可用米氏方程表示。
v?vmax[s]km?[s]其中,km为米氏常数,其值等同于反应速率为最小反应速率一半时的底物浓度,具备关键意义。
vmax和km需用米氏方程的双倒数作图去求得。
酶在拉沙泰格赖厄县ph和拉沙泰格赖厄县温度时催化活性最低,但拉沙泰格赖厄县ph和拉沙泰格赖厄县温度不是酶的特征性常数,受到许多因素的影响。
酶的抑制作用包含不可逆遏制与对称遏制两种。
对称遏制中,竞争抑制作用的表观km值减小,vmax维持不变;非竞争抑制作用的km值维持不变,vmax增大,反竞争抑制作用的km值与vmax均增大。
在机体内酶活性与含量的调节是代谢调节的重要途径。
第三章酶的化学修饰
第三章酶的化学修饰第一节酶的分子修饰一、酶的化学修饰原因1、稳定性2、酶反应的最适条件3、酶的专一性4、米式常数过大5、临床应用的特殊要求6、酶种类的限制改变酶特性有两种主要的方法:1)通过分子修饰的方法来改变已分离出来的天然酶的活性。
2)通过基因工程方法改变编码酶分子的基因而达到改造酶的目的。
二、酶分子修饰通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
即在体外将酶分子通过人工的方法与一些化学基团(物质),特别是具有生物相容性的物质,进行共价连接,从而改变酶的结构和性质。
三、酶分子修饰的意义⏹提高酶的活力⏹增强酶的稳定性⏹降低或消除酶的抗原性⏹研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间构象的影响化学修饰效果举例用纤维蛋白的专一性单克隆抗体修饰尿激酶,使其溶血栓性提高了100倍。
用乙醛酸修饰胰凝乳蛋白酶的表面氨基,形成亲水性的α-NHCH2COOH后,该酶对60℃热处理的稳定性增高了1000倍。
超氧化物歧化酶(SOD)、L-谷氨酰胺酶、L-天门冬酰胺酶、尿酸酶等用PEG(聚乙二醇)修饰后,完全消除了酶的抗原性和免疫原性,减慢了它们在动物血液循环中被清除的速度,酶的活力可以保存15%-45%。
四、酶化学修饰的基本原理1、如何增强酶天然构象的稳定性与耐热性修饰剂分子存在多个反应基团,可与酶形成多点交联。
使酶的天然构象产生“刚性”结构。
2、如何保护酶活性部位与抗抑制剂大分子修饰剂与酶结合后,产生的空间障碍或静电斥力阻挡抑制剂,“遮盖”了酶的活性部位。
3、如何维持酶功能结构的完整性与抗蛋白水解酶酶化学修饰后通过两种途径抗蛋白水解酶:A 大分子修饰剂产生空间障碍阻挡蛋白水解酶接近酶分子。
“遮盖”酶分子上敏感键免遭破坏。
B 酶分子上许多敏感基团交联上修饰剂后,减少了受蛋白水解酶破坏的可能性。
4、如何消除酶的抗原性酶蛋白氨基酸组成的抗原决定簇,与修饰剂形成了共价键。
《生物化学》第三章 酶化学与辅酶及答案
D.缺乏辅酶或辅基
E.是已经变性的蛋白质
3.磺胺类药物的类似物是:
A.四氢叶酸B.二氢叶酸C.对氨基苯甲酸D.叶酸E.嘧啶
4.关于酶活性中心的叙述,哪项不正确?
A.酶与底物接触只限于酶分子上与酶活性密切有关的较小区域
B.必需基团可位于活性中心之内,也可位于活性中心之外
C.一般来说,总是多肽链的一级结构上相邻的几个氨基酸的残基相对集中,形成酶的活性中心
(6)合成酶类:催化两分子底物合成为一分子化合物,同时偶联有ATP的磷酸键断裂释能的酶类。
3.金属辅助因子的作用是多方面的,主要是以下几方面:
(1)作为酶活性中心的催化基团参与催化反应、传递电子。
(2)作为连接酶与底物的桥梁,便于酶与底物起作用
(3)稳定酶的构象
(4)中和阴离子,降低反应中的静电斥力。
7.L-精氨酸只能催化L-精氨酸的水解反应,对D-精氨酸则无作用,这是因为该酶具有_________专一性。
8.酶所催化的反应称________,酶所具有的催化能力称_________。
9.参与琥珀酸脱氢生成延胡索酸反应的辅酶是。
10.生物素是的辅酶,其作用是。
三、判断题
1. 按照国际系统分类法,柠檬酸合酶应属裂解酶类。
C.一种辅助因子只能与一种酶蛋白结合成一种全酶
D.酶蛋白决定结合酶蛋白反应的专一性
E.辅助因子直接参加反应
7.如果有一酶促反应其〔8〕=1/2Km,则v值应等于多少Vmax?
A.0.25 B.0.33 C.0.50 D.0.67 E.0.75
8.有机磷杀虫剂对胆碱酯酶的抑制作用属于:
A.可逆性抑制作用
2.4倍9倍
3.不同也不同酶的最适底物
生物化学03第三章 酶
三、 酶的命名与分类
(一)酶的命名
1.习惯命名法——推荐名称
通常以酶催化的底物、反应的性质以及酶的来源命名。 (1) 依据酶所催化的底物命名,如淀粉酶等。 (2) 依据催化反应类型命名,如脱氢酶、转氨酶等。 (3) 综合上述两项原则命名,如乳酸脱氢酶等。 2. 系统命名法——系统名称 规定各种酶名称要明确标示酶的底物与反应类型,如 果一种酶催化两个底物,应在酶系统名称中同时写入 两种底物的名称,用“:”把它们分开,如果底物之 一是水,则水可省略不写。
底物
反应总能量改变
产物 应 过 程
酶促反应活化能的改变
反
一、酶的活性中心(active center)
(一)什么是活性中心(活性部位)
指在整个酶分子中,只有一小部分区域 的aa残基参与对底物的结合和催化作用,这
些特异的aa残基比较集中的区域称为酶的活
性中心或称活性部位。
(二)酶活性中心的组成
结合部位:酶分子中与结合底物有关的部位。
1. 结合酶的酶蛋白与辅助因子协同作用才能发挥 催化作用。
酶蛋白
(无催化活性)
+ 辅助因子
(无催化活性)
全酶
(有催化活性)
2.全酶各部分在催化反应中的作用
(1)酶蛋白决定反应的特异性。 (2)辅助因子决定反应的种类与性质。
3.辅酶:属于有机分子类型的辅因子;辅酶又可
分为一般的辅酶和辅基两类(按其与酶蛋白结合
酶的调节部位可以与某些化合物可逆地非共价结 合,使酶发生结构的改变,进而改变酶的催化活性, 这种酶活性的调节方式称~。
别构酶:多为寡聚酶
正效应物(别构激活剂) 负效应物(别构抑制剂)
效应物(别构效应剂) (多为小分子化合物)
第三章第三节酶的化学修饰ppt课件
9)、二硫键的修饰
2、酶分子表面的化学修饰
利用水溶性大分子与酶结合,使酶的空间结构发生某些精 细的改变,从而改变酶的特性与功能的方法。
水溶性大分子: PEG及其衍生物:是线性分子,具有良好的生物相容性和水
溶性,在体内无毒性、无残留、无免疫原性,并可消除酶的抗 原性。 右旋糖酐及其衍生物:右旋糖苷是由α—葡萄糖通过α—1, 6—糖苷键连接而成的高分子多糖,具有良好的生物相容性和 水溶性。 糖肽:糖肽是蛋白酶水解人纤维蛋白或Y一球蛋白所得到的产 物。其分子上具有游离氨基,活化后与酶分子上氨基反应,从 而可修饰酶。 其他天然大分子(肝素、血清白蛋白) 其它合成大分子多聚物:聚N—乙烯吡咯烷酮,聚乙烯醇 (PVA)聚丙烯酸(PAA)饰的定义
通过化学方法对酶分子施行的各种改造和 修饰,以改变酶理化性质及生物活性的方法。
二、酶化学修饰的目的
1. 研究酶的结构与功能的关系。(50年代末) 2. 人为改变天然酶的某些性质,扩大酶的应用
范围。(70年代末之后) 1)增强酶天然构象的稳定性与耐热性 2)保护酶活性部位与抗抑制剂 3)维持酶功能结构的完整性与抗蛋白水解酶 4)消除酶的抗原性及稳定酶的微环境
如:PEG-腺苷脱氨酶、PEG-超氧化物歧化、 PEG-溶血类蛋白、PEG-天门冬酰氨酶、
缺点: 扩散速度受限; 生物活性降低; 选择性不高,稳定性不够理想。
极性氨基酸
1)无电荷的极性氨基酸(共7种):
丝氨酸(Serine,Ser,S), 苏氨酸(Threonine,Thr,T),
酪氨酸(Tyrosine,Tyr,Y), 半胱氨酸(Cysteine,Cys,C),
天冬酰胺(Asparagine,Asn,N),甘氨酸(Glycine,Gly,G),
生物化学酶
活化能阈:低能分子转变 为高能分子所需要的 最低能量。
酶
活化能阈
活化分子相对数量 反应速度
2.高度的特异性(专一性)
酶的特异性
酶对底物的选择性。
酶对底物具有严格的选择性。即一种酶只能作用于一
种或一类底物,或一定的化学键,催化一定的反应,得到
一定的产物。
(1)绝对特异性
指某些酶只能作用于一种
特定的底物,进行一种反应,生成特定的产物的
碳酸酐酶、羧肽酶
Mg2+
激酶类、磷氨酸酶
Mn2+
精氨酸酶、超氧化物歧化酶
Na+
质膜 ATP 酶 (也需K+和Mg2+)
K+
丙酮酸激酶 (也需Mg2+和Mn2+ )
维生素(vitamin) ---------机体维持正常生理功能所必需,但在人体 内不能合成或合成量很少,必须由食物供给的一 组低分子有机物质。
酶所具有的催化能力
。酶失活
酶失去了催化能力
。
二、酶作用的特点 (一)共同点
1.只能进行热力学上允许进行的反应; 2.缩短化学反应到达平衡的时间,而不 改变反应的平衡点; 3.反应前后没有质和量的改变。
(二)酶作用的特点
1.高度的催化效率
通常要高出非生物催化剂催化活性的 106~1020倍
酶与一般催化剂催化效率的比较
维生素的分类与命名:
脂溶性维生素 维生素A、D、E、K 按溶解性
分为
水溶性维生素
B族维生素:B1、B2、PP、 泛酸、B6、叶酸、生物素、B12 、
B族维生素的主要作用:维构生成素酶C、的硫辅辛酶酸 或辅基参与体内物质代谢。
特点:
酶化学_精品文档
5'
5'
5'
BB
3'
3'
PPP
5'
5'
1.3 酶的结构及催化机理
一、酶的结构
活性部位和必需基团
必需基团:这些基团若经化学修饰使其改变,则酶
的活性丧失。
活性部位:酶分子中直接与底物结合,并和酶催化
作用直接有关的部位。
结合基团
专一性
活性部位
必需基团
催化基团 催化性质
维持酶的空间结构
1.结合部位 Binding site
但也有些酶专一性并不太强,例如胃蛋白酶几乎可以 水解一切的肽健。
1.1 催化剂
▪ 能够改变其它物质的化学反应速度,而本身
的质量和化学性质在化学反应前后没有发生变化 的物质。催化剂也叫做触媒。
▪ 催化剂的作用非常大,它可以改变化学反应
的速度。 ▪ 催化剂可以分为均相和非均相。在均相催 化剂中,催化剂表面和相之间不存在界线。
例如微量 K2O 可以提高合成氨用的铁触媒的活性。
1.2 催化反应机理
按照过渡态理论,催化剂的作用是通过新的反应途径降低了过渡态 的能量,从而降低了△G值而加速反应。
催化反应的特点:
• 1、用量少而催化效率高; • 2、它能够改变化学反应的速度,
但是不能改变化学反应平衡。 • 3、酶能够稳定底物形成的过渡状态,
(b)锁钥学说:认为整个酶分子的天然构象是 具有刚性结构的,酶表面具有特定的形状。酶与 底物的结合如同一把钥匙对一把锁一样
(c)诱导契合学说:该学说认为酶表面并没有一 种与底物互补的固定形状,而只是由于底物的 诱导才形成了互补形状。
(二)酶作用高效率的机制
第三章 酶化学
5. 金属离子的催化效应
金属离子与底物形成络合物,稳定中间过渡态; 金属离子通过屏蔽底物的负电荷,使亲核反应更容易 进行。 6. 活性部位的疏水效应 活性部位通常位于疏水环境的裂缝中,使得酶和底物 的弱相互作用力变强,有利于反应的进行。
胰凝乳蛋白酶的催化机理(了解) 胰凝乳蛋白酶的催化机理(了解)
酯酶 酯酶
甘油+ 3 脂肪酸
R1-COO-R2+H2O 蔗糖+H2O 棉子糖+H2O
蔗糖酶
R1-COOH + R2OH 葡萄糖 + 果糖 果糖 + 蜜二糖
蔗糖酶
b. 基团专一性(族专一性)
(2)立体异构专一性 旋光异构专一性 L-氨基酸氧化酶只对L-氨基酸起作用,对D- 氨基酸无作用。 D-氨基酸氧化酶只对D-氨基酸起 作用,对L-氨基酸无作用。 精氨酸酶催化L-精氨酸;乳酸脱氢酶催化L-乳酸; 苦杏仁酶只催化β-甲基葡萄糖苷水解,对α-甲基葡 萄糖苷无水解活性。
3. X-射线晶体衍射法 X4. 定点诱变法 定点突变的方法改变编码蛋白质的DNA的顺序, 定点突变的方法改变编码蛋白质的DNA的顺序, 通过判断突变前后酶活性的变化来研究酶的活性中心。
酶催化作用的机理:
影响酶催化效率的因素: 影响酶催化效率的因素: 1. 酶和底物的邻近和定向效应 邻近效应是指通过底物在酶分子表面的定位从而大大 提高底物的局部浓度,使反应速度加快的效应。 定向效应是指底物在酶的作用下,采取有利于反应进 行的取向。
2. 酶和底物的诱导契合
底物在酶的作用下,某些基团的电子云密度发生改 变,产生电子张力,底物分子形变,导致反应易于进行 的效应。
3. 酸碱催化效应
酶通过向底物分子提供瞬时的质子或接受瞬时的 质子而稳定酶-底物复合物,加快反应进行的效应。
第三章 酶
第三章酶化学(一)名词解释1.米氏常数;2.寡聚酶;3.比活力(specific activity)4.变构酶;5.同工酶;6.活性中心;7. 竞争性抑制作用;8. 非竞争抑制作用;9. 反竞争性抑制作用10.酶的专一性;11. 酶原的激活;12. 别构效应;13. 正协同效应;14. 共价修饰调节;15. 酶活力;16. 不可逆抑制作用;17. 可逆抑制作用。
1.变构酶活性中心外还有___________,当以v对[S]作图时,它表现出______型曲线,而不是典型的米氏酶所具有的_______曲线。
2.酶活性的国际单位(I.U.)定义为在最适条件下,将底物转化为产物的速度为_______的酶量。
3.对于符合米氏方程的酶,v-[S]曲线的双倒数作图(Lineweaver-Burk作图法)得到的直线,在横轴的截距为___________,纵轴上的截距为____________。
4.若同一种酶有n个底物就有________个K m值,其中K m值最________的底物,一般为该酶的最适底物。
5.蛋白质磷酸化时,需要__________酶,而蛋白质去磷酸化需要_______酶。
6.当底物浓度等于0.25K m时,反应初速度与最大反应速度的比值是______。
7.酶催化反应的实质在于降低反应的______,使底物分子在较低的能量状态下达到______态,从而使反应速度______。
8.___ ____抑制剂不改变酶促反应V max,______抑制剂不改变酶促反应K m。
9.谷丙转氨酶属于___________酶类;它的系统名称是___________。
10.复合酶类有___________和___________两部分组成。
11.合成酶类催化由_______合成一种物质的反应,且必须有_______参加.12.酶活性中心有两个功能部位,一是___________,一是___________.13.天冬氨酸转氨甲酰酶的别构激抑活剂为________,别构抑剂_________.14.对同一种酶来说,酶的比活力越___________,___________越高.15.解释别构酶作用机理的两个重要模型是___________和___________.16.磺胺类药物是___________,可干扰___________合成.17.酶是生物催化剂,其化学本质属于___________或___________(三)选择题1.下面关于米氏常数K m的论述哪一个是正确的?1)与ES复合物形成及分解的速度常数都有关系2)在不同类型的抑制作用中,K m都改变3)用双倒数作图法不能得到K m值4)在酶促反应的初速度阶段不能得到k m2.测定酶促反应的初速度是为了:1)使实验尽快完成以避免酶蛋白的变性3)避免酶被底物饱和2)防止逆反应对结果分析所造成的影响4)增加酶催化反应的效率3.下面关于酶的抑制作用的论述哪一个是正确的?1)都为可逆的抑制作用2)增加底物的浓度可消除抑制剂对酶的影响3)根据抑制剂与酶结合的情况可区分不同类型的抑制作用4)抑制作用与抑制剂浓度无关4.下面关于Michealis-Menten方程作图的论述哪一个是正确的?1)反映了最大反应速度与底物浓度的关系2)反映出酶促反应的初速度与底物浓度的关系3)对所有的酶都适合4)是一个S型的曲线5.下面关于反竞争性抑制剂的论述哪一个是正确的?1)通过一个或多个共价键与酶结合2)当它存在时不改变Km3)当它存在时不改变最大反应速度4)只与ES复合物结合,干扰其分解为产物6.下面关于竞争性抑制剂的论述哪一个是正确的?1)无论其存在与否,双倒数作图在纵坐标上的截距都是1/V max2)在它存在时不改变Km3)在它存在时不影响底物与酶的活性部位的结合4)如果抑制作用发生,需它与底物反应以消除它对酶促反应的影响7.下列关于底物浓度对反应速度影响作图的表述哪一个是正确的?1)是一条直线2)当底物浓度高时,酶被底物饱和3)说明ES复合物形成的速度比分解的速度小4)是1/V对1/[S]作图8.下面关于用双倒数作图法求Km的表述哪一个是不正确的?1)是一条直线2)不能测定最大反应速度3)是1/V对1/S作图4)双倒数方程由米氏方程转化而来9.下列关于别构酶特性的叙述哪一个是正确的?1)不受抑制剂的影响2)不具协同性3)当配基与活性部位以外的部位结合时,引起酶构象的变化4)只有一个亚基组成10. 如何区分别构蛋白是否具有协同性?1)配基结合的齐变模型和序变模型2)氧合的和脱氧的血红蛋白3)胰蛋白酶和胰凝乳蛋白酶4)酶促反应的速度对底物浓度作图所获得的曲线一般是S型11.当有别构抑制剂存在时,别构酶:1)不再遭受构象的变化2)由于构象改变,催化反应的速度降低3)由于底物和抑制剂之间竞争酶的活性部位,使催化反应的速度降低4)由于变构抑制剂与酶的活性部位结合,使反应速度降低12.“齐变模型”和“序变模型”之间最主要的不同点是:1)都是对具有不同亚基的蛋白质来讲的2)齐变模型描述相对分子质量较小的蛋白质的性质,序变模型描述相对分子质量较大的蛋白质的性质3)齐变模型预测抑制剂与酶的紧密结合4)序变模型认为变构酶的亚基可以两种以上的状态存在,齐变模型认为酶的所有亚基只能有两种状态存在13.下列关于酶的国际单位与“催量”(kat单位)之间关系的叙述哪一个是正确的?1)lkat=6×108I.U. 3)1 I.U.=6×108kat2)1 I.U.=6×107kat 4) l kat=6×107 I.U.14.一种酶的纯竞争性抑制作用有下面的哪一种动力学性质?1) K m增加而V max不变3)K m和V max均降低2)K m降低而V max不变4)K m和V max均增加15.当酶促反应达到恒态时,[ES]复合物的浓度如何?1)浓度为零2)浓度增加3)浓度减少4)浓度不变16.在酶的反竞争性抑制作用中,抑制剂影响下列中的哪一个?1)最大反应速度3)Vmax和Km都受到影响2)米氏常数Km 4)Vmax和Km都不会受到影响17.当底物浓度恰好等于Km时,反应速度与最大反应速度的关系是:1)相同2)不同3) v=1/2Vmax 4) v=1/3Vmax18.当一酶促反应的速度达到最大速度的75%时,K m与[S]的关系是:1)[S]=K m2) [S]=2 K m3)[S]=3 Km 4)[S]=4 K m19.酶的高效催化作用是因为酶能:1)改变化学反应的平衡点3)降低反应的活化能2)减少活化分子的数量4)催化热力学上不能进行的反应20.当某酶的底物浓度[S]=4Km时,反应速度v等于:1) Vmax 2) 0.8Vmax 3) 3/4Vmax 4) 0.5Vmax21.某酶对其四个底物的Km值如下所示,问该酶的最适底物是哪一个?1) Km=4.3×10—33) Km=2.3×10—32) Km=3.5×10—34) Km=4.1×10—322.不可逆的抑制作用和可逆的抑制作用的主要区别是下述中的哪一个?1)抑制剂与酶分子上的某些基团以共价键结合2)抑制剂与酶分子上的某些基团以非共价键结合3)抑制剂与酶分子上的某些基团是以非共价键还是共价键结合的4)以上都是23.辅酶和辅基的主要区别是下列中的哪一个?1)与酶蛋白以非共价键结合3)与酶蛋白结合的紧密程度不同2)二者的分子大小不同4)与酶蛋白以共价键结合24.在下列哪一条件下,酶反应速度与酶浓度成正比?1)当酶浓度足够大时3)当底物浓度足够大时2)在最适温度和最适pH条件下4)以上都是25.竞争性抑制剂通过下列何种方式抑制酶的活性?1)与酶的必须基团结合3)与酶的活性中心结合2)与酶的辅基成分结合4)与酶的辅助因子结合26.增加底物浓度可解除下列哪种抑制剂或抑制作用对酶活性的影响?1)非竞争性抑制剂3)可逆的抑制作用2)竞争性抑制剂4)反竞争性抑制剂27.下列关于酶活性中心的叙述哪一个是不正确的?1)是酶分子中直接与酶的催化作用有关的部位2)对简单酶类来说,活性中心一般有少数几个氨基酸组成3)必需基团一定在活性中心内4)活性中心一般只占酶分子的很小一部分结构28.琥珀酸脱氢酶的竞争性抑制剂是下列中的哪一个?1)草酰乙酸2)丙酮酸3)丙二酸4)琥珀酰CoA29.下列关于磺胺类药物杀菌机理的叙述哪一项是正确的?1)是叶酸合成酶的反竞争性抑制剂3)是叶酸合成酶的竞争性抑制剂2)是B12合成酶的竞争性抑制剂4)使B12合成酶的反竞争性抑制剂30.下列有关温度对酶反应速度影响的叙述哪一项是正确的?1)酶反应速度随着温度的升高而加快2)酶反应速度随着温度的升高而减慢,因酶变性失活3)每种酶都有其最适温度4)最适温度是酶的特征常数31.下列有关pH对酶反应速度影响的叙述哪一项是不正确的?1)pH不是酶的特征常数2)在最适pH条件下酶表现出最大活性3)在极端pH条件下酶易变性失活4)酶反应速度对pH变化的曲线都是钟罩型的32.下列关于酶的激活剂的叙述哪一个是正确的?1)激活剂对酶的作用无选择性3)激活剂一般都是小分子的有机化合物2)激活剂一般都是无机离子4)激活剂是能提高酶活性的物质33.下列哪个是Km的单位?1)单位/m1 2)nmol/s 3)mmol/min 4)mol/L34.下列关于同功酶的叙述哪一项是错误的?1)同功酶具有不同的理化性质2)同功酶一般为寡聚酶,都具有特定的四级结构3)同功酶能催化相同的化学反应,因此具有相同的分子结构4)同功酶能催化相同的化学反应,但它们的分子结构、理化性质均不相同35;下列关于酶的国际单位的论述哪一个是正确的?1)1 I.U.指在最适条件下,每分钟催化lmol底物转化所需的酶量2)1 I.U.指在最适条件下,每分钟催化lmol产物生成所需的酶量3) 1I.U.指在最适条件下,每分钟催化lμmol底物转化所需的酶量4) 1I.U.指在最适条件下,每秒钟催化1μmol底物转化所需的酶量(四)判断题1.测定酶活力时,底物浓度不必大于酶浓度。
第三章-酶化学
第一节 酶的概述
▪ 酶的发现和提出:1897年,Buchner兄弟用不含细胞的酵母 汁成功实现了发酵。提出了发酵与活细胞无关,而与细胞液 中的酶有关。
▪ 1903年,Henri提出了酶与底物作用的中间复合物学说。 ▪ 1913年,Michaelis和Menten提出了酶促动力学原理—米氏
学说。 ▪ 1925年,Briggs和Handane对米氏方程做了修正,提出了稳
态学说。
▪ 1926年,Sumner从刀豆种子中分离、纯化得到了脲酶结晶,首 次证明酶是具有催化活性的蛋白质。
• 1930年 Northrop 分离得到胃蛋白酶、胰蛋白酶和胰凝乳蛋白 酶结晶并证实其均为蛋白质,酶的蛋白质本质确立。
1969年,Merrifield等人工合成了具有酶活性的胰RNase。 1982年,Cech和Altman对四膜虫的研究中发现RNA具有催化作用,
• 酶中参与共价催化的基团主要包括以下亲核基团: His 的咪唑基,Cys 的巯基,Asp 的羧基,Ser 的羟 基等;亲电子基团:H+ 、Mg2+、 Mn2+ 、Fe3+
• 某些辅酶,如焦磷酸硫胺素和磷酸吡哆醛等也可以参 与共价催化作用。
(三)靠近和定向效应
靠近效应:在酶促反应中,由于酶和底物分子之间的亲和性,底物 分子有向酶的活性中心靠近的趋势,最终结合到酶的活性中心,使 底物在酶活性中心的有效浓度大大增加,从而使反应速率大大增加 的效应叫做邻近效应。
多酶体系-multienzyme system:由几种酶靠非共价键彼此嵌合而成。 主要指结构化的多酶复合体如丙酮酸脱氢酶系、脂肪酸合成酶复合 体等。
第二节
与分类
第三节 酶的作用机理
一、酶的活性部位(活性中心) ◆ 酶的活性中心:在酶分子三级结构的构象中,由
生物化学——第三章酶
2)高度专一性
• 酶的专一性 (Specificity)(特异性)
指酶在催化生化反应时对底物的选择性。
3)反应条件温和,对环境变化敏感
• 酶促反应一般在pH 5-8 水溶液中进行,反应温度范
围为20-40C。 • 高温或其它苛刻的物理或化学条件,将引起酶的失活。
4) 酶的催化活力受调控
如抑制剂调节、共价修饰调节、反馈调节、酶原激活 及激素控制等。
结构专一性 键专一
基团专一
1)绝对专一性
(结构专一性)
• 酶对底物的要求非常严格,只作用于一个特定的 底物。这种专一性称为绝对专一性(Absolute specificity)。
• 例:脲酶、
O
2HN-C-NH2
• 精氨酸酶
2)相对专一性(Relative Specificity)
• 酶的作用对象不是一种底物,而是一类化合物或
+ E
酶 与 中 间 产 物
3、决定酶专一性的机制
(a)锁钥学说:认为整个酶分子的天然构象是具有刚
性结构的,酶表面具有特定的形状。酶与底物的结合如
同一把钥匙对一把锁一样
(b)诱导契合学说:
酶表面并没有一种与底物互补的固定形状,但酶的活性 中心具有一定的柔性,两者相遇底物诱导酶构象发生变 化,才形成了互补形状。
(2)酸碱性基团:
CH2 H2N CH2 C
• Asp和Glu的羧基
• Lys的氨基
OH H2N
• Tyr的酚羟基
• His的咪唑基 • Cys的巯基等
活性中心的结构特点
• 只占酶分子总体积的很小一部分 • 具有三维空间结构
• 酶的活性部位和底物的辨认和结合过程,称
为诱导契合(induced-fit)
3第三章酶化学137030032
二、中间产物学说:在此基础上又提出过渡态学说
E + S ES ES* EP P + E
(酶 ) ( 底物) (酶-底物中间物)(过渡态 ) (酶-产物中间物) (产物 )
三、影响酶催化效率因素
1、邻近与定向效应: 酶促反应中,底物结合到活性中心,有效浓度大大增 加,利于提高反应速度 由于活性中心立体结构和相关基团的诱导和定向作用, 使底物分子中参与反应的基团相互接近,并被严格定向 定位,使酶促反应具有高效率和专一性特点
6、金属离子催化 7、协同催化
小分子有机化合物(主要是B族维生素)(重要) 常见辅酶及与维生素关系 有机辅因子
NAD+ 烟酰胺腺嘌呤二核苷酸
作用
传递氢
维生素组分
烟酸 (VPP,VB5) 烟酸 (VPP,VB5)
需要该因子的酶 脱氢酶
作用基团 尼克酰胺
NADP+ 烟酰胺腺嘌呤二核苷酸 磷酸
传递氢
脱氢酶
(2)亲电催化:与亲核催化相反,酶分子中的亲电基 团(辅基中的Mg2+ 、 Mn2+ 、 Fe2+)对底物中的亲核 基团发生攻击通过形成共用电子对而形成共价中间物 5、微环境影响:活性中心穴内是相对疏水环境。酶的催 化基团被低介电环境所包围,因此,底物分子的敏感键和 酶的催化基团之间有很大的反应力。
总活力=700 U 总活力=650 U 每一步总活力 第一步总活力
比活力=0.4375 U/mg
比活力=1.3 U/mg
回收率=
×100%
=650/700×100%=92.86% 每一步比活力 纯化倍数= 第一步比活力 =1.3/0.4375×100%=2.97
一、底物浓度( [S] )对酶反应速度(V)的影 响: 1、 [S]与V的关系: 用[S]对V作图,得 到一矩形双曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章酶化学1.试比较酶与非酶催化剂的异同点。
2.解释酶作用专一性的假说有哪些?各自的要点是什么?3.酶的习惯命名法的命名原则是什么?5.已知丙氨酸是某酶的底物结合部位上的一个氨基酸;一次突变丙氨酸转变为甘氨酸,但酶活性没有受到影响。
在另一次突变时,丙氨酸变成了谷氨酸,使该酶的活性明显丧失,请分析原因。
6.在一酶促反应中,若底物浓度为饱和,并有一种抑制剂存在,问:1)继续增加底物浓度,2)增加抑制剂浓度,反应速度将如何变化?为什么?8.何谓共价调节酶?举例说明其如何通过自身活性的变化实现对代谢的调节。
10.举例说明酶的专一性及其研究意义是什么?12.下表数据是在没有抑制剂存在或有不同浓度的抑制剂存在时测得的反应速度随底物浓度变化的情况:1)无抑制剂存在时,反应的最大速度和Km是多少?2)若有2mmol的抑制剂存在,反应的最大速度和Km又是多少?该抑制剂属于何种类型的抑制作用?EI复合物的解离常数是多少?3)若有100mmol的抑制剂存在,最大反应速度和Km又是多少?该种抑制剂属于何种类型的抑制作用?EI复合物的解离常数是多少?13.举例说明酶的竞争性抑制作用及其研究意义。
16.酶原及酶原激活的生物学意义是什么?17.为什么吸烟者患肺气肿的可能性较大?18.从一级结构看,胰蛋白酶含有13个赖氨酸和2个精氨酸,为什么胰蛋白酶不能水解自身?20.以E.coli天冬氨酸转氨甲酰酶(ATCase)为例说明变构酶的结构特征及其在代谢调节中的作用?21.虽然凝血酶和胰蛋白酶的性质有许多相似之处,但胰蛋白酶原经自身催化可转变为胰蛋白酶,而凝血酶原不能,为什么?22.何谓同工酶?举例说明其分子结构的特征及研究意义?23.胰蛋白酶原的第2,3,4,5位氨基酸都是天门冬氨酸,这一结构特征的意义是什么?24.为什么胰脏酶原激活过程中产生的肽链的C一末端氨基酸一般是精或赖氨酸?27.为什么说N一磷乙酰基L一天门冬氨酸(PALA)是研究天门冬氨酸转氨甲酸酶(AT -Case)性质的特异性试剂?28.碱性磷酸酶水解1一磷酸葡萄糖产生葡萄糖和磷酸。
若用18O标记的水作为底物,18O 将掺入到葡萄糖还是磷酸分子中?29.何谓中间产物学说?有哪些证据可以说明ES中间复合物的存在?30·胰凝乳蛋白酶的竞争性抑制剂是β苯基丙酸盐,它可保护酶活性部位的组氨酸(His57)不被烷基化修饰,而非竞争性抑制剂却不能,为什么?31.为什么胰蛋白酶、胰凝乳蛋白酶和羧肽酶A都不能水解脯氨酸参与形成的肽键(一X -Pro-)?参考答案1.酶具有一般催化剂的特征,如用量少而催化效率高;凡催化剂都能加快化学反应的速度,而其本身在反应前后没有结构和性质的改变;催化剂只能缩短反应达到平衡所需的时间,而不能改变反应的平衡点,酶亦如此。
然而酶是生物大分子,具有其自身的特性,如1)催化效率高,2)酶的催化活性可被调节控制,3)具高度专一性等。
2.1)锁钥学说:是德国著名有机化学家,Emil Fisher提出来的。
他认为酶像一把锁,酶的底物或底物分子的一部分结构尤如钥匙一样,能专一性地插入到酶的活性中心部位,因而反应发生。
2)三点附着学说:该学说是A.Ogster在研究甘油激酶催化甘油转变为磷酸甘油时提出来的。
其要点是:立体对映体中的一对底物虽然基因相同,但空间排布不同;那么这些基团与酶活性中心的有关基团能否互相匹配不好确定。
只有三点都相互匹配时,酶才能作用于这个底物。
以上两种学说都把酶和底物之间的关系认为是“刚性的”,只能说明底物与酶的结合,不能说明催化。
因此属于“刚性模板”学说。
3)诱导楔合假说:1958年,Koshland提出了诱导楔合理论。
该学说的要点是:酶活性中心的结构具有可塑性,即酶分子本身的结构不是固定不变的。
当酶与其底物结合时,酶受到底物的诱导,其构象发生相应的改变,从而引起催化部位有关基团在空间位置上的改变;以利于酶的催化基团与底物的敏感键正确的楔合,形成酶一底物中间复合物。
3.习惯命名的原则是:1)根据催化的底物命名,如蛋白酶,淀粉酶等;2)根据所催化的反应性质命名,如脱氢酶,转氨酶,脱羧酶等;3)有些酶的命名是既根据所催化的底物,又根据所催化的反应性质。
如琥珀酸脱氢酶,乳酸脱氢酶等;4)有些酶的命名,除了上述原则外,再加上酶的来源及酶的其他特征,如胃蛋白酶,碱性磷酸酶等。
习惯命名法简单、易懂,应用历史较长,但缺乏系统性。
5.因丙氨酸、甘氨酸都是中性氨基酸,且侧链较小,而谷氨酸是酸性氨基酸,侧链较大;谷氨酸的酸性侧链可能使酶蛋白的构象发生改变,而导致酶活性的丧失;或者是谷氨酸的酸性侧链于扰了酶与底物的结合。
6.1)继续增加底物浓度,若为竞争性抑制剂则反应速度升高或不变化。
若为非竞争性抑制剂则反应速度不变。
2)增加抑制剂浓度,因底物为饱和状态,若该抑制剂为竞争性抑制剂,反应速度下降或不变化;若为非竞争性抑制剂,反应速度不变或下降。
不必考虑反竞争性抑制作用和不可逆的抑制作用。
8.共价调节酶,也称为共价修饰酶,是一类在其他酶的作用下,对其结构进行共价修饰,而使其在活性形式与非活性形式之间互相转变的酶。
如糖原磷酸化酶。
它的活性形式是糖原磷酸化酶a,可催化糖原的磷酸解反应。
酶的非活性形式是磷酸化酶b。
磷酸化酶b在其激酶的作用下,每个亚基上的第14位丝氨酸残基接受A TP提供的磷酸基被磷酸化。
两分子被磷酸化的磷酸化酶b形成四聚体的磷酸化酶a。
磷酸化酶a在磷酸化酶磷酸酶的作用下脱去磷酸基又可转变为磷酸化酶b。
因此,糖原磷酸化酶的活性形式和非活性形式之间的平衡,使磷酸基共价地结合到酶上或从酶上脱下,从而控制调节着磷酸化酶的活性,进而调节控制着糖原分解的速度。
10.酶的专一性,也称特异性,是指酶对其所催化的反应或反应物有严格的选择性。
一种酶往往只能催化一种或一类反应,作用于一种或一类物质,而一般催化剂无此现象。
如蛋白质、脂肪、淀粉都可被酸水解,但若用酶水解,蛋白酶只能水解蛋白质,脂肪酶只能水解脂肪。
又如脉酶,只催化尿素的分解,尿素分子的轻微改变,该酶都不能作用。
D-氨基酸氧化酶只能催化D型氨基酸的氧化脱氨基作用,而不能催化L-氨基酸的氧化脱氨基。
这种具有高度专一性的酶及有关多酶体系的存在,是生物体新陈代谢得以有条不紊地顺利进行的重要保证。
如果没有专一性的酶的存在,生物体内物质有规律的代谢过程就不存在,生命活动也就不存在,如由于某种酶的缺陷所导致的疾病,苯丙酮酸尿症,就是由于苯丙氨酸羟化酶的缺陷使苯丙氨酸不能转变为酪氨酸,苯丙氨酸只能通过转氨基作用代谢产生了较多的苯丙酮酸所致。
13.有些抑制剂的结构和某种酶底物的结构类似,它可与底物竞争,与酶的结合;当它与酶的活性中心结合后,底物就不能与酶结合;若底物先与酶结合,抑制剂就不能与酶结合;故在反应体系中若有竞争性抑制剂存在时,抑制剂与底物竞争与酶的结合,从而影响了底物与酶的结合,使反应速度下降。
磺胺类药物就是根据酶的竞争性抑制作用的原理而设计的。
由于某些细菌的生长繁殖,必须对氨基苯甲酸以合成叶酸;磺胺类药物的基本结构是对氨基苯磺胺衍生物,与对氨基苯甲酸的结构相似,可与对氨基苯甲酸竞争与叶酸合成酶结合,导致叶酸合成受阻,进而影响核普酸和核酸的合成。
人体能直接利用食物中的叶酸,细菌则不能直接利用外源的叶酸。
又如,别嘌呤醇可治疗“痛风症”也是根据酶的竞争性抑制原理(见11章)。
16.有些酶,如消化系统中的各种蛋白酶,以无活性的前体形式合成和分泌,然后输送到特定的部位;当功能需要时,经特异性蛋白酶的作用转变为有活性的酶而发挥作用。
此外还有执行防御功能的酶。
这些不具催化活性的酶的前体称为酶原。
如胃蛋白酶原,胰蛋白酶原和胰凝乳蛋白酶原等。
特定肽键的断裂所导致的酶原激活在生物机体中广泛存在,是生物体中存在的重要的调控酶活性的一种方式。
哺乳动物消化系统中的几种蛋白酶以无活性的酶原形式分泌出来,使其达到特定的部位后发挥作用,这具有保护消化道本身的生物学意义。
如果酶原的激活过程发生异常,将导致一系列疾病的发生。
出血性胰腺炎的发生就是由于蛋白酶原在未进入小肠时就被激活,激活的蛋白酶水解自身的胰腺细胞,导致胰腺出血、肿胀、腹部严重疼痛并伴有恶心呕吐等症状。
17.al一抗胰蛋白酶,也称为al一抗蛋白酶,能与弹性蛋白酶的活性部位不可逆结合而使酶失活。
因此它的存在可保护组织免受弹性蛋白酶的水解作用。
由于它对弹性蛋白酶的抑制作用大于对胰蛋白酶的抑制作用,所以al一抗胰蛋白酶应称为抗弹性蛋白酶;当弹性蛋白酶的活性不能有效地控制时,它将水解肺泡中的弹性蛋白而导致肺气肿。
有的肺气肿患者C 型突变体)血清中该抑制剂的水平很低,仅为正常人(纯合子)的15%。
其结果是,过量的弹性蛋白酶消化弹性纤维及其他的结缔组织蛋白质而导致肺气肿。
该病患者肺泡的弹性比正常人小,造成呼吸困难。
吸烟者患肺气肿的可能性较大,其原因是:吸烟使抑制剂分子中Met358被氧化;该蛋氨酸是弹性蛋白酶与抑制剂结合所必须的氨基酸。
蛋氨酸的侧链是一种引诱剂(bait),可选择性的诱捕弹性蛋白酶。
蛋氨酸氧化后的产物,蛋氨酸亚飒,不能诱捕弹性蛋白酶,不能保护组织免受弹性蛋白酶的水解作用而导致肺气肿。
18.因为胰蛋白酶分子的构象是高度折叠的,赖和精氨酸被埋于分子内部,且远离酶的活性部位。
20.别构酶一般为寡聚酶,含有两个或多个亚基。
每个亚基上都有活性部位。
别构酶通过酶分子本身构象的变化来改变酶的活性。
别构酶分子中除活性中心外,还有别构中心;它们可能存在于同一个亚基的不同部位上,也可能存在于不同的亚基上;若为后一种情况,存在别构中心的亚基一般为调节亚基。
别构酶的活性中心负责对底物的结合与催化,别构中心可结合调节物(effector),负责调节酶促反应的速度。
如E.coli天冬氨酸转氨甲酸酶,它催化天门冬氨酸和氨甲酸磷酸合成氨甲酸天门冬氨酸;这是呼唤生物合成途径中的第一步反应。
研究发现,该酶不仅被呼唤核苦酸合成途径中的终产物CTP反馈抑制,而且氨甲酸磷酸和天门冬氨酸与酶的结合具有协同性。
当终产物CTP水平高时,使酶与底物的亲和力降低而抑制酶的活性;当该酶的底物和A TP水平高时,使该酶产生正协同效应;迅速催化CTP 的合成。
因此,变构酶的底物、它所催化的反应途径的终产物通过调节酶活性的变化,共同调节着细胞内呼唤核苦酸生物合成的速度。
21.因凝血酶专一性水解精一甘(Arg-Gly)肽键,而凝血酶原转变为凝血酶时,只需精一苏(Arg-Thr)和精一异亮(Arg-lie)两个肽键的断裂,因此,凝血酶原不能经凝血酶的作用转变为凝血酶。
22,研究发现,不同生物种类,不同器官和组织来源的酶,可作用于同一底物,催化相同的化学反应。
但分子结构,其他化学性质可以不同。