芯片制造倒装焊工艺与设备解决方案

合集下载

倒装焊接技术

倒装焊接技术

解决途径-新型可修复底部填充材料
为了解决这一问题,目前,越来越多的 研究人员投入到新型可修复底部填充材料的 开发当中,常见的做法是,通过在用作底部 填充材料的环氧树脂中引入某些薄弱的化学 键,使其固化后仍可以再加热或加入化学试 剂后分解,使电子元器件能够返工和循环使 用。
修复过程
修复过程包括以下六步: 1.通过加热或化学处理方法迅速降低底部填充 剂的粘结强度; 2.用芯片拾取装置取下坏芯片; 3.用高速刷净设备去除树脂残留物; 4.对基板进行检测; 5.更换新的芯片; 6.重新进行底部填充。
底部填充的作用
由于有机基板和芯片的热膨胀系数无法 保证完全匹配,导致回流焊和温度循环时在 焊球处产生很大的应力,严重时甚至可能会 引起裂损现象,因此,倒装芯片一般采用底 部填充技术来避免这一问题。
底部填充同时带来的问题
由于当前的技术无法保证所供应的芯 片一定完好,使得一些有缺陷的芯片在倒 装后的测试中才被发现,这时就需要进行 返工修复替换。
倒装焊接技术
演讲人:
倒装芯片的优点
1.消除了对引线键合连接的 要求,缩短了互连距离; 2.提高了输入/输出(I/O)密 度; 3.在电路板上占用空间小; 4.符合当前微电子封装高密 度和小型化的趋势。
倒装芯片主要工艺步骤
• 第一步: 凸点底部金属化 • 第二步:芯片凸点制作 • 第三步:将已经凸点的晶片组装到基板上 • 第四步: 使用非导电填料填充芯片底部孔隙
可修复底部填充技术的技术参数
1.工业应用及固化性能
可修复底部填充技术的技术参数2 Nhomakorabea可靠性可修复底部填充技术的技术参数
3.移除性 芯片的移除是修复环节中极为重要的一步, 通常使用球栅阵列封装(BGA)型的修复设备。 修复时间与温度应保持恒定,且芯片移除过 程不会对基板造成损害。理想的移除温度与 移除过程所需要的时间分别为210 ℃、1 min。

LED倒装技术及工艺流程分析

LED倒装技术及工艺流程分析

LED倒装技术及工艺流程分析倒装技术的工艺流程主要包括以下几个步骤:1.准备工作:首先需要准备好所需的LED芯片、PCB板、胶水、连接线等材料和设备,搭建好倒装工作台,并确认好芯片的正负极。

2.倒装工艺:将LED芯片通过电镀方式倒装到PCB上,具体工艺步骤如下:a.选择合适的胶水:根据实际需求选择合适的胶水,一般选用导热胶水或者导热硅胶进行倒装。

b.PCB加工:将PCB板经过必要的加工,包括金手指加工、焊盘/焊针喷镀锡、背面铜箔除锡等。

c.胶水上料:将胶水注入到机械注胶机中,通过专用的胶嘴将胶水点涂在PCB的焊点位置上。

d.LED芯片贴附:将LED芯片按照正负极方向和间距要求贴附到胶水涂抹的位置上,保证LED芯片与焊盘对应。

可以通过自动定位系统或者手工进行贴附。

e.固化胶水:将贴附好的LED芯片的背面放到硅胶材料或者专用的固化设备中,进行胶水的固化。

f.焊接连接线:将连接线焊接到LED芯片的正负极,一般采用无铅焊接方式。

3.测试与包装:在完成倒装过程后,对LED芯片进行测试,检测其亮度、色彩等参数是否符合要求。

通过自动或者手动测试设备进行测试。

如果有不合格的芯片,需进行更换或修复。

最后,按照客户要求进行产品包装。

倒装技术相比传统的LED贴片技术有如下优势:1.提高亮度:倒装技术可以减少PCB与LED芯片之间的电阻,提高LED灯的亮度和显示屏的像素密度。

2.降低热阻:通过使用导热胶水或者导热硅胶,可以有效地将LED芯片的热量传导到PCB板上,降低LED芯片的工作温度,提高产品的可靠性和寿命。

3.减小尺寸:倒装技术可以使LED芯片直接贴附在PCB板上,减小了整体产品的体积和厚度。

4.提高可靠性:倒装技术可以减少LED与PCB之间的线路长度,减少线路电阻,提高了产品的抗电磁干扰能力和可靠性。

5.降低生产成本:倒装技术可以提高LED灯条和显示屏的制造效率,降低生产成本。

总之,LED倒装技术是一种先进的LED封装技术,通过倒装方法将LED芯片直接连接到PCB上,可以提高亮度、降低热阻、减小尺寸、提高可靠性等优势。

芯片制造倒装焊工艺与设备解决方案

芯片制造倒装焊工艺与设备解决方案

倒装键合(Flip Chip)工艺及设备解决方案前言:倒装芯片在产品成本、性能及满足高密度封装等方面体现出优势,它的应用也渐渐成为主流。

由于倒装芯片的尺寸小,要保证高精度高产量高重复性,这给我们传统的设备及工艺带来了挑战。

器件的小型化高密度封装形式越来越多,如多模块封装( MCM )、系统封装( SiP )、倒装芯片( FC=Flip-Chip )等应用得越来越多。

这些技术的出现更加模糊了一级封装与二级装配之间的界线。

毋庸置疑,随着小型化高密度封装的出现,对高速与高精度装配的要求变得更加关键,相关的组装设备和工艺也更具先进性与高灵活性。

由于倒装芯片比BGA或CSP具有更小的外形尺寸、更小的球径和球间距,它对植球工艺、基板技术、材料的兼容性、制造工艺,以及检查设备和方法提出了前所未有的挑战。

一.倒装芯片焊接的概念倒装芯片焊接(Flip-chip Bonding)技术是一种新兴的微电子封装技术,它将工作面(有源区面)上制有凸点电极的芯片朝下,与基板布线层直接键合。

一般来说,这类器件具备以下特点:1. 基材是硅;2. 电气面及焊凸在器件下表面;3. 球间距一般为 4-14mil 、球径为 2.5-8mil 、外形尺寸为 1 -27mm ;4. 组装在基板上后需要做底部填充。

其实,倒装芯片之所以被称为“倒装”,是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。

传统的通过金属线键合与基板连接的芯片电气面朝上(图1),而倒装芯片的电气面朝下(图2),相当于将前者翻转过来,故称其为“倒装芯片”。

在圆片(Wafer)上芯片植完球后(图3),需要将其翻转,送入贴片机以便于贴装,也由于这一翻转过程而被称为“倒装芯片”。

图1图2图3倒装芯片在1964年开始出现,1969年由IBM发明了倒装芯片的C4工艺(Controlled Collapse Chip Connection可控坍塌芯片联接)。

倒装焊与芯片级封装技术的研究

倒装焊与芯片级封装技术的研究

倒装焊与芯片级封装技术的研究引言芯片级封装技术在现代电子行业中起着重要的作用。

随着科技的发展和电子产品的普及,对封装技术也提出了更高的要求。

本文将重点讨论倒装焊和芯片级封装技术,并探讨它们在电子行业中的研究和应用。

倒装焊技术倒装焊技术是一种将芯片颠倒安装在基板上的封装技术。

与传统的芯片安装方法相比,倒装焊技术具有更小的封装尺寸、更好的散热性能和更低的电阻值。

工艺流程倒装焊技术的工艺流程包括以下几个步骤:1.芯片准备:将芯片进行清洁和测试,并进行必要的修复和校正。

2.基板准备:将基板进行清洁,并在需要焊接的位置上涂覆焊接剂。

3.焊接:将芯片放置在基板上,并使用热风枪或烙铁进行焊接。

4.封装测试:对焊接后的芯片进行测试,确保其质量和性能达到要求。

应用领域倒装焊技术广泛应用于电子设备中,特别是在需要小尺寸、高性能和高可靠性的产品中,如智能手机、平板电脑、电子手表等。

芯片级封装技术芯片级封装技术是将芯片和封装在一个单个封装中的技术。

它通过多个工艺步骤来实现芯片封装,以提高封装的紧凑性和可靠性。

工艺流程芯片级封装技术的工艺流程包括以下几个步骤:1.芯片准备:将芯片进行清洁和测试,并进行必要的修复和校正。

2.封装材料准备:选择合适的封装材料,并将其切割成适当的尺寸和形状。

3.芯片粘贴:将芯片粘贴在封装材料上,并使用特殊的粘合剂进行固定。

4.焊接:将封装后的芯片与基板进行焊接,以完成封装。

5.封装测试:对封装后的芯片进行测试,确保其质量和性能达到要求。

应用领域芯片级封装技术广泛应用于集成电路和微电子领域。

它可以在电子产品中实现更小、更轻、更可靠的封装,同时提高芯片的性能和功耗效率。

技术研究与未来发展倒装焊和芯片级封装技术在电子行业中已经得到广泛应用,并不断进行技术研究和创新。

一些研究方向包括:1.封装材料的研究:通过研究和开发新型的封装材料,提高封装的可靠性和耐用性。

2.封装工艺的优化:通过优化封装工艺步骤,提高封装过程的效率和准确性。

凸点倒装焊接技术及可靠性测试

凸点倒装焊接技术及可靠性测试

凸点芯片倒装焊接技术及可靠性测试目录一、倒装焊工艺的选择随着轻量化、薄型化、小型化、I/O 端数的增加以及功能多样化的发展,传统的封装技术已不能满足高密度的要求。

倒装互连技术的发展为高密度封装带来了希望。

倒装技术与传统引线键合互连技术相比具有明显的优势,主要表现在以下几个方面:(1)尺寸小、薄,重量更轻;(2)密度更高,使用倒装焊技术能增加单位面积内的I/O 数量;(3)性能提高,短的互连减小了电感、电阻以及电容,信号完整性、频率特性更好;(4)散热能力提高,倒装芯片没有塑封体,芯片背面可用散热片等进行有效的冷却,使电路的可靠性得到提高;倒装焊技术中关键工艺有四个,它们分别是UBM 制备、凸点制备、倒装焊和底部填充技术,它们直接决定着倒装产品质量的好坏。

UBM的制备多层金属膜UBM(Under Bump Metallurgy)是在芯片上的Al 焊盘与凸焊点之间的一层金属化层,目的是使芯片与基板互连工艺更容易实现、互连可靠性更高。

UBM必须与Al 焊盘及凸焊点间形成良好的欧姆接触、必须能够保证凸点或焊接材料不直接与Al 焊盘接触,以使连接材料有良好的黏附性能和机械性能,并确保优良的电性能和导热性能。

UBM通常由黏附层、扩散阻挡层和浸润层等多层金属膜组成。

UBM 在进行焊料回流或焊点退火等高温处理时,能够保证凸焊点材料不会穿透UBM而进入下面的Al 焊盘中。

铝焊盘上蒸发/溅射多层金属,粘附层Cr 、扩散层Cu、阻挡层Au凸点的制备倒装焊(Flip Chip)中的首个凸点制备技术是IBM公司的C4 工艺(Controlled Collaps Chips Connection)。

凸点由蒸发的薄膜金属制成。

随工艺技术和设备的发展,满足不同产品的需求,凸点制备工艺方法越来越多,当前比较常见的方法有1. 钉头法、2.蒸发/溅射法、3. 化学镀法、4.模板印刷法、5.电镀法、6.置球凸点法(SB2 - Jet)等。

LED倒装工艺流程分析

LED倒装工艺流程分析

LED倒装工艺流程分析LED(Light Emitting Diode)倒装工艺是指在LED芯片的背面倒装贴合导热基板的一种制造工艺。

倒装工艺可以提高LED芯片的散热性能,使LED灯具具有更高的光效和寿命。

以下是LED倒装工艺的主要流程:1.材料准备:LED芯片、导热胶、导热基板等材料需要提前准备好。

2.芯片背面处理:LED芯片需要经过清洗、磨砂和去膜等处理,以确保背面的平整和清洁度,以利于倒装和导热。

3.倒装机操作:将预先涂有导热胶的导热基板置于倒装机的工作台上,并进行定位。

然后将处理过的LED芯片背面面朝上放置在基板的对应位置上。

4.压力和温度控制:倒装机会施加适当的压力将LED芯片和导热胶贴合到导热基板上,并通过加热使导热胶固化。

压力和温度的控制非常重要,过高的压力或温度都可能会导致芯片损坏或背面不平整。

5.质量检验:完成倒装后的LED芯片需要进行质量检验,主要包括外观检查、电性能测试和光性能测试等。

确保倒装后的LED芯片符合规定的质量要求。

6.终检包装:合格的倒装LED芯片会进行终检,并进行包装,以保护芯片不受损。

通常采用塑料垫片和防静电袋的包装方式。

以上是LED倒装工艺的主要流程。

根据实际情况,还可以根据需要添加或调整工艺步骤。

1.散热性能好:倒装后LED芯片可以直接与导热基板接触,通过导热胶的导热性能,有效地提高LED芯片的散热性能,延长LED灯具的使用寿命。

2.光效提升:通过倒装工艺,LED芯片的背面可以减少不被光线利用的误差,光效可以得到进一步提升。

3.安装方便:倒装工艺可以减少LED灯具的体积,使其更易于安装在各种灯具内。

4.可靠性高:倒装工艺可以增加LED灯具的可靠性,减少芯片与基板之间的电连接线路的损坏和断电等问题。

然而,LED倒装工艺也存在一定的缺点,比如制程复杂、成本较高等问题。

因此,在实际应用中,需要根据实际需求和预算进行选择。

总而言之,LED倒装工艺是一种具有良好散热性能和高光效的制造工艺。

倒装焊工艺的基本流程

倒装焊工艺的基本流程

倒装焊工艺的基本流程
倒装焊工艺的基本流程包括以下步骤:
1. 圆片减薄:将圆片减薄到所需的厚度。

2. 圆片切割:将减薄后的圆片切割成所需的小片。

3. 芯片粘结:将切割好的芯片粘结到相应的基板上。

4. 引线键合:通过引线键合将芯片与基板连接起来。

5. 等离子清洗:对芯片和引线进行等离子清洗,以去除表面的污垢和氧化物。

6. 液态密封剂灌封:将液态密封剂灌入芯片和基板之间,以保护内部的电路和元件。

7. 装配焊料球:在基板的焊盘上装配焊料球,以便进行后续的回流焊操作。

8. 回流焊:将装配好的电路板放入回流焊炉中,通过加热使焊料球熔化并连接电路板上的元件和引脚。

9. 表面打标:在电路板的表面进行打标,以标识产品的型号、生产日期等信息。

10. 分离:将电路板从承片台上分离下来。

11. 最终检查:对电路板进行最终的检查,以确保产品质量符合要求。

12. 测试:对电路板进行测试,检查其功能是否正常。

13. 包装:将测试合格的电路板进行包装,以便进行后续的运输和销售。

以上是倒装焊工艺的基本流程,具体的工艺参数和操作方法可能会因不同的应用领域和生产厂家而有所不同。

倒装芯片封装技术

倒装芯片封装技术

倒装芯片封装技术倒装芯片封装技术:将芯片翻转封装的革命性进展引言:随着电子科技的迅猛发展,芯片封装技术也在不断创新。

其中,倒装芯片封装技术作为一项重要的进展,在电子产品设计与制造方面发挥着重要作用。

本文将以倒装芯片封装技术为中心,探讨其原理、发展历程以及在电子领域中的广泛应用。

一、倒装芯片封装技术的原理倒装芯片封装技术,顾名思义,即将芯片翻转后进行封装。

传统的封装方式是将芯片正面朝上,通过焊接或粘接等方式固定在基板上,然后进行封装。

而倒装芯片封装技术则是将芯片翻转180度,使其背面朝上,并通过金线或导电胶等方式与基板连接。

倒装芯片封装技术的核心在于解决芯片尺寸不断减小和功耗不断增加的矛盾。

芯片尺寸的不断缩小使得传统封装方式难以满足对电路布局的要求,而倒装技术使得芯片尺寸最小化,并且能够更好地进行布局,提高电路的性能。

此外,倒装芯片封装技术还能够提高散热效果,减少功耗,提高芯片的可靠性。

二、倒装芯片封装技术的发展历程倒装芯片封装技术起源于1960年代,当时主要用于高可靠性的军事和航天设备中。

随着电子产品的普及和成本的降低,倒装芯片封装技术逐渐应用于民用产品中。

在过去的几十年中,倒装芯片封装技术经历了多次的改进和创新,使得其在电子领域中得到了广泛应用。

在倒装芯片封装技术的发展历程中,主要有以下三个阶段:1.金线倒装封装技术:最早的倒装封装技术采用金线进行芯片与基板之间的连接,这种方式简单、可靠,但是金线间距有限,不适用于高密度集成电路的封装。

2.焊接倒装封装技术:为了解决金线倒装封装技术的局限性,人们引入了焊接倒装封装技术。

这种技术采用焊料将芯片与基板焊接在一起,相比金线倒装技术,焊接倒装技术能够实现更高的密度和更好的散热效果。

3.导电胶倒装封装技术:近年来,随着导电胶技术的成熟,导电胶倒装封装技术成为了倒装芯片封装的主流技术。

导电胶能够实现更高的密度、更低的电阻和更好的散热性能,同时还能够简化制造工艺和降低成本。

倒装封装(FC)方案(一)

倒装封装(FC)方案(一)

倒装封装(FC)方案背景与目标随着中国半导体产业的快速发展,传统封装技术已无法满足市场对高性能、高可靠性产品的需求。

倒装封装(FC)技术作为第三代封装技术,具有高密度、高性能、低成本等优势,成为产业结构改革的重要方向。

本方案旨在推广倒装封装技术在中国的应用,促进半导体产业的发展。

工作原理倒装封装(FC)技术是一种基于芯片底部连接的封装方法。

通过在芯片底部制作凸点,实现与基板的连接。

该技术可实现更高的I/O密度、更短的连接距离和更好的电性能。

此外,FC技术还具有高可靠性和低成本的优点。

实施计划步骤1.技术研究与开发(R&D): 首先,进行必要的技术研究与开发,包括凸点制作、芯片与基板连接技术、底部填充材料等关键技术。

2.设备采购与调试: 根据技术要求,采购相应的生产设备,并进行调试与验证,确保设备的稳定性和可靠性。

3.小批量试产: 在技术验证通过后,进行小批量试产,进一步验证生产流程和产品性能。

4.大规模量产: 在小批量试产成功后,进行大规模量产,以满足市场需求。

5.持续改进与优化: 根据市场反馈和生产数据,不断优化生产工艺和流程,提高产品质量和生产效率。

适用范围倒装封装技术适用于多种领域,如移动通信、汽车电子、云计算等。

特别是对于高性能、高可靠性、低成本的产品需求,倒装封装具有显著优势。

创新要点1.凸点制作技术创新: 开发适用于倒装封装的凸点制作技术,实现高密度、高性能的连接。

2.材料选择与优化: 选择合适的底部填充材料和其他相关材料,确保产品的可靠性和性能。

3.生产流程优化: 通过工艺研究和设备调试,实现生产流程的优化,提高生产效率和产品质量。

4.市场推广与应用拓展: 加强与客户的沟通和合作,将倒装封装技术推广到更多领域和应用场景。

预期效果预计通过本方案的实施,可以带来以下预期效果:1.提高半导体产业的技术水平和竞争力;2.促进中国半导体产业的结构改革和升级;3.满足市场对高性能、高可靠性产品的需求;4.提高企业的生产效率和产品质量;5.增强中国半导体产业的国际竞争力。

采用热压焊工艺实现金凸点芯片的倒装焊接

采用热压焊工艺实现金凸点芯片的倒装焊接
点 的制 作 工艺。
关 键词 : 装 焊 ; 压焊 ; 凸点 芯片 ; 倒 热 金 薄膜基板 中图分类 号 : N 0 T 6 文献标识 码 : A 文章编 号 : 0 — 4 4 20 ) 1— 0 8— 3 1 1 3 7 ( 0 8 O 0 2 0 0
As e b y o i i l m p ih s m l fFl Ch p Go d Bu p sW t
到焊 接 的 目的 。热压焊 工艺 已在液 晶显示 ( C 的 L D)
的关键 技 术之一 。多功 能和小 型化将 直接转 化 为高 密度 芯片互 连工艺 , 要 载 带 自动焊 ( A ) 需 T B 和倒 装
玻璃 板上芯 片 ( O 和光 电器 件 中 的铟 凸 点 芯 片 C G) 焊接 中成功 应用 。而金 凸点芯 片 的倒 装焊 接常规 使 用热 超声焊接 工 艺完成 。本文 所述 内容是 在借鉴 国 外先进 工艺 的基础 上 , 展 的 金 凸点 芯 片 的热 压 倒 开
Do u n d A c me tCo e:
Aril D:0 1—3 7 2 0 O t eI 1 0 c 4 4( 0 8) 1—0 2 0 8—0 3
近年来 , 电子 工业 产品 向小型化 、 高密 度和 多功
能 性方 向发展 , 电子 组装 和 封 装技 术 是 实 现此 目的
不平 整 , 热加 压也可 使上下 金属 相互 镶嵌 , 而达 加 从
维普资讯
电 子 工 艺 技 术
Elcr nisPr c s c noo e to c o e sTe h l  ̄,
第2 第1 9卷 期 20 0 8年 1 月
采 用 热 压 焊 工 艺 实 现 金 凸 点 芯 片 的 倒 装 焊 接

华芯半导体倒装焊接机说明书

华芯半导体倒装焊接机说明书

华芯半导体倒装焊接机说明书一、引言华芯半导体倒装焊接机是一种用于半导体封装过程中的关键设备,其作用是将芯片倒装至封装基板上,并完成焊接工艺,确保芯片与基板之间的可靠连接。

本说明书将详细介绍华芯半导体倒装焊接机的结构、工作原理、操作方法以及维护保养等内容,以帮助用户正确使用和维护该设备。

二、结构与工作原理华芯半导体倒装焊接机由机架、焊接头、控制系统等组成。

机架是整个设备的支撑结构,焊接头用于将芯片倒装至基板上,并通过加热板实现焊接。

控制系统负责控制焊接机的各项动作和参数,确保焊接过程的稳定性和可靠性。

在工作过程中,首先将待焊接的芯片放置在焊接头上,然后通过控制系统控制焊接头的运动,将芯片准确地倒装至基板上。

接着,焊接头加热板加热,使焊接材料熔化,同时施加一定的压力,将芯片与基板焊接在一起。

最后,待焊接完成后,焊接头回到初始位置,完成一次焊接过程。

三、操作方法1. 准备工作:将待焊接的芯片和基板准备好,确保其表面干净无杂质,并根据实际需求选择合适的焊接材料。

2. 打开电源:将焊接机接通电源,并确保电源电压与设备要求相符。

3. 设定参数:根据芯片和基板的尺寸、材料以及焊接要求,设置合适的焊接温度、时间等参数,并通过控制系统进行调整。

4. 放置芯片和基板:将待焊接的芯片放置在焊接头上,并将基板放置在焊接台上,确保其位置准确。

5. 启动焊接机:按下启动按钮,焊接机开始工作,焊接头开始运动,将芯片倒装至基板上。

6. 监控焊接过程:在焊接过程中,可通过控制系统监控焊接温度、时间等参数的变化情况,确保焊接过程的稳定性。

7. 完成焊接:待焊接完成后,焊接头回到初始位置,完成一次焊接过程。

取下焊接好的基板,进行后续工艺。

四、维护保养1. 定期清洁:定期清洁焊接机的工作台、焊接头等部件,以保持其表面干净,并避免杂质对焊接过程的影响。

2. 润滑维护:定期对焊接机的滑动部件进行润滑维护,以确保其运动的顺畅性和可靠性。

3. 电源保护:防止焊接机电源过载或过压,避免对设备的损坏。

一种芯片倒装焊接的方法

一种芯片倒装焊接的方法

一种芯片倒装焊接的方法
芯片倒装焊接是一种在电子制造中常用的技术,通常用于将芯片连接到印刷电路板(PCB)上。

以下是一种常见的芯片倒装焊接方法:
1.准备工作:根据设计要求,将芯片放置在PCB的指定位置上,并使用夹持器或夹子将其稳定固定。

2.涂上焊膏:在芯片引脚和PCB焊盘上涂上焊膏,使焊接更容易。

3.热风预加热:使用热风枪在芯片和PCB之间加热,将其预加热至适当温度,以减少热应力和热冲击。

4.翻转芯片:将芯片翻转,使其引脚朝向PCB。

5.再次加热:使用热风枪在PCB的底部加热,将芯片的引脚和PCB焊盘连接在一起。

6.冷却:等到焊接完成后,用冷水或冷风快速冷却电路板,以确保焊点变硬。

7.视觉检查:检查焊点是否正确连接,并清除任何残留在焊盘上的焊胶。

LED芯片倒装工艺原理以及应用简介

LED芯片倒装工艺原理以及应用简介

LED芯片倒装工艺原理以及应用简介倒装晶片所需具备的条件:①基材材是硅;②电气面及焊凸在元件下表面;③组装在基板后需要做底部填充。

倒装晶片的定义:其实倒装晶片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。

传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装晶片”。

倒装芯片的实质是在传统工艺的基础上,将芯片的发光区与电极区不设计在同一个平面这时则由电极区面朝向灯杯底部进行贴装,可以省掉焊线这一工序,但是对固晶这段工艺的精度要求较高,一般很难达到较高的良率。

倒装芯片与与传统工艺相比所具备的优势:通过MOCVD技术在兰宝石衬底上生长GaN基LED结构层,由P/N结髮光区发出的光透过上面的P型区射出。

由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni-Au组成的金属电极层。

P区引线通过该层金属薄膜引出。

为获得好的电流扩展,Ni-Au金属电极层就不能太薄。

为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。

但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。

此外,引线焊点的存在也使器件的出光效率受到影响。

采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。

倒装LED芯片技术行业应用分析:近年,世界各国如欧洲各国、美国、日本、韩国和中国等皆有LED照明相关项目推行。

其中,以我国所推广的“十城万盏”计划最为瞩目。

路灯是城市照明不可缺少的一部分,传统路灯通常采用高压钠灯或金卤灯,这两种光源最大的特点是发光的电弧管尺寸小,可以产生很大的光输出,并且具有很高的光效。

但这类光源应用在道路灯具中,只有约40%的光直接通过玻璃罩到达路面,60%的光通过灯具反射器反射后再从灯具中射出。

因此目前传统灯具基本存在两个不足,一是灯具直接照射的方向上照度很高,在次干道可达到50Lx以上,这一区域属明显的过度照明,而两个灯具的光照交叉处的照度仅为灯下中心位置的照度的20%-40%,光分布均匀度低;二是此类灯具的反射器效率一般仅为50%-60%,因此在反射过程中有大量的光损失,所以传统高压钠灯或金卤灯路灯总体效率在70-80%,均匀度低,且有照度的过度浪费。

LED芯片倒装工艺原理

LED芯片倒装工艺原理

LED芯片倒装工艺原理以及应用简介倒装晶片所需具备的条件:①基材材是硅;②电气面及焊凸在元件下表面;③组装在基板后需要做底部填充。

倒装晶片的定义:其实倒装晶片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。

传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装晶片”。

倒装芯片的实质是在传统工艺的基础上,将芯片的发光区与电极区不设计在同一个平面这时则由电极区面朝向灯杯底部进行贴装,可以省掉焊线这一工序,但是对固晶这段工艺的精度要求较高,一般很难达到较高的良率。

倒装芯片与与传统工艺相比所具备的优势:通过MOCVD技术在兰宝石衬底上生长GaN基LED结构层,由P/N结髮光区发出的光透过上面的P型区射出。

由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni-Au组成的金属电极层。

P区引线通过该层金属薄膜引出。

为获得好的电流扩展,Ni-Au金属电极层就不能太薄。

为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。

但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。

此外,引线焊点的存在也使器件的出光效率受到影响。

采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。

倒装LED芯片技术行业应用分析:近年,世界各国如欧洲各国、美国、日本、韩国和中国等皆有LED照明相关项目推行。

其中,以我国所推广的“十城万盏”计划最为瞩目。

路灯是城市照明不可缺少的一部分,传统路灯通常采用高压钠灯或金卤灯,这两种光源最大的特点是发光的电弧管尺寸小,可以产生很大的光输出,并且具有很高的光效。

但这类光源应用在道路灯具中,只有约40%的光直接通过玻璃罩到达路面,60%的光通过灯具反射器反射后再从灯具中射出。

因此目前传统灯具基本存在两个不足,一是灯具直接照射的方向上照度很高,在次干道可达到50Lx以上,这一区域属明显的过度照明,而两个灯具的光照交叉处的照度仅为灯下中心位置的照度的20%-40%,光分布均匀度低;二是此类灯具的反射器效率一般仅为50%-60%,因此在反射过程中有大量的光损失,所以传统高压钠灯或金卤灯路灯总体效率在70-80%,均匀度低,且有照度的过度浪费。

LED倒装芯片与倒装焊工艺

LED倒装芯片与倒装焊工艺
支架表面的粗糙度要比共晶材料的厚度 还要少, 否
则共晶材料就不足够填满表 面不平的地方, 造成流
动性差的情况
如果固晶在比较平滑的支架表面上, 可提升推力
3 Au-Sn共晶的制备方法
Au-Sn二元相图
1. Au-20wt%Sn 2. Au-90wt%Sn
3 Au-Sn共晶的制备方法 预成型片
LED倒装芯片与 倒装焊工艺
Contents
1 2
倒装结构LED芯片 倒装固晶工艺
Au-Sn共晶的制备方法
3
1 倒装结构LED芯片
• 正装/倒装芯片结构对比
器件功率 出光效率 热性能
1 倒装结构LED芯片
• 高可靠性 -机械强度
-散热性能
电性连接点g
点胶 晶片 支架
固晶
2 倒装焊固晶工艺
绝缘胶固晶 以绝缘胶在加热的条件下固化的方式粘合晶 片与支架 特点:1.粘接强度大2.绝缘胶透光可提升亮度
绝缘胶点胶 晶片 支架
固晶
2 倒装焊固晶工艺
固晶工艺
直接 共晶
焊剂 共晶
钎料 固晶
热超声 固晶
2 倒装焊固晶工艺
固晶工艺
固晶工艺
绝缘胶固晶 成本低 工艺成熟 粘接强度高 效率高 工艺简单 粘接强度高 较好的导热性 优越的导热性 无焊剂 优越的导热性 工艺简单 粘接强度高
通过冶金法加工Au-Sn预成型片,相对便宜且易于实现,但很难 加工成焊接所需的很薄的焊片 蒸渡、溅射 采用溅射或蒸等真空沉积技术,可以提供更好的过程控制并能
减少氧化,但是成本高且加工周期长。
电镀
由于镀速缓慢且成分不能精确控制,在芯片上直接电镀制备
Au-20Sn 共晶凸点比较困难.目前采用的是连续电镀方式,即先镀 Au接着镀Sn,其外层的Sn易被氧化,共熔后Au-Sn的组分不好控制。

微组装倒装焊工艺

微组装倒装焊工艺

微组装倒装焊工艺
1、采用倒装焊工艺应符合下列规定:
(1)芯片有源面朝下,以凸点阵列结构与基板直接安装互连实现电气连接时,应采用倒装焊工艺;
(2)倒装焊工艺应包括再流焊、超声热压、聚合物互连粘接等工序;
(3)应针对不同的凸点材料采用不同的倒装焊工艺;
(4)下填充材料填充方式应包括毛细管底部填充、助焊(非流动)型底部填充和四角(角)-点底部填充;
(5)宜根据芯片尺寸与凸点密度选择填充方法。

2、倒装焊工艺的主要工序应符合下列规定:
(1)原芯片电极焊区应制作金属过渡层,在金属过渡层上可制作金凸点、铟凸点、镀金镍凸点、锡铅凸点和无铅凸点;
(2)金凸点、镀金焊盘的组合,可采用超声热压焊实现焊接互连;
(3)双组分粘接剂使用前应按比例配制、搅拌均匀并静置排气,单组分粘接剂宜贮存在—40℃的冷冻环境中,使用前应在室温下充分解冻并搅拌均匀、静置或真空排气;
(4)由焊料构成的凸点,可在焊盘或凸点上涂敷助焊剂,然后将待安装的芯片面朝下放置在基板上,按要求固化后通过“温度-时间”曲线进行焊料再流,完成芯片与基板的倒装焊接;
(5)采用下填充和固化工艺时,下填充操作时应倾斜基板,精确控制填充胶量;
(6)倒装焊后应清洗除净焊接产生的污染,再烘干或晾干产品;
(7)芯片倒装及下填充完成后,应目检倒装焊质量,无损检测芯片凸点电极与其基板焊区间的对准精度,并应测试所倒装芯片的抗剪切强度。

3、倒装焊的工艺运行条件应符合下列规定:
(1)倒装焊工艺宜在等于或优于7级净化区中进行;
(2)倒装焊工艺中芯片的安装、互连应同时完成;
(3)倒装焊应在氮气或氮氢混合气体的保护气氛中进行。

倒装芯片封装基板工艺流程

倒装芯片封装基板工艺流程

倒装芯片封装基板工艺流程
一、倒装芯片封装基板工艺流程主要包括以下步骤:
1、第一步:凸点下金属化倒装连接。

需要在芯片表面制作凸点技术,倒装连接的本质是芯片上的凸点与基板上的凸点(凹槽)连接。

2、金属化的方式:
(1)溅射:用溅射的方法一层一层地在硅片上沉积薄膜,然后通过照相平版技术形成UBM图样,然后刻蚀掉不是图样的部分。

(2)蒸镀:利用掩模,通过蒸镀的方法在硅片上一层一层地沉积。

这种选择性的沉积用的掩模可用于对应的凸点的形成之中。

(3)化学镀:采用化学镀的方法在Al焊盘上选择性地镀Ni。

常常用锌酸盐工艺对Al表面进行处理。

在实际的生产过程中,芯片封装基板的工艺流程可能会因生产商和技术的不同而有所差异。

如果你想了解更详细的信息,可以补充细节继续向我提问。

二、倒装芯片封装基本工艺流程需要注意以下几点:
1、清洁处理:在倒装芯片封装前,需要对芯片和基板进行清洁处理,以去除表面的污垢和杂质,保证封装的质量。

2、倒装芯片贴装:在倒装芯片贴装过程中,需要控制好贴装的力度和精度,以避免芯片损坏或贴装不准确。

3、焊接工艺:在焊接过程中,需要控制好焊接的温度、时间和压力,以保证焊接的质量和可靠性。

4、封装材料选择:在选择封装材料时,需要考虑材料的热膨胀系数、机械强度、绝缘性能等因素,以保证封装的可靠性和稳定性。

5、质量检测:在封装完成后,需要对封装进行质量检测,以确保封装的质量和可靠性。

总之,倒装芯片封装基本工艺流程需要严格控制每一个步骤的质量,以保证封装的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒装键合(Flip Chip)工艺及设备解决方案前言:倒装芯片在产品成本、性能及满足高密度封装等方面体现出优势,它的应用也渐渐成为主流。

由于倒装芯片的尺寸小,要保证高精度高产量高重复性,这给我们传统的设备及工艺带来了挑战。

器件的小型化高密度封装形式越来越多,如多模块封装( MCM )、系统封装( SiP )、倒装芯片( FC=Flip-Chip )等应用得越来越多。

这些技术的出现更加模糊了一级封装与二级装配之间的界线。

毋庸置疑,随着小型化高密度封装的出现,对高速与高精度装配的要求变得更加关键,相关的组装设备和工艺也更具先进性与高灵活性。

由于倒装芯片比BGA或CSP具有更小的外形尺寸、更小的球径和球间距,它对植球工艺、基板技术、材料的兼容性、制造工艺,以及检查设备和方法提出了前所未有的挑战。

一.倒装芯片焊接的概念倒装芯片焊接(Flip-chip Bonding)技术是一种新兴的微电子封装技术,它将工作面(有源区面)上制有凸点电极的芯片朝下,与基板布线层直接键合。

一般来说,这类器件具备以下特点:1. 基材是硅;2. 电气面及焊凸在器件下表面;3. 球间距一般为 4-14mil 、球径为 2.5-8mil 、外形尺寸为 1 -27mm ;4. 组装在基板上后需要做底部填充。

其实,倒装芯片之所以被称为“倒装”,是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。

传统的通过金属线键合与基板连接的芯片电气面朝上(图1),而倒装芯片的电气面朝下(图2),相当于将前者翻转过来,故称其为“倒装芯片”。

在圆片(Wafer)上芯片植完球后(图3),需要将其翻转,送入贴片机以便于贴装,也由于这一翻转过程而被称为“倒装芯片”。

图1图2图3倒装芯片在1964年开始出现,1969年由IBM发明了倒装芯片的C4工艺(Controlled Collapse Chip Connection可控坍塌芯片联接)。

过去只是比较少量的特殊应用,近几年倒装芯片已经成为高性能封装的互连方法,它的应用得到比较广泛快速的发展。

目前倒装芯片主要应用在Wi-Fi、SiP、MCM、图像传感器、微处理器、硬盘驱动器、医用传感器,以及RFID等方面(图4)。

图4二.倒装芯片焊接的特点与传统的引线键合技术(Wire Bonding)相比,倒装芯片焊接技术键合焊区的凸点电极不仅仅沿芯片四周边缘分布,而是可以通过再布线实现面阵分布。

因而倒装芯片焊接技术具有如下优点:(1)尺寸小、薄,重量更轻;(2)密度更高,使用倒装焊技术能增加单位面积内的 I/O 数量;(3)性能提高,短的互连减小了电感、电阻以及电容,信号完整性、频率特性更好;(4)散热能力提高,倒装芯片没有塑封体,芯片背面可用散热片等进行有效的冷却,使电路的可靠性得到提高;(5)倒装凸点等制备基本以圆片、芯片为单位,较单根引线为单位的引线键合互连来讲,生产效率高,降低了批量封装的成本。

三.倒装芯片焊接的工艺流程倒装芯片焊接的一般工艺流程为(1)芯片上凸点制作;(2)拾取芯片;(3)印刷焊膏或导电胶;(4)倒装焊接(贴放芯片);(5)再流焊或热固化(或紫外固化);(6)下填充。

如图五。

图5倒装芯片焊接混合工艺流程四.倒装芯片焊接的关键技术芯片上制作凸点和芯片倒装焊工艺是推广倒装芯片焊接的技术关键。

(1)凸点制作凸点制作工艺很多,如蒸发/溅射法、焊膏印刷-回流法、化镀法、电镀法、钉头法、置球凸点法(SB2-Jet)等。

各种凸点制作工艺各有其特点,关键是要保证凸点的一致性。

特别是随着芯片引脚数的增多以及对芯片尺寸缩小要求的提高,凸点尺寸及其间距越来越小,制作凸点时又不能损伤脆弱的芯片。

现在主流应用的凸点制作方法是印刷/转写—搭载—回流法。

该方法是通过网板印刷或针转写的方式把助焊剂涂到芯片表面后,通过搭载头把锡球放置到涂有助焊剂得焊点上,再进入回转炉固化。

(2)倒装焊倒装技术主要有熔焊、热压焊、超声焊、胶粘连接等。

现在应用较多的有热压焊和超声焊。

热压焊接工艺要求在把芯片贴放到基板上时,同时加压加热。

该方法的优点是工艺简单,工艺温度低,无需使用焊剂,可以实现细间距连接;缺点是热压压力较大,仅适用于刚性基底(如氧化铝或硅),基板必须保证高的平整度,热压头也要有高的平行度。

为避免半导体材料受到不必要的损害,设备施加压力要有精确的梯度控制能力。

(注:上海微松的设备针对此科目,有可编程控制的梯度设计能力)超声热压焊是将超声波应用在热压连接中,使焊接过程更加快速。

超声波的引入使连接材料迅速软化,易于实现塑性变形。

热超声的优点是可以降低连接温度,缩短加工处理的时间。

缺点是可能在硅片上形成小的凹坑,主要是由于超声震动过强造成的。

该方法主要适用于金凸点、镀金焊盘的组合。

五.上海微松公司提供的倒封装相关设备(一)全自动/半自动植球机(Ball Attachment)以半自动为例,针对手动上料的基板,用图像处理系统进行定位,用针转写的方式涂助焊剂,然后把球搭载在基板的相应位置。

(1)手动把基板放到基板放料台上。

基板用真空吸着固定后,图像处理系统的镜头移动,对基板的位置进行认识。

(2)根据图像处理系统的认识数据进行助焊剂的转写。

(3)通过供球转动机构,将球均匀地放置在预埋治具单元上,搭载头到预埋治具单元中采用真空方式吸取球。

(4)对吸着后是否多球、少球进行检查。

(5)根据图像处理系统的认识数据进行位置补正,植球。

通过精确控制的压力和位置以及加振动作,保证球准确安定的搭载到基板上。

(6)植球结束,通知操作人员手动取下基板。

(二)半自动倒装焊机(Flip-Chip Bonder)半自动型低成本倒装焊机,通过人眼把搭载平台上放置的基板的标志点与搭载头吸着的芯片的标志点对齐后,通过热压着的方式键合。

特点:1.在同一画面上对位芯片和基板的位置、用手动方式实现了极高的Bonding位置搭载精度。

最高可实现±1μm的对位精度。

2.Bonding过程的参数数据可以通过图形显示并存储在PLC中待离线编辑处理。

可实现可编程阶梯式力控制。

3.根据需要交换TOOL、可以实现BGA/CSP/SIP/MCM等的各种封装。

主要技术规格:基板尺寸:最大50×50mmCHIP尺寸:最大20×20㎜X・Y・θ轴驱动源:手动Z轴驱动: AC伺服电机+滚珠丝杠搭载精度:±3μm以下(搭载精度与治具精度有关) HEAD加热方式:陶瓷加热器加热,最大400度。

STAGE加热方式:不间断电加热器加热加压力:最大300N六.倒装芯片的PCB贴装技术倒装芯片已经成为小型I/O应用有效的互连解决方案。

随着微型化及人们已接受SiP应用,倒装芯片被视为各种针脚数量低的应用的首选方法。

从整体上看,其在低端应用和高端应用中的采用,根据TechSearch International Inc对市场容量的预计,焊球凸点倒装芯片的年复合增长率(CAGR)将达到31%。

倒装芯片应用的直接驱动力来自于其优良的电气性能,以及市场对终端产品尺寸和成本的要求。

在功率及电信号的分配,降低信号噪音方面表现出色,同时又能满足高密度封装或装配的要求。

可以预见,其应用会越来越广泛。

相对于其它的IC器件,如BGA、CSP等,倒装芯片装配工艺有其特殊性,该工艺引入了助焊剂工艺和底部填充工艺。

因为助焊剂残留物(对可靠性的影响)及桥连的危险,将倒装芯片贴装于锡膏上不是一种可采用的装配方法。

业内推出了无需清洁的助焊剂,芯片浸蘸助焊剂工艺成为广泛使用的助焊技术。

目前主要的替代方法是使用免洗助焊剂,将器件浸蘸在助焊剂薄膜里让器件焊球蘸取一定量的助焊剂,再将器件贴装在基板上,然后回流焊接;或者将助焊剂预先施加在基板上,再贴装器件与回流焊接。

助焊剂在回流之前起到固定器件的作用,回流过程中起到润湿焊接表面增强可焊性的作用。

倒装芯片焊接完成后,需要在器件底部和基板之间填充一种胶(一般为环氧树酯材料)。

底部填充分为“毛细流动原理”的流动性和非流动性(No-follow)底部填充。

上述倒装芯片组装工艺是针对C4器件(器件焊凸材料为SnPb、SnAg、SnCu或SnAgCu)而言。

另外一种工艺是利用各向异性导电胶(ACF)来装配倒装芯片。

预先在基板上施加异性导电胶,贴片头用较高压力将器件贴装在基板上,同时对器件加热,使导电胶固化。

该工艺要求贴片机具有非常高的精度,同时贴片头具有大压力及加热功能。

对于非C4器件(其焊凸材料为Au或其它)的装配,趋向采用此工艺。

随着时间推移,高性能芯片的尺寸不断增大,焊凸(Solder Bump)数量不断提高,基板变得越来越薄,为了提高产品可靠性底部填充成为必须。

图7图8贴装技术的两个要点:(1)对贴装压力控制的要求考虑到倒装芯片基材是比较脆的硅,若在取料、助焊剂浸蘸过程中施以较大的压力容易将其压裂,同时细小的焊凸在此过程中也容易压变形,所以尽量使用比较低的贴装压力。

一般要求在150g左右。

对于超薄形芯片,如0.3mm,有时甚至要求贴装压力控制在35g。

(2)对贴装精度及稳定性的要求对于球间距小到0.1mm的器件,需要怎样的贴装精度才能达到较高的良率?基板的翘曲变形,阻焊膜窗口的尺寸和位置偏差,以及机器的精度等,都会影响到最终的贴装精度。

相关文档
最新文档