51单片机PWM实验

合集下载

51系列单片机输出PWM的两种方法

51系列单片机输出PWM的两种方法

51系列单片机输出PWM的两种方法PWM(Pulse Width Modulation,脉宽调制)是一种常用的调制技术,通过改变信号的脉宽来控制输出电平的占空比。

在51系列的单片机中,常用的PWM输出方式有基于定时/计数器和软件实现两种方法。

一、基于定时/计数器的PWM输出方法:在51系列单片机中,内部有多个定时/计数器可用于实现PWM输出。

这些定时/计数器包括可编程定时/计数器T0、T1、T2和看门狗定时器。

1.T0定时/计数器:T0定时/计数器是最简单和最常用的PWM输出方式之一、通过配置T0定时/计数器的工作模式和重装值来实现PWM输出。

具体步骤如下:(1)选择T0的工作模式:将定时/计数器T0设置为工作在16位定时器模式,并使能PWM输出。

(2)设置T0的重装值:通过设定T0的装载值来定义PWM输出的周期。

(3)设置T0的计数初值:通过设定T0的计数初值来定义PWM输出的脉宽。

(4)启动T0定时/计数器:开启T0定时/计数器的时钟源,使其开始计数。

2.T1定时/计数器:T1定时/计数器相对于T0定时/计数器来说更加灵活,它具有更多的工作模式和功能,可以实现更复杂的PWM输出。

与T0定时/计数器类似,通过配置T1的工作模式、装载值和计数初值来实现PWM输出。

3.T2定时/计数器:T2定时/计数器在51系列单片机中的应用较少,但也可以用于实现PWM输出。

与T0和T1不同,T2定时/计数器没有独立的PWM输出功能,需要结合外部中断请求(INT)来实现PWM输出。

二、软件实现PWM输出方法:在51系列单片机中,除了利用定时/计数器来实现PWM输出外,还可以通过软件来实现PWM输出。

软件实现PWM的核心思想是利用延时控制来生成不同占空比的方波信号。

软件实现PWM输出的步骤如下:(1)设置IO口:选择一个适合的IO口,将其设置为输出模式。

(2)生成PWM信号:根据要求的PWM占空比,通过控制IO口的高低电平和延时的时间来生成PWM方波信号。

基于C51单片机的直流电机PWM调速控制(包含原理图及C源代码)

基于C51单片机的直流电机PWM调速控制(包含原理图及C源代码)

基于C51单片机的直流电机PWM调速控制--SQ这是最近一阶段自己学习所获,现分享与大家。

这里采用A T89C52单片机做主控制芯片,实现两路直流电机的PWM调速控制,另外还可以实现转向、显示运行时间、显示档位等注:考虑小直流电机自身因素,调速范围仅设有四级电路原理图:C语言程序源代码:/******************** 硬件资源分配*********************/数码管:显示电机状态(启停、正反、速度)、运行时间、是否转弯按键:K4 启动/暂停K3 正反转/转弯允许K2 加速/左转/运行时间清零K1 减速/右转/停止定时器:T0 数码管动态显示,输出PWMT1 运行时间记录********************************************************//*******主程序文件PWM.c******/#include <reg52.h>#include "Afx.h"#include "Config.c"#define CIRCLE 5 //脉冲周期//按键定义uchar key,key_tmp=0, _key_tmp=0;//显示定义uchar LedState=0xF0; //LED显示标志,0xF0不显示,Ox00显示uchar code LED_code_d[4]={0xe0,0xd0,0xb0,0x70}; //分别选通1、2、3、4位uchar dispbuf[4]={0,0,0,0}; //待显示数组uchar dispbitcnt=0; //选通、显示的位uchar mstcnt=0;uchar Centi_s=0,Sec=0,Min=0; //分、秒、1%秒//程序运行状态标志bit MotState=0; //电机启停标志bit DirState=0; //方向标志0前,1后uchar State1=-1;uchar State2=-1;uchar State3=0;uchar State4=-1;uchar LSpeed=0;uchar RSpeed=0;//其他uint RunTime=0;uint RTime_cnt=0;uint LWidth;uint RWidth; //脉宽uint Widcnt=1;uint Dispcnt;//函数声明void key_scan(void);void DisBuf(void);void K4(void);void K3(void);void K2(void);void K1(void);void disp( uchar H, uchar n );void main(void){P1|=0xF0;EA=1;ET0=1;ET1=1;TMOD=0x11;TH0=0xFC;TL0=0x66; //T0,1ms定时初值TH1=0xDB;TL1=0xFF; //T1,10ms定时初值TR0=1;Widcnt=1;while(1){key_scan();switch(key){case 0x80: K1(); break;case 0x40: K2(); break;case 0x20: K3(); break;case 0x10: K4(); break;default:break;}key=0;DisBuf();LWidth=LSpeed;RWidth=RSpeed;}}//按键扫描**模拟触发器防抖void key_scan(void){key_tmp=(~P3)&0xf0;if(key_tmp&&!_key_tmp) //有键按下{key=(~P3)&0xf0;}_key_tmp=key_tmp ;}//按键功能处理/逻辑控制void K4(void){if(State4==-1){State4=1;TR1=1;dispbuf[3]=1;LedState=0x00; //打开LEDMotState=1; //打开电机LSpeed=1;RSpeed=1; //初速设为1}else if(State4==1){State4=0;TR1=0;MotState=0; //关闭电机}else if(State4==0){MotState=1;if(State3==0){State4=1;TR1=1;}else if(State3==1){LSpeed=2;RSpeed=2;}}}void K3(void){if(State4==1)DirState=!DirState;if(State4==0){if(State3==0){State3=1; //可以转向标志1可以,0不可以TR1=1;dispbuf[3]=9;MotState=1;LSpeed=2;RSpeed=2;}else if(State3==1){State3=0;TR1=0;dispbuf[3]=0;MotState=0;}}}void K2(void){if(State4==1&&LSpeed<4&&RSpeed<4){LSpeed++;RSpeed++;}else if(State4==0){if(State3==0){//State4=-1;//LedState=0xF0;MotState=0;Sec=0;Min=0;}else if(State3==1&&LSpeed<4&&RSpeed<4){//TurnState=0;LSpeed=2;RSpeed++;}}}void K1(void){if(State4==1&&LSpeed>1&&RSpeed>1){LSpeed--;RSpeed--;}else if(State4==0){if(State3==0){State4=-1;LedState=0xF0;MotState=0;}else if(State3==1&&LSpeed<4&&RSpeed<4){//TurnState=1;LSpeed++;RSpeed=2;}}}//显示预处理void DisBuf(void){if(RTime_cnt==100){Sec++;RTime_cnt=0;}if(Sec==60){Min++;Sec=0;}if(State4==1){dispbuf[0]=Sec%10;dispbuf[1]=Sec/10;dispbuf[2]=Min;if(!DirState) //正转dispbuf[3]=LSpeed;if(DirState) //反转dispbuf[3]=LSpeed+4;}if(State4==0){if(State3==0){dispbuf[0]=Sec%10;dispbuf[1]=Sec/10;dispbuf[2]=Min;dispbuf[3]=0;}if(State3==1){dispbuf[0]=RSpeed;dispbuf[1]=LSpeed;dispbuf[2]=Min;dispbuf[3]=9;}}}//LED驱动void disp( uchar H, uchar n ){P1=n;P1|=LedState ;P1|=LED_code_d[H];}//T0中断**显示/方波输出void Time_0() interrupt 1{TH0=0xFC;TL0=0x66;Widcnt++;Dispcnt++;//电机驱动/方波输出if(Widcnt>CIRCLE){Widcnt=1;}if(Widcnt<=LWidth)LMot_P=!DirState&&MotState;elseLMot_P=DirState&&MotState;LMot_M=DirState&&MotState;if(Widcnt<=RWidth)RMot_P=!DirState&&MotState;elseRMot_P=DirState&&MotState;RMot_M=DirState&&MotState;//显示if(Dispcnt==5){disp(dispbitcnt,dispbuf[dispbitcnt]);dispbitcnt++;if(dispbitcnt==4){dispbitcnt=0;}Dispcnt=0;}}//T1中断**运行时间void Time_1() interrupt 3{TH1=0xDB;TL1=0xFF;RTime_cnt++;}/******配置文件Afx.h******/#ifndef _AFX_#define _AFX_typedef unsigned char uchar;typedef unsigned int uint;typedef unsigned long ulong;#endif/******IO配置文件Config.c******/#ifndef _Config_#define _Config_#include "Afx.h"#include <reg52.h>//显示定义sbit led=P3^2;//电机引脚定义sbit LMot_P=P2^2; sbit LMot_M=P2^3; sbit RMot_P=P2^0; sbit RMot_M=P2^1;#endif。

基于51单片机PWM调光灯设计

基于51单片机PWM调光灯设计

基于51单片机PWM调光灯设计引言随着科技的不断发展,人们对照明的要求也越来越高,不再满足于简单的开关式灯光,而是更加注重光线的亮度调节。

PWM调光技术由于其调光范围广、控制精度高等特点成为了一种常见的调光方式。

本文将以51单片机为基础,介绍一种基于PWM调光技术的灯光系统设计。

一、原理概述PWM调光技术即脉宽调制技术,通过不同占空比的高电平信号,控制LED灯的亮度。

根据一个固定的周期周期(T),将周期平均分为一个个等间隔的时间段,根据每个时间段内高电平信号的占空比(即高电平的持续时间占整个周期的比例)控制LED灯的亮度。

二、系统设计本系统主要由51单片机、脉冲宽度调制模块、MOSFET和LED灯组成。

其中,51单片机负责生成PWM控制信号,脉冲宽度调制模块用于接收单片机的PWM信号并产生相应的电压信号,MOSFET用于根据电压信号调节电流,最终通过LED灯发出可调亮度的光线。

三、硬件设计1.电源电路设计:本系统使用12V直流电源供电,通过稳压电路将电压稳定在5V,用于驱动51单片机和脉冲宽度调制模块。

2.PWM信号生成电路设计:需要为51单片机提供一个定时器来生成PWM信号。

可选择定时器2,使用定时器2的PWM输出功能。

将定时器2的输出引脚接到脉冲宽度调制模块。

3.脉冲宽度调制模块设计:根据PWM信号的不同占空比,需要将其转换为相应的电压信号。

可以使用一个RC电路来实现。

具体电路如下:将51单片机的PWM信号通过一个三极管经过RC滤波后,输入到MOSFET的栅极,控制MOSFET的导通和关断。

4.MOSFET和LED电路设计:MOSFET的特点是可以根据栅极电压的变化来控制其通断,并且具有较小的电流损耗。

因此可以使用MOSFET来控制LED的亮度。

五、软件设计1.定时器2初始化:选择定时器2作为PWM输出源后,需要对其进行初始化,设置相关的工作模式和参数。

2.PWM信号输出:在主程序中,可以通过修改定时器2的占空比寄存器来调节PWM信号的占空比。

基于51单片机的PWM直流电机调速

基于51单片机的PWM直流电机调速

基于51单片机的PWM直流电机调速在现代社会,PWM直流电机已经成为各类机械设备不可或缺的动力源。

为了更好地控制电机的转速和输出功率,我们需要进行PWM调速操作。

本文将简要介绍如何基于51单片机实现PWM直流电机的调速。

一、PWM调速原理PWM调速是一种通过改变电机供电电压的占空比来调整电机转速和功率的方法。

当一个周期内高电平所占的时间比较短时,电机得到的平均电流和平均转矩也相应减小,电机的速度和功率也随之降低。

反之,当高电平所占的时间比较长时,电机得到的平均电流和平均转矩也相应增大,电机的速度和功率也随之提高。

因此,通过改变PWM信号的高电平占空比,可以实现直流电机的调速、调功等功能,极大地提高了电机的效率和可控性。

二、硬件电路搭建根据上述PWM调速原理,我们需要搭建一个控制板,将51单片机的PWM输出与直流电机相连。

具体电路如下:1、选择合适的电源供电,一般为12V/24V直流电源。

2、使用L298N模块作为直流电机驱动模块,将模块的电源接到电源供电上,将模块的IN1和IN2引脚分别接到51单片机的P1^0和P1^1引脚上,将直流电机的正负极分别接到模块的OUT1和OUT2引脚上。

3、将51单片机的P1^2引脚连接到一个脉冲宽度计波形滤波器(LCF)的输入端,并将输出端接到L298N模块的ENA引脚上。

4、调整脉冲宽度计波形滤波器的参数,以达到合理的PWM输出波形。

5、建立一个按键,将按键的一端接到51单片机的P3^2引脚上,将另一端接到单片机的地端。

6、根据需要进行其他接线。

三、软件程序设计根据上述硬件电路,我们需要进行相应的软件程序设计,以实现基于51单片机的PWM 直流电机调速。

以下是程序设计的主要步骤:1、在程序中定义需要使用的IO口。

2、调用定时器初始化程序,设置定时器的时钟频率、计数器值和工作方式等参数。

3、编写一个PWM输出函数,实现对PWM信号的输出。

4、编写一个ADC采样函数,读取ADC转换器的值,并根据采样值输出一定的PWM信号。

51单片机产生PWM控制小车速度的两种方法

51单片机产生PWM控制小车速度的两种方法

51单片机产生PWM控制小车速度的两种方法首先你的先知道什么是PWM。

PWM是一种脉宽调制技术。

简单的说就是在一个周期内高电平所占用的时间,通过改变脉冲的周期可以调频,改变脉冲的宽度或占空比可以调节驱动上的电压。

将产生的PWM信号接到L298N的ENA和ENB端调节不同的占空比从而调节速度第一种方法用单片机的定时器模拟出PWM。

假如你用定时器延时100ms,在50ms之前某一个引脚为低电平,50ms之后该引脚为高电平,这样高电平占用的时间为1/2,此时该引脚就会产生50%的占空比信号。

程序如下:#include<reg52.h>unsigned chartimer1;sbit PWM=P1^1;void system_Ini(){TMOD|= 0x11;TH1 = 0xfe; //11.0592TL1 = 0x33;TR1 =1;IE=0x8A;}main(){ system_Ini() ;定时器初始化while(1){ if(timer1>100) timer1=0;if(timer1<=30) pwm=0;//产生30%的占空比else PWM=1;}}另一种方法就是利用简单的延时产生PWM方波信号#include<reg52.h>unsigned char count=0;sbit PWM_1=PI^1;//利用P1^1产生PWMvoid mian(){while(1)for(count=0;count<=100;count++) //让单片机记100个数{If(count<=50){ PWM_1=1;}//前一半时间为高电平elsePWM_1=0//后一半时间为低电平这样就产生了50%的占空比}PWM不仅能够控制小车速度还可以控制小灯的亮灭程度,朋友们可以去试试。

水平有限,如果觉得对您有用请您推荐您的朋友关注我们,还请大神们轻喷。

51单片机实现PWM波占空比可调

51单片机实现PWM波占空比可调

51单片机实现PWM波占空比可调单片机实现PWM波占空比可调的方法有很多种,下面将详细介绍一种常见的实现方式。

PWM(脉冲宽度调制)是一种常用的数字信号调制技术,可以通过改变脉冲的高电平时间来控制电平的占空比,从而实现对信号的调节。

在单片机中,可以使用定时器/计数器模块来生成PWM波,并通过改变计数器的值来调整占空比。

以AT89C51单片机为例,以下是实现PWM功能的步骤:1.设置定时器模式:选择合适的定时器模式来生成所需的PWM信号。

AT89C51单片机有定时器/计数器模块,可以选择模式2,该模式下定时器有自动重装载功能,能够方便地实现周期性的PWM波。

3. 设置PWM参数:根据需要调节的占空比,计算出所需的高电平时间和低电平时间。

通常,PWM波的高电平时间与低电平时间之和等于一个周期的时间(定时器的重装载值)。

例如,如果需要一个占空比为60%的PWM波,周期为20ms,则高电平时间为「20ms * 60% = 12ms」,低电平时间为「20ms - 12ms = 8ms」。

4.设置PWM引脚:选择一个合适的IO口作为PWM波的输出引脚,并在程序中设置该引脚为输出模式。

5.编写中断服务程序(ISR):针对定时器溢出中断(TOF)编写中断服务程序。

每当定时器溢出时,PWM波应该翻转输出引脚的电平,以实现所需的占空比。

6.初始化定时器和中断:在程序初始化阶段,将定时器设为所需的模式,设置中断向量表中的对应中断服务函数,并开启定时器中断。

7.主循环中设置占空比:在主循环中,通过改变定时器的初值来实现不同占空比的调节。

将计算得到的高电平时间和低电平时间分别赋值给定时器初值,即可实现占空比的调整。

通过上述步骤,我们可以实现占空比可调的PWM波。

在实际应用中,可以根据需要进行适当的优化和改进,例如增加输入口的设置,使得用户可以通过外部按键或旋钮来实时调整占空比,从而更加灵活地控制PWM波的输出。

总结:通过合适的定时器模式、初值设置和中断服务程序编写,配合适当的IO口配置和占空比计算,我们可以在单片机中实现占空比可调的PWM波。

PWM直流电机调速实验报告

PWM直流电机调速实验报告
2.对象模块(PWM电机调速模块)工作原理
直流电机PWM调速模块由测速电路和PWM调速电路两部分组成。模块的电源由接口总线引入。本模块使用的电机为5V直流电机。
1)电机测速部分
①直流电机测速原理介绍
电机测速部分由光电开关完成,电机带动一个周边均匀分布圆孔的金属圆盘,当电机转动时,圆盘跟着一起转动。光源发出的光通过圆孔照射到光电器件上,当圆孔随着电机轴转动时,光电开关可以输出和圆孔数目相同的脉冲,从而测得转速。
3.观察直流电机转速,一段时间后控制在程序设定的值30转/S的左右。
三、实验原理图
四、实验原理
1.PWM的调速原理
PWM调速是通过改变输出脉冲的占空比,从而改变电机转速的一种调速方法。PWM调速分为单极性和双极性两种。在单极性方式下,电机的转动方向不变,改变的只是转速;而在双极性方式下,电机的转动方向和转速都是可变的。本实验是单极性控制,其基本原理如下:
shortdelay(PWMH);
PWM=0;//turn off电机
shortdelay(PWML);
}
}
五、实验结论及讨论
本实验成功实现了直流电机转速的控制,转速设定值为30r/s,通过数码管显示出当前转速,和设定值,利用脉宽调制原理对电机转速进行间接控制。
本实验实现了通过PWM方法使输出电压改变从而改变直流电机转速的目标,并且电机的转速可以显示出来。因此,本实验既达到了动态调节电机转速,又实现了实时检测电机运转情况。
机电一体化实验报告
题目:
PWM直流电机调速实验
学生姓名:
学号:
指导教师:
张友旺
学院:
机电工程学院
专业班级:
机械1604班
日期2019年12月

51系列单片机输出PWM的两种方法

51系列单片机输出PWM的两种方法

51系列单片机输出PWM的两种方法51系列单片机(如STC89C52、AT89C51等)是一种常用的8位微处理器,具有较高的性价比和广泛的应用领域。

PWM(Pulse Width Modulation)是一种常用的模拟信号生成技术,在很多领域中都有广泛应用,比如电机控制、LED调光等。

在51系列单片机中,有两种常用的方法可以实现PWM输出,分别是软件实现PWM和硬件实现PWM。

下面将详细介绍这两种方法及其实现方式。

1.软件实现PWM软件实现PWM是通过定时器和IO口的相互配合来产生PWM信号。

具体实现的步骤如下:步骤1:设置定时器的工作模式和计数器初值。

选择一个合适的定时器,比如定时器0,然后设置定时器工作模式和计数器初值。

定时器的工作模式选择“模式1”或“模式2”,并根据需求设置计数器初值。

步骤2:设置IO口的工作模式。

选择一个合适的IO口,比如PWM输出口(如P1.2),然后将该IO口设置为输出模式。

步骤3:编写软件控制代码。

在主循环中,通过改变IO口的电平状态来实现PWM输出。

根据定时器的计数值,可以确定PWM信号的占空比大小。

当定时器计数值小于一些阈值时,将IO口置高电平;当定时器计数值大于该阈值时,将IO口置低电平。

通过改变该阈值,可以实现不同的PWM占空比。

通过上述步骤,就可以实现软件控制的PWM输出。

需要注意的是,软件实现PWM的精度较低,同时也会占用较多的处理器时间。

2.硬件实现PWM硬件实现PWM是通过专门的PWM模块或专用的计时电路来实现PWM输出。

具体实现的步骤如下:步骤1:选择一个合适的PWM模块或计时电路。

可以选择专门的PWM模块(如PCA模块)或计时电路(如555计时芯片),根据需求选择合适的硬件模块。

步骤2:设置PWM模块或计时电路的相关参数。

根据需求设置PWM频率、占空比等参数。

步骤3:连接并配置IO口。

将PWM模块或计时电路的输出引脚连接到需要输出PWM信号的IO口,然后将该IO口设置为输出模式。

51单片机PWM实验

51单片机PWM实验

假如说,第一个灯肯定比第二个灯亮的话,可以直接把8个LED灯的限流电阻弄成不同阻值的。

就像楼上说的那样。

但如果想随便变换不同的灯都能有不同的亮度话,硬件电路可以不变,限流电阻都一样。

可以在程序里这样写:首先,例如你要最亮的灯先点亮,隔几十微秒后点亮第二个灯,再相隔同样时间点亮第三个灯……依次类推间隔一定时间点亮八个灯。

但间隔时间不要太大,超过十几毫秒就不行了。

然后再间隔相同的时间一次性把灯全关了,再间隔几十微秒回到上面的状态依次点亮灯。

……一直这样循环。

这样的话因为人的视力有一定的滞回效果,只要间隔时间不大,你就能看到八个灯不是闪的,而是同时亮,但亮度又不一样。

这是单片机设计中,PWM控制的思路。

LED PWM调光C程序#include<reg52.h> //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义sbit LED1 = P2^0;sbit LED = P2^1; //定义LED灯,通过LED显示调光效果sbit LED2 = P2^2;unsigned char CYCLE; //定义周期该数字X基准定时时间如果是10 则周期是10 x 0.1ms unsigned char PWM_ON ;//定义高电平时间/******************************************************************//* 延时函数&nbs/******************************************************************/void delay(unsigned int cnt){while(--cnt);}/******************************************************************//* 主函数*//******************************************************************/void main(){bit Flag;TMOD |=0x01; //定时器设置0.1ms in 12M crystalTH0=(65536-100)/256;TL0=(65536-100)%256; //定时0.1mSIE= 0x82; //打开中断TR0=1;CYCLE = 50; // 时间可以调整这个是10调整8位PWM就是256步while(!Flag){delay(20000); //延时时间,从一个亮度到下一个亮度的间隔时间,速度快就能看到连续效果PWM_ON++; //这个使用较长延时,以便能看清楚变化过程if(PWM_ON == CYCLE){ //这个里可以添加其他程序如到最亮时候控制设备Flag=1;}}while(Flag) //亮度递减同上,是个相反的过程{delay(20000); //延迟时间为20000*0.4=8000usPWM_ON--;if(PWM_ON == 0){Flag=0;}}}/******************************************************************//* 定时器中断函数*//******************************************************************/void tim(void) interrupt 1 using 1{static unsigned char count;TH0=(65536-100)/256;TL0=(65536-100)%256; //定时0.1mSif (count==PWM_ON){LED1 = 1;LED = 1; //灯灭LED2 = 1;}count++;if(count == CYCLE){count=0;if(PWM_ON!=0) //如果开启时间是0 保持原来状态{LED1 = 0;LED = 0; //灯亮LED2 = 0;}}}PWM意思是占空比调节!你上面的程序简单的讲就是通过中断系统定时控制输出!然后主函数实现高低电平的时间控制PWM_ON是亮度函数CYCLE是亮度时间控制!你如果想完全了解上面的程序的意思还是自己好好学习一下单片机编程!再说别人的程序只是参考参考就行了!。

如何利用51单片机输出PWM波

如何利用51单片机输出PWM波

如何利用51单片机输出PWM波51单片机可以通过改变IO口的高低电平来生成PWM波,具体的实现方法如下:1.配置IO口:将需要生成PWM波的IO口配置为输出模式,例如P2口。

2.设置定时器:使用一个定时器来控制PWM波的周期,定时器可以选择定时器0(T0)或定时器1(T1),这里以定时器1为例。

a.初始化定时器1的模式为工作模式1,即16位自动重装载模式。

b.设置计数初始值,决定PWM波的频率。

c.启用定时器1中断,并设置中断优先级。

3.设置占空比:通过改变定时器1的重装载值来改变PWM波的占空比。

占空比可通过一个8位变量来控制,变量的取值范围为0-255b.将重装载值低8位保存到TH1寄存器,高8位保存到TL1寄存器。

4.启动定时器:将定时器1的运行控制位TR1置1,定时器1开始工作。

5.通过IO口输出PWM波:在定时器1中断服务子程序中,将IO口(P2口)的数据按照占空比的大小设置为高电平或低电平。

6. 循环运行:通过主程序中的无限循环(while(1))来持续生成PWM波。

以上就是使用51单片机输出PWM波的基本原理和实现步骤,下面是一个简单的示例代码:#include <reg52.h>//定义PWM波的频率和占空比#define PWM频率 1000 // PWM波的频率为1kHz #define 占空比系数 128 // PWM波的占空比为50% //定义函数和变量void 初始化定时器1(;void 初始化IO口(;void 主程序(;void main初始化定时器1(;初始化IO口(;while (1)主程序(;}void 初始化定时器1//设置定时器1的模式和计数初值TMOD,=0x10;//工作模式1TL1=TH1;//启用定时器1中断,并设置中断优先级ET1=1;//启用定时器1中断EA=1;//启用总中断PT1=1;//定时器1中断优先级为高void 初始化IO口//将P2口配置为输出模式P2=0x00;P2 = 0xff;void 主程序//在定时器1中断服务子程序中,设置P2口的输出//定时器1中断服务子程序void Timer1_ISR( interrupt 3//根据占空比的大小来设置P2口的输出if (TH1 > 占空比系数)P2 = 0xff;} elseP2=0x00;}在主程序中,需要完成具体的PWM波的生成操作,可以在定时器1中断服务子程序中根据占空比的大小来设置输出的高低电平。

实验2—占空比可调的PWM信号发生器

实验2—占空比可调的PWM信号发生器

实验2—占空比可调的PWM信号发生器第一篇:实验2—占空比可调的PWM信号发生器实验2占空比可调的PWM信号发生器一、实验任务基本部分:(1)用51单片机设计一个周期固定且占空比可调的PWM信号发生器。

(2)参数要求:a、信号周期为20ms,占空比范围1%-100%可调;b、用两个按键分别调整增量或减量;增量级别分为±1%和±5%两档可调,且要求可用按键选择;c、要求用两位LED数码管实时显示当前的占空比;d、51单片机晶振频率为12MHz。

扩展部分:(1)在基本部分设计的电路中,为输出的PWM信号增加光耦隔离输出电路;(2)为占空比调整过程增加超界声光报警电路;(3)可否改为脉宽固定而周期可改变的PWM信号发生器(简略说明,不要求设计编程)。

二、实验要求1、在PROTEUS中画出硬件设计图(AT89C51、12MHz晶振震荡电路、复位电路、按键调整电路、LED数码管显示电路、扩展部分电路)。

2、按任务要求用汇编或C编写程序并编译通过。

3、在PROTEUS下仿真通过。

三、报告要求1、任务分析、实现方案和程序流程图;2、硬件电路图;3、全部程序清单;4、打印出实验报告。

第二篇:信号发生器设计(推荐)模拟课程设计题信号发生器设计设计一个能够输出正弦波、三角波和矩形波的信号源电路,电路形式自行选择。

输出信号的频率可通过开关进行设定,具体要求如下:(1)输出信号的频率范围为100~800Hz,步进为100Hz。

(60分)(2)要求输出信号无明显失真,特别是正弦波信号。

(30分)评分标准:(1)范围满足设计要求得满分,否则酌情扣分。

(2)输出信号无明显失真可满分,有明显失真酌情扣分。

发挥部分(附加10分):进一步扩大输出信号范围和减小步进频率。

第三篇:VHDL实验四函数信号发生器设计.VHDL实验四:函数信号发生器设计设计要求:设计一个函数信号发生器,能产生方波,三角波,正弦波,阶梯波。

基于51单片机的PWM直流电机调速报告

基于51单片机的PWM直流电机调速报告

课程名称:微机原理课程设计题目:基于51单片机的PWM直流电机调速直流电机脉冲宽度调制(Pulse Width Modulation-简称PWM)调速产生于20世纪70 年代中期,最早用于自动跟踪天文望远镜、自动记录仪表等的驱动,后来由于晶体管器件水平的提高及电路技术的发展, PWM 技术得到了高速发展,各式各样的脉宽调速控制器,脉宽调速模块也应运而生,许多单片机也都有了PWM输出功能。

而51单片机却没有PWM 输出功能,采用定时器配合软件的方法可以实现51单片机PWM的输出功能。

本设计就是由单片机STC89C52RC芯片,直流电机(搭建H桥电路驱动)和四位一体LED数码管为核心,辅以必要的电路,构成了一个基于51单片机PWM可调速的直流电机。

该可调直流电机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。

该可调直流电机布置合理,全部器件分布在7*9cm洞洞板上,看起来小巧精简。

采用的是单片机内部定时器产生方波并且两个P口交换输出,可以方便灵活地调速度和方向。

该可调直流电机从0到最大速度1200转每分钟一共设置了60个档次的转速,采用红光四位数码管,可以直观地显示出来(显示的是每分钟的转速)。

有红光和绿光的两个二极管作为转速指示灯。

四个控制按键就可以控制电机的转速,方向与暂停。

每按一个键,该可调电机就会实现相对应的功能,操作非常简单。

关键词:直流电机,51单片机,C语言,数码管一、设计任务与要求 (4)1.1 设计任务 (4)1.2 设计要求 (4)二、方案总体设计 (5)2.1 方案一 (5)2.2 方案二 (5)2.3 系统采用方案 (5)三、硬件设计 (7)3.1 单片机最小系统 (7)3.2 数码管显示模块 (7)3.3 系统电源 (8)3.4驱动电路 (8)3.5 整体电路 (9)四、软件设计 (10)4.1 keil软件介绍 (10)4.2 系统程序流程 (10)五、仿真与实现 (13)5.1 proteus软件介绍 (13)5.2 仿真过程 (13)5.3 实物制作与调试 (15)5.4 使用说明 (17)六、总结 (18)6.1 设计总结 (18)6.2 经验总结 (18)七、参考文献 (21)一、设计任务与要求1.1 设计任务1).对更多小器件的了解2).巩固51单片机和C语言的知识,熟悉单片机和C语言的实际操作运用3).掌握仿真软件的运用和原理图的绘制4).加深焊接的技巧,提高焊接的能力5).熟悉调试方法和技巧,提高解决实际问题的能力6).熟悉设计报告的编写过程1.2 设计要求1).四个按键分别实现改变转向,加速,减速与暂停的功能2).H桥电路驱动直流电机3).一个红光和一个绿光二级管指示电机转向4).四位数码管显示转速二、方案总体设计设计一个基于51单片机的可调直流电机。

PWM实验报告

PWM实验报告

51单片机控制直流电机PWM调速实验时间:第12周星期六1-4节51单片机控制直流电机PWM调速实验目的1.掌握脉宽调制 (PWM) 的方法。

2.用程序实现脉宽调制,并对直流电机进行调速控制。

实验设备PC 机一台,单片机最小系统,驱动板、直流电机,连接导线等实验原理1.PWM (Pulse Width Modulation) 简称脉宽调制。

即,通过改变输出脉冲的占空比,实现对直流电机进行调压调速控制。

2.实验线路图:实验内容:1. 利用实验室提供的单片机应用系统及直流电机驱动电路板,编制控制程序,实现直流电机PWM调速控制。

2.实验原理图:3. 程序如下:#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit KEY1 = P3^4;sbit KEY2 = P3^5;sbit KEY3 = P3^6;sbit IN1 = P1^0;sbit IN2 = P1^1;sbit ENA = P1^2;sfr ldata=0x80;sbit dula=P2^6;sbit wela=P2^7; //sbit lcden=P3^4;//uchar timer,ms,t_set = 1;uchar T_N=100;uchar T_N1=100;uchar T_H_N=50;uchar T_H_N1=50;void msplay(uchar,uchar);uchar codex1[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x27,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79 ,0x71};//uchar code x2[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xd8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};uchar code x3[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf};//uchar code x4[]={0x01,0x02,0x04,0x08,0x10,0x20};void delay(uint z) //延时函数{uint x;for(x=z;x>0;x--);}void Key_Scan(){if(KEY1 == 0){delay(20);while(!KEY1);T_H_N++;if(T_H_N >=99){T_H_N =99;}}if(KEY2 == 0){delay(20);while(!KEY2);T_H_N--;if(T_H_N <= 1){T_H_N = 1;}}if(KEY3 == 0){delay(15);while(!KEY3);IN1=~IN1;IN2=~IN2;}}void Motor_Init(){ENA = 0;IN1 = 1;IN2 = 0;}void Timer0_Init(){TMOD=0X12;TH0=(256-50);TL0=(256-50);// TH1=(65535-T_H)/256;// TL1=(65535-T_H)%256;EA=1;ET0=1;TR0=1; }void main(){uchar k3,k2,k1,k0;Timer0_Init();Motor_Init();while(1){k2=T_H_N/10;k3=T_H_N%10;k1=0;k0=0;msplay(k0,2);msplay(k1,3);msplay(k2,4);msplay(k3,5);Key_Scan();}}void timer0() interrupt 1{TR0=0;// TH0=(65536-50)/256;// TL0=(65536-50)%256;T_H_N1--;if(0==T_H_N1){ENA=0;T_H_N1=1;}T_N1--;if(T_N1==0){ENA=1;T_N1=100;T_H_N1=T_H_N;}TR0=1;} void msplay(uchar y1,uchar y2){ldata = x1[y1];dula=1;dula=0;delay(1);ldata = x3[y2];wela=1;wela=0;delay(1);ldata = 0x00;dula=1;dula=0;delay(1);ldata = 0x0ff;wela=1;wela=0;delay(1);}占空比数值显示为70时,原理图的显占空比为70%时的调试图实验思考题本实验中是通过改变脉冲的占空比,周期T 不变的方法来改变电机转速的,还有什么办法能改变电机的转速,应该怎么实现?答:可以让占空比不变,改变周期T的大小来改变电机的转速。

基于MC51单片机的直流电机PWM调速系统

基于MC51单片机的直流电机PWM调速系统

基于MC51单片机的直流电机PWM调速系统一、概述随着现代工业技术的不断发展,直流电机因其良好的调速性能和控制精度,在工业自动化、机器人、航空航天等领域得到了广泛的应用。

PWM(脉宽调制)技术作为一种高效的电机调速方法,能够有效地控制直流电机的速度和方向。

本文旨在介绍一种基于MC51单片机的直流电机PWM调速系统,通过单片机实现对直流电机的精确控制。

该系统以MC51单片机为核心控制器,利用其强大的运算能力和丰富的外设接口,实现对直流电机的PWM调速控制。

系统通过采集电机的实时转速信息,结合用户设定的目标转速,利用PWM信号调整电机的输入电压,从而实现对电机转速的精确控制。

系统还具备过流、过压等保护功能,确保电机在安全可靠的环境下运行。

基于MC51单片机的直流电机PWM调速系统具有结构简单、控制精度高、响应速度快等优点,适用于各种需要精确控制直流电机转速的场合。

通过本系统的研究与应用,可以进一步提高工业自动化水平,推动相关产业的发展。

1. 直流电机PWM调速系统的研究背景与意义直流电动机作为最早出现的电动机类型,长期以来在调速控制领域占据着统治地位。

其良好的线性调速特性、简单的控制性能、高效的能量转换效率以及优异的动态特性,使得直流电动机在各种应用场景中得到了广泛的应用。

特别是在对调速性能要求较高的场合,如电力牵引、轧钢机、起重设备等,直流电动机更是发挥了不可替代的作用。

随着科学技术的不断进步和工业应用需求的日益复杂,传统的直流电机调速方式已经难以满足现代工业生产的需求。

传统的调速方法往往存在调速精度不高、调速范围有限、能耗较大等问题,严重制约了直流电动机在更多领域的应用。

为了解决这些问题,PWM(脉冲宽度调制)调速技术应运而生。

PWM技术利用微处理器的数字输出来对模拟电路进行控制,具有控制简单、灵活和动态响应好的优点。

通过将PWM技术应用于直流电机调速系统,可以实现对电机转速的精确控制,提高调速精度和调速范围,同时降低能耗,提高系统的稳定性和可靠性。

51单片机pwm占空比程序

51单片机pwm占空比程序

51单片机pwm占空比程序【原创版】目录一、51 单片机 PWM 占空比概述二、51 单片机 PWM 占空比程序的实现方法1.函数控制法2.两级中断法3.DA 转换法三、51 单片机 PWM 占空比程序的注意事项四、51 单片机 PWM 占空比程序的应用实例五、总结正文一、51 单片机 PWM 占空比概述51 单片机是一种常见的微控制器,广泛应用于各种嵌入式系统中。

在 51 单片机中,PWM(脉冲宽度调制)技术是一种常用的技术,通过改变脉冲的宽度来控制电机、LED 等设备的亮度或转速。

占空比是 PWM 技术中的重要概念,表示高电平持续时间与整个周期的比值。

本文将介绍如何用 51 单片机实现 PWM 占空比的调整。

二、51 单片机 PWM 占空比程序的实现方法1.函数控制法通过编写一个函数来实现 PWM 占空比的调整。

在该函数中,输入占空比,比如 fun(x,y),高电平持续 x 毫秒,低电平持续 (y-x) 毫秒。

通过 while(1) 循环调用该函数,即可实现 PWM 占空比的调整。

2.两级中断法该方法利用 51 单片机的两个定时器实现 PWM 占空比的调整。

首先,在定时器 T0 中开启定时器 T1,并使 pwm1 引脚输出高电平;然后,在定时器 T1 中关闭 T1,使 pwm0 引脚输出低电平。

通过调整 T0 和 T1 的初值,可以实现不同占空比的 PWM 波形输出。

3.DA 转换法该方法需要外部 DA 转换器来实现。

通过将 DA 转换器的输出接至51 单片机的某个 I/O 端口,可以实现对 PWM 波形占空比的调整。

这种方法的优点是实现简单,但缺点是需要额外的硬件支持。

三、51 单片机 PWM 占空比程序的注意事项在编写 51 单片机 PWM 占空比程序时,需要注意以下几点:1.避免在中断程序中进行复杂计算,以免影响程序运行速度。

2.占空比的计算要考虑定时器中断的分辨率,以保证占空比的精确性。

51实现PWM

51实现PWM

求51单片机实现PWM的程序#include <stc51.h>int X ; // PWM的周期单位:us微秒int duty; //占空比变量void main(){X=2000; //周期100uS 即PWM的频率=10KHZduty=50; //占空比50%TMOD=0X11;EA=1;ET0=1;ET1=1;TH0=(65535-duty)/256; //定时器0 改变占空比TL0=(65535-duty)%256;TH1=(65535-X)/256 ; //定时器1 改变频率TL1=(65535-X)%256;TR0=1;TR1=1;while(1) ;}void timer0_isr() interrupt 1 //定时器0;改变占空比{TR0=0;P1=0X00;++duty;if(duty>=X-1) duty=1;}void timer1_isr() interrupt 3 //定时器1 ;改变PWM 频率即周期{P1=0XFF;TH1=(65535-X)/256; //改变周期TL1=(65535-X)%256;TH0=(65535-duty)/256; //改变占空比TL0=(65535-duty)%256;TR0=1;//TR1=1;}51单片机是如何产生PWM波的。

用定时器中断如何实现1 设置一个IO 输出口作为PWM 输出2 设置一个可调定时器如定时250 IO输出0 ,定时5 IO输出1,高电平窄或定时5 IO输出0 ,定时250 IO输出1,高电平宽即定时器每中断一次要重装定时数据追问关于频率和占空比的确定,对于12M晶振,假定PWM输出频率为1KHZ,这样定时中断次数**设定为C=10,即0.01MS中断一次,则TH0=FF,TL0=F6;由于设定中断时间为0.01ms,这样**可以设定占空比可从1-100变化。

即0.01ms*100=1ms能给解释这段吗??、首先给PWM的频率我们可以求什么???回答假定PWM输出频率为1KHZ, 那么 2 次中断为1mS (一次输出0,一次输出1)占空比就是2 次中断的时间比例。

51单片机产生PWM波

51单片机产生PWM波

69.2
2
71,30
1058
69.6
3
73,30
1038
70.2
4
74,31
1019
69.9
5
76,32
992
69.0
6
76,31
1001
70.0
频率相对误差(%) 6.8 5.8 3.8 1.9 0.8 0.1
总结:定时器理论初值为(65536-100)时,中断一次的时间为 100Us,
而执行一条语句时间为 1~4Us,这样会使 T 变大,f 减小,误差较大;
main() {
Init(); while(1) {
if(num<=8)output=1; else output=0; } }
//使占空比为 7:3
void Timer_0(void) interrupt 1 //中断函数
{
TH0=(65536-n)/256; //(65536-n)为定时器初值
TL0=(65536-n)%256;
51 单片机产生PWM方波
//利用定时器产生频率为 1KHz,占空比为 7:3 的 PWM 方波
#include<reg52.h> //头文件
sbit output=P1^1; //输出端
unsigned char num=1; //辅助计时
void Init(void) //初始化函数 {
TMOD=0x01; TH0=(65536-n)/256; //(65536-n)为定时器初值 TL0=(65536-n)%256; EA=1; ET0=1; TR0=1; }
频率相对误差(%) 12 3.7 1.4 0.8 0.2

51单片机模拟PWM输出占空比可调

51单片机模拟PWM输出占空比可调

51单片机模拟P W M输出占空比可调(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--#include<>#define UINT unsigned int#define UCHAR unsigned charsbit pwm=P1^0; //pwm输出口sbit plus=P3^6;//按键调节增加输出脉宽sbit reduce=P3^7;//按键调节减小输出脉宽sbit duan=P2^6;// 数码管的段选sbit wei=P2^7; //数码管的位选UCHAR code SEG[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};UINT i;char j,k=5;void timer_init() //定时器0,8位自动重装{TMOD=0x02;TH0=56;TL0=56;IE=0x82;TR0=1;}void delayms(UINT x) //延时 {UINT i,j;for(i=x;i>0;i--)for(j=110;j>0;j--); }void show(int a) //数码管显示 {int shi,ge;shi=a/10;ge=a%10;duan=1;P0=SEG[shi];duan=0;P0=0xff;wei=1;P0=0xfe;wei=0;delayms(3);duan=1;P0=SEG[ge];duan=0;P0=0xff;wei=1;P0=0xfd;wei=0;delayms(3);}void timer0() interrupt 1 //定时器中断 {i++;if(i==5000){i=0;j++;j=j%10;}if(j<k){pwm=1;}elsepwm=0;}void adjust_pwm() //按键调节脉宽 {if(plus==0){delayms(5);if(plus==0){k++;if(k>=10){k=10;}while(!plus);}}show(k);if(reduce==0){delayms(5);if(reduce==0){k--;if(k<=0){k=0;}while(!reduce);}}show(k);}void main(){timer_init();for( ; ; ){adjust_pwm(); }}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假如说,第一个灯肯定比第二个灯亮的话,可以直接把8个LED灯的限流电阻弄成不同阻值的。

就像楼上说的那样。

但如果想随便变换不同的灯都能有不同的亮度话,硬件电路可以不变,限流电阻都一样。

可以在程序里这样写:
首先,例如你要最亮的灯先点亮,隔几十微秒后点亮第二个灯,再相隔同样时间点亮第三个灯……依次类推间隔一定时间点亮八个灯。

但间隔时间不要太大,超过十几毫秒就不行了。

然后再间隔相同的时间一次性把灯全关了,再间隔几十微秒回到上面的状态依次点亮灯。

……一直这样循环。

这样的话因为人的视力有一定的滞回效果,只要间隔时间不大,你就能看到八个灯不是闪的,而是同时亮,但亮度又不一样。

这是单片机设计中,PWM控制的思路。

LED PWM调光C程序
#include<> //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义
sbit LED1 = P2^0;
sbit LED = P2^1; //定义LED灯,通过LED显示调光效果
sbit LED2 = P2^2;
unsigned char CYCLE; //定义周期该数字X基准定时时间如果是10 则周期是10 x unsigned char PWM_ON ;//定义高电平时间
/******************************************************************/
/* 延时函数&nbs/******************************************************************/
void delay(unsigned int cnt)
{
while(--cnt);
}
/******************************************************************/
/* 主函数*/
/******************************************************************/
void main()
{
bit Flag;
TMOD |=0x01; //定时器设置in 12M crystal
TH0=(65536-100)/256;
TL0=(65536-100)%256; //定时
IE= 0x82; //打开中断
TR0=1;
CYCLE = 50; // 时间可以调整这个是10调整8位PWM就是256步
while(!Flag)
{
delay(20000); //延时时间,从一个亮度到下一个亮度的间隔时间,速度快就能看到连续效果PWM_ON++; //这个使用较长延时,以便能看清楚变化过程
if(PWM_ON == CYCLE)
{ //这个里可以添加其他程序如到最亮时候控制设备
Flag=1;
}
}
while(Flag) //亮度递减同上,是个相反的过程
{
delay(20000); //延迟时间为20000*=8000us
PWM_ON--;
if(PWM_ON == 0)
{
Flag=0;
}
}
}
/******************************************************************/ /* 定时器中断函数*/
/******************************************************************/ void tim(void) interrupt 1 using 1
{
static unsigned char count;
TH0=(65536-100)/256;
TL0=(65536-100)%256; //定时
if (count==PWM_ON)
{
LED1 = 1;
LED = 1; //灯灭
LED2 = 1;
}
count++;
if(count == CYCLE)
{
count=0;
if(PWM_ON!=0) //如果开启时间是0 保持原来状态
{
LED1 = 0;
LED = 0; //灯亮
LED2 = 0;
}
}
}
PWM意思是占空比调节!你上面的程序简单的讲就是通过中断系统定时控制输出!然后主函数实现高低电平的时间控制PWM_ON是亮度函数CYCLE是亮度时间控制!你如果想完全了解上面的程序的意思还是自己好好学习一下单片机编程!再说别人的程序只是参考参考就行了!。

相关文档
最新文档