光电二极管测电路的组成及工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。
本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。
1 光检测电路的基本组成和工作原理
设计一个精密的光检测电路最常用的方法
是将一个光电二极管跨接在一个CMOS输入
放大器的输入端和反馈环路的电阻之间。这种
方式的单电源电路示于图1中。
在该电路中,光电二极管工作于光致电压
(零偏置)方式。光电二极管上的入射光使之
产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。
图中的放大系统将电流转换为电压,即
V OUT = I SC×R F(1)
图1 单电源光电二极管检测电路
式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。
用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。
此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。
遗憾的是,如果不考虑稳定性和噪声等问题,这种简单的方案通常是注定要失败的。例如,系统的阶跃响应会产生一个其数量难以接受的振铃输出,更坏的情况是电路可能会产生振荡。如果解决了系统不稳定的问题,输出响应可能仍然会有足够大的“噪声”而得不到可靠的结果。
实现一个稳定的光检测电路从理解电路的变量、分析整个传输函数和设计一个可靠的电路方案开始。设计时首先考虑的是为光电二极管响应选择合适的电阻。第二是分析稳定性。然后应评估系统的稳定性并分析输出噪声,根据每种应用的要求将之调节到适当的水平。
这种电路中有三个设计变量需要考虑分析,它们是:光电二极管、放大器和R//C反馈网络。首先选择光电二极管,虽然它具有良好的光响应特性,但二极管的寄生电容将对电路的噪声增益和稳定性有极大的影响。另外,光电二极管的并联寄生电阻在很宽的温度范围内变化,会在温度极限时导致不稳定和噪声问题。为了保持良好的线性性能及较低的失调误差,运放应该具有一个较小的输入偏置电流(例如CMOS工艺)。此外,输入噪声电压、输入共模电容和差分电容也对系统的稳定性和整体精度产生不利的影响。最后,R//C反馈网络用于建立电路的增益。该网络也会对电路的稳定性和噪声性能产生影响。
2 光检测电路的SPICE模型
2.1 光电二极管的SPICE模型
一个光电二极管有两种工作方
式:光致电压和光致电导,它们各有
优缺点。在这两种方式中,光照射到
二极管上产生的电流I SC方向与通常
的正偏二极管正常工作时的方向相
图2 非理想的光电二极管模型反,即从负极到正极。
光电二极管的工作模型示于图2
中,它由一个被辐射光激发的电流
源、理想的二极管、结电容和寄生的
串联及并联电阻组成。
当光照射到光电二极管上时,电流便产生了,不同二极管在不同环境中产生的电流I SC、具有的C PD、R PD值以及图中放大器输出电压为0~5V所需的电阻R F值均不同,例如SD-020-12-001硅光电二极管,在正常直射阳光(1000fc[英尺-烛光])时,I SC=30m A、C PD=50pF、R
=1000MW 、R F=167kW ;睛朗白天(100fc)时,I SC = 3m A、C PD=50pF、R PD= 1000 PD
MW 、R F=1.67MW ;桌上室内光(1.167fc)时,I SC=35nA、C PD=50pF、R PD=1000MW 、R F=142.9MW 。可见光照不同时,I SC有显著变化,而C PD、R PD基本不变。
工作于光致电压方式下的光电二极管上没有压降,即为零偏置。在这种方式中,为了光灵敏度及线性度,二极管被应用到最大限度,并适用于精密应用领域。影响电路性能的关键寄生元件为C PD和R PD,它们会影响光检测电路的频率稳定性和噪声性能。
结电容C PD是由光电二极管的P型和N型材料之间的耗尽层宽度产生的。耗尽层窄,结电容的值大。相反,较宽的耗尽层(如PIN光电二极管)会表现出较宽的频谱响应。硅二极管结电容的数值范围大约从20或25pF到几千pF以上。结电容对稳定性、带宽和噪声等性能产生的重要影响将在下面讨论。
在光电二极管的数据手册中,寄生电阻R PD也称作“分流”电阻或“暗”电阻。该电阻与光电二极管零偏或正偏有关。在室温下,该电阻的典型值可超过100MW 。对于大多数应用,该电阻的影响可被忽略。
分流电阻R PD是主要的噪声源,这种噪声在图2中示为e PD。R PD产生的噪声称作散粒噪声(热噪声),是由于载流子热运动产生的。
二极管的第二个寄生电阻R S称为串联电阻,其典型值从10W 到1000W 。由于此电阻值很小,它仅对电路的频率响应有影响。光电二极管的漏电流I L是引发误差的第四个因素。如果放大器的失调电压为零,这种误差很小。
与光致电压方式相反,光致电导方式中的光电二极管具有一个反向偏置电压加至光传感元件的两端。当此电压加至光检测器上时,耗尽层的宽度会增加,从而大幅度地减小寄生电容C PD的值。寄生电容值的减小有利于高速工作,然而,线性度和失调误差尚未最优化。这个问题的折衷设计将增加二极管的漏电流I L和线性误差。
下面将集中讨论光致电压方式下的光电二极管的应用领域。
2.2 运放的SPICE模型
运算放大器具有范围较宽的技术指标及
性能参数,它对光检测电路的稳定性和噪声
性能影响很少。其主要参数示于图3的模
型中,它包括一个噪声源电压、每个输入端
的寄生共模电容、输入端之间的寄生电容
及与频率有关的开环增益。
图3 非理想的运放模型输入差分电容C DIFF和输入共模电容
C CM是直接影响电路稳定性和噪声性能的
寄生电容。这些寄生电容在数据手册中通
常规定为典型值,基本不随时间和温度变