高中一年级数学反函数教学设计

合集下载

高中数学反函数教案人教版

高中数学反函数教案人教版

高中数学反函数教案人教版1. 知识与技能:理解反函数的概念,掌握求反函数的方法,并能够应用反函数解决问题。

2. 过程与方法:通过讲解、示范、练习等方式,引导学生建立正确的反函数概念及求解方法。

3. 情感态度:激发学生对数学的兴趣,培养学生的创新思维和解决问题的能力。

二、教学重、难点1. 教学重点:理解反函数的概念,掌握求反函数的方法。

2. 教学难点:理解反函数与原函数之间的关系,正确求解反函数。

三、教学准备1. 教学资源:教材、多媒体设备等。

2. 教学内容:反函数的概念、求反函数的方法、反函数与原函数的关系等。

3. 教学步骤:引入、概念讲解、示范演练、练习等。

四、教学过程1. 引入:通过实例引入反函数的概念,如f(x) = 2x + 3,问学生如何求出反函数。

2. 概念讲解:解释反函数的概念及原函数与反函数的关系,引导学生理解反函数的定义和特点。

3. 示范演练:通过几个具体的例题,向学生展示求反函数的方法,并让学生跟随演示过程,逐步掌握反函数的求解技巧。

4. 练习:让学生进行练习,巩固所学知识,检验理解程度。

可以设置不同难度的练习题,帮助学生提高解题能力。

5. 总结:总结本节课的重点内容,强调反函数的重要性和应用价值,鼓励学生多加练习,提高解题能力。

五、作业布置1. 完成课堂练习,并对错题进行复习和订正。

2. 自主练习,巩固所学知识,提高解题能力。

六、教学反思本节课主要围绕反函数的概念和求解方法展开,通过引入、讲解、演示和练习等环节,帮助学生建立正确的反函数概念,掌握反函数的求解方法。

在教学过程中,要注重引导学生灵活应用所学知识,提高解题能力,激发学生对数学的兴趣,达到提高学生学习能力和解决问题能力的目的。

高一数学反函数 教案

高一数学反函数 教案

高一数学反函数一.课题:反函数(1) 二.教学目标:1.使学生理解反函数的;2.弄清原函数与反函数之间的三要素的关系,特别是它们的定义域与值域的关系; 3.会求一些函数的反函数,培养学生思维的严密性和灵活性。

三.教学重点、难点:1.使学生在了解反函数的概念的基础上,理解互为反函数的对应法则的互逆性; 2.弄清原函数与反函数的定义域与值域的关系;3.通过求一些函数的反函数,培养学生思维的严密性和灵活性。

四.教学过程: (一)复习引入1.特殊的对应构成映射,特殊的映射得到函数,映射与函数的联系与区别,函数的三要素。

2.特殊的映射:一一映射()2x f x x →=2()B x g x x →→=对于,f g 这两个对应,它们是不是映射?是不是一一映射?是不是函数?那么这两个映射能不能构成B 到A 的映射吗?如果能(显然,只有一一映射才能),那么B 到A 的映射所确定的函数与原函数又有何关系呢?3.引例:在物理上,学过匀速运动的位移和时间的函数关系,即s vt =与st v=(其中速度v 是常量)在s vt =中,位移s 是时间t 的函数。

在st v=中,时间t 是位移s 的函数。

在这种情况下,我们说函数st v=是函数s vt =的反函数。

在函数2y x =()R x ∈中,x 是自变量,y 是x 的函数。

从函数2y x =中解出x ,就可以得到式子=x 21y )(R y ∈。

这样,对于y 在R 中任何一个值,通过式子=x 21y ,x 都有唯一的值和它对应。

这就说明了,可以把y 作为自变量,x 作为y 的函数。

这时,我们就说=x 21y )(R y ∈是函数2y x =()R x ∈的反函数。

由此,我们可给出反函数的定义。

(二)新课讲解1.反函数定义:一般的,函数()()y f x x A =∈中,设它的值域为C 。

我们根据这个函数中,x y 的关系,用y 把x 表示出来,得到()x y ϕ=。

高一数学教案反 函 数

高一数学教案反 函 数

反函数教材:人教版全日制普通高级中学教科书(必修)数学第一册(上)教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即s=vt和t=(其中速度v是常量),在s=vt中位移s是时间t的函数;在t=中,时间t是位移s的函数.在这种情况下,我们说t=是函数s=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去“反函数”这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x+1(x是自变量)与函数x=2y+1(y是自变量)是否是同一函数?(2)函数 (x是自变量)与函数x=2y+1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(教师点明这样的函数即互为反函数,然后师生共同探究其特点)从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在“最近发展区”设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,教师与学生共同归纳出反函数的定义)函数y=f(x)(x∈a) 中,设它的值域为 c.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x=j (y) .如果对于y在c中的任何一个值,通过x=j (y),x在a中都有唯一的值和它对应,那么, x=j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x=j (y)(y ∈c)叫做函数y=f(x)(x∈a)的反函数.记作: .考虑到“用 x表示自变量, y表示函数”的习惯,将中的x与y 对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的“如果”意味着对于一个任意的函数y=f(x)来说不一定有反函数;4)函数y=f(x)的定义域、值域分别是函数 x=f (y)的值域、定义域;5)函数y=f(x)与x=f (y)互为反函数;。

《反函数》教学设计

《反函数》教学设计

《反函数》教学设计教学设计:反函数一、教学目标1.理解函数与反函数的概念和性质。

2.掌握如何求函数的反函数。

3.能够应用反函数解决实际问题。

二、教学重难点1.函数与反函数的概念和性质。

2.求反函数的方法。

3.应用反函数解决实际问题的能力。

三、教学过程1.引入与概念讲解(20分钟)将一些简单的实际问题引入,如小明走了10公里,再走回来时总用时是2小时,看电影用了3小时,求小明的速度。

从这个问题入手引出函数与反函数的概念,并让学生思考反函数可能的意义。

定义函数:函数是一种映射关系,将一个数域中的数映射到另一个数域中的数。

定义反函数:设有函数y=f(x),如果对于函数f(x)的定义域上的任意一个元素x,都存在定义在f(x)的值域上的一个元素y与之对应,使得f(x)=y,且对于f(x)定义域上的任意一个元素x1,x2,有f(x1)=f(x2)必然导致x1=x2,那么我们称函数y=f(x)的反函数为y=f^(-1)(x)。

2.反函数的求解方法(20分钟)根据定义可知,求反函数的关键是找到y和x的对应关系。

将已知函数表示为y=f(x),用x来表示y,即x=f^(-1)(y),解方程f^(-1)(y)=x 即可求得反函数。

以一个简单的例子来演示求反函数的方法:已知y=2x+1,求y=2x+1的反函数。

解:将y=f(x)表示为x=f^(-1)(y),即x=f^(-1)(2x+1)。

交换x和y 得到y=f^(-1)(2y+1)。

将y=f^(-1)(2y+1)视为一个关于y的方程,解方程可得f^(-1)(y)=(y-1)/2通过多个例子让学生掌握求反函数的方法,并进行简单练习。

3.函数与反函数的性质(20分钟)函数和反函数有以下性质:性质1:函数f(x)与它的反函数f^(-1)(x)互为反函数。

性质2:函数f(x)与它的反函数f^(-1)(x)关于直线y=x对称。

性质3:函数f(x)有反函数的充分必要条件是f(x)是一一对应的。

反函数的教案设计

反函数的教案设计

反函数的教案设计一、教学目标1.了解反函数的概念、性质及其与原函数之间的关系。

2.能够掌握反函数的求法及其应用。

3.能够灵活运用反函数的相关知识,解决实际问题。

二、知识导入1.通过示例,介绍什么是函数的反函数。

2.通过一定的问题和分析,引导学生研究反函数的性质和应用。

三、教学过程1.理解反函数的概念基本概念:定义域上的函数 f 和值域上的函数 g,若对于所有x∈D(f)都有 f (x) =y,则对于所有y∈R,f 中恰好存在一个唯一的 x 满足 f (x) =y.则称 g(x)=y 为 f(x)=y 的反函数,记作 g=f^-1。

2.反函数的求法(1)对于 y=f (x),如果 y=f(x)是严格单调递增函数,先把f(x)对y求导,然后解出dx/dy,最后再把dy换成dx即可。

(2)对于 y=f (x),如果 y=f(x)是严格单调递减函数,先把f(x)对y求导,然后解出dx/dy,然后把dx取相反数即可得到反函数的导数。

3.反函数的性质(1)反函数与原函数的图像关于一条直线相互对称。

(2)反函数的导数等于原函数导数的倒数。

(3)反函数与原函数之间的对应关系是一一对应的。

4.反函数的应用(1)求解反函数使得它们可以互相转化;(2)使用反函数的定义特性进行不等式求解;(3)应用反函数解决函数复合问题;(4)使用反函数解决实际问题四、教学方法1.课堂讲解法2.启发式探究法3.案例教学法五、教学重点和难点1.教学重点反函数与原函数的关系,反函数的求法及应用。

2.教学难点反函数的理解及应用。

六、教学反思1.课时的安排比较紧张;2.应用案例多讲练习。

3.加强学生的实际应用能力。

4.帮助学生提高数学素养、掌握思维方法。

七、教学评估1.小测验2.课后作业3.学生参与度4.课程效果参考文献1.李瑞兰.数学分析(修订版) [M].北京: 中国科学技术大学出版社,2001.2.程志之.高等数学(第五版) [M].北京:科学出版社,2010.3.张慕智.数学分析 [M].上海: 华东师范大学出版社,2003.。

《反函数》教学设计

《反函数》教学设计

《反函数》教学设计一、教学目标1.理解反函数的概念和性质;2.能够找出函数的反函数;3.能够应用反函数解决实际问题。

二、教学内容1.反函数的定义和性质;2.如何找到一个函数的反函数;3.反函数的应用。

三、教学过程1.导入教师可以通过一个简单的例子引入反函数的概念,如y=x+3,让学生想一想如何找到这个函数的反函数。

2.概念讲解首先,教师向学生介绍反函数的概念,即如果一个函数f(x)和它的反函数f^(-1)(x)满足条件f(f^(-1)(x))=x,则称f^(-1)(x)是f(x)的反函数。

接着,教师讲解反函数的性质,如反函数之间互为倒数、关于y=x对称等。

3.如何找到一个函数的反函数教师通过几个例子来展示如何找到一个函数的反函数,让学生掌握具体的操作步骤。

例如,对于函数y=2x-1,要找到它的反函数,首先将y=2x-1表示成x=2y-1,然后交换x和y的位置得到y=2x-1,最后将y记为f(x)的反函数即可。

4.反函数的应用教师通过一些实际问题来引导学生应用反函数解决问题,如求解线性方程组、计算复合函数等。

例如,如果一个物体从高处落下,已知它的高度与时间的关系为h(t)=4.9t^2,求落地时的时间。

在这个问题中,物体的高度h(t)是时间t的函数,通过找到h(t)的反函数就可以求解出问题中的未知量。

5.案例分析教师提供一些具体的案例让学生练习应用反函数解决实际问题,通过分组讨论或小组合作来解决问题。

例如,已知函数y=3x+7,求出它的反函数并计算f(2)的值。

6.练习与拓展教师布置一些练习题让学生巩固所学知识,并提供一些拓展题目来挑战学生的思维。

例如,已知函数f(x)=2x^2+3x,求出它的反函数并计算f^(-1)(5)的值。

7.总结与作业教师对本堂课的内容进行总结,强调反函数的重要性和应用,并布置相关的作业来巩固学生的学习成果。

四、教学手段1.PPT课件:用于呈现反函数的定义、性质及操作步骤等内容;2.教学案例:用于让学生实际操作,巩固所学知识;3.讨论与合作:激发学生思维,促进学生合作交流。

高一数学教案-第一册反函数

高一数学教案-第一册反函数

第一册反函数教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。

教学重点1.反函数的概念;2.反函数的求法。

教学难点反函数的概念。

教学方法师生共同讨论教具装备幻灯片2张第一张:反函数的定义、记法、习惯记法。

(记作A);第二张:本课时作业中的预习内容及提纲。

教学过程(I)讲授新课(检查预习情况)师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。

同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?生:(略)(学生回答之后,打出幻灯片A)。

师:反函数的定义着重强调两点:(1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的。

师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?生:一一映射确定的函数才有反函数。

(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。

(前者中的x 与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。

)在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y 是后者中的x。

)由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

师:从反函数的概念可知:函数y= f (x)与y= f –1(x)互为反函数。

从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:(1)由y= f (x)解出x= f –1(y),即把x用y表示出;(2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。

高一数学反函数 新课标 人教版 教案

高一数学反函数 新课标 人教版 教案
∴ (1≤x< 0)的反函数是: ( 0 <x
≤1 )
(3)
解:①当0≤x≤1时,1≤x21≤0
即0≤y≤1
由y=x21 (0≤x≤1)
解得 (1≤y≤0)
∴f1(x) = (1≤x≤0)
②当1≤x< 0时,0 <x2≤1
即0 <y≤1
由y=x2(1≤x< 0)
解得 (0 <y≤1)
∴f1(x) = (0 <x≤1)
y=f1(x)间的区别和联系。培养学习思维的严密性和灵活性,培养学习用辩证的观点观察、分析、解决问题的能力。
教学重点:反函数的概念
教学难点:求反函数的方法
教学过程
学生活动
引入:
看下面一些例子
1)在匀速直线运动中,位移 是时间 的函数,即 ,把上式看成方程的反解,用位移 表示时间 ,得t= (s ),这时,时间 是位移 的函数。
观察、思考
思考、讨论、回答
思考、回答
函数表示出来得到在cc中的任何一个值通过就表示是x自变量由于习惯上我们一般用x表示自变量用y表示函数为此我们对调函数x观察思考用心爱心专心117号编辑有什么相同点有什么区别
高一数学反函数
教学目标:了解反函数的概念。弄清原函数与反函数的定义域与值域的关系,会求一些简单函数的反函数,并总结求反函数的基本步骤。弄清函数y=f(x),x=f1(y),
∴所求反函数为:
请同学归纳判断反函数的步骤并且总结求反函数的步骤:
判断有没有反函数关键是:看这个函数的映射是不是一一映射
求函数反函数的步骤:
1、求原函数的值域
2、将y=f(x)看成方程,反解出x=f1(y)
3、对调 , 得到y=f1(x)

必修1 第二章 反函数教案

必修1 第二章 反函数教案
学情分析
过程
教学内容
自主学习
不看不讲
1.复习
(1)函数的概念
(2)用列表描点法在同一个直角坐标点中画出 的函数图象.`
2.讲授新知

-3
-2
-1
0
1
2
3


1
2
4
8


1
2
4
8


-3
-2
-1
0
1
2
3

图象如下:
探究:在指数函数 中, 为自变量, 为因变量,如果把 当成自变量, 当成因变量,那么 是 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.
引导学生通过观察、类比、思考与交流,得出结论.
反函数的概念:
当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.
由反函数的概念可知,同底数的指数函数和对数函数互为反函数.
合作探究
不议不讲
高效训练
不练不讲
教学内容
第2课
(单元)
主题
第3课反函数概念
1课时
教学目标
知识
与技能
了解反函数的概念,加深对函数思想的理解.
过程
与方法
学生通过观察和类比函数图象,体会两种函数的单调性差异.
情感态度与价值观
(1)体会指数函数与指数;
(2)进一步领悟数形结合的思想.




重点
指数函数与对数函数内在联系
难点
反函数概念的理解

教案设计高中数学《反函数》

教案设计高中数学《反函数》

教案设计高中数学《反函数》一、教材分析1.教学内容本节教材内容涉及反函数的概念,反函数的求法。

函数从本质上讲是函数,原函数与反函数互为反函数,它们的图象关于直线y=x对称。

2.本节教材地位与重要性“反函数”一节课是《高中数学》第一册的重要内容。

这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。

3.重点与难点重点:反函数的概念及反函数的求法。

理解反函数概念并求出函数的反函数是高一数学教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。

难点:反函数概念的接受与理解。

学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。

教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。

4.课时安排本节内容将安排1课时时间完成教学。

二、教学目标知识目标:○1理解反函数的概念,并能判定一个函数是否存在反函数;○2掌握反函数的求法,并能理解原函数和反函数之间的内在联系;能力目标:通过观察、分析、抽象、推理得出数学规律,培养学生的数学意识。

通过作图,加强学生对数形结合的数学思想的理解,训练学生自主地获取知识的能力,和在所学知识的基础上进行再创新的能力。

情感目标:使学生树立对立统一的辩证思维的观点。

三、教法与学法分析1.教法分析根据本节课的内容及学生的实际水平,将采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。

引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。

教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。

反函数概念教学设计

反函数概念教学设计

反函数概念教学设计反函数是高中数学中的重要知识点,这个概念对于理解函数的复合、解方程组和图像翻折等内容都有着重要的意义。

为了帮助学生更好地理解、掌握反函数的相关知识,本文将介绍一个综合性教学设计,以帮助教师在教学中更好地引导学生理解反函数。

1.预习环节在课前,教师可以将关于反函数概念的知识点、定义和定理等相关材料提供给学生进行预习。

教师可以通过对学生的预习情况进行简单的调查,以了解学生对于反函数概念的初步认知情况。

2.引入环节在课堂上,教师可以根据学生预习的情况,提出相关的问题,引导学生思考反函数的概念。

例如,教师可以提问:“什么是反函数?为什么需要研究反函数?”等问题。

3.理论讲解环节在学生对于反函数概念有了初步的认识后,教师可以进行反函数的理论讲解。

首先,教师可以讲解反函数的定义,即如果函数f的定义域为X,值域为Y,如果存在一个函数g,满足g(Y)=X且f(g(y))=y,那么g就是f的反函数。

然后,教师可以引入反函数的性质和定理,例如反函数的复合等。

4.练习环节在学生对于反函数概念的理论有了初步的掌握之后,教师可以引导学生进行相关的练习。

可以从计算反函数、图像翻折、解方程组等方面出发,让学生使用反函数的相关知识进行练习和实践。

5.实践应用环节在练习环节之后,教师可以带领学生进行实践应用。

例如,可以引导学生使用反函数的相关知识在现实生活中进行应用,例如求解公交车路线等相关问题。

这样可以让学生对于反函数的实际应用产生更深层次的理解和认识。

6.课后复习环节课后,教师可以通过作业等方式对学生进行回顾和总结,让学生对于反函数的概念和理论再次进行回顾和整理。

教师可以佩服对于学生的总结和归纳,也可以通过针对特定问题的讲解来帮助学生理解和掌握反函数相关的知识点。

综上所述,反函数是数学中的重要概念,学习反函数对于学生理解数学的其他概念也有着非常重要的作用。

在教学反函数的课程中,教师可以通过综合教学设计的方式,让学生对于反函数的概念和相关知识点产生更深层次的理解,从而掌握反函数的相关技巧和方法。

高中数学反函数教案

高中数学反函数教案

高中数学反函数教案一、教学目标1. 理解函数与反函数的概念,能够求解反函数;2. 掌握反函数的性质和求解方法;3. 能够应用反函数解决相关问题。

二、教学重点1. 函数与反函数的概念;2. 反函数的求解方法;3. 反函数的性质。

三、教学内容1. 函数与反函数的概念- 函数的定义和表示:定义域、值域、映射关系;- 反函数的定义:对任意的y,存在唯一的x,使得f(x)=y,则称y关于x的函数为f的反函数,记为$f^{-1}$(y)。

2. 反函数的求解方法- 交换x和y的位置,并解出y,得到反函数表达式;- 注意判断反函数的存在性和唯一性。

3. 反函数的性质- 函数与反函数互为反函数;- 函数与反函数的图像关于y=x对称;- 反函数的定义域与原函数的值域相同,反函数的值域与原函数的定义域相同。

四、教学过程1. 导入:通过实例引入函数与反函数的概念,让学生理解反函数的概念。

2. 讲解:介绍函数与反函数的定义、求解方法和性质,引导学生掌握。

3. 练习:设计反函数的求解问题,让学生灵活运用反函数的概念来解决问题。

4. 总结:归纳反函数的概念和性质,让学生总结学习内容。

五、教学案例已知函数$f(x)=2x+1$,求其反函数。

解:设反函数为$y=f^{-1}(x)$,则有$y=2x+1$,交换x和y的位置可得$x=2y+1$,解出y 得$y=\frac{x-1}{2}$,因此,函数的反函数为$f^{-1}(x)=\frac{x-1}{2}$。

六、课堂练习1. 已知函数$f(x)=3x-2$,求其反函数;2. 若函数$g(x)$的反函数为$h(x)$,求$f(x)=\frac{1}{g(x)}$的反函数。

七、作业布置1. 完成课堂练习;2. 预习下节课内容,复习反函数的概念和性质。

八、教学反思本节课重点介绍了函数与反函数的概念、求解方法和性质,通过实例讲解和课堂练习,学生基本掌握了反函数的相关知识。

下节课将继续深入探讨反函数的应用和拓展,激发学生对数学的兴趣和探索欲望。

高一数学反函数教学设计

高一数学反函数教学设计

高一数学反函数教学设计一、教材分析:1、教材的地位与作用“反函数”一节课是《高中代数》第一册的重要内容。

这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。

2、重点与难点:反函数的定义和求法二、教学目标分析:(1)知识与技能:使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;(2)能力与方法:培养学生发现问题、观察问题、解决问题的能力;(3)情感与态度:使学生树立对立统一的辩证思维观点。

三、学情分析:学生已经学习了函数的基本概念和表示法,掌握了函数的基本知识,理解反函数的概念及互为反函数的两个函数的性质和特征,更有助于学生将函数的思想理解得更透彻。

四、教学过程设计1、创设问题情境:导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。

指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。

再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。

设计意图:这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。

此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。

人教版高一数学反函数 教案

人教版高一数学反函数 教案

高一数学反函数课题:§教材分析:使学生理解反函数的定义,加深对一一映射及其逆映射的认识,使学生初步掌握由原来函数求其反函数的方法,为今后学习与反函数有关的知识打下基础。

课 型:新授课课时计划:本课题共安排3课时教学目的:(1)了解反函数的概念,会求一些简单的反函数;(2)了解互为反函数的函数图象间的关系;(3)函数性质综合问题的解决;教学重点:(1)反函数的概念;(2)互为反函数的函数图象间的关系;(3)函数的单调性、奇偶性、反函数的综合问题的解决;教学难点:(1)反函数的概念;(2)互为反函数的函数图象间的关系;(3)函数的单调性、奇偶性、反函数的综合问题的解决;教具使用:常规教学教学过程:一、了解反函数的概念,会求一些简单的反函数1.(回顾知识)若函数)x (f 对任意R y ,x ∈,都有)y (f )x (f )y x (f +=+,且当0x >时,都有0)x (f <,2)1(f -=;(1)证明:)x (f 是奇函数;(2)证明:)x (f 在R 上是减函数;(3)求)x (f 在]3,3[-上的最大值和最小值;2.考虑以下几个具体问题:3.若y=f (x )=2x ,x ∈R ,写出确定此函数的映射。

写出由y 的代数式表示x 的形式。

4.反函数的定义:一般地,式子y=f (x )表示y 是自变量x 的函数,设它的定义域为A ,值域为C ,从式子y=f (x )解出x ,得到式子x=φ(y )。

如果对于y 在C 中的任意一个值,通过式子x=φ(y ),x 在A 中都有唯一确定的值和它对应,那么式子x=φ(y )就表示x 是自变量y 的函数,这样的函数x=φ(y ),叫做函数y=f (x )的反函数。

记作y=f -1(x )。

5.求下列函数的反函数(1))(13R x x y ∈-=(2))(1,3R x x y ∈+=(3))0(1≥+=x x y (4))1,(132≠∈-+=x R x x x y二、互为反函数的函数图象间的关系1.什么叫反函数?2.如何求一个函数的反函数?3.求出下列函数的反函数:)2x 2(3x 2y ).4()3x (3x 2y ).3()5x ,R x (5x 6x 5y ).2(1x 3y ).1(3≤≤-+=≥-+=≠∈-+=+=4.已知函数x 3x 2)3x(f +=,求)3x (f 1- 5.比较函数3x 2y ,1x 3y -+=+=及其反函数的图象,猜测图象的特征。

高一数学教案-上学期2.4反函数

高一数学教案-上学期2.4反函数

上学期 2.4 反函数教学目标1.使学生了解反函数的概念,初步掌握求反函数的方法.2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力.3.通过反函数的学习,帮助学生树立辨证唯物主义的世界观.教学重点,难点重点是反函数概念的形成与认识.难点是掌握求反函数的方法.教学用具投影仪教学方法自主学习与启发结合法教学过程一. 揭示课题今天我们将学习函数中一个重要的概念----反函数.1.4. 反函数(板书)(一)反函数的概念(板书)二.讲解新课教师首先提出这样一个问题:在函数中,如果把当作因变量,把当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以根据函数的定义在的允许取值范围内的任一值,按照法则都有唯一的与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一对唯一”)学生解释后教师指出不管从哪个角度,它都是一个函数,即有反函数,而且把这个函数称为的反函数.那么这个反函数的解析式是什么呢?由学生回答出应为 .教师再提出它作为函数是没有问题的,但不太符合我们的表示习惯,按习惯用表示自变量,用表示因变量,故它又可以改写成 ,改动之后带来一个新问题: 和是同一函数吗?由学生讨论,并说明理由,要求学生能从函数三要素的角度去认识,并给出解释,让学生真正承认它们是同一函数.并把叫做的反函数.继而再提出: 有反函数吗?是哪个函数?学生很快会意识到是的反函数,教师可再引申为与是互为反函数的.然后利用问题再引申:是不是所有的函数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象这样的函数,若将当自变量, 当作因变量,在允许取值范围内一个可能对两个 (可画图辅助说明,当时,对应 ),不能构成函数,说明此函数没有反函数.通过刚才的例子,了解了什么是反函数,把对的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容.1. 反函数的定义:(板书)(用投影仪打出反函数的定义)为了帮助学生理解,还可以把定义中的换成某个具体简单的函数如解释每一步骤,如得 ,再判断它是个函数,最后改写为 .给出定义后,再对概念作点深入研究.2.对概念得理解(板书)教师先提出问题:反函数的“反”字应当是相对原来给出的函数而言,指的是两者的关系你能否从函数三要素的角度解释“反”的含义呢?(仍可以与为例来说)学生很容易先想到对应法则是“反”过来的,把与的位置换位了,教师再追问它们的互换还会带来什么变化?启发学生找出另两个要素之间的关系.最后得出结论: 的定义域和值域分别由的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.(1)“三定”(板书)然后要求学生把刚才的三定具体化,也就是“反”字的具体体现.由学生一一说出反函数的定义域是原来函数的值域,反函数的值域是原来函数的定义域,反函数的对应法则就是把原来函数对应法则中与的位置互换.(用投影仪打出互换过程)如图最后教师进一步明确“反”实际体现为“三反”, “三反”中起决定作用的是与的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.(2)“三反”(板书)此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.例1. 求的反函数.(板书)(由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)解:由得 , 所求反函数为 .(板书)例2. 求 , 的反函数.(板书)解:由得 ,又得 ,故所求反函数为 .(板书)求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为 , .教师可先明知故问 ,与 , 有什么不同?让学生明确指出两个函数定义域分别是和 ,所以它们是不同的函数.再追问从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.解: 由得 ,又得 ,又的值域是 ,故所求反函数为 , .(可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整) 最后让学生一起概括求反函数的步骤.3.求反函数的步骤(板书)(1) 反解:(2) 互换(3) 改写:对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.三.巩固练习练习:求下列函数的反函数.(1) (2) .(由两名学生上黑板写)解答过程略.教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)四.小结1. 对反函数概念的认识:2. 求反函数的基本步骤:五.作业课本第68页习题2.4第1题中4,6,8,第2题.六.板书设计2.4反函数例1. 练习.一. 反函数的概念 (1) (2)1. 定义2. 对概念的理解例2.(1) 三定(2)三反3. 求反函数的步骤(1)反解(2)互换(3)改写。

反函数教案设计范文

反函数教案设计范文

反函数教案设计范文一、教学目标:1.知识与技能:了解函数的概念及性质,学会求反函数;2.过程与方法:通过引导学生进行类比和归纳总结的方式,让学生主动参与教学过程,培养学生的思维能力和解决问题的能力;3.情感态度与价值观:培养学生的数学兴趣,增强学生的合作意识和团队精神。

二、教学重难点:1.教学重点:学习反函数的概念及求解方法;2.教学难点:掌握反函数的性质和应用。

三、教学过程:1.导入新课(10分钟)1.引入:老师可以使用一个实际问题引入函数的概念,如:小明每天花1小时做作业,那么他每天写作业的多少是一个关于时间的函数。

2.向学生提问:如果小明写作业1小时,那么花了多少时间?2.函数与反函数的概念(15分钟)1.通过上面的例子,引导学生总结函数的特点:一个变量的值的变化会导致另一个变量的值的变化。

2.引导学生思考:如果已知小明写作业花了5小时,那么花了多少时间?3.介绍反函数的概念:如果已知函数y=f(x),对于任意的y,存在唯一的x,使得f(x)=y,那么函数g(y)=x就是函数f(x)的反函数。

3.反函数的求解(30分钟)1.通过具体的例子,引导学生探索求反函数的方法:将已知的函数方程中的x和y互换位置,然后解出新的方程即可求得反函数。

2.练习:要求学生根据题目中给出的函数方程,求出其反函数。

3.沟通交流:让学生讨论和分享自己的求解方法,总结出求反函数的一般步骤。

4.反函数的性质(20分钟)1.引导学生发现反函数与原函数的性质:反函数与原函数是对称的,即对于任意的x,有f(g(x))=x和g(f(x))=x;2.引导学生比较反函数与倒数的概念:反函数是在平面直角坐标系中定义的,与原函数的定义域和值域均相同;而倒数是在数轴上定义的,它是原函数在其中一点的函数值的倒数。

5.反函数的应用(15分钟)1.通过实际问题,引导学生思考反函数的应用场景,如温度转换、货币兑换等。

2.练习:给出实际问题,要求学生使用反函数解答问题。

高中数学反函数人教版第一册

高中数学反函数人教版第一册

反函数一、课题:反函数二、教学目标:理解反函数的意义,会求一些函数的反函数;掌握互为反函数的函数图象间的关系,会利用)(x f y =与)(1x f y -=的性质解决一些问题.三、教学重点:反函数的求法,反函数与原函数的关系.四、教学过程:(一)主要知识:1.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2.反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与1()y f x -=互为反函数,函数()y f x =的定义域为A 、值域为B ,则1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈;3.互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称.(二)主要方法:1.求反函数的一般方法:(1)由()y f x =解出1()x f y -=,(2)将1()x f y -=中的,x y 互换位置,得1()y f x -=,(3)求()y f x =的值域得1()y f x -=的定义域.(三)例题分析:例1.求下列函数的反函数:(1)()1)f x x =≤-;(2)221(01)(){(10)x x f x x x -≤≤=-≤<;(3)32331y x x x =-++.解:(1)由1)y x =≤-得2211()(1)24y x x =+-≤-,∴10)2x y +=≥,∴所求函数的反函数为10)2y x =--≥.(2)当01x ≤≤时,得10)x y =-≤≤,当10x -≤<时,得1)x y =<≤,∴所求函数的反函数为10)1)x y x -≤≤=<≤.(3)由32331y x x x =-++得3(1)2y x =-+,∴1)x y R =∈,∴所求反函数为1()1)f x x R -=∈.例2.函数11(,)1ax y x x R ax a-=≠-∈+的图象关于y x =对称,求a 的值. 解:由11(,)1ax y x x R ax a -=≠-∈+得1(1)(1)y x y a y -=≠-+,∴11()(1)(1)x f x x a x --=≠-+, 由题知:1()()f x f x -=,11(1)1x ax a x ax--=++,∴1a =. 例3.若(2,1)既在()f x =,m n 的值. 解:∵(2,1)既在()f x =∴(1)2(2)1f f =⎧⎨=⎩,∴21==,∴37m n =-⎧⎨=⎩.例4.设函数xx x f +-=121)(,又函数)(x g 与1(1)y f x -=+的图象关于y x =对称,求)2(g 的值.解法一:由121x y x -=+得12y x y -=+,∴11()2x f x x --=+,1(1)3x f x x --+=+,∴)(x g 与3x y x -=+互为反函数,由23x x -=+,得(2)2g =-.解法二:由1(1)y f x -=+得()1x f y =-,∴()()1g x f x =-,∴(2)(2)12g f =-=-.例5.已知函数()y f x =(定义域为A 、值域为B )有反函数1()y f x -=,则方程()0f x =有解x a =,且()()f x x x A >∈的充要条件是1()y f x -=满足11()()(0)f x x x B f a --<∈=且.例6.已知21()()21x x a f x a R -=∈+,是R 上的奇函数.(1)求a 的值,(2)求()f x 的反函数,(3)对任意的(0,)k ∈+∞解不等式121()log x f x k-+>. 解:(1)由题知(0)0f =,得1a =,此时21212112()()021212112x x x xx x x xf x f x ------+-=+=+=++++, 即()f x 为奇函数.(2)∵21212121x x x y -==-++,得12(11)1x y y y +=-<<-, ∴121()log (11)1x f x x x -+=-<<-.(3)∵121()log x f x k -+>,∴11111x x x k x ++⎧>⎪-⎨⎪-<<⎩,∴111x k x >-⎧⎨-<<⎩,①当02k <<时,原不等式的解集{|11}x k x -<<,②当2k ≥时,原不等式的解集{|11}x x -<<. (四)巩固练习:1.设21(01)(){2(10)x x x f x x +≤≤=-≤<,则15()4f -= . 2.设0,1a a >≠,函数log a y x =的反函数和1log ay x =的反函数的图象关于 ( )()A x 轴对称 ()B y 轴对称 ()C y x =轴对称 ()D 原点对称3.已知函数1()()12x f x =+,则1()f x --的图象只可能是 ( )()A ()B ()C()D 4.若6y ax =-与13y x b =+的图象关于直线y x =对称,且点(,)b a 在指数函数()f x 的图象上,则()f x = .。

高一数学 反函数教案

高一数学 反函数教案

湖南师范大学附属中学高一数学教案:反函数教材:反函数目的:在掌握反函数概念的基础上,初步会求非单调函数在各不同单调区间上的反函数;同时掌握互为反函数图象之间的关系。

处理《教学与测试》23课 P53过程:一、 复习:反函数的概念,求一个反函数的步骤。

二、 例一 分别求函数2x 6x y 2--=在各单调区间上的反函数。

小结:一般,非单调函数在其定义域内无反函数,但在其各单调区间上是存在反函数的,关键是求出其单调区间。

例二 求下列函数的反函数:1.523+-=x x y 2。

1122+-=x x y 小结:)(x f y =的值域就是它的反函数)(1x fy -=的定义域。

因此,往往求函数的值域就是转化成求其反函数的定义域。

三、 下面研究互为反函数的函数图象间的关系。

例三 P67 略例四 P67-68 略 中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:粉笔,钢笔,书写纸等。

4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中一年级数学反函数教学设计
一、教材分析:
1、教材的地位与作用
“反函数”一节课是《高中代数》第一册的重要内容。

这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。

2、重点与难点:反函数的定义和求法
二、教学目标分析:
(1)知识与技能:使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;
(2)能力与方法:培养学生发现问题、观察问题、解决问题的能力;
(3)情感与态度:使学生树立对立统一的辩证思维观点。

三、学情分析:
学生已经学习了函数的基本概念和表示法,掌握了函数的基本知识,理解反函数的概念及互为反函数的两个函数的性质和特征,更有助于学生将函数的思想理解得更透彻。

四、教学过程设计
1、创设问题情境:
导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。

指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?
首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。

再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。

设计意图:这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。

此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。

2、知识建构:
给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。

此外,还
要学生理解:最终的表达形式写为y=f -1(x)是顺应习惯,并且也为后面的图象研究提供方便,y 实际上是原函数中的x ,x 是原函数中的y 。

对于这一问题可以引导学生从图象观察得出。

进一步深化对概念的理解,出示电脑幻灯,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定?
引导学生思索,学生逐渐会认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。

这时,给出电脑动画,指明反函数与原函数的关系。

澄清学生对于概念的认识,抓住问题的关键。

但是,具体怎样求一个函数的反函数呢?
这些问题,必须通过实例解决,于是进入例题解答过程。

例一:求下列函数的反函数。

(1)y=3x-1(x ∈R); (2)y=x 3+1; (3)23(1)1
x y x R x x +=∈≠-且 通过例1,要使学生明白具体求反函数的过程。

以达到突出重点、突破难点的目的。

设计意图:通过例题,启发学生:既然反函数也存在三要素,那如何一一求出,得到具体的反函数呢?这时结合第(1)小题,让学生思考问题。

引导学生找出关键 通过解关于x 的方程,将x 用y 表达,以得到反函数的表达式。

这个表达式中的x 、 y 表示什么?这和我们通常的函数表达式有什么区别?进而引导学生想到交换x 、 y 得到我们习惯使用的函数表达式。

再考虑:反函数的定义域、值域怎么求?是怎样来的?学生思考后,可得出通过求原函数值域来得到反函数的定义域的方法。

此时,引导学生比较三道小题的解题步骤,师生共同小结出求反函数的三部曲:反解(把解析式看作x 的方程,求出反函数的解析式)--→互换(求出所给函数的值域并把它改换成反函数的定义域)--→改写(将函数写成y=f -1
(x)的形式)。

教师在这一部分教学中,抓住反函数是函数这一本质问题,突出了反函数与原函数之间的联系,给出了具体求解的过程,使学生掌握了重点问题的解决方法。

教师以一个个问题来引导学生逐步“发现”解决问题的方法,符合学生的认知水平。

在教师创设的问题情境中,学生的认识达到了第一次平衡。

“反函数的概念已经理解,反函数也会求了,任务已基本完成,该休息了”,有的学生会这样想。

这时,出示第二道例题,打破平衡,激起学生的疑难。

例2、(1)y=x 2(x ∈R)的反函数
(2)y=x 2(x ≥0)的反函数是
(3)y=x 2(x<0)的反函数是 相当一部分同学会按部就班求出第(1)小题的“反函数” y= (x ∈R)。

这对不对2
x
呢?出示电脑动画,引导学生观察图象,从函数的概念出发,必须存在x →y 的单值对应,但反过来呢?y →x 存不存在单值对应呢?适当的引导提问,使学生抓住了问题的关键:在原函数的定义域内必须存在y →x 的单值对应,这是反函数存在的前提。

认清这一问题后,引导学生进一步分析,y=x 2(x ∈R)不存在反函数,在定义域的局部存不存在反函数呢?让学生借助图形发现答案,并且进一步得出y=x 2(x ≥0),y=x 2(x<0)两个函数的反函数。

这样,就突破了主要难点,澄清了概念,并为以后反正弦函数的教学做好理论准备。

设计意图:(1)通过函数图像来研究问题,直观形象,符合学生的认识水平,并且为后续的互为反函数的函数图像关系问题做好铺垫。

(2)对于反函数的存在性问题,不能回避,必须使学生理解其内在含义,由具体的二次函数结合图像解决这一问题,可以澄清的学生的疑问,达到教学目标。

此时,趁学生对于概念有了一个比较清晰的认识,出示幻灯,从函数概念、反函数的存在性、反函数的求法三方面进行简单的归纳,突出重点,突破难点。

3、能力提升
(1)函数y=2|x|在下列哪个定义区间内不存在反函数? ( )
(A )[2,4]; (B )[-4,4] (C )(0,+∞] (D )(-∞,0]
(2)求反函数:5()253
x y x R x x =∈≠-+且
(3)已知y =5
[0,]2x ∈,求出它的反函数,并指明定义域。

第一道题是概念题,使学生对于反函数的概念有更清晰的认识,使学生对于反函数的存在条件认识更深刻。

第二道题使学生熟悉反函数的求法,突出重点。

第三道题使学生加深对于概念的理解,弄清反函数与原函数的内在关系。

4、课后作业:
(1)求函数 211x y --=(-1<x<0)的反函数。

(2)已知)(x f = 2x -2x(x ≥2),求)(1x f -.
5、总结和评估:
理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。

引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。

教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。

课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。

总之,在整个教学过程中,抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,以积极的双边活动使学生主动自觉地发现结果、发现方法。

培养了学生的观察分析能力和思维的全面性。

具体教学中,教师创设问题情境,学生在这一情境中去讨论分析、探究发现,以符合学生思维的形式发展了学生的能力,达到了教学目标,优化了整个教学。

四、教后反思
1、根据本节课的内容及学生的实际水平,采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。

2、电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。

另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

3、在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。

教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。

整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。

相关文档
最新文档