结构化学第二章原子的结构和性质习题及答案
结构化学 第二章习题(周公度)
结构化学第二章习题(周公度)第二章原子的结构和性质1氢原子光谱可见波段相邻4条谱线的波长分别为656.47,486.27,434.17, 和410.29nm ,试通过数学处理将谱线的波数归纳成下式表示,并求出常数R 及整数n 1,n 2的数值~=R (1-1) v 22n 1n 2解:数据处理如下表-3222 v /10~(n=1) 1/n(n=2) 1/n(n=3)波数、c m -122(1/n2-1/n2) 12(1/n-1/n)21波数、c m -122(1/n-1/n)21从以上三个图中可以看出当n 1=2时,n 2=3,4,5…数据称直线关系,斜率为0.010912、按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算,并准确到5位有效数字) 和线速度。
解:根据Bohr 模型离心力 = 库仑力m υr2=e224πε0rn h 2π(1)角动量M 为h/2π的整数倍 m υ⋅r = (2)由(1)式可知υ2=2e24πε0mr;由(2)式可知 r =n h 2πm υυ=2e2ε0nh =基态n=1线速度,υ=e (1. 60219*102*8. 854188*10-12-19)2-342ε0h*6. 626*10=2. 18775*10-5基态时的半径,电子质量=9.10953*10-31kgr =nh 2πm υ=6. 626*102*3. 1416*9. 10953*10-34-31*2. 18755*10-5=5. 29196*10-10折合质量,μ=9.10458*10-31kg r =3、对于氢原子(1) 分别计算从第一激发态和第六激发态跃迁到基态的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围(2) 上述两谱线产生的光子能否使;(a) 处于基态的另一个氢原子电离,(b)金属铜钟的铜原子电离(铜的功函数为7.44*10-19J)(3) 若上述两谱线所产生的光子能使金属铜晶体的电子电离,请计算从金属铜晶体表面发射出的光电子的德布罗意波长解:(1) H 原子的基态n=1,第一激发态n=2,第六激发态 n=7 λ=nh 2πμυ=6. 626*102*3. 1416*9. 10458*10-34-31*2. 18755*10-5=5. 29484*10-10hc E 2-E 1hc E 7-E 1=6. 626*10-34*2. 99793*10*6. 02205*104823-13. 595(0. 25-1) *9. 649*106. 626*10-348=1. 2159*1023-7mλ==*2. 99793*10*6. 02205*104-13. 595(0. 0205-1) *9. 649*10=9. 3093*10-8m谱线属于莱曼系,(2) 从激发态跃迁到基态谱线的能量,E=hc/λ E 1= hcλ=6. 626*10-34*2. 999*10-7811. 2159*106. 626*10-34*6. 023*10mol823-1*1. 036*10-5=10. 19eVE 2=hcλ=*2. 999*10-829. 3093*10*6. 023*10mol23-1*1. 036*10-5=13. 31eV基态H 原子电离需要的电离能为 13.6eV ,谱线不能使另一个基态H 原子电离。
(完整版)结构化学课后答案第二章
02 原子的结构和性质【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。
221211()R n n ν=-解:将各波长换算成波数:1656.47nm λ= 1115233v cm --=2486.27nm λ= 1220565v cm --=3434.17nm λ= 1323032v cm --=4410.29nm λ= 1424373v cm --=由于这些谱线相邻,可令1n m =,21,2,n m m =++……。
列出下列4式:()22152331R R m m =-+()22205652R Rm m =-+()22230323R R m m =-+()22243734R Rm m =-+(1)÷(2)得:()()()23212152330.7407252056541m m m ++==+用尝试法得m=2(任意两式计算,结果皆同)。
将m=2带入上列4式中任意一式,得:1109678R cm -=因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式:221211v R n n -⎛⎫=- ⎪⎝⎭ 式中,112109678,2,3,4,5,6R cm n n -===。
【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。
解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:22204n n n m e r r υπε= n=1,2,3,…… 式中,,,,,n n m r e υ和0ε分别是电子的质量,绕核运动的半径,半径为n r 时的线速度,电子的电荷和真空电容率。
同时,根据量子化条件,电子轨道运动的角动量为: 2n n nh m r υπ=将两式联立,推得:2202n h n r me επ=;202ne h n υε= 当原子处于基态即n=1时,电子绕核运动的半径为:2012h r me επ=()()23412211231196.62618108.854191052.9189.1095310 1.6021910J s C J m pm kg C π------⨯⨯⨯==⨯⨯⨯⨯若用原子的折合质量μ代替电子的质量m ,则:201252.91852.91852.9470.99946h m pm r pm pme επμμ==⨯==基态时电子绕核运动的线速度为:2102e h υε=()21934122111.60219102 6.62618108.8541910C J s C J m -----⨯=⨯⨯⨯⨯612.187710m s -=⨯【2.3】对于氢原子:(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。
结构化学课后习题答案
结构化学课后习题答案北师⼤结构化学课后习题第⼀章量⼦理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电⼦等实物粒⼦具有波动性被称作物质波。
物质波的波动性是和微粒⾏为的统计性联系在⼀起的。
对⼤量粒⼦⽽⾔,衍射强度(即波的强度)⼤的地⽅,粒⼦出现的数⽬就多,⽽衍射强度⼩的地⽅,粒⼦出现的数⽬就少。
对⼀个粒⼦⽽⾔,通过晶体到达底⽚的位置不能准确预测。
若将相同速度的粒⼦,在相同的条件下重复多次相同的实验,⼀定会在衍射强度⼤的地⽅出现的机会多,在衍射强度⼩的地⽅出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒⼦,ψψ=ψ*2代表粒⼦的⼏率密度,在时刻t ,空间q 点附近体积元τd 内粒⼦的⼏率应为τd 2ψ;在整个空间找到⼀个粒⼦的⼏率应为 12=ψ?τd 。
表⽰波函数具有归⼀性。
2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平⽅可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒⼦运动状态的波函数⾸先必须是单值的,因为只有当波函数ψ在空间每⼀点只有⼀个值时,才能保证概率密度的单值性;⾄于连续的要求是由于粒⼦运动状态要符合Schr?dinger ⽅程,该⽅程是⼆阶⽅程,就要求波函数具有连续性的特点;平⽅可积的是因为在整个空间中发现粒⼦的概率⼀定是100%,所以积分?τψψd *必为⼀个有限数。
3 如何理解态叠加原理?参考答案在经典理论中,⼀个波可由若⼲个波叠加组成。
这个合成的波含有原来若⼲波的各种成份(如各种不同的波长和频率)。
⽽在量⼦⼒学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某⼀物理量Q 的对应不同本征值的本征态的叠加,使粒⼦部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有⾃⼰的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量⼦⼒学可以计算出测量的平均值。
4 测不准原理的根源是什么?参考答案根源就在于微观粒⼦的波粒⼆象性。
结构化学第二章原子的结构和性质习题及答案
一、填空题1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a re a r a -⋅-⋅π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________.角动量在Z 轴方向分量为_________.2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。
3. 如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为__________。
二、选择题1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( )A. n,lB. n,l,mC. nD. n,m2. 用来表示核外某电子运动状况的下列各组量子数(n ,l ,m ,ms )中,哪一组是合理的()A. (2,1,-1,-1/2)B. (0,0,0,1/2)C. (3,1,2,1/2)D.(2,1,0,0)3. 如果一个原子的主量子数是4,则它( )A. 只有s 、p 电子B. 只有s 、p 、d 电子C. 只有s 、p 、d 和f 电子D. 有s 、p 电子4. 对氢原子Φ方程求解,下列叙述有错的是( ).A. 可得复函数解Φ=ΦΦim m Ae )(.B. 由Φ方程复函数解进行线性组合,可得到实函数解.C. 根据Φm (Φ)函数的单值性,可确定|m|=0.1.2…………ID. 根据归一化条件1)(220=ΦΦΦ⎰d m π求得π21=A5. He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( ).A.1B.1/9C.1/4D.1/166. 电子在核附近有非零几率密度的原子轨道是( ).A.Ψ3PB. Ψ3dC.Ψ2PD.Ψ2S7. 氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数?A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5)8. Fe 的电子组态为[Ar]3d 64s 2,其能量最低的光谱支项( )A.5D4B. 3P2C. 5D0D. 1S09. 立方箱中在E 6h2/4ml2的能量范围内,能级数和状态数为()。
结构化学第二章原子的结构和性质习题及答案(教学材料)
一、填空题1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a re a r a -⋅-⋅π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________.角动量在Z 轴方向分量为_________.2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。
3. 如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为__________。
二、选择题1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( )A. n,lB. n,l,mC. nD. n,m2. 用来表示核外某电子运动状况的下列各组量子数(n ,l ,m ,ms )中,哪一组是合理的()A. (2,1,-1,-1/2)B. (0,0,0,1/2)C. (3,1,2,1/2)D.(2,1,0,0)3. 如果一个原子的主量子数是4,则它( )A. 只有s 、p 电子B. 只有s 、p 、d 电子C. 只有s 、p 、d 和f 电子D. 有s 、p 电子4. 对氢原子Φ方程求解,下列叙述有错的是( ).A. 可得复函数解Φ=ΦΦim m Ae )(.B. 由Φ方程复函数解进行线性组合,可得到实函数解.C. 根据Φm (Φ)函数的单值性,可确定|m|=0.1.2 (I)D. 根据归一化条件1)(220=ΦΦΦ⎰d m π求得π21=A5. He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( ).A.1B.1/9C.1/4D.1/166. 电子在核附近有非零几率密度的原子轨道是( ).A.Ψ3PB. Ψ3dC.Ψ2PD.Ψ2S7. 氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数?A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5)8. Fe的电子组态为[Ar]3d64s2,其能量最低的光谱支项( )A.5D4B. 3P2C. 5D0D. 1S09. 立方箱中在E 6h2/4ml2的能量范围内,能级数和状态数为()。
第2章原子的结构和性质-习题与答案
第2章原子的结构和性质-习题与答案1. 在直角坐标系下,Li 2+ 的Schr ?dinger 方程为________________ 。
解:ψψE r εe m h =π-?π-20222438 式中:zy x ??+??+??=?2222222 r = ( x 2+ y 2+ z 2)1/2 2. 已知类氢离子 He +的某一状态波函数为:()022-023021e222241a r a r a ???? ?-???? ??π ( a ) 则此状态的能量为( b) 此状态的角动量的平方值为,( c )此状态角动量在 z 方向的分量为,( d )此状态的 n , l , m 值分别为,( e )此状态角度分布的节面数为。
( f )此状态最大概率密度处的 r 值为,( g )此状态最大概率密度处的径向分布函数值为,( h)此状态径向分布函数最大处的 r 值为解: (a) -13.6 eV; (b) 0; (c) 0; (d) 2,0,0;(e) 0; (f) 0; (g) 0 ; (h) 2.618 a 03. 在多电子原子中,单个电子的动能算符均为2228?π-mh 所以每个电子的动能都是相等的,对吗?解:不对4. 原子轨道是指原子中的单电子波函数,所以一个原子轨道只能容纳一个电子,对吗?解:不对5. 原子轨道是原子中的单电子波函数,每个原子轨道只能容纳______个电子。
解:26. H 原子的()φr,θψ,可以写作()()()φθr R ΦΘ,,三个函数的乘积,这三个函数分别由量子数 (a) ,(b), (c) 来规定。
解: (a) n , l; (b) l , m ; (c) m7. 已知ψ= Y R ? = ΦΘ??R ,其中Y R ,,,ΦΘ皆已归一化,则下列式中哪些成立?---------------------------------(D )(A)?∞=021d r ψ (B)?∞=021d r R (C)??∞=0π2021d d φθY (D)?=π021d sin θθΘ 8. 对氢原子Φ方程求解,(A) 可得复数解()φΦm A m i e x p =(B) 根据归一化条件数解1d ||202=?πφm Φ,可得A=(1/2π)1/2 (C) 根据m Φ函数的单值性,可确定│m │= 0,1,2,…,l (D) 根据复函数解是算符M z的本征函数得M z = mh /2π (E) 由Φ方程复数解线性组合可得实数解以上叙述何者有错?-----------------------------()解: (C), 根据Φ函数的单值性可确定│m │的取值为 0, 1, 2,...,但不能确定其最大取值l , │m │的最大值是由Θ方程求解确定的。
结构化学课后答案第2章习题原子的结构与性质
1. 简要说明原子轨道量子数及它们的取值范围?解:原子轨道有主量子数n ,角量子数l ,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来说,原子轨道能级只与主量子数n 相关R n Z E n22-=。
对多电子原子,能级除了与n 相关,还要考虑电子间相互作用。
角量子数l 决定轨道角动量大小,磁量子数m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。
n 取值为1、2、3……;l =0、1、2、……、n -1;m =0、±1、±2、……±l ;s 取值只有21±。
2. 在直角坐标系下,Li 2+ 的Schrödinger 方程为________________ 。
解:由于Li 2+属于单电子原子,在采取“B -O” 近似假定后,体系的动能只包括电子的动能,则体系的动能算符:2228ˆ∇-=mh T π;体系的势能算符:r e r Ze V 0202434ˆπεπε-=-= 故Li 2+ 的Schrödinger 方程为:ψψE r εe mh =⎥⎦⎤⎢⎣⎡π-∇π-20222438 式中:z y x ∂∂+∂∂+∂∂=∇2222222,r = ( x 2+ y 2+ z 2)1/23. 对氢原子,131321122101-++=ψψψψc c c ,其中 131211210,,-ψψψψ和都是归一化的。
那么波函数所描述状态的(1)能量平均值为多少?(2)角动量出现在 π22h 的概率是多少?,角动量 z 分量的平均值为多少?解: 由波函数131321122101-++=ψψψψc c c 得:n 1=2,l 1=1,m 1=0; n 2=2, l 2=1,m 2=1; n 3=3,l 3=1,m 3=-1;(1)由于131211210,,-ψψψψ和都是归一化的,且单电子原子)(6.1322eV nz E -=故(2) 由于 1)l(l M +=||, l 1=1,l 2=1,l 3=1,又131211210,,-ψψψψ和都是归一化的,故()eV c eV c c eV c eV c eV c E c E c E c E cE ii i 232221223222221323222121299.1346.13316.13216.13216.13-+-=⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-=++==∑2223232221212h h h M c M c M c M cM ii i ++==∑则角动量为π22h 出现的概率为:1232221=++c c c(3) 由于π2hm M Z ⨯=, m 1=0,m 2=1,m 3=-1; 又131211210,,-ψψψψ和都是归一化的, 故4. 已知类氢离子 He +的某一状态波函数为:()022-023021e 222241a r a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π (1)此状态的能量为多少?(2)此状态的角动量的平方值为多少? (3)此状态角动量在 z 方向的分量为多少? (4)此状态的 n , l , m 值分别为多少? (5)此状态角度分布的节面数为多少?解:由He +的波函数()002302/1222241a 2r 2-e a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π=ψ,可以得到:Z=2,则n =2, l =0, m =0 (1) He +为类氢离子,)(6.1322eV n z E -=,则eV eV eV n z E 6.13)(226.13)(6.132222-=⨯-=-=(2) 由l =0,21)l(l M+=2,得0)10(02=+=+=221)l(l M(3) 由|m |=0, m M Z =,得00=== m M Z(4) 此状态下n =2, l =0, m =0(5) 角度分布图中节面数= l ,又l =0 ,故此状态角度分布的节面数为0。
结构化学习题解答(第二章)
1(1 1) e 2 e
(c)设轨道角动量M和Z轴的夹角为θ,则:
h 0 Mz 2 0 cos h M 2 2
θ=900
(d) 电子离核的平均距离的表达式为:
r r d
* 2 pz 2 pz
2
2 2 pz
2
Li2+离子1s态的波函数为:
(a)
27 a e
1s 3 0
2 6 r a0 3 3 0 0
1 2
3 r a0
27 D 4r 4r e a
2 2 1s 1s 2 1s 3
108 re a
2
6 r a0
d 108 6 D 2r r e 0 dr a a 6 2 2r r 0 r a0 a0 r 又 r 0 3 a0 1s电子径向分布最大值在距核 处;
1 D1s / a0
r / a0
/ a
2 3 1s 0 1
1.60 2.00 2.30 2.50 3.00
3.50
4.00 4.50 5.00 — —
0.04 0.02 0.01 0.007 0.003 0.001< 0.001
1 D1s / a0
0.42 0.29 0.21 0.17
r r sin drdd
2
0
0
0
(e)
令
2 pz
0 r 0 , r , 90 , 得: 0
节面或节点通常不包括 r 0和r , 故 2 pz 的节 面只有一个,即x,y平面(当然,坐标原点也包含在xy 平面内)。亦可直接令函数的角度部分.
结构化学课后答案第2章习题原子的结构与性质
1.简要说明原子轨道量子数及它们的取值范围解:原子轨道有主量子数 n ,角量子数|,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来2说,原子轨道能级只与主量子数n 相关E Z R 。
对多电子原子,能级除了与n 相关,还要考虑电子n间相互作用。
角量子数|决定轨道角动量大小,磁量子数 m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。
1n 取值为 1、2、3••…;| = 0、1、2、••…、n - 1; m = 0、±1 ±2 ……±l 取值只有一。
22.在直角坐标系下,Li 2+的Schr?dinger 方程为 ______________________ 。
解:由于Li 2+属于单电子原子,在采取 “-O'近似假定后,体系的动能只包括电子的动能,则体系的动量z 分量的平均值为多少(2)由于 |M I "J l(l1), l 1=1, l 2=1, l 3=1,又,210 ,211和 31 1 都是归一化的,2 h 2 h C 2 ■ l2 l 2 1 ——C3 ■ l3 l 3 1 o 2 2 2 ------------ h 2 ------------ hc 2 11 1 ——c 3 11 1 ——2 2 2h 222故C i 2 M iC 2 M1c ; M 2 C 3 M 3 能算符:T?h 2 8 2m2;体系的势能算符:\?Ze 2 3e 2 故Li 2+的 Schr?dinger 方程为:h 22式中:22 ____x 2y 23.对氢原子,C 1210的。
那么波函数所描述状态的(4 0r3e 22r = ( x 2+ y 2+ z 2F 2z 2C 2211C 331 能量平均值为多少( 1,其中4 0r211和 31 1都是归一化2)角动量出现在 ..2h 2的概率是多少,角动解:由波函数C 1210C 2211C 3 31 1 得:n 1=2, h=1,m 1=0; n 2=2, b=1,m 2=1;出=3,l 3=1,m 3=-1;(1)由于2210, 211 和 31 1都是归一化的,且单电子原子E 13.6―(eV )故E■i C 1 E12 2 C 2 E2C 3 E32 C 11 2 113.6 =eV 22 cf 13.6 peV22113.6 ?eV13.6 2 4 C1c ; eV 13.99c j eV 2 ---------------- hC 1 ■. l1 l 1 12c : J1 1 1 — 2则角动量为、、2h2出现的概率为: 1h,m1=0,m2=1,m3=-1;又210, 211和311都是归一化的,故M z' CMih2c|m22 c 2 * 2G 0 C2 1 C32 h°3 m3h1 -22 2C2 C34.已知类氢离子He+的某一状态波函数为:321 222re-2r2a。
结构化学第二章习题及答案
一、填空题1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a re a r a -⋅-⋅π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________。
角动量在Z 轴方向分量为_________。
2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。
3。
如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为__________。
二、选择题1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( B )A. n,l B 。
n ,l ,m C. n D 。
n ,m2. 用来表示核外某电子运动状况的下列各组量子数(n,l ,m ,ms )中,哪一组是合理的(A ) A 。
(2,1,—1,—1/2) B 。
(0,0,0,1/2)C 。
(3,1,2,1/2)D 。
(2,1,0,0)3. 如果一个原子的主量子数是4,则它( C )A. 只有s 、p 电子B. 只有s 、p 、d 电子C 。
只有s 、p 、d 和f 电子D 。
有s 、p 电子4. 对氢原子Φ方程求解,下列叙述有错的是( C )。
A. 可得复函数解Φ=ΦΦim m Ae )(。
B. 由Φ方程复函数解进行线性组合,可得到实函数解.C. 根据Φm (Φ)函数的单值性,可确定|m|=0。
1.2 (I)D 。
根据归一化条件1)(220=ΦΦΦ⎰d m π求得π21=A5。
He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( D )。
A.1 B 。
1/9 C.1/4 D.1/166。
电子在核附近有非零几率密度的原子轨道是( D ).A.Ψ3PB. Ψ3dC.Ψ2P D 。
Ψ2S7。
氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数?CA. (1) (3)B. (2) (4)C. (3) (4) (5) D 。
结构化学练习之原子结构习题附参考答案
原子结构习题一、填空题(在划线处填上正确答案)2101、在直角坐标系下,Li 2+ 的Schr ödinger 方程为________________ 。
2102、已知类氢离子 He +的某一状态波函数为:()022-023021e 222241a r a r a ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛π则此状态的能量为 )(a ,此状态的角动量的平方值为 )(b ,此状态角动量在 z 方向的分量为 )(c ,此状态的 n , l , m 值分别为 )(d ,此状态角度分布的节面数为 )(e 。
2103、写出 Be 原子的 Schr ödinger 方程 。
2104、已知类氢离子 He +的某一状态波函数为ψ= ()022-023021e 222241a r a r a ⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛π则此状态最大概率密度处的 r 值为 )(a ,此状态最大概率密度处的径向分布函数值为 )(b ,此状态径向分布函数最大处的 r 值为 )(c 。
2105、原子轨道是原子中的单电子波函数, 每个原子轨道只能容纳 ______个电子。
2106、H 原子的()φr,θψ,可以写作()()()φθr R ΦΘ,,三个函数的乘积,这三个函数分别由量子数 (a),(b), (c) 来规定。
2107、给出类 H 原子波函数()θa r Z a Zr a Z a Zr cos e 681202022023021-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π=ψ的量子数 n ,l 和 m 。
2108、H 原子 3d 电子轨道角动量沿磁场方向分量的可能值 。
2109、氢原子的波函数131321122101-++=ψψψψc c c其中 131211210-ψψψψ和,,(a ),角动量出现在 π22h 的概率是(b ),角动量 z 分量的平均值为(c )。
2110、氢原子中,归一化波函数131321122101-++=ψψψψc c c ( 131211210-ψψψψ和,,都是归一化的 )所描述的状态, 其能量平均值是 (a )R , 能量 -R /4 出现的概率是(b ),角动量平均值是(c )π2h , 角动量π22h 出现的概率是(d ),角动量 z π2h ,角动量 z 分量π22h 出现的概率是(f )。
结构化学练习题带答案
结构化学复习题一、选择填空题第一章量子力学基础知识1.实物微粒和光一样,既有性,又有性,这种性质称为性。
2.光的微粒性由实验证实,电子波动性由实验证实。
3.电子具有波动性,其波长与下列哪种电磁波同数量级?(A)X射线(B)紫外线(C)可见光(D)红外线4.电子自旋的假设是被下列何人的实验证明的?(A)Zeeman (B)Gouy (C)Stark (D)Stern-Gerlach5.如果f和g是算符,则 (f+g)(f-g)等于下列的哪一个?(A)f2-g2; (B)f2-g2-fg+gf; (C)f2+g2; (D)(f-g)(f+g)6.在能量的本征态下,下列哪种说法是正确的?(A)只有能量有确定值;(B)所有力学量都有确定值;(C)动量一定有确定值;(D)几个力学量可同时有确定值;7.试将指数函数e±ix表示成三角函数的形式------8.微观粒子的任何一个状态都可以用来描述;表示粒子出现的概率密度。
9.Planck常数h的值为下列的哪一个?(A)1.38×10-30J/s (B)1.38×10-16J/s (C)6.02×10-27J·s (D)6.62×10-34J·s 10.一维势箱中粒子的零点能是答案: 1.略. 2.略. 3.A 4.D 5.B 6.D 7.略 8.略 9.D 10.略第二章原子的结构性质1.用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的?(A)2,1,-1,-1/2;(B)0,0,0,1/2;(C)3,1,2,1/2;(D)2,1,0,0。
2.若氢原子中的电子处于主量子数n=100的能级上,其能量是下列的哪一个:(A)13.6Ev; (B)13.6/10000eV; (C)-13.6/100eV; (D)-13.6/10000eV;3.氢原子的p x状态,其磁量子数为下列的哪一个?(A)m=+1; (B)m=-1; (C)|m|=1; (D)m=0;4.若将N原子的基电子组态写成1s22s22p x22p y1违背了下列哪一条?(A)Pauli原理;(B)Hund规则;(C)对称性一致的原则;(D)Bohr理论5.B原子的基态为1s22s2p1,其光谱项为下列的哪一个?(A) 2P;(B)1S; (C)2D; (D)3P;6.p2组态的光谱基项是下列的哪一个?(A)3F;(B)1D ;(C)3P;(D)1S;7.p电子的角动量大小为下列的哪一个?(A)h/2π;(B)31/2h/4π;(C)21/2h/2π;(D)2h/2π;8.采用原子单位,写出He原子的SchrÖdinger方程。
结构化学习题重难点整理
第一章原子结构与性质常考点:电子排布式1、一个电子排布为ls^p^s^p1的元素最可能的价态是A.+1B. +2C. +3D. -1【答案】C【分析】电子排布ls22s22p63s23p1可知该元素的价电子排布式为3s23p',故价电子数是3,因此容易失去3个电子,为+3价。
2、具有下列电子排布式的原子中,半径最大的是A.ls22s22p63s23p1B. ls22s22p'C. ls22s2sp2D. ls22s22p63s23p4【答案】A【分析】根据电子排布式可知A是Al元素,B是N元素,C是C元素,D是____Al Si PSi元素,它们在周期表中位置如图:-1,所以A1的原子半径最大。
3、气态中性基态原子的原子核外电子排布发生如下变化,吸收能量最多的是A. 1 s22s22p63s23p2^ 1 s22s22p63s23p1B. 1 s22s22p63s23p3^ 1 s22s22p63s23p2C. 1 s22s22p63s23p4-> 1 s22s22p63s23p3D. 1 s22s22p63s23p64s24p2^ 1 s^s^p^s^p^s^p1【答案】B【分析】由于B项的核外电子排布式中3P3为半充满状态,比较稳定,因此失去一个电子比较困难,需要吸收更多的能量。
常考点:元素周期律1、X、Y为两种元素的原子,X的阴离子与Y的阳离子具有相同的电子层结构,山此可知A.X的原子半径大于Y的原子半径B. X的电负性大于Y的电负性C. X的氧化性大于Y的氧化性D. X的第一电离能小于Y的第一电离能【答案】BC【分析】根据“X的阴离子与Y的阳离子具有相同的电子层结构”可知X元素和__________Y元素的位置如图:V 即Y元素位于X元素的下一个周期,且X为非金属元素,Y为金属元素。
所以原子半径:X<Y;电负性:X>Y;最外层电子数:X>Y;第一电离能:X>Y2、下列各项叙述中,正确的是A.电子层序数越大,s原子轨道的形状相同、半径越大B.在同一电子层上运动的电子,其自旋方向肯定不同C.镁原子由ls22s22p63s2^ls22s22p63p2时,原子吸收能量,由基态转化成激发态D.原子最外层电子排布是5s】的元素,其氢氧化物不能使氢氧化铝溶解【答案】AC【分析】s能级原子轨道都是球形的,且能层序数越大,半径也越大,故A正确; 在一个轨道中电子的自旋方向肯定不同,但在同一能层中,电子的自旋方向是可以相同,如C原子的核外电子排布(轨道表示式)®,在2P能级上2个电子的自旋方向相同,故B错误;Mg原子3s2能级上的2个电子吸收能量跃迁到3p2能级上,由基态转化成激发态,故C正确;原子最外层电子排布是5s】的元素是Rb元素,其氢氧化物(RbOH)是强碱,可以与氢氧化铝(与弱碱不反应)反应,故D错误。
(完整版)结构化学课后答案第二章
02 原子的结构和性质【2.1】氢原子光谱可见波段相邻4条谱线的波长分别为656.47、486.27、434.17和410.29nm ,试通过数学处理将谱线的波数归纳成为下式表示,并求出常数R 及整数n 1、n 2的数值。
221211(R n n ν=- 解:将各波长换算成波数:1656.47nm λ= 1115233v cm --=2486.27nm λ= 1220565v cm --=3434.17nm λ= 1323032v cm --=4410.29nm λ=1424373v cm --=由于这些谱线相邻,可令1n m =,21,2,n m m =++……。
列出下列4式:()22152331R Rm m =-+()22205652R R m m =-+()22230323R R m m =-+()22243734R R m m =-+(1)÷(2)得:()()()23212152330.7407252056541m m m ++==+用尝试法得m=2(任意两式计算,结果皆同)。
将m=2带入上列4式中任意一式,得:1109678R cm -=因而,氢原子可见光谱(Balmer 线系)各谱线的波数可归纳为下式:221211v R n n -⎛⎫=- ⎪⎝⎭式中,112109678,2,3,4,5,6R cm n n -===。
【2.2】按Bohr 模型计算氢原子处于基态时电子绕核运动的半径(分别用原子的折合质量和电子的质量计算并精确到5位有效数字)和线速度。
解:根据Bohr 提出的氢原子结构模型,当电子稳定地绕核做圆周运动时,其向心力与核和电子间的库仑引力大小相等,即:22204n n n m e r r υπε=n=1,2,3,……式中,,,,,n n m r e υ和0ε分别是电子的质量,绕核运动的半径,半径为n r 时的线速度,电子的电荷和真空电容率。
同时,根据量子化条件,电子轨道运动的角动量为:2n n nh m r υπ=将两式联立,推得:2202n h n r me επ=;202n e h nυε=当原子处于基态即n=1时,电子绕核运动的半径为:2012h r me επ=()()23412211231196.62618108.854191052.9189.1095310 1.6021910J s C J m pmkg C π------⨯⨯⨯==⨯⨯⨯⨯A A A 若用原子的折合质量μ代替电子的质量m ,则:201252.91852.91852.9470.99946h m pm r pm pme επμμ==⨯==基态时电子绕核运动的线速度为:2102e h υε=()21934122111.60219102 6.62618108.8541910C J s C J m -----⨯=⨯⨯⨯⨯A A A 612.187710m s-=⨯A 【2.3】对于氢原子:(a)分别计算从第一激发态和第六激发态跃迁到基态所产生的光谱线的波长,说明这些谱线所属的线系及所处的光谱范围。
结构化学 第二章练习题
第二章 原子的结构和性质1、(南开99)在中心力场近似下,Li 原子基态能量为_____R, Li 原子的第一电离能I 1=____R ,第二电离能I 2=_____R 。
当考虑电子自旋时,基态Li 原子共有_____个微观状态。
在这些微观状态中,Li 原子总角动量大小|M J |=__________。
(已知R=13.6eV ,屏蔽常数0.01,σ=0.30;σ=0.85;σ=s 1s 2s,1s 1s,2s ) 注意屏蔽常数的写法解: Li 1s 2 2s 1()()22122-30.37.291s Z E R R R n σ-=-=-=- ()2223-0.852-0.42252s E R R ⨯==-12215.0025Li s s E E E R =+=-电离能: 1()-()A A e I E A E A ++→+= 222()-()A A e I E A E A ++++→+= 第一电离能:1Li Li I E E +=- 12s Li E E +=120.4225s I E R ∴=-=第二电离能: 22231Li E R +=- 12s Li E E += 29(27.29) 5.58I R R R =---⨯=2122:12Li S S S − 2个微观状态11022S l J === 133||1)222J M ==⨯=(Be 原子的第一和第二电离能如何求?)2、(南开04)若测量氢原子中电子的轨道角动量在磁场方向(Z 轴方向)的分量Z M 值,当电子处在下列状态时,Z M 值的测量值为的几率分别是多少?2221(1)(2)(3)px PZ P +ψψψ 解: 2(1)10.5px Z m m ψ=±=的几率为2211211)px ψψψ-=+ 2(2)00PZ Z m m ψ==的几率为21(3)11P Z m m +ψ==的几率为3、在下表中填写下列原子的基谱项和基支项(基支项又称基谱支项,即能量最低的光谱支项)464346433/25/29/22233:44As Mn Co OS S F PS S F P As S P P −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−↑ ↑ ↑ 原子 基谱项基谱支项 43/252565/272749/22443302255:3402239:34322:22L S J S Mn d S d L S J S Co d S d L S J F O S P P === ↑↑↑↑↑===↑↓↑↓↑ ↑ ↑ ===↑↓↑ ↑ 32112L S J P === 4、(南开04)(1)用原子单位制写出H 2+体系的Schrodinger 方程(采用固定核近似)。
结构化学章节习题(含答案)
结构化学章节习题(含答案)第⼀章量⼦⼒学基础⼀、单选题: 1、32/sinx l lπ为⼀维势箱的状态其能量是:( a ) 22229164:; :; :; :8888h h h hA B C D ml ml ml ml 2、Ψ321的节⾯有( b )个,其中( b )个球⾯。
A 、3 B 、2 C 、1 D 、03、⽴⽅箱中2246m lh E ≤的能量范围内,能级数和状态数为( b ). A.5,20 B.6,6 C.5,11 D.6,174、下列函数是算符d /dx的本征函数的是:( a );本征值为:( h )。
A 、e 2xB 、cosXC 、loge xD 、sinx 3E 、3F 、-1G 、1H 、2 5、下列算符为线性算符的是:( c )A 、sine xB 、C 、d 2/dx 2D 、cos2x6、已知⼀维谐振⼦的势能表达式为V = kx 2/2,则该体系的定态薛定谔⽅程应当为( c )。
A [-m 22 2?+21kx 2]Ψ= E ΨB [m 22 2?- 21kx 2]Ψ= E Ψ C [-m 22 22dx d +21kx 2]Ψ= E Ψ D [-m 22 -21kx 2]Ψ= E Ψ 7、下列函数中,22dx d ,dxd的共同本征函数是( bc )。
A cos kxB e –kxC e –ikxD e –kx2 8、粒⼦处于定态意味着:( c )A 、粒⼦处于概率最⼤的状态B 、粒⼦处于势能为0的状态C 、粒⼦的⼒学量平均值及概率密度分布都与时间⽆关系的状态.D 、粒⼦处于静⽌状态9、氢原⼦处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,⼜是M z 算符的本征函数?( c )A. (1) (3)B. (2) (4)C. (3) (4) (5)D. (1) (2) (5) 10、+He 离⼦n=4的状态有( c )(A )4个(B )8个(C )16个(D )20个 11、测不准关系的含义是指( d ) (A) 粒⼦太⼩,不能准确测定其坐标; (B)运动不快时,不能准确测定其动量(C) 粒⼦的坐标的动量都不能准确地测定;(D )不能同时准确地测定粒⼦的坐标与动量12、若⽤电⼦束与中⼦束分别作衍射实验,得到⼤⼩相同的环纹,则说明⼆者( b ) (A) 动量相同 (B) 动能相同 (C) 质量相同13、为了写出⼀个经典⼒学量对应的量⼦⼒学算符,若坐标算符取作坐标本⾝,动量算符应是(以⼀维运动为例) ( a )(A) mv (B) i x ?? (C)222x ?-? 14、若∫|ψ|2d τ=K ,利⽤下列哪个常数乘ψ可以使之归⼀化:( c )(A) K (B) K 2 (C) 1/K15、丁⼆烯等共轭分⼦中π电⼦的离域化可降低体系的能量,这与简单的⼀维势阱模型是⼀致的,因为⼀维势阱中粒⼦的能量( b )(A) 反⽐于势阱长度平⽅ (B) 正⽐于势阱长度 (C) 正⽐于量⼦数16、对于厄⽶算符, 下⾯哪种说法是对的( b )(A) 厄⽶算符中必然不包含虚数 (B) 厄⽶算符的本征值必定是实数(C) 厄⽶算符的本征函数中必然不包含虚数17、对于算符?的⾮本征态Ψ( c )(A) 不可能测量其本征值g . (B) 不可能测量其平均值.(C) 本征值与平均值均可测量,且⼆者相等18、将⼏个⾮简并的本征函数进⾏线形组合,结果( b )(A) 再不是原算符的本征函数(B) 仍是原算符的本征函数,且本征值不变 (C) 仍是原算符的本征函数,但本征值改变19. 在光电效应实验中,光电⼦动能与⼊射光的哪种物理量呈线形关系:( B )A .波长B. 频率C. 振幅20. 在通常情况下,如果两个算符不可对易,意味着相应的两种物理量( A)A .不能同时精确测定B .可以同时精确测定C .只有量纲不同的两种物理量才不能同时精确测定 21. 电⼦德布罗意波长为(C )A .λ=E /h B. λ=c /ν C. λ=h /p 22. 将⼏个⾮简并的本征函数进⾏线形组合,结果( A) A .再不是原算符的本征函数B .仍是原算符的本征函数,且本征值不变C .仍是原算符的本征函数,但本征值改变23. 根据能量-时间测不准关系式,粒⼦在某能级上存在的时间τ越短,该能级的不确定度程度ΔE (B)A .越⼩ B. 越⼤ C.与τ⽆关24. 实物微粒具有波粒⼆象性, ⼀个质量为m 速度为v 的粒⼦的德布罗意波长为:A .h/(mv)B. mv/hC. E/h25. 对于厄⽶算符, 下⾯哪种说法是对的 ( B )A .厄⽶算符中必然不包含虚数B .厄⽶算符的本征值必定是实数C .厄⽶算符的本征函数中必然不包含虚数 26. 对于算符?的⾮本征态Ψ (A ) A .不可能测得其本征值g. B .不可能测得其平均值.C .本征值与平均值均可测得,且⼆者相等 27. 下列哪⼀组算符都是线性算符:( C )A . cos, sinB . x, logC . x d dx d dx,,22⼆填空题1、能量为100eV 的⾃由电⼦的德布罗依波波长为( 122.5pm )2、函数:①xe ,②2x ,③x sin 中,是算符22dxd 的本征函数的是( 1,3 ),其本征值分别是( 1,—1;)3、Li 原⼦的哈密顿算符,在(定核)近似的基础上是:(()23213212232221223222123332?r e r e r e r e r e r e mH +++---?+?+?-= )三简答题1. 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光⼦的能量。
结构化学课后答案第二章
2r
2
2
e 2r 2r 2 2r 1
1 e 2r
4
r
根据此式列出 P(r)-r 数据表:
r/a0
0
0.5
1.0
1.5
2.0
P(r)
1.000 0.920 0.677 0.423 0.238
2.5 0.125
3.0 0.062
3.5 0.030
4.0 0.014
根据表中数据作出 P(r)-r 图示于图 2.7 中:
R
2
m2
R 23032 m2
R
2
m3
R 24373 m2
R
2
m4
(1) ÷(2) 得:
15233 20565
2
2m 1 m 2
3
4m 1
0.740725
用尝试法得 m=2(任意两式计算,结果皆同) 。将 m=2 带入上列 4 式中任意一式,得:
R 109678 cm 1
因而,氢原子可见光谱( Balmer 线系)各谱线的波数可归纳为下式:
1
r
2pz
exp 4 2 a03 a0
r a0 cos ,试回答下列问题:
(a)原子轨道能 E=?
(b)轨道角动量 |M|=? 轨道磁矩 |μ |=?
(c) 轨道角动量 M 和 z 轴的夹角是多少度?
(d)列出计算电子离核平均距离的公式(不算出具体的数值)
' 6
6.626 10 34 J s
1 415 pm
(2 9.1095 10 31 kg) (2.14 10 18 J 7.44 10 19 J) 2
【 2.4 】请通过计算说明,用氢原子从第六激发态跃迁到基态所产生的光子照射长度为
结构化学习题(含答案)
___________;若体系的能量为
7h2 4ma
2
,
其简并度是_______________。
二. 选择题
1. 若用电子束与中子束分别作衍射实验,得到大小相同的环纹,则说明二者( )
A. 动量相同
B. 动能相同
C. 质量相同
2. 任一自由的实物粒子,其波长为,今欲求其能量,须用下列哪个公式 ( )
量为_________;它有_____个径向节面,_____个角度节面。 3. 已知氢原子的某一状态波函数为:
n,l,m r, ,
1 26
a0
3 / 2 r e r / 2a0 .
a0
2
3 cos
则此状态角度分布的节面数为____ ,径向节面为_____个。处于该状态时,氢原 子的能量为________eV,其角动量的绝对值为|M|=______,此状态角动量在 z 方向
4. 微粒在间隔为 1eV 的二能级之间跃迁所产生的光谱线的波数 v~ 应为( )cm-1 (已知
1eV=1.602×10-19J)
A. 4032
B. 8065
C. 16130 D. 2016
5. 已知任一自由实物粒子的波长 λ,欲求其能量,须用下列( )公式
A. E h c
B.
E
h2 2m2
C.
A. d dx
B. 2
C.用常数乘 D.
E.积分
28. 在长 l=1 nm 的一维势箱中运动的 He 原子, 其零点能约为( )
A.16.5×10-24J B.9.5×10-7 J
C.1.9×10-6 J
D.8.3×10-24J
29.
在一立方势箱中,势箱宽度为
北师大_结构化学课后习题答案
北师大 结构化学 课后习题第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。
物质波的波动性是和微粒行为的统计性联系在一起的。
对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。
对一个粒子而言,通过晶体到达底片的位置不能准确预测。
若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。
因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为12=ψ⎰τd 。
表示波函数具有归一性。
2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平方可积。
由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger 方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。
3 如何理解态叠加原理?参考答案在经典理论中,一个波可由若干个波叠加组成。
这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。
而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。
某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。
各种态都有自己的权重(即成份)。
这就导致了在态叠加下测量结果的不确定性。
但量子力学可以计算出测量的平均值。
4 测不准原理的根源是什么?参考答案根源就在于微观粒子的波粒二象性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构化学第二章原子的结构和性质习题及答案
work Information Technology Company.2020YEAR
一、填空题
1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a r
e a r a -⋅-⋅π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________.角动量在Z 轴方向分量为_________.
2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。
3. 如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为
__________。
二、选择题
1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( )
A. n,l
B. n,l,m
C. n
D. n,m
2. 用来表示核外某电子运动状况的下列各组量子数(n ,l ,m ,ms )中,哪一组是合理的()
A. (2,1,-1,-1/2)
B. (0,0,0,1/2)
C. (3,1,2,1/2)
D.(2,1,0,0)
3. 如果一个原子的主量子数是4,则它( )
A. 只有s 、p 电子
B. 只有s 、p 、d 电子
C. 只有s 、p 、d 和f 电子
D. 有s 、p 电子
4. 对氢原子Φ方程求解,下列叙述有错的是( ).
A. 可得复函数解Φ=ΦΦim m Ae )(.
B. 由Φ方程复函数解进行线性组合,可得到实函数解.
C. 根据Φm (Φ)函数的单值性,可确定|m|=0.1.2 (I)
D. 根据归一化条件1)(220=ΦΦΦ⎰d m π求得π21
=A
5. He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( ).
A.1
B.1/9
C.1/4
D.1/16
6. 电子在核附近有非零几率密度的原子轨道是( ).
A.Ψ3P
B. Ψ3d
C.Ψ2P
D.Ψ2S
7. 氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz2 (5)ψ322 ,问哪些状态既是M2算符的本征函数,又是M z算符的本征函数
A. (1) (3)
B. (2) (4)
C. (3) (4) (5)
D. (1) (2) (5)
8. Fe的电子组态为[Ar]3d64s2,其能量最低的光谱支项( )
A.5D4
B. 3P2
C. 5D0
D. 1S0
9. 立方箱中在E≤6h2/4ml2的能量范围内,能级数和状态数为()。
A. 5,20
B. 6,6
C. 5,11
D. 6,17
10. 5f的径向分布函数图的极大值与节面数为( )
A. 2,1
B. 2,3
C.4,2
D.1,3
11.ψ321的节面有()
A. 3
B. 2
C. 1
D. 0
12. Rn,l(r)-r图中,节面数为()
A. n-l
B. n-l-1
C. n-l+1
D. n-l-2
13.下列哪种电子的构型违背了泡利不相容原理()
A. 1s12s22p1
B. 1s22s22p1
C. 1s22s22p3
D. 1s22s32p2
14.下列哪个原子的原子光谱项与F原子的形式完全一样()
A. B
B. C
C. N
D. O
15. Mg(1s22s22p63s13p1)的光谱项是 ( )
A. 3P,3S;
B. 3P,1S;
C. 1P,1S;
D. 3P,1P
16. 关于原子轨道能量的大小,如下叙述正确的是 ( )
A. 电子按轨道能大小顺序排入原子
B. 原子轨道能的高低可用(n+0.7l)判断
C. 同种轨道的能量值是一个恒定值
D. 不同原子的原子轨道能级顺序不尽相同
17. 为了写出原子光谱项,必须首先区分电子组态式由等价电子还是非等价电子
形成的。
试判断下列哪种组态是等价组态()
A. 2s 12p 1
B. 1s 12s 1
C. 2p 2
18. 利用Hund 第一规则从原子谱项中挑选能量最低的谱项,首先应当找( )
A. S 最小的谱项
B. L 最大的谱项
C. S 最大的谱项
D. L 最小的谱项
19. 分子的三重态意味着该分子()
A. 有一个未成对电子
B. 有两个自旋平行电子
C. 有三个未成对电子
D. 有一对孤对电子
11. 已知Rh 的基谱项为4F 9/2,则它的价电子组态为.....( A )
A. s 1d 8
B. s 0d 9
C. s 2d 8
D. s 0d 10
氢原子1s 态,径向分布函数极大值在( )处
a) r=0 b) r=a 0 c) r=∞
某原子的电子组态为1s 22s 22p 64s 15d 1,其基谱项为( )
a) 3D b) 1D c) 3S d)1S
已知一维谐振子的势能表达式为2/2kx V =,则该体系的定态薛定谔方程应当为( )。
A 、ϕϕπE kx m h =⎥⎦⎤⎢⎣⎡+∇-2222218
B 、ϕϕπE kx m h =⎥⎦
⎤⎢⎣⎡-∇-2222218 C 、ϕϕπE kx dx d m h =⎥⎦⎤⎢⎣⎡+⋅-22222218 D 、ϕϕπE kx dx d m h =⎥⎦
⎤⎢⎣⎡-⋅-22222218 11、求解氢原子薛定谔方程,我们常采用下列哪些近似( )。
1)核固定 2)以电子质量代替折合质量 3)变数分离 4)球极坐标
A 、1)3)
B 、1)2)
C 、1)4)
D 、1)2)3)4)
15、3P 光谱项分裂成几个光谱支项,在磁场中又分裂为几个能级( ).
A. 4 , 5
B. 3 , 9
C. 2 , 6
D. 4 , 8
16. 类氢原子体系ψ432的径向节面数为( )
A. 4
B. 1
C. 2
D. 0
17. 电子自旋是电子( )
A. 具有一种类似地球自转的运动
B. 具有一种非轨道的运动
C. 具有一种空间轨道外的顺逆时针的自转
D. 具有一种空间轨道中的顺逆时针的自转
18. s 1p 2组态的能量最低的光谱支项是:------------------------- ( )
A. 4P 1/2
B. 4P 5/2
C. 4D 7/2
D. 4D 1/2
19. P 2组态的原子光谱项为( )
A. 1D, 3P, 1S
B. 3D, 1P, 3S
C. 3D, 3P, 1D
20. Cl 原子基态的光谱项为2P ,其能量最低的光谱支项为( )
A. 2P 3/2
B. 2P 3/2
C. 2P 0
21. 氦原子的薛定谔方程为ψψE r r z r z =+--∇-∇-]12121[12
212221,这一方程很难精确求解,困难在于( )
A. 方程中的变量太多
B. 偏微分方程都很难进行精确求解
C. 方程含22122122112)()()(z z y y x x r -+-+-=,无法进行变量分离
D. 数学模型本身存在缺陷
22. Cu 的基谱项为212
S ,与其基谱项不同的原子是( )
A. Au
B. Ag
C. K
D. Zn
23. 对于单电子原子,在无外场时,能量相同的轨道数是()
A. n 2
B. 2(l +1)
C. n-l
D. n-l -1
三、综合题
1. 多电子原子的量子数和有何物理意义它们能取哪些数值
2. 写出C 原子的光谱项,及光谱支项,并列出其对应的能级示意图。
3. 已知某一原子激发态的电子组态为p 1d 1,试推导其所有的原子光谱项。
4. 量子数m l n ,,和 s m 有何物理意义它们取哪些数值
5. 写出B原子和N原子的基谱支项。
6. 基态Cr的光谱支项7S3试说明相应的组态是4S23d4还是4S13d5。
7. 写出C原子1s22s22p13p1组态的原子光谱项和光谱支项。
8. Si原子激发态1s22s22p63s23p13d1,请写出该组态所对应的所有光谱项
9. 写出d2组态的所有光谱项。