2019年咸宁市中考数学试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年咸宁市中考数学试卷(解析版)
一、选择题(每小题3分,满分24分。)
1.(3分)下列关于0的说法正确的是()
A.0是正数B.0是负数C.0是有理数D.0是无理数
【解答】解:0既不是正数也不是负数,0是有理数.
故选:C.
2.(3分)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()
A.B.C.D.
【解答】解:“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:
故选:B.
3.(3分)下列计算正确的是()
A.﹣=B.C.a5÷a2=a3D.(ab2)3=ab6
【解答】解:A、﹣,无法计算,故此选项错误;
B、=2,故此选项错误;
C、a5÷a2=a3,正确;
D、(ab2)3=a3b6,故此选项错误.
故选:C.
4.(3分)若正多边形的内角和是540°,则该正多边形的一个外角为()
A.45°B.60°C.72°D.90°
【解答】解:∵正多边形的内角和是540°,
∴多边形的边数为540°÷180°+2=5,
∵多边形的外角和都是360°,
∴多边形的每个外角=360÷5=72°.
故选:C.
5.(3分)如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()
A.主视图会发生改变B.俯视图会发生改变
C.左视图会发生改变D.三种视图都会发生改变
【解答】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.
故选:A.
6.(3分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1B.m≤1C.m>1D.m≥1
【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,
∴△=(﹣2)2﹣4m≥0,解得:m≤1.
故选:B.
7.(3分)已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()
A.y=x B.y=﹣C.y=x2D.y=﹣x2
【解答】解:∵A(﹣1,m),B(1,m),
∴点A与点B关于y轴对称;
由于y=x,y=的图象关于原点对称,因此选项A、B错误;
∵n>0,
∴m﹣n<m;
由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,
对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,
∴D选项正确
故选:D.
8.(3分)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分
别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()
A.B.C.D.
【解答】解:过点A、B分别作AD⊥x轴,BE⊥x轴,垂足为D、E,
∵点A在反比例函数y=﹣(x<0)上,点B在y=(x>0)上,
∴S△AOD=1,S△BOE=4,
又∵∠AOB=90°
∴∠AOD=∠OBE,
∴△AOD∽△OBE,
∴()2=,
∴
设OA=m,则OB=2m,AB=,
在RtAOB中,sin∠ABO=
故选:D.
二、填空题(每小题3分,共24分)
9.(3分)计算:()0﹣1=0.
【解答】解:原式=1﹣1=0.
故答案为:0.
10.(3分)一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是.
【解答】解:∵一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,
∴随机掷一次小正方体,朝上一面的数字是奇数的概率是:=.
故答案为:.
11.(3分)若整式x2+my2(m为常数,且m≠0)能在有理数范围内分解因式,则m的值可以是﹣1(写一个即可).
【解答】解:令m=﹣1,整式为x2﹣y2=(x+y)(x﹣y).
故答案为:﹣1(答案不唯一).
12.(3分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木
条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【解答】解:设木条长x尺,绳子长y尺,
依题意,得:.
故答案为:.
13.(3分)如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为69m(结果保留整数,≈1.73).
【解答】解:在Rt△ABC中,∠ACB=30°,∠ADB=60°,
∴∠DAC=30°,
∴DA=DC=80,
在Rt△ABD中,
,
∴==40≈69(米),
故答案为69.
14.(3分)如图,半圆的直径AB=6,点C在半圆上,∠BAC=30°,则阴影部分的面积为3(结果保留π).
【解答】解:连接OC、BC,作CD⊥AB于点D,
∵直径AB=6,点C在半圆上,∠BAC=30°,
∴∠ACB=90°,∠COB=60°,
∴AC=3,
∵∠CDA=90°,
∴CD=,
∴阴影部分的面积是:=3π﹣,
故答案为:3π﹣.
15.(3分)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是﹣384.
【解答】解:∵一列数为1,﹣2,4,﹣8,16,﹣32,…,
∴这列数的第n个数可以表示为(﹣2)n﹣1,
∵其中某三个相邻数的积是412,
∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,
则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,
即(﹣2)3n=(22)12,
∴(﹣2)3n=224,
∴3n=24,
解得,n=8,
∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,