两个例子 - 节约里程法
节约里程法的应用
节约里程法的应用1.基本资料介绍①宝洁公司是广州配送中心最大的服务商,为其配送的客户和货量见下表,我们以广州配送中心为例来说明有装载限制的车辆调度的优化方法。
公司客户分布在全国各地,这里主要以广东省内7家客户及省外一家特殊客户的一次配送为例。
城市和货运量②广州配送中心为这次配送提供了三种车型,载重量分别为2吨、5吨和8吨,不同车型的运输单价不一样,具体见运输单价表。
配送中心的配送是由外协商提供车辆,因此汽车的数量没有限制。
运输单价表2.步骤第一步:各城市之间的距离见上表。
第二步:计算连接城市到同一线路上的距离节约值,具体见下表。
第三步:确定初始方案的运输线路及运输费用,现安排4辆2吨、4辆5吨的车给每个客户送货。
运输线路及运输费用见下表所示。
运输线路及运输费用运输路线车型距离单价运费广州-东莞5T 50 2.7 135广州-江门2T 53 2.4 127.2广州-惠州2T 116 2.4 278.4广州-阳江5T 173 2.7 467.1广州-汕尾5T 221 2.7 596.7广州-揭阳5T 333 2.7 899.1广州-汕头2T 344 2.4 825.6广州-漳州2T 478 2.4 1147.2合计1768 4476.3第四步:进行线路第一次优化。
第一次修改后的车辆调度结果运输路线车型距离单价运费广州-东莞5T 50 2.7 135 广州-江门2T 53 2.4 127.2 广州-惠州2T 116 2.4 278.4 广州-阳江5T 173 2.7 467.1 广州-汕尾5T 221 2.7 596.7 广州-揭阳5T 333 2.7 899.1 广州-汕头-漳州5T 502 2.7 1355.4 合计1148 3858.9第五步:继续进行线路优化。
第二次修改后的车辆调度结果运输路线车型距离单价运费广州-东莞5T 50 2.7 135广州-江门2T 53 2.4 127.2广州-惠州2T 116 2.4 278.4广州-阳江5T 173 2.7 467.1广州-汕尾5T 221 2.7 596.7 广州-揭阳-汕头-漳州8T 526 3.65 1919.19 合计1139 3523.59从表中可以看出,广州-惠州-揭阳-汕头-漳州路线上的总货运量达到7.9吨,再连接任何一个城市都将使货运量超过最高限制(8吨),则不能继续配载,所以可以首先确定的是这一条线路。
节约里程法路径优化
节约里程法路径优化节约里程法是一种用于路径优化的方法,通过选择最短路径来减少行程中的里程数。
在现实生活中,我们经常需要规划行程,比如出差、旅行或者日常的通勤。
而选择最优路径可以节省时间和精力,提高效率。
下面我将以一个出差的例子来说明如何使用节约里程法进行路径优化。
假设我需要从A市出差到B市,那么我可以通过多种交通方式进行选择,比如飞机、火车、汽车等。
为了节约里程,我需要考虑以下几个因素:距离、时间、费用和舒适度。
我可以考虑乘坐飞机。
飞机通常是最快的交通工具,可以快速到达目的地。
然而,飞机票价格较高,且需要提前预订。
如果我需要频繁出差,花费较多的机票费用可能会对我的财务造成一定的压力。
我可以选择乘坐火车。
火车通常比汽车更舒适,且价格相对较低。
但是,火车的速度可能较慢,行程可能需要更长的时间。
如果我需要在短时间内到达目的地,乘坐火车可能不是最佳选择。
我可以选择乘坐汽车。
汽车的灵活性较高,我可以根据需要随时停下来休息或处理其他事务。
然而,长途驾驶可能会让我感到疲劳,而且汽车的油费和路桥费用也需要考虑。
综合考虑以上因素,我可以做出最优选择。
如果时间充裕且预算充足,我可以选择乘坐飞机,以最快的速度到达目的地。
如果时间有限,但预算有限,我可以选择乘坐火车,虽然时间稍长,但价格相对较低。
如果我喜欢自驾旅行或者需要灵活性,我可以选择乘坐汽车。
节约里程法可以帮助我在出差或旅行时选择最优路径。
通过综合考虑距离、时间、费用和舒适度等因素,我可以做出最合适的决策。
这样不仅可以节约里程,还可以提高出差或旅行的效率和体验。
希望这种方法能对大家在路径优化方面提供一些参考和帮助。
节约里程法典型实例
物流方案设计(最优运输路线决策-节约里程法)典型实例:已知配送中心P O向5个用户P j配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如下图与表所示:图中括号内的数字表示客户的需求量(单位:吨),线路上的数字表示两结点之间的距离,配送中心有3台2t卡车和2台4t两种车辆可供使用,1、试利用节约里程法制定最优的配送方案?2、设卡车行驶的速度平均为40公里/小时,试比较优化后的方案比单独向各用户分送可节约多少时间?第(1)步:作运输里程表,列出配送中心到用户及用户间的最短距离。
得初始方案配送距离=39X 2=78KM第(5)步:根据载重量约束与节约里程大小,将各客户结点连接起来,形成二个配送路线。
即A B 两配送方案。
序号 路线 节约里程 序号 路线 节约里程1 P 2P 3 10 6 P i F 52 2 P 3P 4 8 7 P i P3 1 3 P 2P4 6 8 F 2F5 0 4 P 4P 5 5 9 F 3F 5 0 5P l P 2410P i F 4第(2)步:由运输里程表、按节约里程公式,求得相应的节约里程数,如上表( 第(3)步:将节约里程 sij 进行分类,按从大到小顺序排列第(4)步:确定单独送货的配送线路)内。
(1.5)①配送线路A:P0-P2-P3-P4- P 0 运量q A= q 2+q3+q4 = 1.7+0.9+1.4 = 4t 用一辆4t 车运送节约距离S A =10 +8 = 18km②配送线路B: P 0-P5 -P 1-P0 运量q B =q 5+q1=2.4+1.5=3.9t<4t 车用一辆4t 车运送节约距离S B=2km第(6)步:与初始单独送货方案相比,计算总节约里程与节约时间总节约里程:△ S= S A+S B= 20 km与初始单独送货方案相比,可节约时间:△T = △ S/V=20/40=0.5小时。
物流方案设计(最优运输路线决策-节约里程法)典型实例
物流方案设计(最优运输路线决策-节约里程法)典型实例:已知配送中心P O向 5 个用户 P j配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如下图与表所示:图中括号内的数字表示客户的需求量(单位:吨),线路上的数字表示两结点之间的距离,配送中心有 3 台 2t 卡车和 2 台 4t 两种车辆可供使用,1、试利用节约里程法制定最优的配送方案?2、设卡车行驶的速度平均为40 公里 / 小时,试比较优化后的方案比单独向各用户分送可节约多少时间?( 0.9)P3 4( 1.7)5P2 6128( 1.4)12 P4 7 P0 1312 10 8P5 16P1 ( 1.5)需要量P0( 2.4)1.5 8 P11.7 8 12 P20.9 6 13 4 P31.4 7 15 9 5 P42.4 10 16 18 16 12 P5第( 1)步:作运输里程表,列出配送中心到用户及用户间的最短距离。
需要量0 P1.5 8 P11.7 8 ( 4)P12 20.9 6 (1)( 10)P3 13 41.4 7 (0)(6)(8)4 15 9 5 P2.4 10(2)(0)(0)(5)16 18 16 P512第( 2)步:由运输里程表、按节约里程公式,求得相应的节约里程数,如上表()内。
第( 3)步:将节约里程sij 进行分类,按从大到小顺序排列序号路线节约里程序号路线节约里程1 P2P3 10 6 P1 P5 22 P P 8 7 P P 13 4 1 33 P P 6 8 P P 02 4 2 54 P4P5 5 9 P3 P5 05 P1P2 4 10 P1 P4 0第( 4)步:确定单独送货的配送线路(0.9)P3 ( 1.7 )P268( 1.4)P4 7P0108P5P1(1.5)(2.4 )得初始方案配送距离 =39× 2=78KM第( 5)步:根据载重量约束与节约里程大小,将各客户结点连接起来,形成二个配送路线。
节约里程法典型实例
物流方案设计(最优运输路线决策-节约里程法)典型实例:已知配送中心P O向5个用户P j配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如下图与表所示:图中括号内的数字表示客户的需求量(单位:吨),线路上的数字表示两结点之间的距离,配送中心有3台2t卡车和2台4t两种车辆可供使用,1、试利用节约里程法制定最优的配送方案?2、设卡车行驶的速度平均为40公里/小时,试比较优化后的方案比单独向各用户分送可节约多少时间?(0.9)第(1)步:作运输里程表,列出配送中心到用户及用户间的最短距离。
-第(2)步:由运输里程表、按节约里程公式,求得相应的节约里程数,如上表( )内。
第(3)步:将节约里程sij 进行分类,按从大到小顺序排列得初始方案配送距离=39×2=78KM第(5)步:根据载重量约束与节约里程大小,将各客户结点连接起来,形成二个配送路线。
即A 、B 两配送方案。
((2.4)1.5)((0.9))①配送线路A:P0-P2-P3-P4- P0运量q A= q2+q3+q4= 1.7+0.9+1.4= 4t用一辆4t车运送节约距离S A =10 +8 = 18km②配送线路B: P0-P5-P1-P0运量q B =q5+q1=2.4+1.5=3.9t<4t车用一辆4t车运送节约距离S B=2km第(6)步:与初始单独送货方案相比,计算总节约里程与节约时间总节约里程:△S= S A+ S B= 20 km与初始单独送货方案相比,可节约时间:△T =△S/V=20/40=0.5小时欢迎下载,谢谢观看!资料仅供参考学习-。
配送路径优化节约里程法事例
配送路径优化节约里程法事例一、配送的困扰说起配送这事儿,大家都有点经验吧?那种看似简单、实则复杂的送货过程,光是坐车的时间都能让人崩溃。
有时候就算是个小小的东西,送到手里的时间也不一定那么准时。
你看,那些送货员的车,东绕西绕的,绕了半天,回头一看,距离目的地明明就不远,怎么感觉走了好几条弯路,浪费了不少油,吃了不少时间。
说得通俗点,那就是配送路径没优化好!你说,谁家不想节省点里程呢?这不仅能省钱,还能节省油费,最重要的是,减少了送货员心里的压力。
所以啊,这个配送路径优化的事儿,真的得好好琢磨一番。
二、路径优化的作用那这优化到底是个啥意思呢?如果送货员每次都能按照最短的路程走,不用左拐右绕,不用在每个交叉路口犹豫半天,效率自然就高了。
这种“少走弯路”的办法,不仅能节省时间,车辆油耗也会降低,大家的心情也能轻松点。
你想想,不再碰到那种“导航指路,车却走偏”的尴尬局面,不再在车里等个十几分钟,真的是大大的爽。
再加上现在的技术那么先进,有了路径优化,送货员的负担轻了,企业的运营成本也降低了,一举两得,岂不是美滋滋?但是,如何优化呢?这可不是那么简单的事儿,得好好分析。
得从每一个配送的起点和终点开始算,合理规划每一条路线。
有的配送中心本来就不远,但因为道路复杂、交通状况不好,结果走了许多不必要的冤枉路。
你要知道,那种高峰期的交通,光是堵个红绿灯,差不多就得半小时过去。
再加上,某些路段的繁忙程度,早高峰、晚高峰的时候可不是闹着玩的。
那种时间上的浪费,实在是让人心烦。
你能想象吗?你本来预计一个小时就能到的地方,结果送了两小时才到,最后客户也没了耐心,甚至还得打个电话投诉。
那场面可真是尴尬死了。
三、具体实施路径优化说到这里,很多人可能就会问了,那要怎么实施路径优化呢?其实现在有很多高效的系统,可以根据实际情况帮你算出最短路径。
比如,根据每条道路的交通状况、道路的宽窄程度、甚至是天气情况来优化路线。
你要知道,不是所有的道路都能通行,尤其在一些小巷子里,车子一进去了,根本就转不过来。
节约里程法
算例:节约里程法以上一个二维码扫描算法算例为例,用节约里程法计算配送线路的安排。
解:① 首先根据上一个二维码扫描算法算例中的距离矩阵表计算出各点间的节约值矩阵表,如表1所示。
表1 节约值矩阵表② 从表1中选出节约值最大值为23,其对应的两个顶点为5、6。
5、6两处的需求量之和为8,未超过一辆车的运输能力14,因此,连接5、6成回路,即0—5—6—0。
再将顶点5与6的节约值赋为0,结果如表2所示。
表2 节约矩阵表计算过程1③ 从表2中再选出节约值最大值为20,其对应的两个顶点为7、8。
7、8两处的需求量之和为7,未超过一辆车的运输能力14,因此,连接7、8成回路,即0—7—8—0。
再将顶点7与8的节约值赋为0,结果如表3所示。
表3 节约矩阵表计算过程2④ 从表3中再选出节约值最大值为16,其对应的两个顶点为5、8或6、8。
如果连接5与8,则上述两条回路合并,其总需求量为15,超过一辆车的运输能力14,因此,5与8不能连接,同样6和8也不能连接,则将顶点5、8和6、8的节约值赋为0,结果如表4所示。
表4 节约矩阵表计算过程3⑤ 从表4中再选出节约值最大值为15,其对应的两个顶点为4、6。
如连接4与6,则形成:0—5—6—4—0回路,其总需求量为11,未超过一辆车的运输能力14,因此,连接4、6成新回路,即0—5—6—4—0。
再将顶点4与6的节约值赋为0,同时,由于顶点6成为回路的中间点,则与顶点6相关的节约值都赋为0。
表示顶点6不可能再与其他点相连,其结果如表5所示。
表5-33 节约矩阵表计算过程4⑥ 按算法步骤迭代运算,直到节约值矩阵表中的值均为0时,迭代结束。
最终的结果为:0—2—3—0,0—5—6—4—0,0—7—8—1—0这三条线路,其运输量分别为9、11、13,总里程数为93。
一般来说,节约里程法可以得到比较好的结果,但此算法也是一种贪婪启发式算法,对于一些特殊的算例,得不到最优解。
上一个二维码中算例的全局最优解是:选择0—1—3—0,0—2—7—8—0,0—5—6—4—0这三条线路,其运输量分别为11、11、11,总里程数为90。
节约里程法应用案例
节约里程法应用案例在当今竞争激烈的商业环境中,物流成本的有效控制对于企业的生存和发展至关重要。
节约里程法作为一种优化配送路线的有效方法,能够显著降低运输成本,提高物流效率。
接下来,让我们通过一个具体的案例来深入了解节约里程法的实际应用。
假设我们有一家位于城市中心的配送中心,需要向位于城市不同区域的五个客户(A、B、C、D、E)配送货物。
每个客户的需求量以及他们之间的距离如下表所示:|客户|需求量(吨)|与配送中心距离(公里)||||||A|5|10||B|8|12||C|3|8||D|6|15||E|4|11||客户|A|B|C|D|E|||||||||A| | 18 | 22 | 25 | 16 ||B| 18 || 10 | 18 | 12 ||C| 22 | 10 || 14 | 9 ||D| 25 | 18 | 14 || 20 ||E| 16 | 12 | 9 | 20 ||首先,我们按照传统的方法,即每个客户单独配送,计算出总运输里程。
配送中心到客户 A 的往返里程为 2×10 = 20 公里。
配送中心到客户 B 的往返里程为 2×12 = 24 公里。
配送中心到客户 C 的往返里程为 2×8 = 16 公里。
配送中心到客户 D 的往返里程为 2×15 = 30 公里。
配送中心到客户 E 的往返里程为 2×11 = 22 公里。
总运输里程为 20 + 24 + 16 + 30 + 22 = 112 公里。
接下来,我们应用节约里程法来优化配送路线。
第一步,计算两两客户之间的节约里程数。
例如,客户 A 和客户 B 之间的节约里程数为:(配送中心到 A 的距离+配送中心到 B 的距离 A 到 B 的距离)× 2 =(10 + 12 18)× 2 = 8 公里。
按照同样的方法,计算出所有两两客户之间的节约里程数,如下表所示:|客户|A|B|C|D|E|||||||||A| | 8 | 6 | 5 | 2 ||B| 8 || 4 | 3 | 4 ||C| 6 | 4 || 2 | 3 ||D| 5 | 3 | 2 || 5 ||E| 2 | 4 | 3 | 5 ||第二步,根据节约里程数的大小对路线进行合并和优化。
节约里程法例题
节约里程法例题
问题描述
某公司为了降低员工的交通成本,制定了节约里程法,规定员工在每周的通勤过程中,只能行驶一定的里程数。
具体规定如下:
•每位员工每周最多行驶300公里的里程数;
•员工每行驶一公里,公司会额外支付0.5元。
现在需要使用节约里程法计算员工每周的交通费用。
算法设计
节约里程法的核心思想是根据员工的行驶距离来计算交通费用。
算法的基本步骤如下:
1.设置变量total_mileage为员工总行驶里程数,初始值为0;
2.设置变量total_cost为员工总交通费用,初始值为0;
3.循环执行以下步骤:
–输入本次行驶的里程数mileage;
–如果mileage + total_mileage大于300,则将total_cost 增加300 - total_mileage * 0.5,并将total_mileage更新为300;
–否则,将total_cost增加mileage * 0.5,并将
total_mileage增加mileage;
–如果total_mileage等于300,则退出循环。
4.输出员工总交通费用total_cost。
算法实现
以下是使用Python语言实现节约里程法的代码示例:
```python def calculate_transport_cost(): total_mileage = 0 total_cost = 0
while total_mileage < 300:
mileage = float(input(\。
节约里程法案例详解
(二)配送成本的影响因素
配送成本是各种作业活动的费用,它的大小与下面的因素 有关: 1. 时间
配送时间持续的后果是占用了配送中心,耗用了配送 中心的固定成本。而这种成本往往表现为机会成本,使得 配送中心不能提供其他配送服务获得收入或者在其他配送 服务上增加成本 2. 距离
(3)工资及职工福利费:工资是按规定支付给 分拣作业职工的标准工资、奖金与津贴等;职工 福利费是按规定的工资总额和提取标准的集体职 工福利费,根据“工资分配汇总表”和“职工福 利费计算表”中金额计入分拣成本。 (4)其他费用:不属于以上各项的费用,根据 “低值易耗品发出凭证汇总表”中分拣成本另用 的金额计入成本。 以上四项是分拣的直接费用。
(5)分拣间接费用 分拣间接费用是指配送分拣管理部门为管理和组 织分拣作业,需要由分拣成本分担的各项管理费 用和业务费用。
分拣直接费用与间接费用就构成了配送环节的分 拣成本,即: 分拣成本=分拣直接费用+分拣间接费用
配装成本的计算
配装成本是指在完成配装货物过程中所发生 的各种费用之和。 (1)材料费:配装过程中消耗的各种材料,如 木材、包装纸、金属、塑料等。根据“材料发出 凭证汇总表”、“领料单”及“领料登记表”等 初始凭证,配装成本好用的金额计入成本。 (2)工资及职工福利费:工资是按规定支付给 装配作业职工的标准工资、奖金和津贴等。职工 福利费是按标准的工资总额和提取标准计提的职 工福利费。根据“工资分配汇总表”和“职工福 利费”中分配的配装成本的金额计入成本。
6 H-I 8 8 B-D 7 8 D-E 7 10 A-H 6 10 B-I 6 10 C-E 6
顺位 里程 节约里程 号
[管理学]第九讲节约里程法案例详解
某配送中心配送网络图
(0.9)
C
4
5
(1.2)
D
4
B (0.5)
7
5
6
(1.6) E
6 5
8
5
A (1.7)
7
11
9
P
6
(1.1) F
10 10
3
4
I (0.6)
14
5
G
(0.9)
7 12
H
(0.9)
计算配送中心至各用户以及各用户之间的最 短距离,列表得最短距离表:
PABCDEFGHI
P
11 10 9 6 7 10 10 8 7
A
5 10 14 18 21 21 13 6
B
5 9 15 20 20 18 11
C
4 10 19 19 17 16
D
6 15 16 14 13
E
9 17 15 14
F
14 18 17
G
12 17
H
7
I
由最短距离矩阵,利用节约法计算出各用户 之间的节约里程,编制节约里程表:
ABCDEFGHI
A
16 10 3 0 0 0 6 12
2.分拣费用
(1)分拣人工费用。这是指从事分拣工作的作业人员 及有关人员工资、奖金、补贴等费用的总和。
(2)分拣设备费用。这是指分拣机械设备的折旧费用 及修理费用。
3.配装费用
(1)配装材料费用。常见的配装材料有木材、纸、自然纤 维和合成纤维、塑料等。这些包装材料功能不同,成本相 差很大。
(2)配装辅助费用。除上述费用外,还有一些辅助性费用, 如包装标记、标志的印刷,拴挂物费用等的支出。
节约里程法
节约里程法1.原理设P 为配送中心,A 和B 为收货点,相互之间的道路距离为a , b , c 。
若分别使用两辆货车分别向A 、B 两地往返送货,其行驶里程为:2a+2b 。
但若使一辆货车(货车可以满载两地送货)由P → A →B →P ,单线巡回送货,其行驶总里程为a+c+b 。
两者相比,后一种方案比前一种送货方案可节省的运输距离是: (2a+2b )-(a+c+b )= a + b - c > 0这一节约距离称为节约里程,所以我们称这种方法为“节约里程法”。
2 .实例由于案例所给内容有限,所以我们自行上网查找了一些资料。
下图是我们找到的位于郑明现代物流有限公司上海总部周边的一些大型商超,下面我们就假设这些超市为郑明现代物流有限公司的配送点,利用节约里程法来设计末端配送网络的合理运输。
上海郑明现代物流有限公司周边的商超配送点PABacb图X-X备注:1 . 红色五角星所在位置即为郑明现代物流有限公司的所在地(P)2 . 紫色圆圈即为超市配送点的位置及其名称(从左至右依次为:城市超市(A)、沃尔玛超市(B)、世纪华联超市(C)、联华超市(F)、家乐福超市(D)、大润发超市(E))为直观清晰的了解郑明现代物流有限公司与给超市配送点之间的关系,我们将上图简化为下图(图X-X)的简易图形。
线段旁的数字为两者之间的距离,单位:km.图X-X节约里程法的求解过程如下:1.计算配送中心P 到各个配送点及各配送点之间的最短路距离,如下表最短距离表P ABCDEFP A 4.7B 2.8 6.8C 0.6 4.2 2.9D 8 12.7 6.1 8.6E 7.4 12.1 9.2 8 3.1F1.83.24.62.49.89.14.26.12.96.80.62.883.17.49.11.83.2BDFA C EP2.计算各个配送点之间的节约里程,如下表节约里程表A B C D E FAB 0.7C 1.1 0.5D 0 4.7 0E 0 1 0 12.3F 3.3 0 0 0 0.13.进行排序:节约里程排序表序号连接节约序号连接节约1 DE 12.3 8 AD 02 BD 4.7 9 AE 03 AF 3.3 10 BF 04 AC 1.1 11 CD 05 AB 0.7 12 CE 06 BC 0.5 13 CF 07 EF 0.1 14 DF 04.得出线路安排线路一:P →E →D →B →P 节约里程为:12.3+4.7= 17 km 线路二:P →F →A →C →P 节约里程为:3.3+1.1= 4.4 km如果没有使用节约里程法来进行商超的配送,那么结果是怎样的呢?假定初始配送方案是由中心点P 按最短路径向其余各个点分别进行送货,则总配送里程为:2x(0.6+4.2+1.8+7.4+8+2.8)=49.6 km 。
节约里程法案例
由配送中心A 向两个用户M 、N 送货,A 至M 、N 的最短距离分别为l1和l2,M 、N 之间的距离为l3,用户M 、N 对货物的需求量分别为q1和q2。
如图:若用两辆汽车分别对A 、B 两个用户所需货物,各自往返送货时,汽车直行总里程为:l=2(l1+l2)如果改为有一辆汽车向M 、N 两个用户巡回送货(设q1+q2<汽车标重载重量),则汽车走行里程为: l=l1+l2+l3后一种送货方案比前一种送货方案节约的汽车走行里程为: △l=[2(l1+l2)]-(l1+l2+l3)=l1+l2-l34 案例分析如图所示:由配送中心P 向A-H8个用户配送货物。
图中连线上的数字表示两点间的里程(km ),图中靠近个用户括号内的数字,表示各用户对货物的需求量(t )。
配送中心备有2t 和3t 载重量的汽车,且汽车一次巡回里程不超过35km 。
色送到时间均符合客户要求。
求改配送中心的最优送货方案。
﹙q1﹚(q2)节约里程表A B C D E F G HA 9 2 0 0 0 0 7B 8 5 0 0 0 6C 11 3 0 0 0D 10 5 0 0E 9 2 0F 13 3G 6H根据节约里程表中节约里程的顺序,由大到小排列,编制节约里程顺序表。
节约里程顺序表根据节约里程顺序表和配车(车辆的载重),车辆行驶里程等约束条件,渐进绘出如图所示配送路径.路径A:2t车,走行24km,载重量1.8t。
路径B:3t车,走行33km,载重量3.0t。
路径C:3t车,走行23km,载重量2.8t。
总共行走80km,节约里程60km。
从图中可看:一次确定的A、B、C三条路径均符合配送中心的约束条件。
需要2t汽车1辆,3t汽车2辆,总走行里程为80km,若简单的每个用户派一辆汽车配送,需要2t汽车8辆,走行总里程为140km。
通过比较可以看出,利用节约里程法制定配送方案确定送货路径,具有明显效果。
项目七节约里程法例题
序号 1 2 3 4 5 6 7 8
路程 C-D D-E A-E B-C C-E1 9 6 4 4 3 1 1
(4)配送路线如下:
从上图中可以看出,依次确定的3条路径均符 合配送中心的约束条件。最后选择的方案是: 使用2辆4t车,1辆2t车,行驶里程共52km。 其中: 路径1:4t车,载货量3.5t,行驶里程30km; 路径2:2t车,载货量1.5t,行驶里程16km; 路径3:4t车,载货量3t,行驶里程6km。
解:(1) 由题意绘制 表一 最短距离表
PABCDE
P - 8 3 10 8 7
A
- 8 17 15 9
B
- 9 11 10
C
- 7 13
D
-6
E
-
(2)由上表得表二 节约里程表 如下:
- ABCDE
A- 3116
B
- 400
C
- 11 4
D
-9
E
-
(3)将上表二中数据降序排序得表三: 节约里程数额排序表
需要量 P0 1.5 8 P1 1.7 8 12 P2 0.9 6 13 4 P3 1.4 7 15 9 5 P4 2.4 10 16 18 16 12 P5
第(2)步:由运输里程表、按节约里程公式,求得
相应的节约里程数,如上表( )内。
需要量 P0
1.5
8
P1
1.7
8
(4) 12
P2
0.9
6
(1) (10) 13 4
P3
1.4
7
(0) (6) (8)
15 9
5
P4
2.4
10
(2) (0) (0) (5) 16 18 16 12
节约里程法
b94b
c795c
d 8 14 10 5 d
e 8 18 14 9 6 e
f 8 18 17 15 13 7 f
g 3 13 12 10 11 10 6 g
h 4 14 13 11 12 12 8 2 h
i 10 11 15 17 18 18 17 11 9 i
ห้องสมุดไป่ตู้
j 7 4 8 13 15 15 15 10 11 8 j
5
5
d
c
b4
6
a
e
4
7 8
7 Q
j
f
3
10
g
h
2
9
i
最佳配送线路
8
配送线路的优化
节约里程法 1、节约里程的基本原理
用一辆车将所有客户的货物装在一起,沿着一条精心 选择的最佳路线,将货物送到客户手中。 目标:节约车辆、节约费用、缓解交通压力、减少环 境污染。
△S = S1 + S2 - S3
1
2、按节约里程法制定配送计划 例 有一配送中心(Q)要向10个用户配送,配送距离 (公里)和需用量(吨)如下图所示。 假设:采用最大载重量2吨、4吨、8吨三种汽车,并限 定车辆一次运行距离50公里。 用节约里程法选择最佳配送路线和车辆的调度。
j 13 8 1 0 0 0 0 0 9
节约里程计算过程
5
第四步:将节约里程按大小顺序排列分类。
节约里程顺序表
分类 Ⅰ
用户连接 线
a—b
节约里 程
15
分类 Ⅸ
用户连接 线
f—g
Ⅱ
a—j
13
Ⅸ
g—h
Ⅲ
b—c
11
物流管理《8节约里程法及举例(郑克俊2019.11.30修订)》
节约里程法及举例1当由一个配送中心向多个客户进行共同送货,在一条线路上的所有客户的需求量总和不大于一辆车的额定载重量时,由这一辆车配装着所有客户需求的货物,按照一条预先设计好的最正确路线依次将货物送到每一客户手中,这样既可保证按需将货物及时送交,同时又能节约行驶里程,缩短整个送货时间,节约费用。
节约里程法正是用来解决这类问题的较成熟的方法。
用节约里程法确定配送路线的主要思路是,根据配送中心的运输能力及其到各客户之间的距离和各客户之间的相对距离,来制定使总的配送车辆吨公里数到达或接近最小的配送方案。
节约里程法的根本思路如下图,P 为配送中心所在地,A 和B 为客户所在地,相互之间道路距离分别为a 、b 、c 。
最简单的配送方法是利用两辆车分别为A 、B 客户配送,此时,如图〔b 〕所示,车辆运行距离为2a 2b 。
然而,如果按图〔c 〕所示改用一辆车巡回配送,运行距离为abc 。
如果道路没有什么特殊情况,可以节省的车辆运行距离为2a 2b –abc =ab –c >0,这个节约量“ab –c 〞被称为“节约里程〞。
AAABPPPB(a )物流网络(c )用一辆车配送ac ba cb ab c图 配送中心配送路线的选择1郑克俊仓储与配送管理〔第四版〕科学出版社 修订。
步骤:实际上如果给数十家、数百家客户配送,〔1〕应首先计算包括配送中心在内的相互之间的最短距离,〔2〕然后计算各客户之间的可节约的运行距离,〔3〕按照节约运行距离的大小顺序连结各配送地并设计出配送路线。
下面举例说明节约里程法的求解过程。
例节约里程法举例图为某配送网络,P为配送中心所在地,A~J为客户所在地,共10个客户,括号内的数字为配送量〔单位:吨〕,路线上的数字为道路距离〔单位:千米〕。
现有可以利用的车辆是最大装载量为2吨和4吨的两种厢式货车,并限制车辆一次运行距离在30千米以内。
为了尽量缩短车辆运行距离,试用节约里程法设计出最正确配送路线。
两个例子节约里程法
30km,4t车一
P0
7
辆
J (0.6)
7
(1.5) F
3
G 6
4 H
线路3:运距23km,
102t车一辆
(0.5)
(0.8)
9
I
(0.6) 修正结果:运距——80km,车辆——4t2辆,2t1辆
练习
例:如图所示为配送中心P的配送网络图,某配送中 心P向A、B、C、D、E五个客户配送物品。图中边线上 的数字表示公路里程(km)。靠近各用户括号里的数字 表示对货物的需求量(t)。配送中心备有2t和4t载重量 的汽车,汽车一次巡回行驶里程不能超过30km。求解配 送路线方案。
j 7 4 8 13 15 15 15 10 11 8 j
最短距离矩阵
准备相关资料:
P
a
b
15 b
第二步:从最短矩阵中,计 算用户相互间的节约里程。
c
8
11 c
d
4
7
10 d
e
0
3
6
10 e
f
0
0
0
3
9
f
g
0
0
0
0
1
5
g
h
0
0
0
0
0
4
5
h
i
9
4
0
0
0
1
2
5
i
j
13 8
1
0
0
0
0
0
9
节约里程计算过程
如果配送中心用两辆汽车分别对A、B两个用户 各自往返送货时,汽车行驶的总里程L是
L=2(L1+ L2) 如果用一辆汽车向A、B两个用户巡回送货,则 汽车行驶总里程L′为
两个例子-节约里程法
该方法基于节约思想,即在一辆运输车辆上装载多个客户的货物,通过合理规 划运输路线,使得车辆可以依次经过这些客户的所在地,并在满足车辆载重和 容量限制的前提下,实现运输里程的最小化。
发展历程及应用领域
发展历程
节约里程法最初由国外学者提出,后来经过不断改进和完善 ,逐渐形成了较为成熟的理论体系。目前,该方法已经在国 内外得到了广泛应用。
空间。
挑战
新技术的发展和应用需要大量的投入和研发,同时也需要面对技术更新换代快、数据安 全等问题。此外,新技术在节约里程法中的应用还需要与实际业务场景相结合,需要进
行不断的实践和调整。
行业应用拓展方向预测
物流行业
节约里程法在物流行业的应用已经比较成熟,未来可以进 一步拓展到智能物流、绿色物流等领域,实现更加高效、 环保的物流运输。
局限性
虽然节约里程法在优化运输路径方面具有一定的优势,但也存在一些局限性。例如,该方法只考虑了运输里程的 节约,而忽略了其他因素(如时间、服务质量等)对运输成本的影响。此外,在实际应用中,还需要考虑车辆的 载重和容量限制、道路状况、客户需求等多种因素,这也会增加该方法的复杂性和难度。
02 节约里程法实例一:物流 配送优化
01
节约里程法的时间复杂度主要取决于需求点的数量和合并运输的次数。
02
在需求点数量较多的情况下,算法可能需要较长的时间来寻找最优解。
03
为了优化算法,可以考虑采用启发式搜索策略,如贪婪算法、遗传算 法等,来加快搜索速度并提高解的质量。
04
此外,还可以考虑对需求点进行聚类处理,以减少合并运输的次数和 降低算法复杂度。
节约里程法在路线规划中应用
景点间距离与交通方式选择
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最短距离矩阵
准备相关资料:
P b c d a 15 8 4 b 11 7 c 10 d
第二步:从最短矩阵中,计 算用户相互间的节约里程。
e
f g h i
0
0 0 0 9
3
0 0 0 4
6
0 0 0 0
10
3 0 0 0
e
9 1 0 0 f 5 4 1 g 5 2 h 5 i
j
13
8
1
0
0
0
0
0
9
节约里程计算过程
第三步:将节约里程按大小顺序排列分类。
节约里程排序表
序号
1 2 3
连接点
a—b a—j b—c
节约里程
15 13 11
序号
13 13 13 16 16
连接点
f—g g—h h—i a—d b—i
节约里程
5 5 5 4 4
4
4 6 6 6 9 9 11
c—d
d—e a—i e—f i—j a—c b—j b—d
现在只剩下A、B两个客户还没有安排配送路线,由于两 个客户的货物需求总量为4.5t,已经超过4t车的最大载重 量,因此只能是分别进行配送,还需要一辆4t车和一辆2t 车。由此分析得出的配送路线如图8-3所示。
E(2) 7 6 D(1) 7
路线1
P
8
3
10
路线3
C(0.5)
路线2
B(3) 图8-3 配送路线
8
7
10 7
E
8
P0
J 4 10 H
(0.6)
8
3 G
(0.5) I
F
修正结果:运距——109km,车辆——4t1辆,2t6辆
修正1套方案:按节约里程大小顺序,组成配送线路。
(1.5) (0.4) D 6 (1.4) E 线路2:运距 8 30km,4t车一辆 8 (0.8) C 5 B 4 A 4 (0.7)
10
10 9 9 9 8 8 7
16
19 19
f—h
b—e d—f
4
3 3
21
22 22 22
g—i
c—j e—g f—i
2
1 1 1
12
c—e
6
修正初始方案:按节约里程大小顺序,组成配送线路。
(1.5) (0.4) 5 D C 9 1:运距 线路 27km,4t车一辆 (0.8) 5 B 4 A 4 (0.7)
A(1.5)
因此,按照节约法设计的配送方案是使用2辆 4t车, 1辆2t车, 总行驶里程为52km。 其中:
路线1:4t车,载货量3.5t,行驶里程30km; 路线2:2t车,载货量1.5t,行驶里程16km; 路线3:4t车,载货量3t,行驶里程6km。
E(2)
5 7 3 P
6
8
D(1)
7 10 C(0.5)
9
1 4
A(1.5)
4 8
3 B(3)
9
(1)计算配送中心P至各用户之间的最短距离,如表所示:
(3)根据节约里程表中节约数额的多少从大到小排序,
编制节约里程序列表,如表8-3所示。
(4)根据节约里程序列表和配送中心的约束条件, 先选择C、D合并,考察合并后的巡回里程以及载重量 是否都符合配送要求。然后再考虑合并第三个站点,节 约里程数次优的为D、E合并。因此按照最大节约原则 可以考虑将客户E并入C、D站点群;但是,首先要考虑 合并后车辆的载重量以及行驶里程的限制,即使其中一 个突破了约束,也应该舍弃该合并方案。这里合并后车 辆的载重量为3.5t(2+1+0.5=3.5),行驶里程刚好为 30km,符合约束条件,需要一辆4t车。并且,并入E点 后,再不能并入其他任何站点,该路线设计完毕。
请为百家姓配送中心制定最优的配送方案。
百家姓配送中心交通图
0.4
d
0.8 5
c
1.5
5
9 10
b
6 1.4
e
4 9 8 7
a
0.7
8
7
f
4 0.6
j
10 8
P0
7
11
8
i
3
6
g
4
10
h
1.5
0.6
配送网络图
2
0.8
9
0.5
初始方案:从P点向各点分别派车送货。
0.4
d
0.8
c
1.5
b
1.4
e
7
0.7 9 1 0 7
示例
位于市内的百家姓配送中心(P0)向它旗下的 10家连锁商店pi(i=1,2,…,10)配送商品,其 配送网络如下图所示。 图中括号内的数字表示每一家连锁店的需求量 (t),线路上的数字表示两节点之间的距离 (km)。配送中心现有2t和4t车辆可供使用, 并且每辆车配送距离不得超过30km。
节约法的基本原理
假如由一家配送中心P向两个用户A、B送货,配送 中心到两客户的最短距离分别是L1和L2,A和B间的最短 距离为L3,AB的货物需求量分别是Q1和Q2,且Q1+Q2小 于车辆装载量Q,如下图所示。
A
L3
B
L2
L1
P
图8-1 节约法原理示意图
如果配送中心用两辆汽车分别对A、B两个用户 各自往返送货时,汽车行驶的总里程L是 L=2(L1+ L2) 如果用一辆汽车向A、B两个用户巡回送货,则 汽车行驶总里程L′为 L′= L1+ L2 + L3 根据三角形的一边之长必定小于另外两边之和的 原理,后一种配送方案比前一种方案节约里程△L为 △L=2(L1+ L2)-(L1+ L2 + L3)= L1+ L2 -L3
a
8 8
P0
0.6
j
8
f
3
g
4
1.5
1 0
h i
0.6 0.8
配送网络图
0.5
初始方案运行结果: 1、从百家姓配送中心出发,需要设计10条配 送线路,分别向10家连锁店配送商品; 2、需要10辆2t的配送车辆(每家连锁店的需 要量都低于2t),总配送距离为148km。
准备相关资料:
P a b 10 9 a 4 b
第一步:作出最短距离矩阵,从
配送网络图中列出配送中心至用
5
10 14 17 12 13 15 8
c
d e f g h i j
7
8 8 8 3 4 10 7
9
14 18 18 13 14 11 4
c
5 9 15 10 11 17 13 d 6 13 11 12 18 15
户相互间的最短距离矩阵 。
e 7 10 12 18 15 f 6 8 17 15 g 2 11 10 h 9 11 i j
线路1:运距 27km,4t车一辆
8
7
P0
7
J 4 10 H I (0.5) (0.6)
7 (1.5) F
3 G
6
(0.6) 修正结果:运距——85km,车辆——4t2辆,2t2辆
修正2套方案:按节约里程大小顺序,组成配送线路。
(1.5) (0.4) D 6 (1.4) E 线路2:运距 30km,4t车一辆 (0.8) C 5 B 4 A 4 (0.7)
线路1:运距 27km,4t车一辆
8
7
P0
7
J 4 H (0.8) 9 I (0.6)
7 (1.5) F
3 G 6
线路3:运距23km, 2t车一辆 10
(0.5)
(0.6) 修正结果:运距——80km,车辆——4t2辆,2t1辆
练习
例:如图所示为配送中心P的配送网络图,某配送中 心P向A、B、C、D、E五个客户配送物品。图中边线上 的数字表示公路里程(km)。靠近各用户括号里的数字 表示对货物的需求量(t)。配送中心备有2t和4t载重量 的汽车,汽车一次巡回行驶里程不能超过30km。求解配 送路线方案。