初三数学培优教材(培训学校专用)
初中数学九年级培优教程整理(全)
![初中数学九年级培优教程整理(全)](https://img.taocdn.com/s3/m/7cc2a55b02020740bf1e9b3e.png)
【例1】(荆州)下列根式中属最简二次根式的是()A. a 2 1B. 12C. 8D. 27初中数学九年级培优目录第1 讲二次根式的性质和运算(P2 --- 7)第2 讲二次根式的化简与求值(P7 --- 12)第3 讲一元二次方程的解法(P13 --- 16)第4 讲根的判别式及根与系数的关系(P16 --- 22)第5 讲一元二次方程的应用(P23 --- 26)第6 讲一元二次方程的整数根(P27 --- 30)第7 讲旋转和旋转变换(一)(P30 --- 38)第8 讲旋转和旋转变换(二)(P38 --- 46)第9 讲圆的基本性质(P47--- 51)第10 讲圆心角和圆周角(P52 --- 61)第11 讲直线与圆的位置关系(P62 --- 69)第12 讲圆内等积证明及变换((P70 --- 76)第13 讲弧长和扇形面积(P76 --- 78)第14 讲概率初步(P78 --- 85)第15 讲二次函数的图像和性质(P85 --- 91)第16 讲二次函数的解析式和综合应用(P92 --- 98)第17 讲二次函数的应用(P99 --- 108)第18 讲相似三角形的性质(P109 --- 117)第19 讲相似三角形的判定(P118---- 124)第20 讲相似三角形的综合应用(P124 ---- 130)考点·方法·破译第1 讲二次根式的性质和运算1. 了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析;2. 掌握二次根式有关性质,并能熟练运用性质进行化简;3. 会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B 中含分母,C、D 含开方数4、9,故选 A.【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是()A. 10B. 8C. 6D. 2⑵①a2b2 ;②x;③5x2 xy ;④27 abc ,最简二次根式是()A .①,②B .③,④C.①,③ D .①,④【例2】( 黔东南) 方程4x 8x y m 0 ,当y>0 时,m 的取值范围是()A .0<m<1 B.m≥2 C.m<2 D.m≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0 的结论. 由题意得4x-8=0,x-y-m=0.化为y =2-m,则2-m>0,故选 C.【变式题组】2.(宁波)若实数x、y 满足x 2 ( y 3) 20 ,则xy 的值是.3.(荆门)若x 1 1 x (x y)2 ,则x-y 的值为()A .- 1B .1 C.2 D.34.(鄂州)使代数式x 3有意义的x 的取值范围是()x 4A .x>3 B.x≥3 C.x>4 D.x≥3 且x≠45. (怀化) a 2 b 3 (c 4) 0 ,则a-b-c=.【例3】下列二次根式中,与24 是同类二次根式的是()A .18 B.30 C.48 D.54【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样.A .18 3 2 ;B .30 不能化简; C. 48 4 3 ;D.54 3 6 ,而24 2 6 .故本题应选 D.【变式题组】6. 如果最简二次根式3a 8 与17 2a 是同类二次根式,则a=.7. 在下列各组根式中,是同类二次根式的是()A . 3 和18B . 3 和13C.a2 b和ab2 D . a 1 和 a 18. 已知最简二次根式 b a 3b 和2b a 2 是同类二次根式,则a=,b=. 【例4】下列计算正确的是()A . 5 3 2B .8 2 4C.27 3 3 D.(1 2)(1 2) 122 a(a>0)【解法指导】正确运用二次根式的性质①( a) 2a(a≥0) ;② a 2 a0(a 0) ;③ab a b( a≥0, b≥0) ;④b b(b≥0, a>0)a aa(a<0)进行化简计算,并能运用乘法公式进行计算. A 、 B 中的项不能合并.D.(1 2)(1 2) 1 ( 2) 2【变式题组】1..故本题应选 C.9. (聊城)下列计算正确的是()A .2 3 4 2 6 5B .8 4 2C.27 3 3 D.( 3)2 310. 计算:( 15 4) 2007(4 15) 200711.(2 3 3 2) 2 (2 3 3 2) 212. ( 济宁) 已知 a 为实数,那么a2 =()A .aB .-a C.-1 D.013. 已知a>b>0,a+b=6 ab ,则a ba b的值为()2 1A .B .2 C. 2 D.2 2【例5】已知xy>0,化简二次根式xy的正确结果为()x2A .yB .y C.y D.y【解法指导】先要判断出y<0,再根据xy>0 知x<0. 故原式xyx【变式题组】y . 选D. 14. 已知a、b、c 为△ ABC三边的长,则化简 a b c ( a b c) 2的结果是.15. 观察下列分母有理化的计算:并利用这一规律计算:1 12 1 ,2 13 213 2 ,4 34 3 ,算果中找出规律,(1 1L1) ( 2006 1) .2 13 2 2006 200516.已知,则0<x<1,则( x 1)2 4 ( x1) 2 4 .x x1 1 b 5 1 5 1【例6】(辽宁)⑴先化简吗,再求值:,其中 a ,b .a b b a(a b) 2 22⑵已知 x3 2 , 32y3 2 ,那么代数式 32xy (x y)2 xy (x y)2值为 .【解法指导 】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x + y 的值,再代入求值 .ab a( a b) b 2(a b)2a b 5 1 5 1 【解】⑴原式=,当 a, b时, ab = 1,a + b = 5 ,原式= 5 .ab(a b)ab (a b)ab22⑵由题意得: xy = 1, x + y = 10, 原式= .【变式题组 】17.(威海)先化简,再求值:(a + b)2+ (a - b)(2a + b)- 3a 2,其中 a2 3 , b3 2 .a2a 2a 418.(黄石)已知 a 是 43 的小数部分,那么代数式 ( 22) (a ) 的值为 .a 4a 4 a2a a【例7 】已知实数 x 、y 满足 ( x x22008)( yy22008) 2008,则 3x 2-2y 2+ 3x - 3y - 2007 的值为( )A .- 2008B .2008C .- 1D . 1【解法指导 】对条件等式作类似于因式分解的变形,找出 a 、b 的关系,再代入求值 .解: ∵ ( x x 22008)( y y22008) 2008,∴ ( xx22008)2008 yy 2008 ,( yy22008)yy22008 xx220082008xx22008 ,由以上两式可得 x = y.选 D.∴ ( x x22008) 2008, 解得 x 2=2008,所以 3x 2- 2y 2+ 3x - 3y - 2007= 3x 2- 2x 2+ 3x - 3x - 2007=x 2- 2007= 1,故 【变式题组 】19.若 a >0, b > 0,且a( ab) 3 b( a5 b ) ,求 2a3bab的值 .演练巩固 · 反馈提高a b ab01. 若 m40 4 ,则估计 m 的值所在的范围是()A . 1< m < 2B . 2< m < 3C . 3<m < 4D . 4<m < 502.(绵阳)已知12 n 是正整数,则实数 n 的最大值为()A . 12B .11C . 8D . 303.(黄石)下列根式中,不是..最简二次根式的是()1 A.7 B. 3C.2D. 204.(贺州)下列根式中,不是最简二次根式的是( )1 100 101 1 100992 2A.2 B. 6 C. 8 D. 1005.下列二次根式中,是最简二次根式的是()A.12B.x233 C.D.2a 2b06.(常德)设 a = 20, b = (- 3)2, c 9 , d ( 1) 1 2, 则 a 、b 、 c 、d 、按由小到大的顺序排列正确的是()A .c < a < d <bB . b < d < a < cC . a < c < d <bD . b < c < a < d07.(十堰)下列运算正确的是() A . 32 5 B . 32 6C . ( 3 1)23 1D .52325 308.如果把式子 (1 a)1 根号外的因式移入根号内,化简的结果为()1 aA .1 a B . a 1C .a 1D .1 a09.(徐州)如果式子(x 1)2x 2 化简的结果为 2x - 3,则 x 的取值范围是()A . x ≤ 1B .x ≥ 2C . 1≤ x ≤ 2D . x > 010.(怀化)函数 yx 中自变量的取值范围是.x 211.(湘西)对于任意不相等的两个数a ,b ,定义一种运算 a ※ b =3 2 5 .那么 12※ 4= .3 2a21 a 112.(荆州)先化简,再求值:232,其中 a 3 .a2a 1 a a13.(广州)先化简,再求值:( a培优升级3)( a3) a(a 6) ,其中 a51 .201.(凉山州)已知一个正数的平方根是3x - 2 和 5x + 6,则这个数是 .02.已知 a 、b 是正整数,且满足 2(15 15 ) a b是整数,则这样的有序数对( a ,b )共有 对.03.(全国)设 a5 1 ,则aa42a 3a 2a 23.04.(全国)设 x2 aa1, a 是 x 的小数部分 , b 是 x 的小数部 , 则 a 3 +b 3+ 3ab = .2 105.(重庆)已知yx22 x222 ,则 x +y = .5x 4 4 5x06.(全国)已知 a2 1 , a 2 2 6 , a 6 2 ,那么 a 、b 、c 的大小关系是()A . a < b < cB .b < a < cC . c < b < aD .c < a < b35207.(武汉)已知 yx 1 4 x ( x , y 均为实数),则 y 的最大值与最小值的差为()A . 6 3B .3C . 5 3D . 6308.(全国)已知非零实数a 、b 满足 2a 4 b 2(a 3)b 24 2a ,则 a + b 等于()A .- 1B . 0C .1D . 209.(全国) 23 2 2 17 12 2 等于()A . 5 4 2B . 4 2 1C . 5D . 110. 已知 x2 xy y 0( x 0, y0) ,则3x xy y的值为( )1 1 A .B .325x 2 3 C .D .343 xy4 y11.已知 a b 2 a 1 4 b 2 3 c 3 1c 5 ,求 a + b + c 的值 . 212. 已知 913 与 913 的小数部分分别是 a 和 b ,求 ab - 3a + 4b + 8 的值 .考点·方法·破译第 2 讲 二次根式的化简与求值1. 会灵活运用二次根式的运算性质化简求值.2. 会进行二次根式的有理化计算,会整体代入求值及变形求值 .3. 会化简复合二次根式,会在根式范围内分解因式.经典· 考题· 赏析【例1 】(河北)已知x1 2 ,那么x x 的值等于xx3x 12x9 x 1【解法指导 】通过平方或运用分式性质,把已知条件和待求式的被开方数都用 1x表示或化简变形 .x解:两边平方得,x1 2 4 , xx1 2 ,两边同乘以 x 得, xx21 2 x ,∵ x 23x 1 5 x , x29 x 1 11x ,22∴原式 = 1 1 511【变式题组 】5 11 =5111. 若 a1 14 (0< a <1),则 a a a2. 设x1aa ,则 4x x 2的值为()A. a1aB.1 aaC. a1 aD .不能确定【例2 】(全国)满足等式x y y x2003x2003y 2003xy= 2003 的正整数对( x, y )的个数是() A . 1B . 2C . 3D .4【解法指导 】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解 .解:可化为xy( x y) 2003( x y) 2003( xy 2003) 0 ,∴ (xy 2003)( x y2003) 0∵xy2003 0 ,∴ xy2003 0,则 xy =2003,且 2003 是质数,∴正整数对( x, y )的个数有 2 对,应选 B. 【变式题组 】3.若 a > 0, b > 0,且 a( a 4 b ) 3 b( a 2 b ) ,求 2a 3b ab 的值 .【例3 】(四川)已知:xa1 (0 aa 1) ,求代数式a b abx2x 6 x 3 x 2 2x 2 4x 的值 . xx2 x x 2x24x【解法指导 】视 x - 2,x 2-4 x 为整体,把xa约.1 平方,移项用含 a 的代数式表示 x - 2,x 2-4 x ,注意 0<a <1 的制 a解:平方得,x a1 2 ,∴ x 2 aa 1 , x2a4x 4 a21 2 ,a2x4x a1 2 ,a( x 3)(x 2)x( x 2) x 2x 24x∴化简原式=g x x 3 x 2 x 24xa 1 ( 1 a)= (a 1 )2 a a a 2 2 a a 1 ( 1 a) a a【变式题组 】2, 4.(武汉)已知 xx 31 232 1,求代数式x 3 ( 52 x 4 x 2x 2) 的值.5.(五羊杯)已知 m 12 , n 12 ,且 (7 m 2 14m a)(3n 26n 7) 8 ,则 a 的值等于()A .- 5B . 5C .- 9D .9【例4 】(全国)如图,点 A 、C 都在函数 y等边三角形,则点 D 的坐标为.3 3 ( xx0) 的图像上,点 B 、D 都在 x 轴上,且使得△ OAB 、△ BCD 都是 【解法指导 】解:如图,分别过点 A 、C 作 x 轴的垂线,垂足分别为E 、F. 设OE=a ,BF=b ,则 AE= 3 a ,CF = 3 b ,所以,点 A 、C 的坐标为( a, 3 a )、( 2a + b, 3 b ),所以3a23 3ya 3 ,解得,3b (2 a b) 3 3因此,点 D 的坐标为( 2 6 ,0) 【变式题组 】6.(邵阳)阅读下列材料,然后回答问题.b63ACOE BF Dx在进行二次根式化简时,我们有时会碰上如52 2 ,3 3 3一样的式子,其实我们还可以将其进一步化简: 15 5 3 3 33 5 3 ; (一)3 2 2 3 33 36 ; (二)3223 13 3 11 3 13 1 ;(三)以上这种化简的步骤叫做分母有理化,2还可以用以下方法化简:2 3 1 3 13 123 13 3 13 1 1 3 13 13 1;(四)( 1)请你用不同的方法化简2;53①参照(三)试得:2=;(要有简化过程) 5 3②参照(四)试得: 2 =;(要有简化过程)53 ( 2)化简:1 1 1L1 3 153752n 12 n 1【例5 】(五羊杯)设 a 、b 、c 、d 为正实数, a < b , c < d ,bc > ad ,有一个三角形的三边长分别为a2c 2 , b2d 2,(b a)2(d c)2,求此三角形的面积 .【解法指导 】虽然不能用面积公式求三角形面积 ( 为什么 ?) ,a2边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.c 2的几何意义是以 a 、c 为直角边的直角三角形的斜解:如图,作长方形 ABCD ,使 AB = b - a , AD =c ,延长 DA 至 E ,使 DE =d ,延长 DC 至 F ,使 DF = b ,连结 EF 、FB 、EB , 则BF =a2c2, EF =b2d2,BE=(b a)2(d c)2,从而D知△ BEF 就是题设的三角形, 而 S △ BEF =S 长方形 ABCD + S △ BCF + S △ ABE baCF - S △ DEF = ( b - a) c + 1 2( d -1 1c)( b - a) - bd = ( bc -ad)d 22A cE【变式题组 】7. ( 北京 ) 已知 a 、b 均为正数,且 a +b = 2,求 U =a24b21演练巩固 · 反馈提高3 2 3 2xy x 2y2 01. 已知 x, y32,那么代数式32xy x2值为y202. 设 a7 1,则 3a312a26a 12 =()A . 24B . 25C . 4 7 10D . 4 7 1203.(天津)计算 ( 3 1)20012( 3 1)20002( 3 1)1999200104.(北京)若有理数 x 、 y 、z 满足xy 11 z 2( x y z) ,则 2( x yz)205.(北京)正数 m 、 n 满足 m 4 mn 2 m 4 n4n 3 0 ,则m 2 m 2 n n 8200206.(河南)若 x3 1 ,则 x3(2 3) x2(1 2 3) x 3 5 的值是()A . 2B . 4C . 6D . 807. 已知实数 a 满足 2000a a 2001 a ,那么 a 20002的值是()A . 1999B . 2000C . 2001D . 200208. 设 a1003 997 , b 1001 999 , c 2 1000 ,则 a 、b 、c 之间的大小关系是()A . a < b < cB . c < b < aC . c < a < bD . a < c < b09. 已知 1 ( x 1)2x ,化简 x21 x x21 x44B3 32003培优升级01.(信利)已知 x1 3 ,那么1x 21 1 x 24 x 202.已知 a 4a 1 5 ,则 6 2 a03.(江苏)已知( xx22002)( yy22002) 2002 ,则 x 23xy 4 y26 x 6 y 5804.(全国)7x 29x 13 7x 25x 13 7x ,则 x =05.已知 x3 2 , y3 2 ,那么 yx32 3 2 x2y206.(武汉)如果a b20022 , ab2002 2 , b3c3b3c ,那么 a 3b3c 的值为()A . 2002 2002B . 2001C . 1D . 007.(绍兴)当 x12002 2时,代数式 (4 x32005 x2001)的值是( )A . 0B .- 1C . 1D . 2200308.(全国)设 a 、b 、c 为有理数,且等式a b 2 c 35 26 成立,则 2a 999b 1001c 的值是()A . 1999B . 2000C . 2001D .不能确定09.计算:( 1)6 4 3 3 2( 63)( 32)( 2)10 14 15 21 10141521( 3)1 1 1L13 35 3 3 5 7 5 5 749 47 47 49( 4)3 2 2 5 2 6 7 2 12 9 2 20 11 2 30 13 2 4215 2 5617 2 722210.已知实数 a 、 b 满足条件a bb1 ,化简代数式a (1 1)g a b( a b 1)2,将结果表示成不含 b 的形式 .11.已知 x1 a 2(a a0) ,化简:x 2 x 2x 2 x 212.已知自然数 x 、y 、z 满足等式x 2 6 y z 0 ,求 x + y +z 的值 .考点·方法·破译第 3 讲 一元二次方程的解法1. 掌握一元二次方程根的定义并能应用根的定义解题;2. 掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3. 会应用一元二次方程解实际应用题。
最新初三上数学培优专题讲义九AB------相似三角形
![最新初三上数学培优专题讲义九AB------相似三角形](https://img.taocdn.com/s3/m/98ab54ca284ac850ad0242d2.png)
初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。
求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。
(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。
(3)BD 2=AD·DF 吗?请说明理由。
考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。
变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。
初三上学期数学全册教案(暑假补习班)
![初三上学期数学全册教案(暑假补习班)](https://img.taocdn.com/s3/m/c57cf5210242a8956aece42f.png)
1
1
;
x 1 2
(1)x +1=0;
(2) x 2
(4) x3 x 2 x 1 0 ;
(5) 2 x(3 x 5) 6 x 4 ;
2
2
(3) x y 1 0 ;
2
(6)(x-2)(x-3)=5.
2
6.下列哪些数是方程 x 6 x 8 0 的根?答案:
________。
如果非零实数 a 、b 、 c 中满足c = o,则关于 x 的一元二次方程 ax 2 bx c 0 必有一根________。
六、课堂小结
1、判断一个方程是否是一元二次方程的关键是什么?
2、要确定一元二次的项及系数,首先要把方程化成一元二次方程的一般形式是什么?;
七、巩固复习
2
2
10、已知 3 2 2 是关于 x 的方程 x 6 x m 的一个根,则 m ________。
11、根据题意,列出方程:
2
(1)剪出一张面积是 240 cm 的长方形彩纸,使它的长比宽多 8 cm ,这张彩纸的长是多少?
(2)某厂经过两年时间将某种产品的产量从每年 14400 台提高到 16900 台,平均每年增长的百分率是多
一、选择题
1. 若 px 3x p p 0 是关于 x 的一元二次方程,则(
2
2
)
A.p≠1
B.p≠0 且 p≠1
C.p≠0
D.p≠0 且 p≠1
2
2.已知 x=﹣1 是关于 x 的方程 x ﹣x+m=0 的一个根,则 m 的值为(
)
A.﹣2
B.﹣1
C.0
初三数学培优(提高班)(1)
![初三数学培优(提高班)(1)](https://img.taocdn.com/s3/m/fbfaf423e2bd960590c67720.png)
初三数学培优:一次函数、反比例函数(提高班)一、选择题:( )1.在反比例函数y=2x的图象上的一个点的坐标是……………………………… A .(2,1) B .(-2,1) C .(2,12) D .(12,2)( )2.函数y=(a -1)x a是反比例函数,则此函数图象位于………………………………A .第一、三象限B .第二、四象限C .第一、四象限D .第二、三象限( )3.已知正比例函数y=(3k -1)x ,y 随着x 的增大而增大,则k 的取值范围是……… A .k<0B .k>0C .k<13D .k>13( )4.直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有多少个 A .4 B .5C .7D .8( )5.在函数y=kx(k>0)的图象上有三点A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),已知x 1<x 2<0<x 3,则下列各式中,正确的是…………………………………………( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 2<y 1<y 3D .y 3<y 1<y 2( )6.函数y ax a =-+与(0)ay a x-=≠在同一坐标系中的图象可能是………………( )7.下列函数中,y 随x 增大而增大的是…………………………………………………… ①()02<=x xy ②x y 2-= ③12-=x y④ ()04>-=x xy ⑤x y 4-=A .①②③⑤B .②③④C .③④D .④( )8.在直线y=12x+12上,到x 轴或y 轴的距离为1的点有……………………… A .1个B .2个C .3个D .4个( )9.无论m 、n 为何实数,直线y=-3x+1与y=mx+n 的交点不可能在……………… A .第一象限B .第二象限C .第三象限D .第四象限O Axy OCxy O DxyO Bxy( )10.如图,在ABC △中,2AB AC ==,20BAC ∠=.动点P Q ,分别在直线BC上运动,且始终保持100PAQ ∠=.设BP x =,CQ y =,则y 与x 之间的函数关系用图象大致可以表示为…………………………………………………………二、填空题:11.一次函数y=kx+b 中,y 随x 的增大而减小,且kb>0,则这个函数的图象一定不经过第______象限.12.如图,点A 在反比例函数y=kx的图象上,AB 垂直于x 轴, 若S △AOB =4,•那么这个反比例函数的解析式为________ . 13.如果点P (2,k )在双曲线xy 6-=上,那么点P 到x 轴的距离为_________。
最好的初中数学 辅导资料
![最好的初中数学 辅导资料](https://img.taocdn.com/s3/m/eb01743426284b73f242336c1eb91a37f1113220.png)
以下是一些被广泛认为较好的初中数学辅导资料:
1. 学而思《69模型公式秒解初中几何》:这本书专注于初中几何,提供模型公式,以解决各种几何问题。
2. 《初中数学一课一练》:这是大名鼎鼎的教辅,分为蓝色普通版和粉色增强版,适合在学校考试要求的基础之上拓展一下思路。
3. 《蝶变中考-考点必刷题》:蝶变中考系列教辅资料中蝶变笔记和考点必刷题内容上是相对应的,这两本搭配起来一起用,效果更好,可以更好地帮助初中生巩固数学知识点,理清初中识架构体系。
4. 《曲一线初中数学八年级下册人教版2024版初中同步5年中考3年模拟五三》:这本书包含了初中同步的练习题,适合学生巩固所学知识。
5. 《数学奥林匹克小丛书(第三版).初中卷系列1-8 (套装全8本)》:这是一套数学奥林匹克的小丛书,适合对数学有兴趣的学生提高解题能力。
6. 《2024春初中必刷题数学八年级下册人教版初二教材同步练习题教辅书理想树图书》:这是与教材同步的练习题,适合学生巩固所学知识。
初二升初三数学培优教材(培训学校专用)
![初二升初三数学培优教材(培训学校专用)](https://img.taocdn.com/s3/m/968113829ec3d5bbfd0a74cd.png)
第一讲 一元二次方程【学习目标】1、学会根据具体问题列出一元二次方程,培养把文字叙述的问题转换成数学语言的能力。
2、了解一元二次方程的解或近似解。
3、增进对方程解的认识,发展估算意识和能力。
【知识要点】1、一元二次方程的定义:只含有一个未知数的整式方程,并且都可以化为02=++c bx ax (a 、b 、c 、为常数,0a ≠)的形式,这样的方程叫做一元二次方程。
(1)定义解释:①一元二次方程是一个整式方程;②只含有一个未知数;③并且未知数的最高次数是2。
这三个条件必须同时满足,缺一不可。
(2)02=++c bx ax (a 、b 、c 、为常数,0a ≠)叫一元二次方程的一般形式,也叫标准形式。
(3)在02=++c bx ax (0a ≠)中,a ,b ,c 通常表示已知数。
2、一元二次方程的解:当某一x 的取值使得这个方程中的c bx ax ++2的值为0,x 的值即是一元二次方程02=++c bx ax 的解。
3、一元二次方程解的估算:当某一x 的取值使得这个方程中的c bx ax ++2的值无限接近0时,x 的值即可看做一元二次方程02=++c bx ax 的解。
【经典例题】例1、下列方程中,是一元二次方程的是①042=-y y ; ②0322=--x x ; ③312=x; ④bx ax =2;⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ;⑨22=-x x ;⑩)0(2≠=a bx ax例2、(1)关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程.(2)如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a__________. (3)关于x 的方程135)32(12=+-++x x m m m 是一元二次方程吗?为什么?例3、把下列方程先化为一般式,再指出下列方程的二次项系数,一次项系数及常数项。
初三数学知识点专题讲解与训练27---数形结合(培优版)
![初三数学知识点专题讲解与训练27---数形结合(培优版)](https://img.taocdn.com/s3/m/2f2378faad02de80d5d84016.png)
, C.(14 14)
- ,一 D. ( 14 14)
y
y A
C
x
O
BD
第 2 题图
A10 A6 A2
O A1 A5 A9
A11 A7 A3
x
A4 A8 A12
第 6 题图
3 / 10
7.在△ABC 中,∠C=900 ,AC=3,BC=4.在△ABD 中,∠A=900 ,AD=12.点 C 和点 D 分居 AB
得a =
4(2 − b)..因
a,h
2 − b > 0,
为边长且是整数.故当
得
b<2,取 b = 1, a =
4 不是整数;当
4−b
4 − b > 0,
3
2 − b < 0, 得 b>4,要使 a,b 为整数,只有两种取法:若 b=5 时,a=12(或 b= 12,a=5);若 b=8 4 − b < 0,
三角【形另例两5】边上设)△的A面BC积三都边相上等的,三证个明内:接△正AB方C形为(正有三两角个形顶.点在三角形的一(边江上苏,省另竞两赛个试顶题点)分别在 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为ha ,hb , hc ,△ABC 的面积
为 S ,则易得三个内接正方形边长分别为 2S , 2S , 2S ,由题意得 , a + ha = b + hb = c + hc a + ha b + hb c + hc
专题 27 数形结合答案
例 1 5 提示:作出 B 点关于 x 轴的对称点 B'(2,-3),连结 AB'交 x 轴于 C,则 AB'=AC 十 CB' 为
初三上册数学直升班培优讲义学生版第5讲一元二次方程的构造及应用(学生版)
![初三上册数学直升班培优讲义学生版第5讲一元二次方程的构造及应用(学生版)](https://img.taocdn.com/s3/m/9bfe897133d4b14e8424681c.png)
o一元二次方程的构造及应用I -模块一利用根的定义构造方程模块二利用根系关系构造方程模块一利用根的定义构造方程如果m 、n 分别是一兀二次方程ax bx c(a )的两根,那么有ambm c , an bn c,相反的,如果已知 m 、n 分别满足am bm c , an bn c,且a,那就可以构造 •个一兀二次方程 ax bx c (a )使得m 、n 是它的解.模块二 利用根系关系构造方程如果m 、、n 分别疋一兀二次方程 ax bx c (a)的两根,由韦达疋理,mnb c 一,mn 一, a a相反的,如果已知 m 、n 分别满足 bcm n, mn — ,且a ,那就可以构造一 个 兀二次方程a a使得m 、n 是它的两根.这里主要提到的是同形构造及和积构造.(2)如果实数a , b 分别满足【点评】通过这道题,让孩子们深刻理解如何利用根的定义去构造方程,而且要理解这两道常考题 型的区别,抓住题目给出的条件,根据条件去决定这道题需不需要讨论.通过这道题,也 加深孩子们对于分类讨论思想的理解.(1)由根的定义,知 a , b 为一兀二次方程 x x 的两个根由韦达疋理知 a bab于是a b ab ab(a b). (2)由题意知 a , b 为方程x x的两个根,且 a , 解方程xx,得: x厂 x,①当a b 时, 有a b ,ab ,…a ba b ab②当a b 时, 方程的根为 x,x『.当a b 「时,a b aV ;当a b 一时,- 厂a b a综上所述,-— 或•或■.【解析】a bb ,模块一 利用根的定义构造方程IIIJ(1)已知a , b 是不相等的实数,且 a,求a b ab 的值. -的值.b【解析】(1)由p p, qq 有p ,— •由q,又pq,所以p q ,则 q q可变形为 -p p及p -,qqq可知 p 与— 是方程xx的根,因此p—qq(2) 由t t 可知, t ,故-t又sS, sts,故 s 、 -是方程 x x 的两根,从而可知t ts ,故sts ss - —s — ----ttt t t已知实数 a b ,且满足(a )(a (b ) (b ),求①a【解析】 由根定义,a , b 是方程(x 整理得a , b 是一元二次方程 ①由根系关系,a b a baba b② 则——a b ③ 由①可知 ab (x)的两个根, 的两个根,【点评】 bb aa (a b ) .ab(a b)ab.ab这道题是一道特别经典的题,老师可以大概提一下把是可以的,但是相对麻烦•并且老师还可以结合例 学生们在做一遍.a+1) 去掉a.ab和( b+1) 看做整体去构造也 b ,那应该要分类讨论,带着,且 pq,求P -的值.q(2) 实数 s , t 满足 且st + st ,求— 的值. (3) 实数 p , q 满足且pq,求P—的值. qa.ba ,ab例题3已知(1)【注意】其实构造成x x也可,不过此时两根变为一和t ,由根系关系可知一 ts st,,st s 故t - s (相对麻烦些).stts(3)由 q q(q )得:一g- 且 p p,因为pq ,即p -q qq故p 、- 是方程xx的两个不相等的头数根,由韦达疋理:qp -,p -;所以p —P -卫.q q q q q【点评】锻炼分析能力和同形构造能力:①对比两个方程最简形式的系数能发现什么(从条件出发 怎么变成同形)?②怎么出现一个字母的倒数(从结果出发)已知△ ABC 的三边a , b , e 满足:b e,be a a,试确定△ ABC 的形状【解析】T b e, be a a• b , e 是关于x 的方程xx (a a) 有两个实数根. T △ ()(aa)> ,整理得: (a ) < .又(a )》,••• a . 此时△,方程的两根相等, 即:be .• △ ABC 是等腰三角形.的三边长.模块二 利用根系关系构造方程111若一直角三角形两直角边的长 a 、b(a b)均为整数,且满足a b m ab m•试求这个直角三角形【解析】因为a 、b 为正整数,所以,m 也为正整数.且a b m+ ab m从而,a 、b 是关于x 的方程x (m )x m的两个不等整数解.所以 (m ) mmm 必为完全平方数.不妨设m m k , k为正整数,即m m k由此知关于数•于是m的方程①应有整数解,则k为完全平方数.D' ()(k ) ( k )也必为完全平方令k (n k),其中n为正整数.则(n k) k n(n k).显然n n k .又,于是,分三种情况讨论:n 时,k ,无整数解;n 时,k ,解得k ,m 直角三角形的三边长分别为5, 12, 13; n 时,k ,解得k ,m 直角三角形三边长分别为6,8, 10.综上,直角三角形的三边长分别为5,12,13 或6, 8, 10.【点评】这道题当然可以直接利用判别式为完全平方数去进行配方去做,然后利用平方差公式去做, 根据两数之和和两数之差同奇偶去把这道题给解决.已知x、y均为实数,且满足xy x y ,x y xy ; (3)x y xy . x x y x y xy y .求:(1)x y ; (2)x y【解析】由已知xy x y ,x y xy 5所以xy和x y是方程t t ①的两个实数根.解方程①得t t .即xy ,x y ;或者xy , xi)当xy , x y 时,x、y是方程u u ②的两个根因为△() ,所以方程②有实数根.(1)x y (x y) xy .(2)x y x y xy xy(x y xy)( ) .(3)x x y x y xy y x y (x y ) x yii )当i xy , x y 时,x、y是方程v v ③的两个根因为△() ,所以方程③没有实数根.综上可知(1)x y(2)x y x y xy .(3)x x y x y xy y【点评】这道题主要锻炼学生的双重构造方程的能力,属于较难的代数的题,考察也比较综合,联系到恒等变形,及知二推课后作业r r . 2 2 1 .若a 2a 1 0 , b 2b 1 0,则a b的值为b a(按照从大到小填写)2 .已知m m,n n '且m n ,【解析】1.2或;2.由m m 可知,m ,故又,m n,故一、—是方程n n m n 由根系关系可知, _ __m n演练2 9m x 则2--的值为m n23 .若ab 1,且5a 2001a 9 0,9b 2001b【解析】由9b2 2001b 5 0得,5所以a, 1可以看作是方程b 1_5x212001— b2001x由韦达定理,得:,即——一m m的两根;20 ,又5a 2001a0的两个根..(填小数形式)警398.4 .5练34 .已知关于x的方程的两个根,求以y ( b)y bxy,有两个相等的实数根,,y为根、二次项系数为2的、y是关于y的方程元二次方程.【解析】由求根公式知,(b)当b 时,方程y,解得b , b ,当b,解得y , y ,故、讨时,关于y的方程无解;,.y ,故所求方程为(y )(y ),即a b5•已知:a, b, e三数满足方程组ab,试求方程bx ex a 的根.e e【解析】由方程组得:a, b是方程x x e e 的两根,(e .) ,e . , a b ,所以原方程为x x ,x x .【解析】由于xy (x y) , xy x y) ,则得到t ,t ,即xy ,x y ①;或者xy ,x y ②;①的时候x、y为方程u u 的根,能为题目中要求的正整数,舍;②的时候 x、y为方程u u 的根,故x y (x y) xy.xy与(x y)为方程t t 的两个根,,不是完全平方数,x、y不可u , u .大家都知道一元二次方程用- ■-:,由韦达定理根与系数关系知道:, ,同学们自己证明下,看看自己能证明出来吗m " fti演练46 .已知x、y是正整数,并且xy x y,x y xy ,则x y对于一个一元三次方程■< ■::-<'■!,根与系数也有同样的关系:。
初三数学培优专题(1)“平移后将军饮马”问题
![初三数学培优专题(1)“平移后将军饮马”问题](https://img.taocdn.com/s3/m/7b0712a8f021dd36a32d7375a417866fb84ac06a.png)
初三培优专题(1) “平移后将军饮马”问题【引例】已知A (1,1)、B (4,2).(1)P 为x 轴上一动点,求P A +PB 的最小值和此时P 点的坐标;点的坐标;(2)P 为x 轴上一动点,求PBPA 的值最大时P 点的坐标;点的坐标;(3)(平移后“将军饮马”)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;点的坐标;方法:解决的关键还是抓不变的CD ,一抓其长度不变,将“三动线段”转化为“两动线段”;二抓CD 方向及长度不变,利用平移,构造平行四边形,将其转化为“两定一动”型“将军饮马”问题,在动点的数量上减少了1。
答案(答案(11)()(22,0) (2)()(-2-2-2,,0)(3)13+1 ,(53,0)yxBOA yxBOA yxBOA CD【例】(2013年成都中考)在平面直角坐标系中,已知抛物线21(2y x bx c b =-++,c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限. (1)如图,若该抛物线过A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . ()i 若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M 、P 、Q 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;()ii 取BC 的中点N ,连接NP ,BQ .试探究PQNP BQ +是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.解:(1)Q 等腰直角三角形ABC 的顶点A 的坐标为(0,1)-,C 的坐标为(4,3) ∴点B 的坐标为(4,1)-.Q 抛物线过(0,1)A -,(4,1)B -两点, ∴1116412c b c =-⎧⎪⎨-⨯++=-⎪⎩,解得:2b =,1c =-, ∴抛物线的函数表达式为:21212y x x =-+-.(2)方法一:)(0i A Q ,1)-,(4,3)C ,∴直线AC 的解析式为:1y x =-.设平移前抛物线的顶点为0P ,则由(1)可得0P 的坐标为(2,1),且0P 在直线AC 上. Q 点P 在直线AC 上滑动,∴可设P 的坐标为(,1)m m -,则平移后抛物线的函数表达式为:21()12y x m m =--+-.解方程组:211()(1)2y x yx m m =-⎧⎪⎨=--+-⎪⎩, 解得111x m y m =⎧⎨=-⎩,2223x m y m =-⎧⎨=-⎩ (,1)P m m ∴-,(2,3)Q m m --.过点P 作//PE x 轴,过点Q 作//QF y 轴,则(2)2PE m m =--=,(1)(3)2QF m m =---=. 022PQ AP ∴==.若以M 、P 、Q 三点为顶点的等腰直角三角形,则可分为以下两种情况: ①当PQ 为直角边时:点M 到PQ 的距离为22(即为PQ 的长). 由(0,1)A -,(4,1)B -,0(2,1)P 可知,0ABP ∆为等腰直角三角形,且0BP AC ⊥,022BP =.如答图1,过点B 作直线1//l AC ,交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线1l 的解析式为:1y x b =+, (4,1)B -Q ,114b ∴-=+,解得15b =-,∴直线1l 的解析式为:5y x =-.解方程组251212y x y x x =-⎧⎪⎨=-+-⎪⎩,得:1141x y =⎧⎨=-⎩,2227x y =-⎧⎨=-⎩ 1(4,1)M ∴-,2(2,7)M --.②当PQ 为斜边时:2MP MQ ==,可求得点M 到PQ 的距离为2. 如答图2,取AB 的中点F ,则点F 的坐标为(2,1)-. 由(0,1)A -,(2,1)F -,0(2,1)P 可知:0AFP ∆为等腰直角三角形,且点F 到直线AC 的距离为2.过点F 作直线2//l AC ,交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线2l 的解析式为:2y x b =+, (2,1)F -Q ,212b ∴-=+,解得23b =-, ∴直线2l 的解析式为:3y x =-.解方程组231212y x y x x =-⎧⎨=-+-⎪⎩,得:111525x y ⎧=+⎪⎨=-+⎪⎩,221525x y ⎧=-⎪⎨=--⎪⎩ 3(15M ∴+,25)-+,4(15M -,25)--. 综上所述,所有符合条件的点M 的坐标为:1(4,1)M -,2(2,7)M --,3(15M +,25)-+,4(15M -,25)--.方法二:(0,1)A Q ,(4,3)C , :1AC l y x ∴=-,Q 抛物线顶点P 在直线AC 上,设(,1)P t t -,∴抛物线表达式:21()12y x t t =--+-,AC l ∴与抛物线的交点(2,3)Q t t --,Q 以M 、P 、Q 三点为顶点的三角形是等腰直角三角形,(,1)P t t -,①当M 为直角顶点时,(,3)M t t -,212132t t t -+-=-,15t ∴=±,1(15M ∴+,52)-,2(15M -,25)--,②当Q 为直角顶点时,点M 可视为点P 绕点Q 顺时针旋转90︒而成, 将点(2,3)Q t t --平移至原点(0,0)Q ',则点P 平移后(2,2)P ', 将点P '绕原点顺时针旋转90︒,则点(2,2)M '-,将(0,0)Q '平移至点(2,3)Q t t --,则点M '平移后即为点(,5)M t t -,∴212152t t t -+-=-,14t ∴=,22t =-,1(4,1)M ∴-,2(2,7)M --,③当P 为直角顶点时,同理可得1(4,1)M -,2(2,7)M --, 综上所述,所有符合条件的点M 的坐标为:1(4,1)M -,2(2,7)M --,3(15M +,25)-+,4(15M -,25)--.)PQii NP BQ+存在最大值.理由如下:由)i 知22PQ =为定值,则当NP BQ +取最小值时,PQNP BQ +有最大值.如答图2,取点B 关于AC 的对称点B ',易得点B '的坐标为(0,3),BQ B Q ='. 连接QF ,FN ,QB ',易得//FN PQ ,且FN PQ =, ∴四边形PQFN 为平行四边形. NP FQ ∴=.222425NP BQ FQ B Q FB ∴+=+''=+=…. ∴当B '、Q 、F 三点共线时,NP BQ +最小,最小值为25.∴PQ NP BQ +的最大值为2210525=. 【变式1】(2019•沈阳)•沈阳)如图,如图,如图,在平面直角坐标系中,在平面直角坐标系中,在平面直角坐标系中,抛物线抛物线22(0)y ax bx a =++≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点(2,3)D --和点(3,2)E ,点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式; (2)在y 轴上取点(0,1)F ,连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标; (3)在(2)的条件下,的条件下,当点当点P 在抛物线对称轴的右侧时,在抛物线对称轴的右侧时,直线直线DE 上存在两点M ,N (点M 在点N 的上方),且22MN =,动点Q 从点P 出发,沿P M N A →→→的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.解:(1)将点D 、E 的坐标代入函数表达式得:34229322a b a b -=-+⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, 故抛物线的表达式为:213222y x x =-++,同理可得直线DE 的表达式为:1y x =-⋯①;(2)如图1,连接BF ,过点P 作//PH y 轴交BF 于点H ,将点FB 代入一次函数表达式,同理可得直线BF 的表达式为:114y x =-+,设点213(,2)22P x x x -++,则点1(,1)4H x x -+,211131412221722224OBF PFBOBPF SS S PH BO x x x ∆∆⎛⎫=+=⨯⨯+⨯⨯=+-+++-= ⎪⎝⎭四边形, 解得:2x =或32, 故点(2,3)P 或3(2,25)8;(3)当点P 在抛物线对称轴的右侧时,点(2,3)P ,过点M 作//A M AN ',过作点A '直线DE 的对称点A '',连接PA ''交直线DE 于点M ,此时,点Q 运动的路径最短,22MN =Q ,相当于向上、向右分别平移2个单位,故点(1,2)A ',A A DE '''⊥,则直线A A '''过点A ',则其表达式为:3y x =-+⋯②,联立①②得2x =,则A A '''中点坐标为(2,1), 由中点坐标公式得:点(3,0)A '',同理可得:直线A P ''的表达式为:39y x =-+⋯③, 联立①③并解得:52x =,即点5(2M ,3)2, 点M 沿ED 向下平移22个单位得:1(2N ,1)2-.【变式2】(2019•深圳)如图抛物线2y ax bx c =++经过点(1,0)A -,点(0,3)C ,且OB OC =. (1)求抛物线的解析式及其对称轴;(2)点D 、E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.解:(1)OB OC =Q ,∴点(3,0)B , 则抛物线的表达式为:22(1)(3)(23)23y a x x a x x ax ax a =+-=--=--,故33a -=,解得:1a =-,故抛物线的表达式为:223y x x =-++⋯①, 函数的对称轴为:1x =;(2)ACDE 的周长AC DE CD AE =+++,其中10AC =、1DE =是常数, 故CD AE +最小时,周长最小,取点C 关于函数对称点(2,3)C ',则CD C D =', 取点(1,1)A '-,则A D AE '=,故:CD AE A D DC +='+',则当A '、D 、C '三点共线时,CD AE A D DC +='+'最小,周长也最小,四边形ACDE 的周长的最小值10110110113AC DE CD AE A D DC A C =+++=++'+'=++''=++;(3)如图,设直线CP 交x 轴于点E ,直线CP 把四边形CBPA 的面积分为3:5两部分,又11:():():22PCB PCA C P C P S S EB y y AE y y BE AE ∆∆=⨯-⨯-=Q , 则:BE AE ,3:5=或5:3,则52AE =或32,即:点E 的坐标为3(2,0)或1(2,0),将点E 、C 的坐标代入一次函数表达式:3y kx =+, 解得:6k =-或2-,故直线CP 的表达式为:23y x =-+或63y x =-+⋯② 联立①②并解得:4x =或8(不合题意值已舍去),故点P 的坐标为(4,5)-或(8,45)-.【变式3】如图,二次函数24y x x =-的图象与x 轴、直线y x =的一个交点分别为点A 、B ,CD 是线段OB 上的一动线段,且2CD =,过点C 、D 的两直线都平行于y 轴,与抛物线相交于点F 、E ,连接EF .(1)点A 的坐标为 ,线段OB 的长= ; (2)设点C 的横坐标为m①当四边形CDEF 是平行四边形时,求m 的值;②连接AC 、AD ,求m 为何值时,ACD ∆的周长最小,并求出这个最小值.解:(1)24y x x =-Q 中,令0y =,则204x x =-,解得10x =,24x =,(4,0)A ∴, 解方程组24y x y x x =⎧⎨=-⎩,可得00x y =⎧⎨=⎩或55x y =⎧⎨=⎩,(5,5)B ∴,225552OB ∴=+=. 故答案为:(4,0),52;(2)①Q 点C 的横坐标为m ,且////CF DE y 轴,(,)C m m ∴,2(,4)F m m m -,又2CD =Q ,且CD 是线段OB 上的一动线段,(2D m ∴+,2)m +,(2E m +,2(2)4(2))m m +-+,2(4)CF m m m ∴=--,22[(2)4(2)]DE m m m =+-+-+, Q 当四边形CDEF 是平行四边形时,CF DE =,22(4)2[(2)4(2)]m m m m m m ∴--=+-+-+,解得52m =;②如图所示,如图所示,过点过点A 作CD 的平行线,的平行线,过点过点D 作AC 的平行线,的平行线,交于点交于点G ,则四边形ACDG是平行四边形,AC DG ∴=,作点A 关于直线OB 的对称点A ',连接A D ',则A D AD '=,∴当A ',D ,G 三点共线时,A D DG A G ''+=最短,此时AC AD +最短, (4,0)A Q ,2AG CD ==, (0,4)A '∴,(42G +,2),设直线A G '的解析式为y kx b =+,则42(42)b k b =⎧⎪⎨=++⎪⎩,解得94274k b ⎧-=-⎪⎨⎪=⎩, ∴直线A G '的解析式为94247y x -=-+, 解方程组94247y x y x =⎧⎪⎨-=-+⎪⎩,可得12221222x y ⎧=+⎪⎪⎨⎪=+⎪⎩,1(222D ∴+,122)2+, 2CD =Q ,且CD 是线段OB 上的一动线段,1(222C ∴-,122)2-, ∴点C 的横坐标1222m =-, 由(4,0)A ,1(222C -,122)2-可得,2211(422)(022)322AC =-++-+=, 由(4,0)A ,1(222D +,122)2+可得,2211(422)(22)322AD =--++=, 又2CD =Q ,ACD∴∆的周长2338CD AC AD =++=++=, 故当1222m =-时,ACD ∆的周长最小,这个最小值为8.【变式4】(2016年福建龙岩压轴)如图,在直角坐标系中,抛物线259()28y a x =-+与M e 交于A ,B ,C ,D 四点,点A ,B 在x 轴上,点C 坐标为(0,2)-. (1)求a 值及A ,B 两点坐标;(2)点(,)P m n 是抛物线上的动点,当CPD ∠为锐角时,请求出m 的取值范围; (3)点E 是抛物线的顶点,M e 沿CD 所在直线平移,点C ,D 的对应点分别为点C ',D ',顺次连接A ,C ',D ',E 四点,四边形AC D E ''(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M '的坐标;若不存在,请说明理由.解:(1)Q 抛物线259()28ya x =-+经过点(0,2)C -,2592(0)28a ∴-=-+,12a ∴=-,2159()228y x ∴=--+,当0y =时,2159()0228x --+=,14x ∴=,21x =, A Q 、B 在x 轴上, (1,0)A ∴,(4,0)B .(2)由(1)可知抛物线解析式为2159()228y x =--+,C ∴、D 关于对称轴52x =对称,(0,2)C -Q , (5,2)D ∴-,如图1中,连接AD 、AC 、CD ,则5CD =,(1,0)A Q ,(0,2)C -,(5,2)D -,5AC ∴=,25AD =,222AC AD CD ∴+=, 90CAD ∴∠=︒,CD ∴为M e 的直径,∴当点P 在圆外部的抛物线上运动时,CPD ∠为锐角, 0m ∴<或14m <<或5m >.(3)存在.如图2中,将线段C A '平移至D F ',则5AF C D CD =''==,(1,0)A Q ,(6,0)F ∴,作点E 关于直线CD 的对称点E ',连接EE '正好经过点M ,交x 轴于点N ,Q 抛物线顶点5(2,9)8,直线CD 为2y =-, 5(2E ∴',4141))8-, 连接E F '交直线CD 于H ,AE Q ,C D ''是定值,AC ED ∴'+'最小时,四边形AC D E ''的周长最小,AC D E FD D E FD E D E F '+'='+'='+'''Q …, 则当点D '与点H 重合时,四边形AC D E ''的周长最小,设直线E F '的解析式为y kx b =+,5(2E 'Q ,41)8-,(6,0)F , ∴可得411232814y x =-, 当2y =-时,19041x =, 190(41H ∴,2)-,5(2M Q ,2)-, 1901554141DD ∴'=-=, Q 51517524182-=, 175(82M ∴',2)-【变式5】(2014广州中考数学)已知平面直角坐标系中两定点(1,0)A -、(4,0)B ,抛物线22(0)y ax bx a =+-≠过点A ,B ,顶点为C ,点(P m ,)(0)n n <为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当APB ∠为钝角时,求m 的取值范围; (3)若32m >,当APB ∠为直角时,将该抛物线向左或向右平移5(0)2t t <<个单位,点C 、P 平移后对应的点分别记为C '、P ',是否存在t ,使得首位依次连接A 、B 、P '、C '所构成的多边形的周长最短?若存在,构成的多边形的周长最短?若存在,求求t 的值并说明抛物线平移的方向;的值并说明抛物线平移的方向;若不存在,若不存在,若不存在,请说请说明理由.解:(1)Q 抛物线22(0)y ax bx a =+-≠过点A ,B ,∴2016420a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为:213222y x x =--; 221313252()22228y x x x =--=--Q , 3(2C ∴,25)8-.(2)如图1,以AB 为直径作圆M ,则抛物线在圆内的部分,能使APB ∠为钝角,3(2M ∴,0),M e 的半径52=.P 'Q 是抛物线与y 轴的交点,2OP ∴'=,2252MP OP OM ∴'='+=,P ∴'在M e 上,P ∴'的对称点(3,2)-,∴当10m -<<或34m <<时,APB ∠为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB 、P C ''是定值,所以A 、B 、P '、C '所构成的多边形的周长最短,只要AC BP '+'最小;第一种情况:抛物线向右平移,AC BP AC BP '+'>+, 第二种情况:向左平移,如图2所示,由(2)可知(3,2)P -,又3(2C Q ,25)8- 3(2C t '∴-,25)8-,(3,2)P t '--, 5AB =Q ,(2,2)P t ∴''---,要使AC BP '+'最短,只要AC AP '+''最短即可, 点C '关于x 轴的对称点3(2C t ''-,25)8, 设直线P C ''''的解析式为:y kx b =+, 2(2)253()82t k bt k b -=--+⎧⎨=-+⎪⎩, 解得412841132814k b t ⎧=⎪⎪⎨⎪=+⎪⎩ ∴直线414113282814y x t =++, 当P ''、A 、C ''在一条直线上时,周长最小, 4141130282814t ∴-++=1541t ∴=. 故将抛物线向左平移1541个单位连接A 、B 、P '、C '所构成的多边形的周长最短. 方法二:AB Q 、P C ''是定值,A ∴、B 、P '、C '所构成的四边形的周长最短,只需AC BP '+'最小, ①若抛物线向左平移,设平移t 个单位,3(2C t ∴'-,2525))8-,(2,2)P t ''---, Q 四边形P ABP '''为平行四边形, AP BP ∴''=',AC BP '+'最短,即AC AP '+''最短,C '关于x 轴的对称点为3(2C t ''-,25)8, C '',A ,P ''三点共线时,AC AP '+''最短,AC AP K K'''=,2502831212t t +=-++-+, 1541t ∴=. ②若抛物线向右平移,同理可得1541t =-, ∴将抛物线向左平移1541个单位时,A 、B 、P '、C '所构成的多边形周长最短.。
九数大培优全一册(学用)
![九数大培优全一册(学用)](https://img.taocdn.com/s3/m/71f840bf561252d380eb6ee2.png)
九年级数学大培优第二十六章反比例函数第19讲反比例函数知识导航1.反比例函数的定义和解析式;2.反比例函数的图象和性质;3.反比例函数与方程及不等式;4.反比例函数与神奇的几何性质;5.反比例函数与直线y=a或x=a;6.反比例函数与全等相似;7.反比例函数与图形变换;8.反比例函数与定值及最值.ʌ板块一ɔ反比例函数的定义和解析式方法技巧根据定义解题1.定义:一般地,形如y=k x(k为常数,kʂ0)的函数,叫做反比例函数,其中x是自变量,y是函数.自变量x的取值范围是不等于0的一切实数;2.解析式:y=k x(kʂ0)或x y=k(kʂ0)或y=k x-1(kʂ0).▶题型一根据定义判断反比例函数ʌ例1ɔ下列函数:①y=x2;②y=2x;③y=-2x;④y=12x;⑤y=1x+2;⑥y=1x-2;⑦x y=2;⑧y= 2x-1,⑨y=2x2.其中y是x的反比例函数的有(填序号).▶题型二根据定义确定k值或解析式ʌ例2ɔ(1)反比例函数y=-32x,化为y=k x的形式,相应的k=;(2)函数y=k x中,当x=2时,y=3,则函数的解析式为.362▶题型三根据定义确定待定系数的值ʌ例3ɔ(1)如果函数y=x2m+1是关于x的反比例函数,则m的值为;(2)若函数y=(m+2)x m2-5(m为常数)是关于x的反比例函数,求m的值及函数的解析式.针对练习11.下列函数中,为反比例函数的是()A.y=x3B.y=13xC.y=1x-3D.y=1x22.反比例函数y=-32x化为y=k x的形式后,相应的k= 32.3.若关于x的函数y=(m2-4)x m2-m-7是反比例函数,求m的值.ʌ板块二ɔ反比例函数的图象和性质方法技巧抓住反比例函数的性质并结合图象解题一般地,对于反比例函数y=kx(kʂ0),由函数图象,并结合解析式,我们可以发现:1.图象分布当k>0时,x,y(同号或异号),函数图象为第象限的两支曲线;当k<0时,x,y(同号或异号),函数图象为第象限的两支曲线.因此反比例函数的图象也叫做双曲线.2.对称性若点(a,b)在反比例函数的图象上,则点,,也在此图象上,故反比例函数的图象关于直线,对称,关于点00成中心对称.3.增减性当k>0时,在每一个象限内,y随x的增大而;当k<0时,在每一个象限内,y随x的增大而.▶题型一反比例函数的增减性ʌ例1ɔ在反比例函数y=1-8m x的图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1>y2,则m的取值范围是()A.m>18B.m<18C.mȡ18D.mɤ1818ʌ例2ɔ已知反比例函数y=-6x.(1)画出这个反比例的图象;(2)当-6ɤx<-2时,y的取值范围是;(3)当|y|ȡ3时,x的取值范围是.九年级数学 大培优▶题型二 反比例函数的图象的对称性ʌ例3ɔ 如图,直线y =a x (a ʂ0)与双曲线y =k x(k ʂ0)交于A ,B 两点,试说明A ,B 两点关于原点对称.▶题型三 反比例函数的图象与系数的关系ʌ例4ɔ 如图,反比例函数①y =k 1x ,②y =k 2x ,③y =k 3x ,④y =k 4x的部分图象如图所示,则k 1,k 2,k 3,k 4的大小关系是.▶题型四 反比例函数中k 的几何意义如图,过双曲线上任意一点P 作x 轴,y 轴的垂线段P M ,P N ,则所得的矩形P M O N 的面积S =P M ㊃P N =|y |㊃|x |=|x y|=|k |,即在反比例函数y =k x(k ʂ0)的图象上任取一点向两坐标轴作垂线段,则两垂线段与两坐标轴所围成的矩形的面积等于|k |,且这个面积的值与取点的位置无关.特别地,S әP M O =S әP N O =12|k |.ʌ例5ɔ 如图,平行于x 轴的直线A B 与双曲线y =k 1x 和y =k 2x(k 1>k 2)在第一象限内交于A ,B 两点,若S әO A B =2,求k 1-k 2的值.1212ʌ例6ɔ 如图,直线y =-12x 与双曲线y =k x(k <0)交于A ,B 两点,且点A 的横坐标为-4.(1)求k 的值;(2)过原点的另一直线交双曲线y =k x(k <0)于P ,Q 两点,点P 在第二象限.若A ,B ,P ,Q 四点组成的四边形面积为24,求点P 的坐标.148128针对练习21.对于反比例函数y =3x ,下列说法正确的是( )A.图象经过点(1,-3)B .图象在第二㊁四象限C .y 随x 的增大而减小 D.x <0时,y 随x 增大而减小2.在同一平面直角坐标系内画出函数y =k x +1和函数y =k x(k ʂ0)的图象大致是( )3.反比例函数y =a 2-a +1x(a 为常数)的图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y3),其中x 1<x 2<0<x 3,则y 1,y 2,y3的大小关系是 y 2<y 1<y 3 .4.如图,点A 是反比例函数y =k x(x <0)的图象上一点,过点A 作A B ʅx 轴于点B ,点P 是y 轴负半轴上一点,әA B P 的面积为1,求k 的值.12|5.点A (a ,y 1),B (2a ,y2)是反比例函数y =k x(k >0)的图象上的两点.(1)比较y 1与y 2的大小关系;(2)若A ,B 两点在一次函数y =-43x +b 位于第一象限的图象上(如图所示),分别过A ,B 两点作x 轴的垂线,垂足分别为点C ,D ,连接O A ,O B ,且S әO A B =8,求a 的值;(3)在(2)的条件下,如果3m =-4x +24,3n =32x,求使得m >n 的x 的取值范围.k xk x k a k 2a43x 43a 8343a 83a 1243a 83a 43x 323x43x 323x九年级数学 大培优ʌ板块三ɔ 反比例函数与方程㊁不等式方法技巧根据直线与双曲线的交点并结合图象解题▶题型一 反比例函数与方程ʌ例1ɔ 如图,直线y =-x +5与双曲线y =4x 交于A ,B 两点.(1)求A ,B两点的坐标;(2)将直线A B 向左平移n 个单位长度,若平移后的直线A B 与双曲线有唯一公共点,求n 的值.4ʌ例2ɔ 直线y =2x +4与反比例函数y =6x的图象交于A ,B 两点,直线y =m (m >0)与直线A B 相交于点M ,与反比例函数的图象相交于N ,若MN =4,求m 的值.426x6642426m 43▶题型二 反比例函数与不等式ʌ例3ɔ 如图,一次函数y =-x +4与反比例函数y =m x (m >0,x >0)的图象交于A ,B 两点,与x 轴,y轴分别相交于C ,D 两点.如果点A 的横坐标为1,利用函数图象求关于x 的不等式4-x <m x的解集.33▶题型三 反比例函数与数形结合比较大小ʌ例4ɔ 如图,直线y =2x +4与反比例函数y =k x 的图象相交于A (-3,a )和B 两点.(1)求A ,B 两点的坐标;(2)直接写出不等式k xɤ2x +4的解集.ʌ例5ɔ 如图,双曲线y =k x (k >0)与直线y =-12x +4相交于A ,B 两点.(1)当k =6时,求点A ,B 的坐标;(2)在双曲线y =k x (k >0)的同一支上有三点C (x 1,y 1),D (x 2,y 2),P (x 1+x 22,y0),请你借助图象,直接写出y 0与y 1+y 22的大小关系;(3)点M (x 1,y 1),N (x 2,y2)是双曲线y =6x (x >0)上任意两点,s =y 1+y 22,t =12x 1+x 2,试比较s 与t 的大小.备用图1221221221221221212212ʌ例6ɔ 当1ɤx ɤ4时,直线y =-2x +b 与双曲线y =4x 只有一个公共点,则b 的取值范围是 4269 .44=42-4242九年级数学 大培优针对练习31.如图,在平面直角坐标系中,直线A B :y 1=x +m 与双曲线C :y2=k x 相交于A (2,5),B 两点.(1)求点B 的坐标;(1)当y 1>y2时,x 的取值范围是;(2)当x <2时,y2的取值范围是.2.如图,一次函数y 1=x +1的图象与反比例函数y 2=k x (k 为常数,且k ʂ0)的图象都经过点A (m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接写出当x >0时,比较y 1和y 2的大小;(3)直接写出不等式4x -2ɤx +1的解集.23.如图,一次函数y 1=x +5的图象与反比例函数y 2=k x 的图象交于A ,B 两点.当x >1时,y 1>y2;当0<x <1时,y 1<y2.(1)直接写出反比例函数y 2的解析式;6(2)过点D (t ,0)(t >0)作x 轴的垂线,分别交双曲线y 2=k x和直线y 1=x +5于P ,Q 两点.若P Q=备用图3P D 时,求t 的值.666ʌ板块四ɔ 反比例函数与神奇的几何性质方法技巧根据反比例函数k 的意义,结合全等㊁相似或参数思想㊁根系关系,可得出反比例函数一些重要几何性质,在解题中可运用这些重要性质,从而大大提高解题效率.性质一 如图,直线A B :y =m x +n 交x 轴于点A ,交y 于点B ,交双曲线k x于C ,D 两点.求证:A C =B D.图1图2k xn m n mC MD F D N CE ʑB C B D A D A C C D B D =C D A C性质应用ʌ例1ɔ 如图,直线y =x +6交x 轴于点A ,交y 轴于点B ,交双曲线y =k x于点C ,D ,若C D =2(A C +B D ),则k 的值为.16O 16性质二 如图1,A ,B 为双曲线y =k x上任意两点,A C ʅy 轴于点C ,B D ʅx 轴于点D ,直线AC ,BD 交于点E .求证:①A B ʊC D ; ②A C A E =B D B E.图112|A E C E B E D E A C A E B DB E九年级数学 大培优变式1:如图2,A C ʅx 轴于点C ,B D ʅy 轴于点D ,A C ,B D 交于点E .求证:①A B ʊCD ; ②A C AE =B D B E.图2变式2:如图3,A ,B 为双曲线y =k x 上任意两点,A C ʅy 轴于点C ,B D ʅx 轴于点D ,直线AC ,B D交于图3点E .求证:①A B ʊC D ; ②A C A E =B D B E.ʌ例2ɔ 如图,双曲线y =k x经过矩形O A B C 边A B 的中点F ,交B C于点E ,且四边形O E B F 的面积为2,则k =.12ʌ例3ɔ 如图,点P 为双曲线y =8x(x >0)上一点,P A ʅx 轴于点A ,P Bʅy 轴于点B ,P A ,P B 分别交双曲线y =k x (x >0)于C ,D 两点,若S әP C D =1,则k =.888128a k 88216性质三 如图,直线A B 与双曲线y =k x只有唯一公共点A ,且A B 与y 轴不平行,A B 交x 轴于点B ,连接O A .求证:O A =A B.k a222性质四 如图,直线y =m x 交双曲线y =k x于A ,B 两点,点P 为双曲线上一点,直线P A ,P B 分别交x轴于M ,N 两点.求证:P M =P N .ʌ例4ɔ (2018十堰中考)如图,直线y =-x 与反比例函数y =k x的图象交于A ,B 两点,过点B 作B Dʊx 轴,交y 轴于点D ,直线A D 交反比例函数y =k x 的图象于另一点C ,求C B C A的值.212212121313针对练习41.如图,点A ,B 分别是双曲线y =4x 和y =2x第一象限分支上的点,且A B ʊy 轴,B C ʅy 轴于点C ,则A B ㊃B C = 2 .2.如图,直线y =-3x +b 与y 轴交于点A ,与双曲线y =k x在第一象限交于B ,C 两点,且A B ㊃A C =4,则k = 3 .2332334333九年级数学 大培优3.如图,әO A C 的顶点A 在双曲线y =9x上,点C 在x 轴上,O A 交双曲线y=1x 于点B ,直线A C 与双曲线y =9x只有唯一公共点,且A C 与y 轴不平行,则S әA B C =.992339a2x 181212391323234.如图1,直线y =-2x +6交x 轴于点B ,交y 轴于点A ,直线A B 与双曲线y =k x(k <0)交于C ,D 两点,C E ʅx 轴于点E ,D F ʅx 轴于点F .(1)若k =-8,求C D 的长;(2)求C E -D F 的值;(3)如图2,P 是双曲线y =k x (k <0)上第二象限上一动点,P G ʅx 轴于G ,交双曲线y =k 2x(k <0)于M ,PH ʅy 轴于H ,交y =k 2x(k <0)于N ,请直接写出MN 的最小值为(用含k 的式子表示).图1 图2552212ʌ板块五ɔ 反比例函数与直线x =a 或y =a方法技巧此类问题一般可用a 表示相关点的坐标,从而表示出相关线段长,将几何问题坐标化.解题时注意情况不明时需分类讨论.ʌ例1ɔ 如图,在平面直角坐标系x O y 中,直线y =2x +n 与x 轴,y 轴分别交于点A ,B ,与双曲线y =4x在第一象限内交于点C (1,m ),过x 轴正半轴上的点D (a ,0)作平行于y 轴的直线l ,分别与直线和双曲线y =4x 交于点P ,Q ,且点P 不与点Q 重合.(1)求m 和n 的值;(2)当a >1,P Q =2Q D 时,求әA P Q 的面积;(3)连接C Q ,当C P =C Q 时,求a 的值.44412,4a 4a针对练习51.如图,直线l :y =32x +3与双曲线y =k x 在第一象限内交于点A (a ,6).(1)求双曲线的解析式;(2)直线x =t (t >0且t ʂ2)分别交直线l ,双曲线y =k x 于C ,D 两点,连接A D ,若A C =A D ,请直接写出t 的值.323221232123213412362134362134362ʌ板块六ɔ 反比例函数与全等及勾股定理方法技巧利用全等㊁相似将线段关系转化为坐标关系,实现 几何问题坐标化 .▶题型一 反比例函数与全等ʌ例1ɔ 如图,点A 是双曲线y =8x在第一象限上的一动点,连接A O 并延长交另一分支于点B ,以A B为斜边作等腰R t әA B C ,随着点A 的运动,点C 的位置也不断地变化,但始终在一函数图象上运动,则这个函数的解析式为 8 .ʌ例2ɔ (2018原创题)如图,点A (2,4),B 均为双曲线y =k x 在第一象限上的点,且øA O B =45ʎ,求点B 的坐标.13881326263九年级数学 大培优▶题型二 反比例函数与勾股定理ʌ例3ɔ 如图,矩形A B C O 的顶点B (10,8),点A ,C 在坐标轴上,E 是B C 边上一点,将әA B E 沿A E折叠,点B 刚好与O C 边上的点D 重合,过点E 的反比例函数y =k x(k >0)的图象与边A B 交于点F ,求点F的坐标.154154针对练习61.如图,A (2,3)是双曲线y =k x(x >0)上的一点,P 为x 轴正半轴上一点,将点A 绕点P 顺时针旋转90ʎ,恰好落在双曲线上的另一点B ,求点P的坐标.2.如图,已知点A (2,2),P (0,a )是y 轴上一点,连接P A ,将线段P A 绕点P 逆时针旋转90ʎ得线段P A ᶄ,若线段P A ᶄ与反比例函数y =-3x(x <0)的图象有公共点,求a 的取值范围.333.如图,直线y =3x -3交坐标轴于A ,B 两点,将әA O B 沿A B 翻折得到әA C B ,点D 在A C 的延长线上,且C D =4A C ,反比例函数y =k x的图象经过点D ,求k 的值.ʌ板块七ɔ 反比例函数与图形变换方法技巧图形变换的本质是点的变换,解题的关键是根据变换规律,将变换后的关键点的坐标表示出来,再根据条件建立关系式.ʌ例1ɔ 平面直角坐标系中,点A (-2,0),B (0,3),点P 为第二象限内一点.(1)如图,将线段A B 绕点P 旋转180ʎ得线段C D ,点A 与点C 对应,试画出图形;(2)若(1)中得到的点C ,D 恰好在同一个反比例函数y =k x的图象上,求直线B C 的解析式;(3)若点Q (m ,n )为第四象限的一点,将线段A B 绕点Q 顺时针旋转90ʎ得到线段E F ,其中点A 与点E 对应,若点E ,F 恰好在同一个反比例函数的图象上,直接写出m ,n 之间的关系式为 m =-5n .备用图3232九年级数学 大培优ʌ例2ɔ 已知点A (a ,m )在双曲线y =8x 上且m <0,过点A 作x 轴的垂线,垂足为点B .(1)如图1,当a =-2时,P (t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90ʎ至点C .①若t =1,直接写出点C 的坐标;②若双曲线y =8x经过点C ,求t 的值;(2)如图2,将图1中的双曲线y =8x(x >0)沿y 轴折叠得到双曲线y =-8x (x <0),将线段O A 绕点O 旋转,点A 刚好落在双曲线y =-8x(x <0)上的点D (d ,n )处,求m 和n 的数量关系.8828x 针对练习71.在平面直角坐标系中,点A (a ,0)为x 轴上一动点,点M 的坐标为(1,-1),点N 的坐标为(3,-4),连接AM ,MN ,点N 关于直线AM 的对称点为点N ᶄ.(1)若a =2,在图1中画出线段MN 关于直线AM 的对称图形MN ᶄ(保留作图痕迹),直接写出点N ᶄ的坐标为 21;(2)若a >0,连接A N ,A N ᶄ,当点A 运动到øN ᶄA N =90ʎ时,点N ᶄ恰好在双曲线y =k x上(如图2),求k 的值;(3)点A 在x 轴上运动,若øN ᶄMN =90ʎ,此时a 的值为 465.65731-71x 4(6ʌ板块八ɔ 反比例函数与定值㊁最值方法技巧通过采取解析法求定值,建立二次函数模型求最值.▶题型一 反比例函数与定值ʌ例1ɔ 如图,点C (6,1),D (1,6)在双曲线y =6x的图象上.点T 在双曲线第一象限上(不同于C ,D ),直线T C ,T D分别交y 轴于E ,F ,则O F -O E 的值是 5 .6666166▶题型二 反比例函数与最值ʌ例2ɔ 如图,双曲线y =2x的第一象限的分支上一动点P ,点A (-2,-2),B (2,2),则P A -P B 的值为4 .22222222ʌ例3ɔ 如图,在平面直角坐标系中,直线A B :y 1=x +m 与双曲线C :y2=k x 相交于A ,B 两点,其中点A (2,5),A C ʅy 轴于点C .(1)求直线与双曲线的解析式;(2)直接写出x <2时,反比例函数值y 2的取值范围;(3)点E 为点B 下方直线A B 上一动点,直线E F ʅA B ,分别与直线A B ,双曲线C 及y 轴交于E ,F ,G 三点,求E F ㊃F G 的最大值.10101052325232253222253232494324946712494九年级数学 大培优针对练习81.如图,若直线y =-x +m 与反比例函数y =4x(x >0)的图象相交于两个不同点E ,F (点E 在点F 的左边),与y 轴相交于点M .(1)m的取值范围为;(2)求M E ㊃M F 的值.44224=2x 22.如图,已知反比例函数y =k x 和一次函数y =32x +6的图象有一个交点为P (-2,m ).(1)求反比例函数解析式;(2)若过点P 的直线l 与反比例函数y =k x的图象只有一个交点,求直线l 的解析式;(3)点Q 是双曲线在第四象限这一分支上的动点,过点Q 作直线,使其与双曲线y =k x只有一个公共点,且与x 轴,y 轴分别交于点C ,D ,直线y =32x +6与x 轴,y 轴分别交于点A ,B ,求四边形A BCD 面积的最小值.32663232x 3266666t 6t 66262121212t 12A 121242第20讲实际问题与反比例函数知识导航1.根据实际问题列反比例函数关系式或确定函数图象;2.反比例函数的应用.ʌ板块一ɔ根据实际问题列反比例函数关系式或确定函数图象方法技巧解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.▶题型一坐标与距离ʌ例1ɔ某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.下图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A.I=2RB.I=3RC.I=6RD.I=-6Rʌ例2ɔ某小学部课外兴趣小组的同学每人制作一个面积为1m2的矩形学具进行展示.设矩形的宽为x m,长为y m.那么这些同学所制作的矩形长y(m)与宽x(m)之间的函数关系的图象大致是()A.针对练习11.如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定值S时,x与y的函数关系为()A.y=S xB.y=S2xC.y=2S xD.y=x2S2.在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R(单位:Ω)与光照度E(单位:l x)之间成反比例函数关系,部分数据如下表所示:光照度E/l x0.511.522.53光敏电阻阻值R/Ω603020151210则光敏电阻值R与光照度E的函数表达式为R=30E.九年级数学 大培优ʌ板块二ɔ 反比例函数的应用方法技巧1.根据题意,建立反比例函数模型解题;2.正确认识图象,找到关键的点,运用好数形结合的思想.ʌ例1ɔ 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数y =-200x 2+400x 刻画;1.5小时后(包括1.5小时)y 与x 可近似地用反比例函数y =k x(k >0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几小时血液中的酒精含量达到最大值?最大值为多少?②当x =5时,y =45,求k 的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于酒后驾驶 ,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.22522511ʌ例2ɔ 某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为12m 2的矩形园子.(1)如图,设矩形园子的相邻两边长分别为x (m ),y (m ).①求y 关于x 的函数表达式;②当y ȡ4m 时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗为什么?1265651212x针对练习21.当温度不变时,某气球内的气压p (k P a )与气体体积V (m 3)的函数关系如图所示,已知当气球内的气压p >120k P a 时,气球将爆炸,为了安全起见,气球的体积V 应( )A.不大于45m 3B .大于45m 3C .不小于45m 3 D.小于45m 32.为预防流感盛行,对教室进行 薰药消毒 .已知药物在燃烧及释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段O A 和双曲线在A 点及其右侧的部分),根据图象所示信息,解答下列问题:(1)直接写出y 与x 之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?23150231503.(2018㊃乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (ħ)与时间x (h )之间的函数关系,其中线段A B ,B C 表示恒温系统开启阶段,双曲线的一部分C D 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0ɤx ɤ24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10ħ时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害200200九年级数学 大培优第二十七章 相似第21讲 相似三角形的判定知识导航1.相似多边形;2.平行线分线段成比例定理;3.相似三角形的判定方法.ʌ板块一ɔ 平行线分线段成比例定理方法技巧1.在利用平行线分线段成比例定理时,注意对应线段的位置;2.由平行线+中点得线段中点,利用中位线解题.▶题型一 运用平行线分线段成比例定理探究线段关系ʌ例1ɔ 如图,已知直线A B ʊC D ʊE F ,A F 与B E 交于点G ,且A G =2,G D =1,D F =5,求B C C E的值.A D FBC C E 35ʌ例2ɔ 如图,P 是▱A B C D 的边B C 的延长线上任意一点,A P 分别交B D 和C D 于点M 和N .求证:AM 2=MN ㊃MP .AM MN B M DMAM MN M P AM▶题型二 平行线等分线段定理证线段中点ʌ例3ɔ 如图,在正方形A B C D 中,点E 在对角线B D 上,连接A E ,D F ʅB D ,且D F =B E ,F B 与A C交于点M .求证:D E =2C M .针对练习11.如图,直线l 1,l 2,l 3分别交直线l 4于A ,B ,C 三点,交直线l 5于点D ,E ,F ,且l 1ʊl 2ʊl 3,已知D E ʒD F =3ʒ8,A C =24.(1)求B C的长;(2)当A D =4,C F =20时,求B E 的长.3815258522.如图,A B 是☉O 的直径,C D 是弦,A E ʅC D ,B F ʅC D ,垂足分别为点E ,F .(1)求证:D E =C F ;(2)若B F =1,A E =2,E F =4,求A B 的长.223.如图,在正方形A B C D 中,点E 在D A 的延长线上,A E =A B ,点F 在C D 上,M 为A F 的中点,过点M 作MN ʅM C 交B E 于点N .求证:MN =M C .九年级数学 大培优ʌ板块二ɔ 作平行线构造X 型相似方法技巧1.作平行线是构造三角形相似的基本方法,利用平行线对比例式进行转化.2.通常引入参数求比值或计算线段的长.▶题型一 延长平行线段构X 型相似ʌ例1ɔ 如图,▱A B C D 中,A B =2,A D =3,øA B C =60ʎ,A E ʅB C ,垂足为点E .F 为C D 的中点,D E与B F 相交于点P .(1)求E P D P 的值;(2)求B P 的长.1213ʑMN =32213131414B 132▶题型二 作平行线构X 型相似,证线段关系ʌ例2ɔ 如图,在әA B C 中,A B =A C ,D 为B C 上一点,点E ,F 在A D 上,A E =E F =12B E ,øB E D =øB A C .(1)求证:A E =F C ;(2)求证:B D =2C D .1212▶题型三 作平行线构X 型相似,求比值ʌ例3ɔ 如图,øC A B =90ʎ,A C =A B ,D 是A C 的中点,A F ʅB C 分别交B D ,B C 于点E ,F .A G ʅD B交B C 于点G .求D E A G的值.121▶题型四 利用角平分线+平行线构X 型相似ʌ例4ɔ 如图,在әA B C 中,A B =A C =5,B C =6,øA B C 的平分线交A C 于点D ,C E ʅB C 交B D 的延长线于点E ,求B D D E的值.265661148114011181183针对练习21.如图,在▱A B C D 中,M 为A B 的中点,DM ,D B 与A C 分别相交于点P ,Q .(1)求A P P Q的值;(2)若D B ʅB C ,B C =5,P Q =1.求P M 的长.121322D B 2+B C 221122121213DM 2162.如图,在әA B C 中,D 是B C 的中点,点F 在A C 上,F C =2A F ,B F 交A D 于点E .(1)求证:A E =E D ;(2)若A B =A D ,求B F A C的值.1212B F B M 23B F A C 233.如图,A D 为әA B C 的角平分线,点E 在A B 边上,C E 交A D 于点F ,C F =C D ,若A F =3F D ,E F =3,求C D 的长.34九年级数学 大培优ʌ板块三ɔ 作平行线构造A 型相似方法技巧1.求部分线段与整体线段的比的问题,往往构A 型相似求解;2.过线段端点或分点作平行线构双A (X )图或A X 型图;3.三条平行线构成X 型㊁A 型图中隐藏关系式:1a +1b =1c;4.等腰三角形中作腰的平行线构造新的等腰三角形.▶题型一 直接或间接作平行线构造A 型图求比值.ʌ例1ɔ 如图,在әA B C 中,点E 为线段B C 的中点,点D 在线段A C 上,B D 交A E 于点F .若B F =3F D ,求A F A E的值.12B 141212▶题型二 直接或间接作平行线构造A 型图转化比.ʌ例2ɔ 如图,在әA C B 中,点D 为边A C 的中点,点E 为B D 上任意一点,延长C E 交A B 于点M ,延长A E 交B C 于点N ,连接MN .求证:MN ʊA C .B NB C ▶题型三 直接或间接作平行线构造双A 型解题ʌ例3ɔ 如图,在R t әA B C 中,øA C B =90ʎ,C D ʅA B ,垂足为点D ,M 是C D 的中点,E F ʅA B ,垂足为点F .若E F =4,C E =3.2,求A E 的长.4432▶题型四1a+1b=1c型问题ʌ例4ɔ如图,A BʊC D,B D与A C交于点G,过点G作A B的平行线分别交B C,A D于点H,E.(1)求证:1A B+1C D=1G H;(2)过点H作H FʅA D,垂足为点F,若F G=2,A B=3,求C D的长.1111 A B 1C D1G H121 3112针对练习31.如图,点D是әA B C的边C B的延长线上一点,点F在A C上,D F交A B于点E,若B D=B E,C D=4A E,A C=5,求A F的长.152.如图,四边形A B C D中,A DʊB C,A FʊC D交B C于点F,E是A B上一点,A E=A D,E C交A F于点M.求证:C M㊃B F=A B㊃M E.3.如图,在әA B C中,点P是A B上一点,A P=4,B P=6,点M是P C的中点,øA C P=øP B M.(1)求A C 的长;(2)过点A作A DʊP C交B C的延长线于点D,B M的延长线交A D于点N.若N D=33,øC A D=30ʎ,求C D的长.1243336323F2+F D227九年级数学 大培优ʌ板块四ɔ 边边边法证明三角形相似方法技巧网格中或非网格中可计算出三边或算出三对对应边的比值,常用三边对应成比例证三角形相似.▶题型一 网格中的相似三角形ʌ例1ɔ 已知әA B C 中,A B =25,A C =45,B C =6.如图,是由100个边长为1的小正方形组成的10ˑ10的正方形网格.设顶点在这些小正方形顶点的三角形为格点三角形.请在网格中画一个与әA B C 相似且对应边的比最大的格点三角形,并加以证明.0204102,1021022102100272+122329210111111102▶题型二 非网格相似三角形ʌ例2ɔ 已知正方形A B C D ,点E ,F 分别在边A D ,C D 上,且A E =E D ,C F =3D F .(1)求证:әA B E ʐәE B F ;(2)连接A C 与B E ,B F 分别相交于点M ,N ,求证:B C B N =AM MN.52AMMN 针对练习41.如图,是由81个边长为1的小正方形组成的9ˑ9的正方形网格.设顶点在这些小正方形顶点的三角形为格点三角形.(1)请你计算出әA B C各边的长;(2)请在网格中画一个与әA B C 相似且与әA B C 三边对应垂直的对应边比值最大的格点三角形,并加以证明(A ,B ,C 的对应点分别为A 1,B 1,C 1).2256262=623262351111112.如图,在四边形A B C D 中,点E 在B D 上,且A B A E =B C E D =A C A D.B C =4,øB A E =30ʎ,求C D 的最小值.12ʌ板块五ɔ 边角边法证三角形相似方法技巧1.旋转型㊁子母型图常运用两边对应成比例,其夹角相等证相似;2.求形如a +n mb 的最值,常通过构 边角边 相似去求解.▶题型一 旋转型相似ʌ例1ɔ 如图1,在R t әA B C 中,øC =90ʎ,A B =15,B C =9,点P ,Q 分别在边B C ,A C 上,C P =3x ,C Q=4x (0<x <3),把әP C Q 绕点P 旋转,得到әP D E ,点C ,Q 的对应点分别为点D ,E .(1)如图1,若点D 落在线段P Q 上,且A D 平分øC A B ,求x 的值;(2)如图2,当点E 落在边A B 上且Q E ʊC B 时,求C D 的长.图1 图212412693535185▶题型二 将a 2=b c 型问题转化为 子母型 相似问题.ʌ例2ɔ 如图,在әP E F 中,P E =P F ,O 为E F 的中点,G 为P F 上一点,øP E G =27ʎ,N 为O G 的中点,P N ʅE G ,垂足为点M ,若øM O N =18ʎ,N G 2=NM ㊃N P .求øF 的度数.九年级数学大培优针对练习51.如图,P是正方形A B C D边B C上一点,点M在边C D上,B M与A P交于点Q,B P2=P Q㊃P A.(1)求证:C M=B P;(2)若P为B C中点,求øP Q C的度数.2.如图,在正方形A B C D中,点E,F分别在边B C,C D上,连接A F交B D于点H,E C=2DH.(1)求证:øE A F=45ʎ;(2)求证:AH=E H.23.如图,在等腰直角三角形A B C中,A C=B C,点E在边B C上,以A E为边作正方形A E MN,E M交A B于点F.(1)求证:B MʅA B;(2)若C E=2B E,求A E E F的值.2222221415E F A E15ʌ板块六ɔ 角角判定法证三角形相似方法技巧1.共角的两个三角形优先考虑用角角判定法证三角形相似;2.用反A 型相似证明a b =c d 型等式;3.善于发现或构造一线三等角型相似;4.共角且一对角互补的两个不相似三角形,构造等腰三角形转化为相似三角形.▶题型一 用角角判定法证明三角形相似ʌ例1ɔ 如图,D 是әA B C 边B C 的中点,点M 在A B 上,øA C M =øB .(1)求证:A C 2=AM ㊃A B ;(2)点O 在A D 边上,且A O =2O D ,过点O 作E F ʊM C ,分别交A B ,A C 于点E ,F ,若A E =6,E M =1,求A F ㊃A C 的值.▶题型二 构造等角,运用角角法证相似求边长ʌ例2ɔ 如图,点D 在A B 上,A B =3B D =12,点E 在B C 的延长线上,D E =2A C ,øA C B +øB D E =180ʎ,øB =60ʎ,求A C 的长.12123221213131▶题型三 一线三等角问题ʌ例3ɔ 如图,在әA B P 中,A P =A B ,O 为A B 上一点,O A =2,O B =1,A Q ʊB P ,且øQ O P =øB ,求A Q ㊃B P 的值.A Q O E232313x Q F O B1九年级数学 大培优针对练习61.如图,A B =A C ,øB A C =90ʎ,D 为边A B 上任意一点,A E ʊB C ,øC D E =45ʎ,求证:C D D E=2.222.如图,әA B C 中,A B =A C =15,B C =24,D ,E 分别是B C ,A B 上的点,øA D E =øB ,当әB D E 为直角三角形时,求B D 的长.1215125421162142143.如图,点E ,F 分别在线段A C ,B C 上,øF E C =øB ,øA C B =60ʎ,C H 平分øA C B 交E F 于点H .(1)求证:B C A C =E H H F;(2)若E C =43,H C =5,求B C A C的值.E H H F E M F N1212B C A C E C F C B C A C E H H F 12E 2312F =3x =3M -3x MH HN E M F N ,15-3x 23x03-1073C 754.如图,正方形A B C D 中,B C =4,对角线A C ,B D 交于点O ,P 是O B 的中点,N 在线段C D 上(不与C ,D 两点重合),P M ʅP N 交B C 于点M .求B M +13DN 的值.1213P E P D 1313D 12B 13ʌ板块七ɔ 作垂线构造三角形相似方法技巧作垂线构造直角三角形相似转化比或用比例式列方程求边.▶题型一 利用对顶角相等,作垂线构造直角三角形相似ʌ例1ɔ 如图,B D 为әA B C 的高,点E 在A B 边上,øB E C =60ʎ,B E =2C D ,C E 与B D 相交于点F .求B FF C的值.32333▶题型二 利用同角或等角的补角相等,作垂线构造直角三角形相似ʌ例2ɔ 如图,在R t әA B C 中,øB A C =90ʎ,A D ʅB C ,垂足为点D ,点O 是A C 边中点,连接B O 交A D 于点F ,O E ʅOB 交BC 边于点E .若A C A B =n ,求O F O E的值.▶题型三 利用角平分线作垂线构造直角三角形相似ʌ例3ɔ 如图,在әA B C 中,øB A C =60ʎ,A B =6,A C =4,A D 平分øB A C 交B C 于点D .求B D 的长.121233233323535322657▶题型四 面积问题作高构造直角三角形相似ʌ例4ɔ 如图,在әA B C 中,øC =45ʎ,点D ,E ,F 分别在边B C ,A C ,A B 上,A B =B D =2A E ,连接E F交A D 于点G ,øA G F =45ʎ,若A D =4,F G =32,求әA F G 的面积.1234九年级数学 大培优针对练习71.如图,在әA B C 中,øA C B =90ʎ,点E 在A C 上,A C =2B C =4C E .C D ʅB E 交B E 于点F ,交A B 于点D .求B D A D的值.12122.如图,在R t әA B C 中,øA B C =90ʎ,A B =6,D 为A C 的中点,过点A 作A E ʊB C ,连接B E ,øE B D=øC B D ,B D =5,求B E 的长.2452543.如图,B ,C ,E 三点在一条直线上,әA B C 与әD C E 均为等边三角形,D B 与A C ,A E 分别相交于点H ,F ,连接F C .(1)求证:әAH B ʐәF H C ;(2)若B F =2F E ,求B C C E的值.M N B C E C32324.如图,在四边形A B C D 中,øA B C =øA D C =90ʎ,A B =A D =2B C =2C D ,E 为C D 上一点,B F ʅA E交A D 于点F .求B F A E的值.12535383858545ʌ板块八ɔ用相似法证明线段相等方法技巧1.证明a=b的方法技巧之一:若a c=b c,则a=b;2.证明a=b的方法技巧之二:若a c=b d,c=d,则a=b.▶题型一双A双X并排型ʌ例1ɔ如图,D,E分别是әA B C的边A B,A C上的点,D EʊB C,D C交B E于点O,直线A O分别交D E,B C于点M,N.求证:B N=N C.▶题型二普通型相似ʌ例2ɔ如图,D为R tәA C B斜边A B的中点,点M在A C上,点N在B C的延长线上,øMDN=90ʎ.(1)求证:øC A B=øMN D.(2)如图2,分别过点M,N作直线A B的垂线,垂足分别为点G,H.求证:A G=DH.针对练习81.如图,在等边әA B C中,点E在C A的延长线上,点D在B C的延长线上,A E=C D,延长D A交B E 于点F.(1)求证:øE A F=øA B E;(2)过点E作E GʊF C交A D于点G.求证:E F=A G.。
九年级上下册数学培优系统讲义
![九年级上下册数学培优系统讲义](https://img.taocdn.com/s3/m/50d3ffb383d049649b6658fd.png)
九年级上下册数学培优系统讲义第1讲 一元二次方程㈠★知识点精讲1.一元二次方程的概念⑴ 只含有 个未知数,未知数的最高次数是 且二次项系为_____的整式方程叫一元二次方程.⑴一元二次方程的一般形式()002≠=++a c bx ax ,其中二次项系数为 ,一次项系数为 ,常数项为 .2.一元二次方程的解法⑴直接开平方法:针对()()02≥=+an n a m x⑴配方法:针对()002≠=++a c bx ax ,再通过配方转化成())0(2≥=+n n m x a注:① 配方法的目的是将方程左边化成含未知数的完全平方,右边是一个非负 常数的形式;②配方法常用于证明一个式子恒大于0或恒小于0,或者求二次函数的最值.⑶ 公式法:当0≥∆时(=∆ ),用求根公式 ,求一元二次方程()002≠=++a c bx ax 根的方法.⑶ 因式分解法:通过因式分解,把方程变形为()()0=--n x m x a ,则有m x =或n x =.注:⑴ 因式分解的常用方法(提公因式、公式法、十字相乘法)在这里均可使用,其中十字相乘法是最方便、快捷的方法.⑵ 此法可拓展应用于求解高次方程.典型例题讲解及思维拓展●例1 ⑴方程()0132=+++mx x m m 是关于x 的一元二次方程,则m = .⑴关于x 的一元二次方程()01122=-++-a x x a 有一个根是0,则a = .拓展变式练习11.关于x 的方程03)3(72=+---x x m m 是一元二次方程,则m =__________.2.已知方程012=-+mx x 的一个根121-=x ,则m 的值为 .●例2 解下列方程:⑶0182=+-x x ⑵()()2221239x x -=-拓展变式练习2解下列方程:⑶8632+-=x x⑵()()2221239x x -=-⑶()()1232=--x x⑶()222596x x x -=+-⑸04)32(5)23(2=+-+-x x⑹()()02123122=++-+x x⑺()2223n n m x m x =+--⑻a x a ax x -=+-222●例3 已知0132=-+x x ,求⎪⎭⎫ ⎝⎛--+÷--2526332x x x x x 的值.拓展变式练习3 1.已知0200052=--x x ,求()()211223-+---x x x 的值.2.已知0132=+-a a ,求2219294a a a ++--的值.■ 巩固训练题一、填空题1.若方程()()053222=-++--x m x m m 是一元二次方程,则m 的值为 . 2.已知方程()()08=-+x a x 的解与方程0872=--x x 的解完全相同,则a = .3.如果二次三项式226m x x +-是一个完全平方式,那么m 的值是___________.4.若412+-mx x 是一个完全平方式,则m 的值是___________.5.已知06522=--y xy x ,则yx 的值是 . 6.已知7532=++x x ,则代数式2932-+x x 的值为________________.二、解答题1. 解下列方程:⑴ 04052=-x ⑴ ()0644292=-+x⑶20x x -= ⑶ 0813642=+-x x⑶ 22)52()2(+=-x x (6)()x x 210532-=-2. 某商店如果将进价为8元的商品按10元销售,每天可售出200件,通过一段时间的摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件,每降价0.5元,其销售量就增加10件.(1)你能帮店主设计一种方案,使每天的利润达到700元吗?(2)当售价是多少元时,能使一天的利润最大?最大利润是多少?■思维与能力提升1. 设a 、b 为实数,求542222+-++b b ab a 的最小值,并求此时a 、b 的值.2.设a 、b 、c 为实数,求1984254222+--+++c b c b ab a 的最小值,并求此时c b a ++的值.3.已知()012009200720082=-⨯-x x 的较大根为a ,020*******=--x x 的较小根为b ,求()2003b a +.4.如图,锐角∆ABC 中,PQRS 是∆ABC 的内接矩形,且S S PQRS ABC n 矩形=∆,其中n 为不小于3的自然数,求证:AB BS为无理数.DS 金牌数学专题二 一元二次方程㈡★知识点精讲1.一元二次方程根的判别式⑴ 根的判别式:一元二次方程()002≠=++a c bx ax 是否有实根,由 的符号确定,因此我们把 叫做一元二次方程的根的判别式,并用∆表示,即 .⑵ 一元二次方程根的情况与判别式的关系:⇔>∆0方程有 的实数根;⇔=∆0方程有 的实数根;⇔<∆0方程 实数根;⇔≥∆0方程 实数根.2.根系关系(韦达定理)⑴ 对于一元二次方程()002≠=++a c bx ax 的两根21x x ,,有ab x x -=+21,ac x x =⋅21 ⑵ 推论:如果方程02=++q px x 的两个根是21,x x ,那么p x x -=+21,q x x =⋅21. ⑶ 常用变形:()2122122212x x x x x x -+=+ ()()212212214x x x x x x -+=- 3.列方程解应用题的一般步骤:⑴______,⑵______,⑶______⑷______,⑸______,⑹______.4.常见题型⑴ 面积问题;⑵ 平均增长(降低)率问题;⑶ 销售问题;⑷ 储蓄问题.典型例题讲解及思维拓展●例1. 若关于x 的方程()()0122122=++--x m x m 有实根,求m 的取值范围.拓展变式练习11.若关于x 的方程032)1(22=-+++-m m x x m 有实数根,求m 的值.2.是否存在这样的非负整数m ,使得关于x 的一元二次方程()0191322=-+--m x m mx 有两个不相等的实数根,若存在,请求出m 的值,若不存在,请说明理由.●例2 已知21x x ,是方程03622=++x x 的两根,不解方程,求下列代数式的值: ⑶2112x x x x + ⑶ ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+122111x x x x ⑶ ()221x x -拓展变式练习21. 已知21x x ,是方程03622=++x x 的两根,不解方程,,求下列各式的值:⑶ 321231x x x x + ⑶ 112112+++x x x x ⑶ 21x x -2.已知关于x 的方程()024122=+--m x m x ,是否存在正数m ,使方程的两实根的平方和等于224?若存在,则求出来;若不存在,说明理由.●例3 某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?拓展变式练习31. 市政府为解决市民看病贵的问题,决定下调一些药品的价格.某种药品的售价为125元/盒,连续两次降价后的售价为80元/盒,假设每次降价的百分率相同,求这种药品每次降价的百分率.2. 王洪将100元暑期勤工俭学所得的100元,按一年期定期存入少儿银行,到期后取出本息和,其中的50元捐给希望工程,余下的部分又按一年定期存入,这时存款利率已下调到第一年的一半,这样到期后得本息和共63元,求第一年的存款利率.3.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出).⑴求y与x的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?■巩固训练题一、填空题1.已知方程022=+-m x x 的一个根是51-,则另一根为 ,m = . 2.如果21x x ,是两个不相等的实数,且12121=-x x ,12222=-x x ,则=21x x .3.若a 、b 是方程0532=--x x 的两个实数根,则b b a 3222-+= .4.以2与-6为根的一元二次方程是 .5. 一种药品经过两次降价,药价从原来每盒60元降至到现在48.6元,则平均每次降价的百分比率是____________.6.巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为 .二、解答题1.已知a 、b 是方程042=+-m x x 的两个根,b 、c 是方程0582=+-m x x 的两个根,求m 的值.2.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委 州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量W(克)与销售价x (元/千克)有如下关系:W=-2x +80.设这种产品每天的销售利润y (元).(1)求y 与x 之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?■思维与能力提升1.当k 是什么整数时,方程()()072136122=+---x k x k 有两个不相等的正 整数根?2.已知关于x 的方程()0321222=--++-m m x m x 的两个不相等实数根中 有一根为0.是否存在实数k ,使关于x 的方程()02522=-+----m m k x m k x 的两个实根21x x ,之差的绝对值为1?若存在,求出k 的值;若不存在,请说明理由.3.已知21x x ,是关于x 的方程()002≠=++p q px x 的两个实数根,且13222121=++x x x x ,()()0211211=+++x x xx ,求q p +的值.4.已知实数a 、b 、c 满足2=++c b a ,4=abc ,求a 、b 、c 中最大者的 最小值.■补充讲解■反思与归纳DS 金牌数学专题三反比例函数★知识点精讲1.反比例函数⑴ 概念:一般地,如果两个变量x ,y 之间的关系可以表示成x k y =(k 为常数,0≠k )的形式,那么称y 是x 的反比例函数,其中自变量x 不能为零. ⑵ 常见形式:x k y =(k 为常数,0≠k ),1-=kx y (k 为常数,0≠k ), k xy =(k 为常数,0≠k ) 2.反比例函数的图象 ⑴ 反比例函数x k y =(k 为常数,0≠k )的图象是由两条曲线组成的,叫 做 ,因为0≠k 、0≠x ,所以函数图象与x 、y 轴均无交点,而且它是一个以原点为对称中心的中心对称图形. ⑵ 图象基本性质0>k 0<k反 比 例 函 数 图 象性 质两分支位于 象限, 在每一象限内,y 随x 的增大 而两分支位于 象限, 在每一象限内,y 随x 的增大 而⑶ k 的几何意义=AOBP S 矩形_________.=∆AOP S Rt __________.3.直线1y k x m =+和双曲线x k y 2=的交点⑴求直线1y k x m =+和双曲线x k y 2=的交点就是求方程组 的解.反之,交点坐标同时满足两个函数的解析式,可利用待定系数法求解. ⑵ 交点个数由两方程组成的方程组转化得到的一元二次方程20(0)ax bx c a ++=≠的解的情况决定.①当 时,直线与双曲线有两个交点. ②当 时,直线与双曲线有一个交点.y P(m,n) AoxB③当 时,直线与双曲线没有交点. 4.反比例函数和一次函数的综合应用① 交点与解析式相互转化 ② 求三角形、四边形面积 ③ 特殊三角形、四边形的存在性问题 ④ 其它综合典型例题讲解及思维拓展 ● 例1 若反比列函数1232)12(---=k kx k y 的图像经过二、四象限.⑴求k 的值.⑵ 若点()1,2y A -,()2,1y B -,()3,3y C 都在其图象上,比较,,的大小关系.拓展变式练习11.若反比例函数22)12(--=m x m y 的图像在第一、三象限,则m 的值是 .2.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为 . 3.设有反比例函数,、为其图象上的两点,若时,,则的取值范围是___________.1y 2y 3y x k y 22--=k 1y 2y 213y 1y 2y 3y●例2 如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值拓展变式练习21. 如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q ,32OQC S ∆=,求k 的值和Q 点的坐标.2. 已知21y y y -=,1y 与x 成反比例,2y 与2x 成正比例,且当1-=x 时,5-=y ;1=x 时,1=y .求y 与x 之间的函数关系式.x yO A P C QBOxyBA D C 3.已知函数221y y y +=,1y 与2x 成正比例,2y 与x 2成反比例,且当1-=x 时,1=y ;当2=x 时,437=y .求y 关于x 的函数关系式.●例3 如图,已知反比例函数()0<=k y x k 的图象经过点A (3)m -,,过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为3. ①求k 和m 的值;②若一次函数1y ax =+的图象经过点A ,并且与x 轴相交于点C ,求∠ACO 的度数和AO :AC 的值.拓展变式练习31.已知点A 是直线)1(++-=k x y 和双曲线x k y =在第四象限的交点,AB⊥x 轴于点B ,且S 5.1=∆ABO .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积;(3)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.2.如图,一次函数y kx b =+的图象经过第一、二、三象限,且与反比例函数图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,5OB =.且点B 横坐标是点B 纵坐标的2倍. (1)求反比例函数的解析式;(2)设点A 横坐标为m ,ABO △面积为S ,求S 与m 的函数关系式,并求出自变量m 的取值范围.3.如图所示,点A 、B 在反比例函数()0≠=k y xk 的图象上,且点A 、B•的横坐标分别为a 、2a (a >0),AC⊥x 轴于点C ,且△AOC 的面积为2. (1)求该反比例函数的解析式. (2)若点(-a ,1y )、(-2a ,2y )在该函数的图象上,试比较1y 与2y 的大小. (3)求△AOB 的面积.O xyA C DB●例4 若一次函数12-=x y 和反比例函数x k y 2=的图象都经过点(1,1).⑴求反比例函数的解析式;⑵已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标; ⑶利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.拓展变式练习41.已知反比例函数x k y 2=和一次函数12-=x y ,其中一次函数图像经过(a ,b )(a +1,k b +)两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标;(3)利用(2)的结论,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,所符合条件的P 点坐标都求出来;若不存在,请说明理由.2. C 、D 是双曲线x my =在第一象限内的点,直线CD 分别交x 轴、y 轴于 A 、B 两点,设C 、D 坐标分别是(1x ,y 1)、(2x ,y 2),连结OC 、OD.∠AOD=∠BOC=α,作CE⊥y 轴 ,DF⊥x 轴,且31==OF DFOE CE ,10=OC . ⑴求C 、D 的坐标和m 的值.⑵求OCD S ∆.⑶双曲线上是否存在一点P ,使得POD POC S S ∆∆= 若存在,请给出证明;若不存在,请说明理由.3.已知双曲线()0163>=x y x,与经过点A(1,0)、B(0,1)的直线交于点P 、Q ,连结OP 、OQ.⑴求证:ΔOAQ≌ΔOBP⑵若C 是OA 上不与O 、A 重合的任意一点,CA=a ,(0<a <1),CD⊥AB 于D ,DE⊥OB 于E.①a 为何值时,CE=AC ?②在线段OA 上是否存在点C ,使点CE∥AB?若存在这样的点,则请写出点C 的坐标,若不存在,请说明理由.xyCDA B EF OA . x y OB . x y OC .x y O D . x y O■巩固训练题一、选择题 1.函数x k y =的图象经过点(-4,6),则下列各点中在xk y =图象上的是( ) A.(3,8) B.(3,-8) C.(-8,-3) D.(-4,-6) 2.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A.正数B.负数C.非正数D.不能确定 3.已知点P 是反比例函数()0≠=k y xk 的图像上任一点,过P•点分别作x 轴,y 轴的平行线,若两平行线与坐标轴围成矩形的面积为2,则k 的值为( )A .2B .-2C .±2 D.44.如图,已知函数ky x=-中,0x >时,y 随x 的增大而增大,则y kx k =-的大致图象为( )5.已知关于x 的函数()1-=x k y 和y=-kx(k ≠0),它们在同一坐标系内的图像大致是下图中的( )二、解答题1.如图,正比例函数()0>=k kx y 与反比例函数xk y =的图象交于A 、C 两点,过A 点作x 轴的垂线,垂足为B ,过C 点作x 轴的垂线,垂足为D ,求S 四边形ABCD .2.制作一种产品,需先将材料加热到60C ︒后,再进行操作,设刻材料温度为y C ︒,从开始加热计算的时间为x 分钟,据了解,该材料加热后,温度y 与时间成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图),已知该材料在操作加工前的温度为15C ︒,加热5分钟后温度达到60C ︒. ⑴分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系;⑵拫据工艺要求,当材料的温度低于15C ︒时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?3.等腰三角形OAB 在直角坐标系中的位置如图,点A 的坐标为(33,3-), 点B 的坐标为(-6,0).(1)若三角形OAB 关于y 轴的轴对称图形是三角形O A B '',请直接写出A 、B 的对称点A 'B '、的坐标;(2)若将三角形OAB 沿x 轴向右平移a 个单位,此时点A 恰好落在反比例函数x y 36=的图像上,求a 的值;(3)若三角形OAB 绕点O 按逆时针方向旋转α度(090α<<). ①当α=30时点B 恰好落在反比例函数x k y =的图像上,求k 的值. ②问点A 、B 能否同时落在①中的反比例函数的图像上,若能,求出α的值;若不能,请说明理由.y xO56015■思维与能力提升1、如图,在直角坐标平面内,函数x my =(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,连结AD 、DC 、CB .(1)若ABD △的面积为4,求点B 的坐标;(2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式.2.如图,将一块直角三角形纸板的直角顶点放在()5.01,C 处,两直角边分别与y x ,轴平行,纸板的另两个顶点恰好是直线29+=kx y 与双曲线)0(>=m y x m的交点.(1)求m 和k 的值;(2)设双曲线)0(>=m y xm 在B A ,之间的部分为L ,让一把三角尺的直角顶点P 在L 上滑动,两直角边始终与坐标轴平行,且与线段AB 交于N M ,两点,请探究是否存在点P 使得AB MN 21=,写出你的探究过程和结论.B A ,yONM CP3.如图,已知直线AB 交两坐标于A 、B 两点,且OA=OB=1,点P (a 、b )是双曲线x y 21=上在第一象内的点过点P 作PM⊥x 轴于M 、PN⊥y 轴于N .两垂线与直线AB 交于E 、F .(1)写出点E 、F 的坐标(分别用a 或b 表示) (2)求△OEF 的面积(结果用a 、b 表示); (3)△AOF 与△BOE 是否相似?请说明理由;(4)当P 在双曲线x y 21=上移动时,△OEF 随之变动,观察变化过程,△OEF 三内角中有无大小始终保持不变的内角?若有,请指出它的大小,并说明理由.■补充讲解■反思与归纳DS 金牌数学专题四直角三角形的边角关系㈠★知识点精讲1.在ABC Rt ∆中,锐角A 的对边与邻边的比叫做A ∠的_________,记做_______,即_______tan =A ;锐角A 的邻边与对边的比叫做A ∠的_________,记做_______,即_______cot =A .2.坡比、坡角①坡面的铅直高度h 与水平宽度l 的比叫做________,用字母i 表示,即________=i ,坡面与水平面的夹角α叫________,即_______tan =α. ②工程上斜坡的倾斜程度通常用坡度来表示,坡面的_______和________的比称为坡度或坡比,坡度是坡角的_______,坡度______,坡面越陡. 3.在ABC Rt ∆中,锐角A 的对边与斜边的比叫做A ∠的_________,记做_______,即_______sin =A ;锐角A 的邻边与斜边的比叫做A ∠的_________,记做_______,即_______cos =A .4.在ABC Rt ∆中,若︒=∠+∠90B A ,则A sin 与A cos 的关系是_______,由此可得()_______90sin =-︒A ,()_______90cos =-︒A .典型例题讲解及思维拓展● 例1. 在ABC Rt ∆中,︒=∠90C ,如果125tan =A ,且24=AC ,求:⑴BC 和AB 的长;⑵A sin 和A cos 的值.拓展变式练习11. 在ABC Rt ∆中,︒=∠90C ,如果135tan =A ,且26=AC ,求:⑴BC 和AB 的长; ⑵A sin 和A cos 的值.2.在ABC Rt ∆中,︒=∠90C ,D 是BC 上的一点,34tan =∠ADC ,21tan =B ,BD=5,求AD 的长.3.在ABC Rt ∆中,︒=∠90C ,D 是AC 的中点,且BC=AC ,求CDA ∠tan 和DAC ∠sin 的值.●例2.如图,某县为了增强防洪能力,加固长90米,高5米,坝顶宽为4米,迎水坡和背水坡的坡度都是1:1的横断面是梯形的防洪大坝.要讲大坝加高1米,背水坡的坡度改为1:1.5,已知坝顶宽不变,问大坝的横截面积增加了多少平方米?增加了多少立方米土方?拓展变式练习21. 如图,拦水坝的横截面为梯形ABCD,AD∥BC,AB=DC,AD=6,BC=14,梯形ABCD的面积是40,求斜坡AB的坡度.2. 如图,水库大坝的横断面为梯形,坝顶宽6m,坝高23m,斜坡AB的坡度3:1i,斜坡CD的坡度为c,求斜坡AB的坡角(精确到'1),坝底宽AD和斜坡AB的长.(精确到1.0m)3. 泸杭甬高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD ,AD ∥BC ,斜坡DC 的坡度为i 1,在其一侧加宽DF=7.75米,点E 、F 分别在BC 、AD 的延长线上,斜坡FE 的坡度为i 2(i 1<i 2).设路基的高DM=h 米,拓宽后横断面一侧增加的四边形DCEF 的面积为s 米2. (1)已知i 2=1:1.7,h=3米,求ME 的长.(2)不同路段的i 1、i 2、、、h 是不同的,请你设计一个求面积S 的公式(用含i 1、i 2的代数式表示).● 例3. 计算︒+︒-︒-︒︒30tan 345sin 260cos 45cos 30sin拓展变式练习3 1.计算下列各题:⑴()()2121145sin 260tan 130sin 2-︒+︒---︒-; ⑵()212321+-+÷-x x x ,其中︒-︒=60cos 245sin 4x .2. 在ABC ∆中,若()0cos 1tan 223=-+-B A ,其中A ∠、B ∠均为锐角,求C ∠的度数.3. 已知31tan =α且α为锐角,求ααααcos sin 2cos 2sin 3+-的值.■巩固训练题1.已知211(sin )sin 22αα-=-,则锐角α的取值范围是 .2.在△ABC 中,90C ∠=︒且两直角边a b 、满足22560a ab b -+=,则sin A = .3.如图,已知AD 为等腰△ABC 底边上的高,且4tan 3B =,AC 上有一点E ,满足2:3AE EC =:,那么tan ADE ∠= .二.解答题1.如图,在四边形ABCD 中,60DAB ∠=︒,90ABC CDA ∠=∠=︒,2CD =,3BC =,求AB 的长.2. 两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:(1) 如图 (1),△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图 (2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图 (3),△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转 △DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα 的值.A B E FC D 图 (1)A B E F CD 图 (2)A B() (F )C D 图 (3) Eα■ 思维与能力提升在ABC Rt ∆中,︒=∠90C ,若A ∠、B ∠、C ∠的对边分别是a 、b 、c . ⑴若()A A 22sin sin =,()A A 22cos cos =,请根据三角形函数的定义证明:①1cos sin 22=+A A ; ②BBB cos sin tan =.⑵根据上面的两个结论解答:①若2cos sin =+A A ,求A A cos sin -的值;②若2tan =B ,求B B BB sin cos 2sin cos 4+-的值.■ 补充讲解■反思与归纳DS金牌数学专题五直角三角形的边角关系㈡★知识点精讲1.仰角、俯角:①当从低处观测高处的目标时,视线与水平线所成的角叫;②当从高处观测低处的目标时,视线与水平线所成的角叫.2.方位角:指北或指南方向与_____________所成的夹角叫方位角.典型例题讲解及思维拓展●例1.如图,小唐同学正在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)此时,在A处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC约为多少?(结果可保留根号)拓展变式练习11.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30︒,B村的俯角为60︒(如图7).求A、B两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)QB C PA450 60︒30︒图72.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC ,小丽同学在点A 处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后, 又在点B 处测得条幅顶端D 的仰角为45°,已知测点A 、B 和C 离地面高度都为1.44米,求条幅顶端D 点距离地面的高度.(计算结果精确到0.1米,参考数据.)3.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°;(3)量出A 、B 两点间的距离为4.5米.请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)23 1.732≈≈60o4.如图,在小山的西侧A 处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C 处,这时热气球上的人发现,在A 处的正东方向有一处着火点B ,十分钟后,在D 处测得着火点B 的俯角为15°,求热气球升空点A 与着火点B 的距离. 结果保留根号,参考数据:42615sin -=︒,42615cos +=︒,3215tan -=︒,3215cot +=︒.● 例2. 如图,在某海域内有三个港口A 、D 、C .港口C 在港口A 北偏东60方向上,港口D 在港口A 北偏西60方向上.一艘船以每小时25海里的速度沿北偏东30的方向驶离A 港口3小时后到达B 点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B 处测得港口C 在B 处的南偏东75方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B 处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.拓展变式练习21.根据“十一五”规划,元双(双柏—元谋)高速工路即将动工.工程需要测量某一条河的宽度.如图,一测量员在河岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得 68=∠ACB .求所测之处河AB 的宽度.(o o o sin68≈0.93,cos68≈0.37,tan68≈2.48)2.载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递, 途经A 、B 、C 、D 四地,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,参考数据:2 1.4,3 1.7≈≈)A CB3.如图,A 、B 、C 三个粮仓的位置如图所示,A 粮仓在B 粮仓北偏东26,180千米处;C 粮仓在B 粮仓的正东方,A 粮仓的正南方.已知A 、B 两个粮仓原有存粮共450吨,根据灾情需要,现从A 粮仓运出该粮仓存粮的53支援C粮仓,从B 粮仓运出该粮仓存粮的52支援C 粮仓,这时A 、B 两处粮仓的存粮吨数相等.(sin 260.44=,cos 260.90=,tan 260.49=) (1)A 、B 两处粮仓原有存粮各多少吨? (2)C 粮仓至少需要支援200吨粮食,问此调拨计划能满足C 粮仓的需求吗? (3)由于气象条件恶劣,从B 处出发到C 处的车队来回都限速以每小时35公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶4小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.■巩固训练题 一、选择题1. 已知α为锐角,且cot (90°-α)=3,则α的度数为( ) A .30° B .60° C .45° D .75°北南 西东CB A262.如图,在Rt △ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )32353A 53333、 B、 C、 D、3.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )A .sin 40mB .cos 40mC .tan 40mD .tan 40m4.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( ) A .154B .14C .15D .45.已知α为锐角,则ααcos sin +=m 的值( ) A .1>m B .1=m C .1<m D .1≥m6. 如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半 圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( )A .43B .34C .45D .357.在Rt △ABC 中,∠C=90°,若AC=2BC,则tanA 的值是( )A.21B. 2C. 55D. 258.已知ABC ∆中,AC=4,BC=3,AB=5,则sin A =( ) A. 35B. 45C. 53D. 349. 如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.5的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离约为( )A .4.5mB .4.6mC .6mD .8m10.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A.250m B.2503m C.50033m D.2502m.A O B东北A DB E 图6 i =1:C 二.解答题1. 如图,港口B 位于港口O 正西方向120海里处,小岛C 位于港口O 北 偏西60°方向.一艘科学考察船从港口O 出发,沿北偏西30°的OA 方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°方向以60海里/小时的速度驶向小岛C ,在小岛C 用一小时装补给物资后,立即按原来的速度给考察船送.⑴快艇从港口B 到小岛C 需要多少时间?⑵快艇从小岛C 出发后最少需要多少时间才能和考察船相遇?2. 如图6,梯形ABCD 是拦水坝的横断面图,(图中3:1 i 是指坡面的铅 直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)。
九年级数学培优满分讲义内容(23专题23个word文档150多页)
![九年级数学培优满分讲义内容(23专题23个word文档150多页)](https://img.taocdn.com/s3/m/8befc44df11dc281e53a580216fc700abb685203.png)
15直线与圆的位置关系一 16直线与圆的位置关系二 17与圆相关的比例线段
18圆与圆的位置关系 19平面几何的定值问题 20平面几何的最值问题
21分而治之 22数形结合 23顺思逆想
内容截图:
15直线与圆的位置关系一16直线与圆的位置关系二17与圆相关的比例线段
九年级数学培优满分讲义内容(23专题23个word文档150多页)
1、转化与化归一般
5、最优化 6、是偶然还是必然 7、三角函数 8、旋转变换
9、平行线分线段成比例 10、从全等到相似 11、相似三角形的性质
初三数学培优专题(4) 托勒密定理巧解四边形对角互补问题
![初三数学培优专题(4) 托勒密定理巧解四边形对角互补问题](https://img.taocdn.com/s3/m/fb83ffaa647d27284b735189.png)
托勒密定理巧解四边形对角互补问题托勒密定理:四边形ABCD 内接于圆,求证:AC BD AD BC AB CD ⋅=⋅+⋅.证明 :如图,在BD 上取一点P ,使其满足12∠=∠.∵34∠=∠,∴ACD BCP △∽△,AC ADBC BP=, 即AC BP AD BC ⋅=⋅ ① 又ACB DCP ∠=∠,56∠=∠,∴ACB DCP △∽△,AB ACDP CD=,AC DP AB CD ⋅=⋅. ② ①+②,有.即()AC BP PD AD BC AB CD +=⋅+⋅,故AC BD AD BC AB CD ⋅=⋅+⋅.定理推广-托勒密不等式推广(托勒密不等式):对于任意凸四边形ABCD ,AC ·BD ≤AB ·CD+AD ·BC证明:如图1,在平面中取点E 使得∠BAE=∠CAD ,∠ABE=∠ACD , 易证△ABE ∽△ACD ,∴AB:AC=BE:CD , 即AC ·BE=AB ·CD ①,D C A B D C126345P A B连接DE ,如图2,∵AB/AC=AE/AD ,∴AB/AE=AC/AD ,∠BAC=∠BAE+∠CAE=∠DAC+∠CAE=∠DAE ,∴△ABC ∽△AED ,∴AD/AC=DE/BC ,即AC ·DE=AD ·BC ②,将①+②得:AC ·BE+AC ·DE=AB ·CD+AD ·BC ,∴AC ·BD ≤AC(BE+DE)=AB ·CD+AD ·BC 即AC ·BD ≤AB ·CD+AD ·BC ,当且仅当A 、B 、C 、D 共圆时取到等号.下列四边形对角互补问题,题目均可巧解(自己试一试)【例1】(1)如图2-1,点P 为等边ABC △外接圆的BC 上一点,线段PA 、PB 、PC 间的数量关系为____.(2)如图2-2,AB 为⊙O 的直径,∠ABD =45°,点C 为ABD △外接圆的AB 上一点,线段CA 、CB 、CD 间的数量关系为____________.(3)如图2-3,30ABC ACB ∠=∠=︒,点D 为ABC △外接圆的BC 上一点,线段DA 、DB 、DC 间的数量关系为_____________.图2-1 图2-2 图2-3【解析】(1)PA PB PC =+;(2)CA CB +;(3)DB DC +=.ABCP ODAOC【例2】(2013成都中考)如图4-2,A ,B ,C 为O 上相邻的三个n 等分点,AB BC =,点E在弧BC 上,EF 为O 的直径,将O 沿EF 折叠,使点A 与A'重合,点B 与B'重合,连接EB',EC ,EA'.设EB'b =,EC c =,EA'p =.先探究b ,c ,p 三者的数量关系:发现当3n =时,p b c =+.请继续探究b ,c ,p 三者的数量关系:当4n =时,p =__________; 当12n =时,p =__________.(参考数据:sin15cos75︒=︒=cos15sin 75︒=︒=)图4-1 图4-2【解析】(1)A ;(2)p c =+;2p c =+. 【例3】(2013成都27改)如图3,在菱形ABCD 中,120ABC ∠=︒,在ABC ∠内作射线BM , 作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF . ①证明CEF ∆是等边三角形;②若5AE =,2CE =,求BF 的长.解:①证明:如图3中,作BH AE ⊥于H ,连接BE .四边形ABCD 是菱形,120ABC ∠=︒, ABD ∴∆,BDC ∆是等边三角形,A'F AB OB'C E A BO P CBA BD BC ∴==,E 、C 关于BM 对称,BC BE BD BA ∴===,FE FC =, A ∴、D 、E 、C 四点共圆, 120ADC AEC ∴∠=∠=︒, 60FEC ∴∠=︒,EFC ∴∆是等边三角形,②解:5AE =,2EC EF ==, 2.5AH HE ∴==, 4.5FH =, 在Rt BHF ∆中,30BFH ∠=︒, ∴cos30HF BF=︒,BF ∴==【例4】(2019•天门)已知ABC ∆内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=︒时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ; (2)如图②,当90BAC ∠=︒时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论; (3)如图③,若5BC =,4BD =,求ADAB AC+的值.解:(1)如图①在AD 上截取AE AB =,连接BE , 120BAC ∠=︒,BAC ∠的平分线交O 于点D ,60DBC DAC ∴∠=∠=︒,60DCB BAD ∠=∠=︒,ABE ∴∆和BCD ∆都是等边三角形,DBE ABC ∴∠=∠,AB BE =,BC BD =, ()BED BAC SAS ∴∆≅∆, DE AC ∴=,AD AE DE AB AC ∴=+=+;故答案为:AB AC AD +=.(2)AB AC +=.理由如下:如图②,延长AB 至点M ,使BM AC =,连接DM , 四边形ABDC 内接于O , MBD ACD ∴∠=∠,45BAD CAD ∠=∠=︒, BD CD ∴=,()MBD ACD SAS ∴∆≅∆,MD AD ∴=,45M CAD ∠=∠=︒,MD AD ∴⊥.AM ∴,即AB BM +,AB AC ∴+;(3)如图③,延长AB 至点N ,使BN AC =,连接DN , 四边形ABDC 内接于O , NBD ACD ∴∠=∠, BAD CAD ∠=∠, BD CD ∴=,()NBD ACD SAS ∴∆≅∆,ND AD ∴=,N CAD ∠=∠,N NAD DBC DCB ∴∠=∠=∠=∠, NAD CBD ∴∆∆∽, ∴AN AD BC BD =, ∴AD BD AN BC=, 又AN AB BN AB AC =+=+,5BC =,4BD =,∴45AD BD AB AC BC ==+. 【例5】(2019•威海) (1)方法选择 如图①,四边形ABCD 是O 的内接四边形,连接AC ,BD ,AB BC AC ==.求证:BD AD CD =+. 小颖认为可用截长法证明:在DB 上截取DM AD =,连接AM ⋯小军认为可用补短法证明:延长CD至点N,使得DN AD=⋯请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD是O的内接四边形,连接AC,BD,BC是O的直径,AB AC=.试用等式表示线段AD,BD,CD之间的数量关系,并证明你的结论.【探究2】如图③,四边形ABCD是O的内接四边形,连接AC,BD.若BC是O的直径,30∠=︒,ABC则线段AD,BD,CD之间的等量关系式是.(3)拓展猜想如图④,四边形ABCD是O的内接四边形,连接AC,BD.若BC是O的直径,=,则线段AD,BD,CD之间的等量关系式是.::::BC AC AB a b c【解答】解:(1)方法选择:AB BC AC==,ACB ABC∴∠=∠=︒,60=,连接AM,如图①,在BD上截取DM AD∠=∠=︒,60ADB ACB∴∆是等边三角形,ADM∴=,AM ADABM ACD∠=∠,∠=∠=︒,AMB ADC120∴∆≅∆,ABM ACD AAS()∴=,BM CDBD BM DM CD AD∴=+=+;(2)类比探究:如图②,BC是O的直径,∴∠=︒,BAC90=,AB AC∴∠=∠=︒,ABC ACB45⊥交BD于M,过A作AM AD45∠=∠=︒,ADB ACB∴∆是等腰直角三角形,ADM∴=,45AM AD∠=︒,AMD∴=,DM∴∠=∠=︒,135AMB ADC∠=∠,ABM ACD()ABM ACD AAS ∴∆≅∆, BM CD ∴=,BD BM DM CD ∴=+=+;【探究2】如图③,若BC 是O 的直径,30ABC ∠=︒, 90BAC ∴∠=︒,60ACB ∠=︒, 过A 作AM AD ⊥交BD 于M , 60ADB ACB ∠=∠=︒, 30AMD ∴∠=︒, 2MD AD ∴=,ABD ACD ∠=∠,150AMB ADC ∠=∠=︒, ABM ACD ∴∆∆∽,∴BM AB CD AC==,BM ∴=,2BD BM DM AD ∴=++;故答案为:2BD AD +;(3)拓展猜想:c aBD BM DM CD AD b b=+=+;理由:如图④,若BC 是O 的直径, 90BAC ∴∠=︒,过A 作AM AD ⊥交BD 于M , 90MAD ∴∠=︒, BAM DAC ∴∠=∠, ABM ACD ∴∆∆∽, ∴BM AB c CD AC b==, cBM CD b∴=,ADB ACB ∠=∠,90BAC MAD ∠=∠=︒, ADM ACB ∴∆∆∽, ∴AD AC b DM BC a==, aDM AD b∴=,c aBD BM DM CD AD b b ∴=+=+.故答案为:c aBD CD AD b b=+【例6】(2017•临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若60∠=∠=∠=∠=︒,则线段BC,CD,AC三者之间有何等量关系?ACB ACD ABD ADB经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE CD=,连接AE,证得=+.=,所以AC BC CD ABE ADC∆≅∆,从而容易证明ACE∆是等边三角形,故AC CE小亮展示了另一种正确的思路:如图3,将ABC∆绕着点A逆时针旋转60︒,使AB与AD重合,从而容易证明ACF=,所以AC BC CD=+.∆是等边三角形,故AC CF在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“60∠=∠=∠=∠=︒”ACB ACD ABD ADB改为“45∠=∠=∠=∠=︒”,其它条件不变,那么线段BC,CD,AC三者之间ACB ACD ABD ADB有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“60ACB ACD ABD ADB∠=∠=∠=∠=︒”改为“ACB ACD ABD ADBα∠=∠=∠=∠=”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【解答】解:(1)BC CD+=;理由:如图1,延长CD 至E ,使DE BC =,连接AE , 45ABD ADB ∠=∠=︒,AB AD ∴=,18090BAD ABD ADB ∠=︒-∠-∠=︒, 45ACB ACD ∠=∠=︒, 90ACB ACD ∴∠+∠=︒, 180BAD BCD ∴∠+∠=︒, 180ABC ADC ∴∠+∠=︒, 180ADC ADE ∠+∠=︒, ABC ADE ∴∠=∠,在ABC ∆和ADE ∆中,AB AD ABC ADE BC DE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,45ACB AED ∴∠=∠=︒,AC AE =, ACE ∴∆是等腰直角三角形,CE ∴,CE CD DE CD BC =+=+,BC CD ∴+=;(2)2cos BC CD AC α+=.理由:如图2,延长CD 至E ,使DE BC =, ABD ADB α∠=∠=,AB AD ∴=,1801802BAD ABD ADB α∠=︒-∠-∠=︒-, ACB ACD α∠=∠=, 2ACB ACD α∴∠+∠=, 180BAD BCD ∴∠+∠=︒, 180ABC ADC ∴∠+∠=︒, 180ADC ADE ∠+∠=︒, ABC ADE ∴∠=∠,在ABC ∆和ADE ∆中,AB AD ABC ADE BC DE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,ACB AED α∴∠=∠=,AC AE =, AEC α∴∠=,过点A 作AF CE ⊥于F ,2CE CF ∴=,在Rt ACF ∆中,ACD α∠=,cos cos CF AC ACD AC α=∠=, 22cos CE CF AC α∴==, CE CD DE CD BC =+=+, 2cos BC CD AC α∴+=. 【例7】(2016•淮安)问题背景:如图①,在四边形ADBC 中,90ACB ADB ∠=∠=︒,AD BD =,探究线段AC ,BC ,CD 之间的数量关系.小吴同学探究此问题的思路是:将BCD ∆绕点D ,逆时针旋转90︒到AED ∆处,点B ,C 分别落在点A ,E 处(如图②),易证点C ,A ,E 在同一条直线上,并且CDE ∆是等腰直角三角形,所以CE =,从而得出结论:AC BC +=.简单应用:(1)在图①中,若AC =BC =CD = .(2)如图③,AB 是O 的直径,点C 、D 在上,AD BD =,若13AB =,12BC =,求CD 的长. 拓展规律:(3)如图④,90ACB ADB ∠=∠=︒,AD BD =,若A C m =,()BC n m n =<,求CD 的长(用含m ,n 的代数式表示)(4)如图⑤,90ACB ∠=︒,AC BC =,点P 为AB 的中点,若点E 满足13AE AC =,CE CA =,点Q 为AE 的中点,则线段PQ 与AC 的数量关系是 .解:(1)由题意知:AC BC +,∴+=, 3CD ∴=;(2)连接AC 、BD 、AD , AB 是O 的直径, 90ADB ACB ∴∠=∠=︒,AD BD =,AD BD ∴=,将BCD ∆绕点D 顺时针旋转90︒到AED ∆处,如图③,EAD DBC ∴∠=∠,180DBC DAC ∠+∠=︒,180EAD DAC ∴∠+∠=︒,E ∴、A 、C 三点共线,13AB =,12BC =,∴由勾股定理可求得:5AC =,BC AE =,17CE AE AC ∴=+=,EDA CDB ∠=∠,EDA ADC CDB ADC ∴∠+∠=∠+∠, 即90EDC ADB ∠=∠=︒,CD ED =,EDC ∴∆是等腰直角三角形,CE ∴,CD ∴=;(3)以AB 为直径作O ,连接OD 并延长交O 于点1D , 连接1D A ,1D B ,1D C ,如图④由(2)的证明过程可知:1AC BC C +=,1D C ∴=, 又1D D 是O 的直径, 190DCD ∴∠=︒,AC m =,BC n =,∴由勾股定理可求得:222AB m n =+, 22221D D AB m n ∴==+,22211D C CD D D +=,22222()()22m n m n CD m n +-∴=+-=, m n <,CD ∴=;(4)当点E 在直线AC 的左侧时,如图⑤,连接CQ ,PC ,AC BC =,90ACB ∠=︒,点P 是AB 的中点,AP CP ∴=,90APC ∠=︒,又CA CE =,点Q 是AE 的中点, 90CQA ∴∠=︒,设AC a =, 13AE AC =, 13AE a ∴=, 1126AQ AE a ∴==,由勾股定理可求得:CQ =,由(2)的证明过程可知:AQ CQ +=,∴16a =,∴=;当点E 在直线AC 的右侧时,如图⑥,连接CQ 、CP ,同理可知:90AQC APC ∠=∠=︒,设AC a =,1126AQ AE a ∴==,由勾股定理可求得:CQ =,由(3)的结论可知:)PQ CQ AQ =-,∴AC =.综上所述,线段PQ 与AC 16AC +=16AC -=.。
初中数学九年级培优教程整理
![初中数学九年级培优教程整理](https://img.taocdn.com/s3/m/0377006e3069a45177232f60ddccda38376be13c.png)
第一章:有理数的运算本章主要介绍有理数的概念和运算。
包括正数、负数、零、绝对值等基本概念的引入,有理数加减乘除的四则运算规则等内容。
通过本章学习,学生能够掌握有理数的基本性质和运算规则,为后续章节的学习打下坚实的基础。
第二章:代数式及其运算本章主要介绍代数式及其运算。
包括代数式的定义,同类项的合并与分解,多项式的加减乘除等内容。
通过本章学习,学生能够掌握代数式的基本概念和运算规则,能够进行代数式的加减乘除运算,并能够应用代数式解决实际问题。
第三章:方程与不等式本章主要介绍方程与不等式。
包括一元一次方程与一元一次不等式的解法,二元一次方程组的解法,二次方程与一元二次不等式的解法等内容。
通过本章学习,学生能够掌握解一元一次方程、不等式和二元一次方程组的方法,能够应用这些知识解决实际问题。
第四章:函数本章主要介绍函数的概念与性质。
包括函数的定义,函数的图像与性质,函数的表示和函数的运算等内容。
通过本章学习,学生能够掌握函数的基本概念和性质,能够进行函数的图像描绘和函数的运算,能够应用函数解决实际问题。
第五章:图形的初步认识本章主要介绍平面图形的初步认识。
包括点、线、面的性质和分类,三角形、四边形、多边形等常见图形的性质和分类等内容。
通过本章学习,学生能够掌握平面图形的基本概念和性质,能够进行平面图形的分类和判断,能够应用图形的知识解决实际问题。
第六章:相似与全等本章主要介绍相似与全等的概念与性质。
包括相似三角形的判定与性质,全等三角形的判定与性质等内容。
通过本章学习,学生能够掌握相似和全等的基本概念和性质,能够应用这些知识解决实际问题。
第七章:三角形的性质本章主要介绍三角形的性质与判定。
包括三角形内角和的性质,三角形外角和的性质,三角形边长关系等内容。
通过本章学习,学生能够掌握三角形的基本性质和判定方法,能够应用这些知识解决实际问题。
第八章:数列本章主要介绍数列的概念和性质。
包括等差数列和等比数列的定义与性质,数列的通项公式和部分和的计算等内容。
(完整版)初三数学培优辅导资料(6)
![(完整版)初三数学培优辅导资料(6)](https://img.taocdn.com/s3/m/d57777308bd63186bdebbcad.png)
初三数学培优辅导资料(六)1.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一条直线上,开始时点C 与点D 重合,让△ABC 沿直线向右平移,直到点A 与点E 重合为止。
设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数的图象大致是( )2、已知二次函数y =ax 2+bx +c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a =0;②abc <0;③a ﹣2b +4c <0;④8a +c >0.其中正确的有( )A .3个B .2个C .1个D .0个3.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0)∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数的图象是( )A B C D4、如图,抛物线232--=x ax y 与x 轴正半轴交于点A (3,0) .以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D , 再以BD 为边向上作正方形BDEF ,则点E 的坐标是 。
5.如图所示,P 1(x 1,y 1)、P 2(x 2,y 2),……,P n (x n ,y n )在函数y=x9(x >0)的图象上,△OP 1A 1,△P 2A 1A 2,△P 3A 2A 3,……,△P n A n -1A n …… 都是等腰直角三角形,斜边OA 1,A 1A 2,……,A n-1A n ,都在x 轴上,则y 1+y 2 = .y 1 + y 2 + … + y n = . 6、如图,将二次函数y=x2﹣3的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象,当直线y=x+b 与此图象有两个公共点时,求b 的取值范围 。
人教版九年级数学上下册培优讲义机构辅导资料(共30讲)
![人教版九年级数学上下册培优讲义机构辅导资料(共30讲)](https://img.taocdn.com/s3/m/7fa76023cc7931b764ce1515.png)
九年级讲义目录专题01 二次根式的化简与求值阅读与思考二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧.有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是:1、直接代入直接将已知条件代入待化简求值的式子. 2、变形代入适当地变条件、适当地变结论,同时变条件与结论,再代入求值.数学思想:数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展.=x , y , n 都是正整数)例题与求解【例1】 当x =时,代数式32003(420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、20032-(绍兴市竞赛试题)【例2】 化简(1(ba b ab b -÷-- (黄冈市中考试题)(2(五城市联赛试题)(3(北京市竞赛试题)(4(陕西省竞赛试题)解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例3】比6大的最小整数是多少?(西安交大少年班入学试题)解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y==想一想:设x=求432326218237515x x x xx x x--++-++的值. (“祖冲之杯”邀请赛试题)的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例4】 设实数x ,y 满足(1x y =,求x +y 的值.(“宗泸杯”竞赛试题)解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例5】 (1的最小值.(2的最小值.(“希望杯”邀请赛试题)解题思路:对于(1)的几何意义是直角边为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =,设A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例6】 设2)m a =≤≤,求1098747m m m m m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.化简:7()3“希望杯”邀请赛试题)2.若x y x y+=-=,则xy=_____(北京市竞赛试题)3.+(“希望杯”邀请赛试题)4.若满足0<x<y=x,y)是_______(上海市竞赛试题)5.2x-3,则x的取值范围是()A.x≤1B. x≥2C. 1≤x≤2D. x>06)A.1B C. D. 5(全国初中数学联赛试题)7.a,b,c为有理数,且等式a+=成立,则2a+999b+1001c的值是()A.1999 B. 2000 C. 2001D. 不能确定(全国初中数学联赛试题)8、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A.0个B.1个C.2个D.3个(全国初中数学联赛试题)9、化简:(1(2(3(4(天津市竞赛试题)(5(“希望杯”邀请赛试题)10、设52x=,求代数式(1)(2)(3)(4)x x x x++++的值.(“希望杯”邀请赛试题)117x=,求x的值.12、设x x ==(n 为自然数),当n 为何值,代数式221912319x xy y ++的 值为1985?B 级1.已知3312________________x y x xy y ==++=则. (四川省竞赛试题)2.已知实数x ,y 满足(2008x y =,则2232332007x y x y -+--=____(全国初中数学联赛试题)3.已知42______1x x x ==++2x 那么. (重庆市竞赛试题)4.a =那么23331a a a ++=_____. (全国初中数学联赛试题)5. a ,b 为有理数,且满足等式14a +=++则a +b =( )A .2B . 4C . 6D . 8(全国初中数学联赛试题)6. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b(全国初中数学联赛试题)7.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 8. 若[a ]表示实数a 的整数部分,则等于( )A .1B .2C .3D . 4(陕西省竞赛试题)9. 把(1)a - )A .B C. D .(武汉市调考题)10、化简:(1 (“希望杯”邀请赛试题)(210099++(新加坡中学生竞赛试题)(3(山东省竞赛试题)(4 (太原市竞赛试题)11、设01,x << 1≤<.(“五羊杯”竞赛试题)12的最大值.13、已知a , b , c为有理数,证明:222a b c a b c ++++为整数.专题02 从求根公式谈起阅读与思考一元二次方程是解数学问题的重要工具,在因式分解、代数式的化简与求值,应用题,各种代数方程,几何问题、二次函数等方面有广泛的应用.初学一元二次方程,需要注意的是: 1、熟练求解解一般形式的一元二次方程,因式分解法是基础,它体现了“降次求解”的基本设想,公式法具有一般性,是解一元二次方程的主要方法,对于各项系数较大的一元二次方程,可以先从分析方程的各项系数特征入手,通过探求方程的特殊根来求解,常用的两个结论是:① 若0=++c b a ,则方程20(0)ax bx c a ++=≠必有一根为1. ② 若0=+-c b a ,则方程20(0)ax bx c a ++=≠必有一根为1-.2、善于变形解有些与一元二次方程相关的问题时,直接求解常给解题带来诸多不便,若运用整体思想,构造零值多项式,降次变形等相关思想方法,则能使问题获得简解.思想精髓一元二次方程的求根公式为1,22b x a-±=这个公式形式优美,内涵丰富:① 公式展示了数学的抽象性,一般性与简洁美; ② 公式包含了初中阶段所学过的全部六种代数运算;③ 公式本身回答了解一元二次方程的全部的三个问题,方程有没有实数根?有实根时共有几个?如何求出实根?例题与求解例1 阅读下列的例题解方程: 2||20x x --=解:①当x ≥0时,原方程化为220x x --=,解得122,1x x ==-(舍)① 当0<x 时,原方程化为220x x +-=,解得11=x (舍),22-=x 请参照例题解方程:2|3|30x x ---=,则方程的根是____(晋江市中考试题)解题思路:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解.例2 方程2|1|(42)x x -=-+的解的个数为( )A 、1个B 、2个C 、3个D 、4个(全国初中数学联赛试题)解题思路:通过去绝对值,将绝对值方程转化为一元二次方程求解.例3 已知m ,n 是二次方程2199970x x ++=的两个根,求22+19986)(20008)m m n n +++(的值.(“祖冲之杯”邀请赛试题)解题思路:若求出m ,n 值或展开待求式,则计算繁难,由方程根的定义可得关于m ,n 的等式,不妨从变形等式入手.反思:一元二次方程常见的变形方法有:①把20(0)ax bx c a ++=≠变形为2ax bx c =--②把20(0)ax bx c a ++=≠变形为2ax bx c +=-③把20(0)ax bx c a ++=≠变形为cax b x+=- 其中①②体现了“降次”代换的思想;③则是构造倒数关系作等值代换. 例4 解关于x 的方程:2(1)(21)30m x m x m -+-+-=解题思路:因未指明关于x 的方程的类型,故首先分01=-m 及1-m ≠0两种情况,当1-m ≠0时,还考虑就24b ac -的值的三种情况加以讨论.例5 已知三个不同的实数a ,b ,c 满足3=+-c b a ,方程012=++ax x 和02=++c bx x ,有一个相同的实根,方程02=++a x x 和02=++b cx x 也有一个相同的实根,求a ,b ,c 的值.解题思路:这是一个一元二次方程有公共根的问题,可从求公共根入手.方法指导:公共根问题是一元二次方程常见问题,解这类问题的基本方法是: ①若方程便于求出简单形式的根,则利用公共根相等求解. ②设出公共根,设而不求,消去二次项.例6 已知a 是正整数,如果关于x 的方程32(17)(38)560x a x a x +++--=的根都是整数,求a 的值及方程的整数根.(全国初中数学联赛试题) 解题思路:本题有两种解法,由方程系数特点发现1为隐含的根,从而将试题进行降次处理,或变更主元,将原方程整理为关于a 的较低次数的方程.能力训练 A 级1、已知方程062=+-q x x 可以配成()72=-p x 的形式,那么262=+-q x x 可以配成______________的形式.(杭州市中考试题)2、若分式22221x x x x --++的值为0,则x 的值等于____.(天津市中考试题)3、设方程2199319940,x x +-=和2(1994)1993199510x x -⋅-=的较小的根分别为α,β,则βα⋅=___.4、方程2|45|62x x x +-=-的解应是____(上海市竞赛试题) 5、方程23(1)1x x x ++-=的整数解的个数是____.A 、2个B 、3个C 、4个D 、5个(山东省选拔赛试题)6、若关于x 的一元二次方程22(1)5320m x x m m -++-+=的常数项为0,则m 的值等于( ) A 、1 B 、2 C 、1或2 D 、0(德州市中考试题)7、已知a , b 都是负实数,且1110a b a b+-=-,那么ba 的值是( )A 、12+ B 、12- C 、12- D 、12+- (江苏省竞赛试题)8、方程2||10x x --=的解是( )A 、12± B 、12- C 、12±或12- D 、12-± 9、已知a 是方程2199910x x -+=的一个根,求22199919981a a a -++的值.10、已知2410a a ++=且42321322a ma a ma a--=++,求m 的值. (荆州市竞赛试题)11、是否存在某个实数m ,使得方程220x mx ++=和220x x m ++=有且只有一个公共根?如果存在,求出这个实数m 及两方程的公共实根;如果不存在,请说明理由.12、已知关于x 的方程2(4)(8)(8012)320k k x k x ----+=的解都是整数,求整数k 的值.B 级1、已知α、β是方程2(2)10x m x +-+=的两根,则22(1)(1m )m ααββ++++的值为___ 2、若关于x 的方程20x px q ++=与20x qx p ++=只有一个公共根,则1999(p q)+=___3、设a , b 是整数,方程20x ax b ++=,则b a +=_________(全国通讯赛试题)4、用[]x 表示不大于x 的最大整数,则方程22[]30x x --=解的个数为( )A 、1个B 、2个C 、3个D 、4个 5、已知1||1a a-=,那么代数式1||a a +=( )A 、2 B 、2- C 、 D 6、方程||3||20x x x -+=的实根的个数为( )A 、1个B 、2个C 、3个D 、4个7、已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( )A 、1996B 、1997C 、1998D 、19998、已知三个关于x 的一元二次方程2220,0,0ax bx c bx cx a cx ax b ++=++=++=恰有一个公共实根,则222a b c bc ca ab++的值为( ) A 、0 B 、1 C 、2 D 、3(全国初中数学联赛试题)9、已知x =,求4322621823815x x x x x x --++-+的值. (“祖冲之杯”邀请赛试题)10、设方程2|21|40x x ---=,求满足该方程的所有根之和.(重庆市竞赛试题)11、首项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++= ①及222(1)(2)(2)0b x b x b b --+++= ②(其中a , b 为正整数)有一个公共根,求b ab aa b a b --++的值.(全国初中数学联赛试题)12、小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,专题04 根与系数关系阅读与思考根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值;3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式.当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路,需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的关系解题时,必须满足判别式△≥0.例题与求解【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为s ,则s 的取值范围是_________.【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取值范围是_________.A .01m ≤≤B .34m ≥C .314m <≤D .314m ≤≤【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求223βα+的值.【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求41st s t++的值.【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式1111b a a b --+--的值; (2)关于,,x y z 的方程组32236x y z axy yz zx ++=⎧⎨++=⎩有实数解(,,)x y z ,求正实数a 的最小值;(3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值.【例6】 ,,a b c 为实数,0ac <0++=,证明一元二次方程20ax bx c ++=有大于1的根.能力训练A 级1.已知m ,n 为有理数,且方程20x mx n ++=有一个根是52-,那么m n += .2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程228(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m 的方程23280x x m ++-=有两个大于2-的根.4.对于一切不小于2的自然数n .关于x 的一元二次方程22(2)20x n x n -+-=的两根记为,n n a b (2)n ≥则223320072007111(2)(2)(2)(2)(2)(2)a b a b a b +++=------ .5.设12,x x 是方程222(1)(2)0x k x k -+++=的两个实根,且12(1)(1)8x x ++=,则k 的值为( )A .31-或B .3-C .1D .12k ≥的一切实数 6.设12,x x 是关于x 的一元二次方程22x x n mx ++-=的两个实数根,且1210,30x x x <-<,则 ( ) A .12m n >⎧⎨>⎩ B .12m n >⎧⎨<⎩ C .12m n <⎧⎨>⎩ D .12m n <⎧⎨<⎩7.设12,x x 是方程220x x k +-=的两个不等的实数根,则22122x x +-是( )A .正数B .零C .负数D .不大于零的数8.如图,菱形ABCD 的边长是5,两对角线交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的根,那么m 的值是( )A .3-B .5C .53-或D .53-或9.已知关于x 的方程:22(2)04m x m x --=. (1)求证:无论m 取什么实数值,方程总有两个不相等的实数根;(2)若这个方程的两个根是12,x x ,且满足212,x x =+求m 的值及相应的12,x x .10.已知12,x x 是关于x 的一元二次方程2430kx x +-=的两个不相等的实数根. (1)求k 的取值范围;(2)是否存在这样的实数k ,使12123222x x x x +-=成立?若存在,求k 的值;若不存在,说明理由.11.如图,已知在△ABC 中,∠ACB =90°,过C 点作CD ⊥AB 于D ,设AD =m ,BD =n ,且AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.DBAC12.已知,m n 是正整数,关于x 的方程2()0x mnx m n -++=有正整数解,求,m n 的值.B 级1.设1x ,2x 是二次方程032=-+x x 的两根,则3212419x x -+= .2.已知1ab ≠,且有25199580a a ++=及28199550b b ++=则ab= . 3.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12,x x ,且221224x x +=,则k = .4.已知12,x x 是关于x 的一元二次方程22x ax a ++=的两个实数根,则1221(2)(2)x x x x --的最大值为 .5.如果方程210x px ++=(p >0)的两根之差为1,那么p 等于( )A .2B .4CD 6.已知关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12,x x ,且22127x x +=,则212()x x -的值是 ( )A .1B .12C .13D .257.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是 ( ) A .23 B .25C .5D .2 8.设213a a +=,213b b +=且a b ≠,则代数式2211a b+的值为( ) A .5 B .7 C .9 D .119.已知,a b 为整数,a b >,且方程233()40x a b x ab +++=的两个根,αβ满足关系式(1)(1)(1)(1)ααββαβ+++=++.试求所有整数点对(,)a b .10.若方程2310x x ++=的两根,αβ也是方程620x px q -+=的两根,其中,p q 均为整数,求,p q 的值.11.设,a b 是方程2310x x -+=的两根,c ,d 是方程2420x x -+=的两根,已知a b c dM b c d c d a d a b a b c+++=++++++++.求证:(1)222277a b c d M b c d c d a d a b a b c +++=-++++++++; (2)33334968a b c d M b c d c d a d a b a b c+++=-++++++++.12.设m 是不小于1-的实数,使得关于x 的一元二次方程222(2)310x m x m m +-+-+=有两个不相等实数根12,x x .(1)若22126x x +=,求m 的值;(2)求22121211mx mx x x +--的最大值.13.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.专题06 转化与化归----特殊方程、方程组阅读与思考特殊方程、方程组通常是指高次方程(组)(次数高于两次)、结构巧妙而富有规律性的方程、方程组.降次与消元是解特殊方程、方程组的基本策略,而降次与消元的常用方法是: 1、因式分解; 2、换元; 3、平方; 4、巧取倒数;5、整体叠加、叠乘等.转化是解各类特殊方程、方程组的基本思想,而化归的途径是降次与消元,而化归的方向是一元二次方程,这也可以说是“九九归宗”.例题与求解【例1】已知方程组⎩⎨⎧=+=+233522y x y x 的两组解是),(11y x 与),(22y x ,则1221y x y x +的值是_______ (北京市竞赛题)解题思路:通过消元,将待求式用同一字母的代数式表示,运用根与系数的关系求值.【例2】方程组⎩⎨⎧=+=+2363yz xz yz xy 的正整数解的组数是( )A .1组B .2组C .3组D .4组解题思路:原方程组是三元二次,不易消元降次,不妨从分析常数的特征入手.【例3】 解下列方程:(1) 42)113(1132=+-++-x xx x x x ; (“祖冲之杯”邀请赛试题) (2)121193482232222=+-++-++x x x x x x x x ; (河南省竞赛试题) (3) 1)1998()1999(33=-+-x x ; (山东省竞赛试题) (4) 222222)243()672()43(+-=+-+-+x x x x x x (“祖冲之杯”邀请赛试题) 解题思路:注意到方程左边或右边项与项的结构特点、内在联系,利用换元法求解.【例4】 解下列方程组:(1) ⎪⎪⎩⎪⎪⎨⎧=++=-+-+;612,331y y x y x y x (山东省竞赛试题)(2) ⎩⎨⎧=++=++;2454,144)53)(1(2y x x y x x x (西安市竞赛试题)(3) ⎩⎨⎧+-=+-=.23,23232232y y y x x x x y (全苏数学奥林匹克试题) 解题思路:观察发现方程组中两个方程的特点和联系,用换元法求解或整体处理.【例5】 若关于x 的方程xkx x x x x k 1122+=---只有一个解(相等的解也算一个).试求k 的值与方程的解.(江苏省竞赛试题)【例6】 方程02006322=+++-y x xy x 的正整数解有多少对?解题思路:确定主元,综合利用整除及分解因式等知识进行解题.能力训练A 级1.方程1)1(3)1(222=+-+xx x x 的实数根是_____________. 2.()()()22222224367243+-=+-+-+x xx x x x ,这个方程的解为x =_________________.3.实数z y x ,,满足⎩⎨⎧=+-+-=,0223,362z xy y x y x 则zy x +2的值为_______________.(上海市竞赛题) 4. 设方程组⎪⎩⎪⎨⎧=++=++=++0,0,01222b ax x a x bx bx ax 有实数解,则.________1=++b a(武汉市选拔赛试题)5.使得()()()()7823142222+-++=--x x x x x x 成立的x 的值得个数为( )A .4个B .3个C .2个D .1个(“五羊杯”竞赛试题)6.已知方程组⎩⎨⎧=-=+1,22z xy y x 有实数根,那么它有( )A .一组解B .二组解C .三组解D .无数组解(“祖冲之杯”邀请赛试题) 7.设a a 312=+,b b 312=+且b a ≠,则代数式2211b a +的值为( )A .5B .7C .9D .11 8.已知实数y x ,满足20,922=+=++xy y x y x xy ,则22y x +的值为( )A .6B .17C .1D .6或179.已知关于y x ,的方程组⎩⎨⎧=-+=-222)(3,p y x p xy p y x 有整数解()y x ,,求满足条件的质数p .10.已知方程组⎩⎨⎧=+-=++-01,022y x a y x 的两个解为⎩⎨⎧==,,11y y x x ⎩⎨⎧==,,22y y x x 且21,x x 是两个不等的正数.(1)求a 的取值范围;(2)若116832212221--=-+a a x x x x ,试求a 的值.(南通市中考试题)11.已知b a ,是方程012=--t t 的两个实根,解方程组⎪⎩⎪⎨⎧+=++=+.1,1y ayb x x b ya x(“祖冲之杯”邀请赛试题)12.已知某二次项系数为1的一元二次方程的两个实数根为q p ,,且满足关系式()⎩⎨⎧=+=++,6,5122pq q p p q p 试求这个一元二次方程.(杭州市中考试题)B 级1.方程组⎪⎩⎪⎨⎧==++++=++43251z y x z y x z y x 的解是___________________.2.已知x x x x x 71357139722=+-+++,则x 的值为______________.(全国初中数学联赛试题)3.已知实数00,y x 是方程组⎪⎩⎪⎨⎧+==11x y xy 的解,则._________00=+y x (全国初中数学联赛试题)4.方程组⎪⎩⎪⎨⎧=+=3411,9y xxy 的解是_________________. (“希望杯”邀请赛试题)5.若二元二次方程组()⎩⎨⎧+-==-12,122x k y y x 有唯一解,则k 的所有可能取值为______________. (《学习报》公开赛试题)6.正数654321,,,,,x x x x x x 同时满足1165432=x x x x x x ,2265431=x x x x x x ,3365421=x xx x x x ,4465321=x x x x x x ,6564321=x x x x x x ,9654321=x xx x x x . 则654321x x x x x x +++++的值为________.(上海市竞赛试题)7.方程06623=+--x x x 的所有根的积是()A .3B .-3C .4D .-6E .以上全不对(美国犹他州竞赛试题)8.设y x ,为实数,且满足()()()()⎩⎨⎧=-+--=-+-,1119991,111999133y y x x 则=+y x ( ) A .1 B .-1 C .2 D .-2(武汉市选拔赛试题)9.已知⎪⎩⎪⎨⎧=++=++=,3,2,1222z y x z y x xyz 则111111-++-++-+y zx x yz z xy 的值为( )A .1B .21-C .2D .32-10.对于实数a ,只有一个实数值x 满足等式012211112=-++++-+-+x a x x x x x ,试求所有这样的实数a 的和.(江苏省竞赛试题)11.解方程a x x x x =--+-+1212,其中0>a ,并就正数a 的取值,讨论此方程解的情况.(陕西省竞赛试题)12.已知c b a ,,三数满足方程组⎩⎨⎧=+-=+,4828,82c c ab b a 试求方程02=-+a cx bx 的根. (全国初中数学联赛试题)13.解下列方程(组):(1)()1639322=-+x x x ; (武汉市竞赛试题)(2)()()()6143762=+++x x x ;(湖北省竞赛试题)(3)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,414,414,414222222x z z z y y y x x (加拿大数学奥林匹克竞赛试题)专题08 二次函数阅读与思考二次函数是初中代数的重要内容,既有着应用非常广泛的丰富性质,又是进一步学习的基础,主要知识与方法有:1.二次函数解析式c bx ax y ++=2的系数符号,确定图象的大致位置.2.二次函数的图象是一条抛物线,抛物线的形状仅仅与a 有关,a b 2-与(ab2-,a b ac 442-)决定抛物线对称轴与顶点的位置.3.二次函数的解析式通常有下列三种形式: ①一般式:c bx ax y ++=2; ②顶点式n m x a y +-=2)(:;③交点式:))((21x x x x a y --=,其中1x ,2x 为方程02=++c bx ax 的两个实根. 用待定系数法求二次函数解析式,根据不同条件采用不同的设法,可使解题过程简捷.例题与求解【例1】 二次函数c bx ax y ++=2的图象如图所示,现有以下结论:①0>abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤()()1≠+>+m b am m b a .其中正确的结论有( )A . 1个B . 2个C . 3个D . 4个 (天津市中考试题)解题思路:由抛物线的位置确定a ,b ,c 的符号,解题关键是对相关代数式的意义从函数角度理解并能综合推理.【例2】 若二次函数c bx ax y ++=2(a ≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0),则c b a S ++=的值的变化范围是( )A .0<S <1B . 0<S <2C . 1<S <2D . -1<S <1 (陕西省竞赛试题) 解题思路:设法将S 表示为只含一个字母的代数式,求出相应字母的取值范围,进而确定S 的值的变化范围.【例3】 某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件). 在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面3210米,入水处距池边的距离为4米,同时,运动员在距水面高度5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为533米.此次跳水会不会失误?并通过计算说明理由. (河北省中考试题) 解题思路:对于(2),判断此次跳水会不会失误,关键时求出距池边的水平距离为533米时,该运动员与跳台的垂直距离.【例4】 如图,在直角坐标xOy 中,二次函数图象的顶点坐标为C (4,3-),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上求作一点P (不写作法),使PA +PC 最小,并求P 点坐标;(3)在x 轴的上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 三点为顶点的三角形与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由. (泰州市中考试题) 解题思路:对于(1)、(2),运用对称方法求出A ,B ,P 点坐标;对于(3),由于未指明对应关系,需分类讨论.【例5】 如图,已知边长为4的正方形截去一个角后成为五边形ABCDE ,其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积. (辽宁省中考试题) 解题思路:设DN =PM =x ,矩形PNDM 的面积为y ,建立y 与x 的函数关系式. 解题的关键是:最值点不一定是抛物线的顶点,应注意自变量的取值范围.PMF E DNCBA【例6】 将抛物线33:211+-=x y c 沿x 轴翻折,得抛物线2c ,如图所示.(1)请直接写出抛物线2c 的表达式.(2)现将抛物线1c 向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线2c 向右也平移移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴的交点从左到右依次为D ,E .①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由. (江西省中考试题) 解题思路:把相应点的坐标用m 的代数式表示,由图形性质建立m 的方程. 因m 值不确定,故解题的关键是分类讨论.能力训练A 级1.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a 的值为__________.2.已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,ABC S ∆=3,则b =____________. (四川省中考试题)3.已知二次函数c bx ax y ++=2的图象如图所示. (1)这个二次函数的解析式是y =_________; (2)当x =________时,3=y ;(3)根据图象回答,当x _______时,0>y . (常州市中考试题) 4.已知二次函数的图象经过原点及点(21-,41-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为_______________. (安徽省中考试题) 5.二次函数c bx ax y ++=2与一次函数c ax y +=在同一坐标系中的图象大致是( )A B C D6.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数c bx x y ++=2的图象过点(1,0)……求证:这个二次函数的图象关于直线2=x 对称,根据现有信息,题中的二次函数图象不具有的性质是( )A .过点(3,0)B .顶点是(2,-2)C .在x 轴上截得的线段长度是2D .与y 轴的交点是(0,3) (盐城市中考试题) 7.如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A ,B ,E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系式不能总成立的是( ) (大连市中考试题)A .0=bB . 2c S ABE =∆ C .1-=ac D .0=+c a第7题图 第8题图 8.如图,某中学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米处高各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,则校门的高为(精确到0.1米,水泥建筑物厚度忽略不计)( )A .9.2米B .9.1米C .9米D .5.1米 (吉林省中考试题)9.如图,是某防空部队进行射击训练时在平面直角坐标系中的示意图. 在地面O ,A 两个观测点测得空中固定目标C 的仰角分别为α和β,OA =1千米,tan α=289, tan β=83,位于O 点正上方35千米D点处的直升机向目标C 发射防空导弹,该导弹运行到达距地面最大高度3千米时,相应的水平距离为4千米(即图中E 点).(1)若导弹运行为一抛物线,求抛物线的解析式;(2)说明按(1)中轨道运行的导弹能否击中目标的理由.(河北省中考试题)10.如图,已知△ABC 为正三角形,D ,E 分别是边AC 、BC 上的点(不在顶点),∠BDE =60°. (1)求证:△DEC ∽△BDA ;(2)若正三角形ABC 的边长为6,并设DC =x ,BE =y ,试求出y 与x 的函数关系式,并求BE 最短时,△BDE 的面积.CEDBA11.如图,在平面直角坐标系中,OB ⊥OA 且OB =2OA ,点A 的坐标是(-1,2). (1)求点B 的坐标;(2)求过点A ,O ,B 的抛物线的解析式;(3)连结AB ,在(2)中的抛物线上求出点P ,使ABO ABP S S ∆∆=.(陕西省中考试题)12.如图,在平面直角坐标系中,抛物线n mx x y ++=2经过点A (3,0),B (0,-3)两点,点P 是直线AB 上一动点,过点P 作x 轴的垂线交抛物线于点M .设点P 的横坐标为t ;(1)分别求直线AB 和这条抛物线的解析式;(2)若点P 在第四象限,连结BM ,AM ,当线段PM 最长时,求△ABM 的面积;(3)是否存在这样的点P ,使得以点P ,M ,B ,O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由. (南宁市中考试题)B 级1.已知二次函数c x x y +-=62的图象顶点与坐标原点的距离为5,则c =________.2.如图,四边形ABCD 是矩形,A ,B 两点在x 的正半轴上,C ,D 两点在抛物线x x y 62+-=上.设OA 的长为m (0<m <3).矩形ABCD 的周长为l ,则l 与m 的函数解析式为__________________.(昆明市中考试题)第2题图 第3题图 第4题图3.如图,在⊙O 的内接△ABC 中,AB +AC =12,AD ⊥BC ,垂足为D (点D 在边BC 上),且AD =3,当AB 的长等于________时, ⊙O 的面积最大,最大面积为___________.4.如图,已知二次函数)0(21≠++=a c bx ax y 与一次函数)0(2≠+=k m kx y 的图象相交于点A (-2,4),B (8,2),则能使21y y >成立的x 的取值范围时______________. (杭州市中考试题) 5.已知函数c bx ax y ++=2的图象如下图所示,则函数c ax y +=的图象只可能是( )(重庆市中考试题)A B C D6.已知二次函数c bx ax y ++=2的图象如图所示,则下列6个代数式:ab ,ac ,c b a ++,c b a +-,b a +2,b a -2中,其值为正的式子个数为 ( )A .2个B .3个C .4个D .4个以上 (全国初中数学联赛试题)7.已知抛物线c bx ax y ++=2(a ≠0)的对称轴是2=x ,且经过点P (3,0)则c b a ++的值为( ) A .-1 B .0 C .1 D .2 8.已知二次函数c bx ax y ++=2(0>a )的对称轴是2=x ,且当0,,2321===x x x π时,二次函数y 的值分别时321,,y y y ,那么321,,y y y 的大小关系是( )A . 321y y y >>B . 321y y y <<C . 312y y y <<D . 312y y y >>9.已知抛物线4)343(2++-=x m mx y 与x 轴交于两点A ,B ,与y 轴交于C 点,若△ABC 是等腰三角形,求抛物线的解析式. (“新世纪杯”初中数学竞赛试题) 10.如图,已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线241x y =上的一个动点. (1)判断以点P 为圆心,PM 为半径的圆与直线1-=y 的位置关系; (2)设直线PM 与抛物线241x y =的另一个交点为Q ,连结NP ,NQ ,求证:∠PNM =∠QNM . (全国初中数学竞赛试题)11.已知函数122--=x x y 的图象与x 轴相交于相异两点A ,B ,另一抛物线c bx ax y ++=2过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c 的值. (天津市竞赛试题)12.如图1,点P 是直线22:--=x y l 上的点,过点P 的另一条直线m 交抛物线2x y =于A ,B 两点.(1)若直线m 的解析式为2321+-=x y ,求A ,B 两点的坐标; (2)如图2,①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于。
学而思初中数学培优教材
![学而思初中数学培优教材](https://img.taocdn.com/s3/m/6b08b5052a160b4e767f5acfa1c7aa00b52a9df1.png)
学而思初中数学培优教材学而思初中数学培优教材是一套专为初中学生量身打造的优质教材。
本教材从数学的基本概念出发,循序渐进地引导学生理解数学的本质和应用方法。
下面我将从教材的内容结构、教学理念和特点三个方面展开阐述。
首先,学而思初中数学培优教材的内容十分丰富,覆盖了初中数学的所有知识点。
教材按照学科知识体系划分,包括数与式、图与式、代数式、函数、相似与等价、解析几何、统计与概率等多个部分。
每个部分都有详细的知识点介绍、例题分析和习题训练。
教材不仅注重扎实的基础知识,还突出了学习方法和解题技巧的培养,帮助学生提升解题能力。
其次,学而思初中数学培优教材注重启发式教学。
教材通过大量的例题和思考题,引导学生主动思考、独立解决问题。
教材中的例题都有详细的解析过程,激发学生的思维,培养学生的分析和解决问题的能力。
同时,教材还提供了一些拓展思维的问题,帮助学生培养创新思维和探索精神。
最后,学而思初中数学培优教材具有循序渐进、难度递增的特点。
教材在内容安排上按照由易到难的顺序进行,符合学生的认知规律,帮助学生逐步理解和掌握知识。
同时,教材还特别注重知识之间的联系和拓展,帮助学生形成完整的数学思维体系。
总的来说,学而思初中数学培优教材是一套科学、系统的教材,能够有效提升学生的数学水平。
教材内容丰富、启发式教学、循序渐进的特点,使学生能够在学习中理解数学的内涵、培养数学思维、提高解题能力。
对于初中生来说,选择学而思初中数学培优教材是一种明智的选择,将为他们打下坚实的数学基础,帮助他们更好地应对学习和考试的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年初二升初三暑期培优教材(数学)第一讲 一元二次方程【学习目标】1、学会根据具体问题列出一元二次方程,培养把文字叙述的问题转换成数学语言的能力。
2、了解一元二次方程的解或近似解。
3、增进对方程解的认识,发展估算意识和能力。
【知识要点】1、一元二次方程的定义:只含有一个未知数的整式方程,并且都可以化为02=++c bx ax (a 、b 、c 、为常数,0a ≠)的形式,这样的方程叫做一元二次方程。
(1)定义解释:①一元二次方程是一个整式方程;②只含有一个未知数;③并且未知数的最高次数是2。
这三个条件必须同时满足,缺一不可。
(2)02=++c bx ax (a 、b 、c 、为常数,0a ≠)叫一元二次方程的一般形式,也叫标准形式。
(3)在02=++c bx ax (0a ≠)中,a ,b ,c 通常表示已知数。
2、一元二次方程的解:当某一x 的取值使得这个方程中的c bx ax ++2的值为0,x 的值即是一元二次方程02=++c bx ax 的解。
3、一元二次方程解的估算:当某一x 的取值使得这个方程中的c bx ax ++2的值无限接近0时,x的值即可看做一元二次方程02=++c bx ax 的解。
【经典例题】例1、下列方程中,是一元二次方程的是 ①042=-y y ; ②0322=--x x ; ③312=x ; ④bx ax =2;⑤x x 322+=; ⑥043=+-x x ; ⑦22=t ; ⑧0332=-+xx x ;⑨22=-x x ;⑩)0(2≠=a bx ax 例2、(1)关于x 的方程(m -4)x 2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程.(2)如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a__________.(3)关于x 的方程135)32(12=+-++x x m m m 是一元二次方程吗?为什么?例3、把下列方程先化为一般式,再指出下列方程的二次项系数,一次项系数及常数项。
(1)2x2―x+1=0 (2)-5x2+1=6x (3)(x+1)2=2x (4)8-xx-=432-例4、(1)某校办工厂利润两年内由5万元增长到9万元,设每年利润的平均增长率为x,可以列方程得()A.5(1+x)=9B.5(1+x)2=9C.5(1+x)+5(1+x)2=9D.5+5(1+x)+5(1+x)2=9(2)某商品成本价为300元,两次降价后现价为160元,若每次降价的百分率相同,设为x,则方程为_____________.例5、一块四周镶有宽度相等的花边的地毯,如下图所示,它的长为8 m,宽为5 m,如果地毯中央长方形图案的面积为18 m2,那么花边有多宽?(列出方程并估算解得值)例6、如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?【经典练习】一、选择题1、下列关于x 的方程:①1.5x 2+1=0;②2.3x 2+x1+1=0;③3.4x 2=ax(其中a 为常数);④2x 2+3x=0;⑤5132+x =2x ;⑥22)(x x + =2x 中,一元二次方程的个数是( ) A 、1 B 、2 C 、3 D 、42、方程x 2-2(3x -2)+(x+1)=0的一般形式是A.x 2-5x+5=0B.x 2+5x+5=0C.x 2+5x -5=0D.x 2+5=03、一元二次方程7x 2-2x=0的二次项、一次项、常数项依次是A.7x 2,2x,0B.7x 2,-2x ,无常数项C.7x 2,0,2xD.7x 2,-2x,04、若x=1是方程ax 2+bx+c=0的解,则A.a+b+c=1B.a -b+c=0C.a+b+c=0D.a -b -c=0二、填空题1、将13)34(+=+x x x 化为一般形式为__________,此时它的二次项系数是. __________,一次项系数是__________,常数项是__________。
2、如果(a+2)x 2+4x+3=0是一元二次方程,那么a 所满足的条件为___________.3、已知两个数之和为6,乘积等于5,若设其中一个数为x ,可得方程为_____________.4、某高新技术产生生产总值,两年内由50万元增加到75万元,若每年产值的增长率设为x ,则方程为___________.5、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐月上升,第一季度共生产化工原料60万吨,设一、二月份平均增长的百分率相同,均为x ,可列出方程为_____________.三、解答题1、某商场销售商品收入款:3月份为25万元,5月份为36万元,该商场4、5月份销售商品收入款平均每月增长的百分率是多少?【课后作业】一、填空题1、方程5(x 2-2x+1)=-32x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2、若关于x 的方程053)1(2=+--ax x a 是一元二次方程,这时a 的取值范围是________3、某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为x ,根据题意列方程_________.二、选择题1、下列方程中,不是一元二次方程的是 ( )A.2x 2+7=0B.2x 2+23x+1=0C.5x 2+x1+4=0 D.3x 2+(1+x) 2+1=0 2、方程x 2-2(3x -2)+(x+1)=0的一般形式是 ( )A.x 2-5x+5=0B.x 2+5x+5=0C.x 2+5x -5=0D.x 2+5=03、一元二次方程51272=+-x x 的二次项、一次项、常数项依次是 ( )A.7x 2,2x,1B.7x 2,-2x ,无常数项C.7x 2,0,2xD.7x 2,-2x,-44、方程x 2-3=(3-2)x 化为一般形式,它的各项系数之和可能是 ( ) A.2 B.-2 C.32- D.3221-+5、若关于x 的方程(ax+b )(d -cx)=m(ac ≠0)的二次项系数是ac ,则常数项为 ( )A.mB.-bdC.bd -mD.-(bd -m)6、若关于x 的方程a(x -1)2=2x 2-2是一元二次方程,则a 的值是 ( )A.2B.-2C.0D.不等于27、若x=-1是方程ax 2+bx+c=0的解,则 ( )A.a+b+c=1B.a -b+c=0C.-a+b+c=0D.a -b -c=0第二讲 一元二次方程(配方法)【学习目标】1、会用开平方法解形如)0()(2≥=+n n m x 的方程。
2、理解配方法,会用配方法解简单的数字系数的一元二次方程。
3、经历列解方程解决实际问题的过程,体会转化的数学思想,增强数学应用意识和能力。
【知识要点】1、直接开平方法解一元二次方程:(1) 把方程化成有一边是含有未知数的完全平方的形式,另一边是非负数的形式,即化成)0()(2≥=±a a b x 的形式(2) 直接开平方,解得a b x a b x -=+= 21,2、配方法的定义:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
3、用配方法解一元二次方程的步骤:(1)利用配方法解一元二次方程时,如果02=++c bx ax 中a 不等于1,必须两边同时除以a ,使得二次项系数为1.(2)移项,方程的一边为二次项和一次项,另一边为常数项。
(3)方程两边同时加上一次项系数一半的平方。
(4)用直接开平方法求出方程的根。
【经典例题】例1、解下列方程:(1)x 2=4(2)(x+3)2=9例2、配方:填上适当的数,使下列等式成立:(1)x 2+12x+ =(x+6)2 (2)x 2+8x+ =(x+ )2(3)x 2―12x+ =(x ― )2例3、用配方法解方程(1)3x 2+8x ―3=0(2)01262=--x x(3)04525212=-+-x x (4)022=--x x例4、请你尝试证明关于x 的方程012)208(22=+++-mx x m m ,不论m 取何值,该方程都是一元二次方程。
例5、 一小球以15m/s 的初速度竖直向上弹出,它在空中的高度h (m )与时间t (s )满足关系: h=15t ―5t 2,小球何时能达到10m 高?【经典练习】一、填空题1、若x 2=225,则x 1=__________,x 2=__________.2、若9x 2-25=0,则x 1=__________,x 2=__________.3、填写适当的数使下式成立.①x 2+6x+______=(x+3)2 ②x 2-______x+1=(x -1)2 ③x 2+4x+______=(x+______)24、为了利用配方法解方程x 2-6x -6=0,我们可移项得___________,方程两边都加上_________,得_____________,化为___________.解此方程得x 1=_________,x 2=_________.5、将长为5,宽为4的矩形,沿四个边剪去宽为x 的4个小矩形,剩余部分的面积为12,则剪去小矩形的宽x 为_________.6、如图1,在正方形ABCD 中,AB 是4 cm ,△BCE 的面积是△DEF 面积的4倍,则DE 的长为_________.7、如图2,梯形的上底AD=3 cm ,下底BC=6 cm ,对角线AC=9 cm ,设OA=x ,则x=_________ cm.图1 图2二、选择题1、方程5x 2+75=0的根是 ( )A.5B.-5 C .±5 D.无实根2、方程3x 2-1=0的解是 ( )A.x=±31B.x=±3C.x=±33D.x=±33、一元二次方程x 2-2x -m=0,用配方法解该方程,配方后的方程为() A.(x -1)2=m 2+1 B.(x -1)2=m -1C.(x -1)2=1-mD.(x -1)2=m+14、用配方法解方程x 2+x=2,应把方程的两边同时( )A.加41B.加21C.减41D.减215、已知xy=9,x -y=-3,则x 2+3xy+y 2的值为( )A.27B.9C.54D.18三、计算题(用配方法解下列方程)(1)162=x (2)4)2(2=-x(3)x 2+5x -1=0 (4)2x 2-4x -1=0(5) 41x 2-6x+3=0 (6)x 2-x+6=0(7)0342=--x x (8)025122=++x x(9)x x 6132=- (10)012222=+-x x四、解答题两个正方形,小正方形的边长比大正方形的边长的一半多4 cm ,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.【课后作业】1、将下列方程两边同时乘以或除以适当的数,然后再写成(x+m)2=n 的形式(1)2x 2+3x -2=0 (2)41x 2+x -2=02、用配方法解下列方程(1)x 2+5x -5=0 (2)2x 2-4x -3=0(3) x 2-3x-3=0 (4)014722=++x x第三讲 一元二次方程(公式法)【学习目标】1、学会一元二次方程求根公式的推导。