第二章 运筹学对偶理论
合集下载
《运筹学》胡运权 第4版 第二章 线性规划的对偶理论及灵敏度分析
b2 bm
x1, x2 , , xn 0
对 称 形 式 的
的 定 义
m W ib 1 n y 1 b 2 y 2 b m y m 对
s.t.
a11 a12 a1n
a21 a22 a2n
am1 y1 c1
am2 y2 amn ym
c2 cn
偶 问 题
y1, y2 , , ym 0
a23 x3 a33 x3
b2 b3
x1 0, x2 0, x3无 约 束
(2.4a) (2.4b) (2.4c) (2.4d)
先转换成对称形式,如下:
的 的一个变量,其每个变量对应于对偶问题 的一个约束。
定
义
m Z a c 1 x 1 x c 2 x 2 c n x n 一
对 偶
a11x1 a12x2 a1n xn (,)b1
a2
1x1
a22x2
a2n xn
(, )b2
般 线 性
问 题 的 定 义
am1x1 am2 x2 amnxn (,)bm xj 0( 0,或符号不限) j 1 ~ n
问题。
对
对偶问题是对原问题从另一角度进
偶
行的描述,其最优解与原问题的最 优解有着密切的联系,在求得一个
原
线性规划最优解的同时也就得到对 偶线性规划的最优解,反之亦然。
理
对偶理论就是研究线性规划及其对 偶问题的理论,是线性规划理论的
重要内容之一。
问 题 的 导 出
例2-1
我们引用第一章中美佳公司的例子,如表1
的
x1, x2, , xn 0
对
m W ib 1 n y 1 b 2 y 2 b m y m
运筹学对偶理论l
§2 对偶 问题 的基 本性
质
性质1(弱对偶性)
若互为对偶的LP问题(1)、(2)分别有可行解:
X (x1 , x2 ,, xn )T Y ( y1, y2 ,, ym )
则其相应的目标函数值满足
Z c1x1 c2 x2 cn xn C X
b1 y1 b2 y2 bm ym Yb W
x1+x2-3x3+x4≥5
y1
2x1 +2x3-x4≤4
y2
x2+x3+x4=6
y3
x1≤0,x2,x3≥0,x4无约束
1 A 2
≥ 0
x1
≤
1 3
02
≤1 1≤
x2 x3
≥
≥
1 ≥ 5 y1 ≥ 1≤ 4 y2 ≤ =1 = 6 y3 无
无x4
max w=5y1+4y2+6y3
上述关系可写为下表:
x1 x2
y1
a11 a12
y2
a21 a22
… ……
yn
am1 am2
对偶关系 ≥ ≥
max z c1 c2
max Z=2x1+3x2 x1+2x2≤8
4x1 ≤16 4x2≤12
x1,x2 ≥0
… xn 原关系 min w
… a1n
≤
b1
… a2n
≤
b2
……
≤
…
… amn
≤
bm
1
2
4 7
y1 y2
3 3
y1 y2
0
推论1 极大化问题的任意一个可行解所对
应的目标函数值是其对偶问题最优目标函
运筹学课件 第2章:线性规划的对偶理论
min w 16y1 36y2 65y3
90 y1 3 y 2 y1 2 y 2 5 y 3 70 y , y , y 0 1 2 3
原问题 A b C 约束系数矩阵
对偶问题 约束系数矩阵的转臵
约束条件的右端项向量 目标函数中的价格系数向量 目标函数中的价格系数向量 约束条件的右端项向量 Max z=CX Min w=Y’b 目标函数 AX≤b A’Y≥C’ 约束条件 X≥0 Y≥0 决策变量
若原问题为求极小形式的对称形式线性规划问题, 对偶问题应该具有什么形式?
Min w Y 'b A'Y C Y 0
max w Y 'b A'Y C Y 0
min z CX
Max z CX
AX b X 0
AX b X 0
min w 5 y1 4 y2 6 y3 4 y1 3 y2 2 y3 2 y1 2 y2 3 y3 3 3 y1 4 y3 5 2 y 7 y y 1 2 3 1 y1 0, y2 0, y3无约束
对偶问题 约束系数矩阵的转臵
目标函数中的价格系数向量
目标函数 约束条件
变量
Max z=CX m个 ≤ ≥ = n个 ≥0 ≤0 无约束
约束条件的右端项向量 目标函数 Min w=Y’b m个 ≥0 变量 ≤0 无约束 n个 ≥ 约束条件 ≤ =
【例2-3】写出下列线性规划问题的对偶问题
min 2x1 3x2 5x3 x4
1.初始表中单位阵在迭代后单纯形表中对应的位臵就是B-1 2.对于原问题的最优解,各松弛变量检验数的相反数恰好 是其对偶问题的一个可行解,且两者具有相同的目标函数 值。根据下面介绍的对偶问题的基本性质还将看到,若原 问题取得最优解,则对偶问题的解也为最优解。
运筹学对偶理论与灵敏度分析
17
(6)(互补松驰性)
若X*、Y*分别是原问题和对偶问题的可行解,则X*、Y*是最优解的充要条件是: Y*XS=0,YSX*=0 (其中XS,YS分别是原问题和对偶问题的松驰变量向量)。
证明:设原问题和对偶问题的标准型是 原问题
对偶问题
max Z CX
s.t.
AX X, Xs
Xs 0
b
CX (0) Y (0)b CX
所以 X是(0最) 优解。
15
(5)(强对偶定理) 若互为对偶问 题之一有最优解,则另一问题必有最优解,且它们的 目标函数X值* 是相原等问题。的最优解,对应基阵B必存在
C CB B1A 0
即得到 Y *A, C其中
Y * CB B 1
若 Y * 是对偶问题的可行解,它使
3x5 2 x4 2x5
3
解:对偶问题为
maxW 2 y1 3y2
x2 3x5 2
x1
x2
2x5
3
化简为
x1 1 x5
x2
2
3x5
y2 3
(1)
y1 y2 4
( 2)
5
y1 y1
y2 2 y2 5
( 3) ( 4)
3y1 2 y2 9
( 5)
y1, y2 0
n
max z c j x j j 1
s.t.
n
aij x j bi ,
j1
i 1, 2,
,m
x
j
0,
j 1, 2, , n
特点:对偶变量符号不限
对偶问题:
m
minW bi yi i 1
s.t.
m
aij yi c j ,
i1
(6)(互补松驰性)
若X*、Y*分别是原问题和对偶问题的可行解,则X*、Y*是最优解的充要条件是: Y*XS=0,YSX*=0 (其中XS,YS分别是原问题和对偶问题的松驰变量向量)。
证明:设原问题和对偶问题的标准型是 原问题
对偶问题
max Z CX
s.t.
AX X, Xs
Xs 0
b
CX (0) Y (0)b CX
所以 X是(0最) 优解。
15
(5)(强对偶定理) 若互为对偶问 题之一有最优解,则另一问题必有最优解,且它们的 目标函数X值* 是相原等问题。的最优解,对应基阵B必存在
C CB B1A 0
即得到 Y *A, C其中
Y * CB B 1
若 Y * 是对偶问题的可行解,它使
3x5 2 x4 2x5
3
解:对偶问题为
maxW 2 y1 3y2
x2 3x5 2
x1
x2
2x5
3
化简为
x1 1 x5
x2
2
3x5
y2 3
(1)
y1 y2 4
( 2)
5
y1 y1
y2 2 y2 5
( 3) ( 4)
3y1 2 y2 9
( 5)
y1, y2 0
n
max z c j x j j 1
s.t.
n
aij x j bi ,
j1
i 1, 2,
,m
x
j
0,
j 1, 2, , n
特点:对偶变量符号不限
对偶问题:
m
minW bi yi i 1
s.t.
m
aij yi c j ,
i1
运筹学第二章对偶问题
DUAL PRICES
1.500000 0.125000 0.000000
影子价格 (对 偶问题的解)
迭代(旋转)次数 NO. ITERATIONS= 2
用软件分析
目标不变下要素的变化范围 RANGES IN WHICH THE BASIS IS UNCHANGED:
目标系数的变化范围
VARIABLE
CB XB b y1 y2 y3 y4 y5 y6ቤተ መጻሕፍቲ ባይዱy7
i
M y5 2 1 4 0 1 1 0 0
M y7 3 2
0 [ 4] 0
0 1 1
3/4
83M 164M 124M M 0
M0
8 16 12 0 M 0 M
CB XB b y1 y2 y3 y4 y5 y6 y7
i
M y5 2 1
4 0 1 1 0 0
M0
3 M-3
8 16 12 0 M 0 M
CB XB b y1 y2 y3 y4 y5 y6 y7
i
M y5 2
1 [ 44 ] 0 1 1
0 0 1/2
12 y3 3/4 1/2 0 1
0 0 1/4 1/4 -
2-M 16-4M 0
M0
3 M-3
8 16 12 0 M 0 M
CB XB b y1 y2 y3 y4 y5 y6 y7
两边乘以“1”
5x1 3x2 + x3 200 5x1 3x2 + x3 200
Max z = 3x1 +4x2 +6x3 St. 2x1 +3x2 +6x3 440 6x1 +4x2 + x3 100 对偶 5x1 3x2 + x3 200 5x1 +3x2 x3 200 x1 ,x2 ,x3 0
运筹学课件第二章线性规划的对偶理论及其应用
对偶问题同时解
– 原问题为基础可行解,对偶问题为非可行解,但满足
互补松弛条件;则当对偶问题为可行解时,取得最优 解
13
2.2.5 原问题检验数与对偶问题的解
• 在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值
• 容易证明,对偶问题最优解的剩余变量解值等于原问题 对应变量的检验数的绝对值
1
1/2 5/2
1
1
0
1/2 3/2
0
0
0
1/2 3/2
OBJ=
39
9/2
3
6
6
0
3/2
3/2
cj - zj
1/2
0
0
0
0
3/2 -M-3/2
0
x4
4
0
0
1
1
1
1
3
5
x1
6
1
0
2
2
0
1
1
3
x2
4
0
1
1
(1)
0
1
2
OBJ=
42
5
3
7
7
0
2
1
cj - zj
0
0
1
1
0
2 -M+1
0
x4
ቤተ መጻሕፍቲ ባይዱ
8
0
1
0
0
1
0
1
5
x1
数值,
g(Y0)=Y0b= CBB1 b
而原问题最优解的目标函数值为
f(X0)=CX0= CBB1 b 故由最优解判别定理可知Y0 为对偶问题的最优解。证毕。
– 原问题为基础可行解,对偶问题为非可行解,但满足
互补松弛条件;则当对偶问题为可行解时,取得最优 解
13
2.2.5 原问题检验数与对偶问题的解
• 在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值
• 容易证明,对偶问题最优解的剩余变量解值等于原问题 对应变量的检验数的绝对值
1
1/2 5/2
1
1
0
1/2 3/2
0
0
0
1/2 3/2
OBJ=
39
9/2
3
6
6
0
3/2
3/2
cj - zj
1/2
0
0
0
0
3/2 -M-3/2
0
x4
4
0
0
1
1
1
1
3
5
x1
6
1
0
2
2
0
1
1
3
x2
4
0
1
1
(1)
0
1
2
OBJ=
42
5
3
7
7
0
2
1
cj - zj
0
0
1
1
0
2 -M+1
0
x4
ቤተ መጻሕፍቲ ባይዱ
8
0
1
0
0
1
0
1
5
x1
数值,
g(Y0)=Y0b= CBB1 b
而原问题最优解的目标函数值为
f(X0)=CX0= CBB1 b 故由最优解判别定理可知Y0 为对偶问题的最优解。证毕。
运筹学第二章 对偶理论
1.3 对偶单纯形法
C
-2
-3
-4
CB
XB
b
X1
X2
X3
0
X4
-1
0
[-5/2]
1/2
-2
X1
2
1
-1/2
3/2
0
-4
-1
确定换出变量: X4
确定换入变量: X2
C
CB
XB
b
-3
X2
2/5
-2
X1
11/5
X * = (11 5 2 5)
-2
-3
-4
X1
X2
X3
0
1
-1/5
1
0
7/5
0
0
-3/5
Y * = (8 5 1 5)
初始可行基,则 σ ≤ 0 。
若
~ bi
≥
0, i
= 1,2,L, m,即表中原问题和
对偶问题均为最优解,否则换基。
1.3 对偶单纯形法
基变换方法:
•确定换出基变量
~ bl
=
min i
~ {bi
~ bi
<
0}
对应变量 xl 为换出变量
•确定换入基变量
θ
=
min
⎪⎧σ
⎨
j
j ⎪⎩ alj
alj
<
0
⎪⎫ ⎬
1.3 对偶理论 Dual Theory
对偶是一般形式的对称。 ¾ 对偶问题的引出 ¾ 原问题与对偶问题的对应关系 ¾ 对偶理论
DUAL
1.3 对偶问题
某家电厂家利用现有资源生产两种产品,有关数据如下表:
运筹学(第2章 线性规划的对偶理论)
min w 15 y1 24 y 2 5 y 3 6 y 2 y 3 y4 2 s.t 5 y1 2 y 2 y 3 y5 1 yi 0
分别用单纯形法求解上述2个规划问题,得到最终单纯形表如 下表:
原问 题最 优表
XB x3 x1 x2
-2 3 -3 1 5 7 1 -4 -6
2 y1 3 y2 y3 2 3 y y 4 y 3 1 2 3 5 y1 7 y2 6 y3 4 y1 , y2 , y3 0
(2) 非对称型对偶问题 若给出的线性规划不是对称形式,可以先化成对 称形式再写对偶问题。也可直接按教材表2-2中的对 应关系写出非对称形式的对偶问题。
y2
y3
1/4
1/2
-4/5
15/2 15/2
1
0 0
0
1 0
-1/4
1/2 7/2
1/4
-3/2 3/2
j
原问题与其对偶问题的变量与解的对应关系: 在单纯形表中,原问题的松弛变量对应对偶 问题的变量,对偶问题的剩余变量对应原问 题的变量。
弱对偶性;强对偶性;
最优性; 无界性; 互补松弛性
性质1 对称性定理:对偶问题的对偶是原问题 min W= Y b s.t. YA ≥ C Y≤0
对偶性质(Dual property)
性质4 强对偶性:若原问题及其对偶问题均具有可行解, 则两者均具有最优解,且它们最优解的目标函数值相等, 即 max z min w
故
证明:将原问题化成标准形式
m ax z c j x j
j 1 n n
yi 0 (i 1,, m)
是对偶问题的可行解, 又因
运筹学第二章线性规划的对偶理论
(5.5) (5.6)
4.3 对偶问题的基本性质
证: 设B是一可行基,于是A=(B,N)
max z=CBXB+ CNXN BXB+BXN +Xξ=b X,XB,Xξ ≥0
其中Yξ=(Yξ1, Yξ2)
min ω =Yb YB-Yξ1=CB YN-Yξ2=CN Y, Yξ1 Yξ2 ≥0
(5.5) (5.6)
x1﹐x2 ≥0
关系?
对原模型设: 1 2
A= 4 0 b=(8,16,12)T C=(2,3) 04
X=(x1,x2)T Y=(y1,y2 ,y3 ) 则可得:
4.1 对偶问题的提出
min ω=8 y1+16y2 +12y3
y1+4y2
≥2
2 y1 +4y3≥3
与
y1 , y2 ,y3≥0 12
max z=2x1+3x2 x1+ 2x2 ≤8
4x1
≤16
4x2 ≤12
x1﹐x2 ≥0
有何关 系?
对愿模型设: A= 4 0 04
b=(8,16,12)T C=(2,3)
X=(x1,x2)T
Y=(y1,y2 ,y3 ) 则可得:
max z=CX AX≤b (5.1) 和
min ω =Yb YA ≥ C (5.2)
120
A=
1 -3
0 2
1 1
1 -1 1
b=(2,3,-5,1)T C=(5,4, 6)
确定约束条件
YA
C
x1 ≥0 ﹐x2≤0, x3 无约束
解:因原问题有3个变 于是 量,4个约束条件, 所以对偶问题4个 变量,3个约束条
运筹学第2章-线性规划的对偶理论
❖ 影子价格不是市场价格,而是在现有技术和管理条件下, 新增单位资源所能够创造的价值,是特定企业的一种边 际价格;不同企业或同一企业不同时期,同种资源的影 子价格可能不同;当市场价格高于影子价格,可以卖出; 相反,则应买进,以获取更大收益
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
Ma例x:Z ( 2第x一1 章3例x22)
2 x1 2 x2 12
当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的:
Zmax=Wmin
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn b1
s.t.a21
x1
a22
二、 手工进行灵敏度分析的基本原则 1、在最优表格的基础上进行; 2、尽量减少附加计算工作量;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
内,使得产品的总利润最大 。
MaxZ 2x1 3x 2
2x1 2x2 12
s.t.54xx12
16 15
x1, x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y2 15y3
2y1 4y2
2
s.t.2y1y,1y
y1, y2, , ym 0
运筹学对偶理论
max ω=7y1+4y2-2y3 2y1+ y2- y3 ≤3 y1 +3y3 ≤2 ≤ 4 -4y1+ 2y2 ≤-6 =-2 y1 -y2 -y3 ≥ 0 3y1 +y3=1 y1 ≥ 0y2 ≤ 0y3 无约束
11 12
13 14 15 16 17 18 19 20 21 22 23
例 对偶问题的基本性质 • 对称性:对偶问题的对偶问题是原问题 • 弱对偶性:极大化原问题的任一可行解的目标函数值,不大于其对偶问题任意可行解的 目标函数值 (鞍型图) • 无界性:原问题无界,对偶问题无可行解 • 对偶定理:若一个问题有最优解,则另一问题也有最优解,且目标函数值相等。若原问 -1 题最优基为B,则其对偶问题最优解Y*=CBB • 互补松弛性: 对偶的对偶 弱对偶定理 强对偶定理 对偶解定理 最优解定理 互补松弛定理 互补松弛定理的应用
24
第二章 对偶理论 • 这说明yi是右端项bi每增加一个单位对目标函数Z的贡献。 • 对偶变量 yi在经济上表示原问题第i种资源的边际价值。 • 对偶变量的值 yi*所表示的第i种资源的边际价值,称为影子价值。 若原问题的价值系数Cj表示单位产值,则yi 称为影子价格。 若原问题的价值系数Cj表示单位利润,则yi 称为影子利润。 第二章 对偶理论 • 影子价格不是资源的实际价格,而是资源配置结构的反映,是在其它数据相对稳定的条 件下某种资源增加一个单位导致的目标函数值的增量变化。 • 对资源i总存量的评估:购进 or 出让 • 对资源i当前分配量的评估:增加 or 减少 ①它表明了当前的资源配置状况,告诉经营者应当优先增加何种资源,才能获利更多。 ②告诉经营者以怎样的代价去取得紧缺资源。
1
2
3
运筹学第2章 对偶理论
写出对偶问题
2 y1 3 y2 y3 2 3 y1 y2 4 y3 3 5 y1 7 y2 6 y3 4 y , y , y 0 1 2 3
原—对偶问题的相互变换形式
原问题(或对偶问题) 目标函数 max 约 束 条 件 变 量 m个 ≤ ≥ = n个 ≥0 ≤0 无约束 约束条件右端项 目标函数变量的系数 对偶问题(或原问题) 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 目标函数变量的系数 约束条件右端项 变 量 约 束 条 件
设y1 , y2 , y3分别为三种资源的收费单价,所以 有下式: 5 y1 2 y2 y3 10 2 y1 3 y2 5 y3 18 y1 , y2 , y3 0 就目标而言,用下式可以表达: 170 y1 100 y2 150 y3 W
一般而言,W 越小越好,但因需双方满意,故
变为对称形式
m axZ 2 x1 3 x 2 4 x 3 2 x 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0
min W 2 y1 3 y2 5 y3
B
1 0
M-1
-2
最 终 表
cj cB 3 -1 -1 xB x1 x2 x3 检验数 b 4 1 9
3 x1 1 0 0 0
-1 x2
-1 x3 0 0 1 0
0 x4 1/3 0 2/3 -1/3
I
0 1 0 0
-1/3 1/3-M 2/3- M
所以, X*=(4 , 1 , 9),Z = 2
初 始 表
2 y1 3 y2 y3 2 3 y1 y2 4 y3 3 5 y1 7 y2 6 y3 4 y , y , y 0 1 2 3
原—对偶问题的相互变换形式
原问题(或对偶问题) 目标函数 max 约 束 条 件 变 量 m个 ≤ ≥ = n个 ≥0 ≤0 无约束 约束条件右端项 目标函数变量的系数 对偶问题(或原问题) 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 目标函数变量的系数 约束条件右端项 变 量 约 束 条 件
设y1 , y2 , y3分别为三种资源的收费单价,所以 有下式: 5 y1 2 y2 y3 10 2 y1 3 y2 5 y3 18 y1 , y2 , y3 0 就目标而言,用下式可以表达: 170 y1 100 y2 150 y3 W
一般而言,W 越小越好,但因需双方满意,故
变为对称形式
m axZ 2 x1 3 x 2 4 x 3 2 x 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0
min W 2 y1 3 y2 5 y3
B
1 0
M-1
-2
最 终 表
cj cB 3 -1 -1 xB x1 x2 x3 检验数 b 4 1 9
3 x1 1 0 0 0
-1 x2
-1 x3 0 0 1 0
0 x4 1/3 0 2/3 -1/3
I
0 1 0 0
-1/3 1/3-M 2/3- M
所以, X*=(4 , 1 , 9),Z = 2
初 始 表
《运筹学》第二章 对偶问题
3 x1 2 x2
7x4 4
2 x1 3 x2 4 x3 x4 6
x1 0, x2 , x3 0, x4无 约 束
解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
20
一组互为对偶的线性规划问题的解之间只有 下列三种情况:
(1)两个规划问题都有可行解(此时,两个规划问题都有最优 解,且最优值相等);
(2)两个规划问题都不可行; (3) 一个规划问题不可行,另一个规划问题有可行解,且具有
无界解。
21
(4)互补松弛性: 在线性规划问题的最优解中,
则 aij xj * = bi ;
bi , 则 y i* = 0 (4)’ 互补松弛性:
在线性规划问题的最优解中, 则 aij yi * = cj ;
>cj , 则 xj* = 0
n
若 y i * >0,
j=1 n
若 a ij xj * <
j=1
m
若 x j * >0,
i=1 m
若 a ij yi*
i=1 22
m
= 证b:i y∵i*
y1 3 y1
2 y2
3 y3 4 y3
3 5
2 y1 7 y2 y3 1
y1
0,
y2
0,
y
无
3
约
束
对偶问题的对 偶还是原问题
14
• 练习 写出下列线性规划问题的对偶问题.
max Z 4x1 3x2 2x3
4x1
运筹学第二章——第八节—线性规划的对偶理论
四、对偶问题经济学含义——影子价格
因为Z*=Y*=Yb 所以:Δ Z/ Δ b=Y b——资源的量 Z——目标函数 经济学含义:资源每变动一个单位,目标函 数(利润、总产值等)变动的大小。 资源对生产做出的贡献。(影子价格) 是对现有资源实现最大效益的一个评价,叫 机会成本。
V*X=0, Y*U=0,其中V是对偶问题的剩余变量,U是 原问题的松弛变量。
(七)原问题在单纯性法迭代过程中的检验 数对应于对偶问题的一个基本解。(对应性 定理) 原问题 XB XN 对应基B检验数 0 CN-CBB-1BN 对偶问题的变量 -YS1 -YS2 XS –CBB-1 -Y
对偶问题性质的启示
原问题 有最优解 无可行解 有可行解无上界 无有限最优解 对偶问题 有最优解 无可行解 无有限最优解 有可行解但无下界
由互补松弛性定理可知: 当U>0,即AX <b时,资源未充分利用时,影 子价格为0。
二、原问题与对偶问题之间的转化
1、目标函数 MAX——Min 2、约束条件——变量 约束条件n个——变量n个 约束条件≥0 ——变量≤ 0 约束条件≤ 0 ——变量 ≥ 0 约束条件=0——变量无约束 要点:max为反向关系(约束条件——变量)
二、原问题与对偶问题之间的转化
3、变量——约束条件 变量m个——约束条件m个 变量≥0——约束条件≥ 0 变量≤ 0 ——约束条件≤ 0 变量无约束——约束条件=0 4、目标函数中变量的系数C为对偶问题中约 束条件的右端常数项b,个数对等变动。
(五)若原问题和对偶问题具有可行解,若 原问题或对偶问题之一有最优解,则另一个 对偶问题也必有最优解,且最优值相同。 (主对偶性定理) 证明 含义: 若原问题有一个对应于基B的最优解,则 CBB-1为对偶问题的最优解。
《运筹学》第二章 对偶问题和灵敏度分析jssk1
2.1 线性规划的对偶理论
解:写出该问题的对偶问题
min W 20 y1 20 y2 y1 2 y2 1 2y y 2 2 1 2 y1 3 y2 3 3 y 2 y 4 2 1 y1 , y2 0
根据互补松弛性,可得: X3*=4>0 则 2y1+3y2=3
s.t. AX ≤b X≥0 s.t. YA ≥ C Y≥0
2.1 线性规划的对偶理论
二、原问题和对偶问题的关系
1、原问题目标函数求最大值,对偶问题求最小值; 2、原问题目标函数的系数是对偶问题约束条件的右端项,原问 题中的右端项是对偶问题目标函数的系数; 3、原问题约束条件为“≤”,则在其对偶问题中决策变量为 “≥”;原问题中决策变量为“≥”,则在其对偶问题中的约束条 件为“≥”; 4、原问题中的约束条件个数等于它的对偶问题中的变量个数, 原问题中的变量个数等于它的对偶问题中的约束条件个数;
YA ≥ C
Y≥0
在单纯形法的每一步迭代中,目标函数取值 Z=CBB-1b+(CN-CBB-1N)XN ,当非基变量XN=0时有 Z=CBB-1b和检验数CN-CBB-1N中都有乘子Y=CBB-1, 那么Y的经济意义是什么?
2.1 线性规划的对偶理论
Y=CBB-1=(y1,y2,…,ym),则得
Z CB B b Yb bi yi
2.1 线性规划的对偶理论
三、对偶问题的基本定理
1、对称性:对偶问题的对偶是原问题。
2、弱对偶定理:若X(0)是原问题的可行解,Y(0)是对偶 问题的可行解,则一定有CX(0) ≤ Y(0)b
max Z=CX 证明:设原问题是 AX ≤b X≥0
则对偶问题是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
3.最优性。 若 X0——原问题可行解,Y0——对偶问题可行解,且 CX0 = Y0 b 则 X0——原问题最优解, Y0——对偶问题最优解 证明:设 X* ——原问题最优解, Y* ——对偶问题最优解
则 CX0 CX* Y* b Y0 b
但 CX0 = Y0 b, ∴ CX0 = CX* = Y* b = Y0 b ∴ X0 = X* , Y0 = Y* 即 X0——原问题最优解, Y0——对偶问题最优解 证毕。
20
(1)原问题任一可行解的目标函数值是其对偶问题目标函 数值的下界;反之对偶问题任一可行解的目标函数值是其 原问题目标函数值的上界。 (2)如原问题有可行解且目标函数值无界(具有无界解), 则其对偶问题无可行解,反之对偶问题有可行解且目标函 数值无界,则其原问题无可行解。 证:有性质1,C X0 Y0 b,当 CX0 ∞ 时,则不可能存在 Y0,使得 C X0 Y0 b 。 本性质的逆不成立。当对偶问题无可行解时,其原问题或 具有无界解或无可行解,反之亦然。
min =15y1+24y2+5y3 0y1+ 6y2+ y3≥ 2 S.t. 5y1+ 2y2+ y3≥ 1 y1,y2,y3≥0
• 对偶问题的最优解: y1=0,y2=1/4,y3=1/2,W* =8.5 • 两个问题的目标函数值相等,这不是偶然的,上述两个问题 实际上是一个问题的两个方面,如果把前者称为线性规划原 问题,则后者便是它的对偶问题,反之亦然。 • 对偶问题的最优解对应于原问题最优单纯型法表中,初始基 变量的检验数的负值。
∴ Y*是对偶问题的最优解。
24
• 5.互补松弛性:在线性规划问题的最优解中,如果对应 某一约束条件的对偶变量值为非零,则该约束条件取严 格等式;反之如果约束条件取严格不等式,则其对应的 对偶变量一定为零。即 • 若yi*>0,则有 n * ai j x j bi ,
j 1
若
a
j 1
29
得到对偶问题各松弛变量的值
y3=0,y4=2,y5=3
即对偶问题的最优解和最优目标函数值为 YT=(y1,y2,y3,y4,y5)T=(6,0,0,2,3)T w=6
根据互补松弛定理,以下的互补松弛关系成立 由 由 y1>0 y4>0 得到 x4=0 得到 x2=0
由
y5>0
得到 x3=0
n
ij
x j bi ,
*
则有yi*=0.
25
证: ∵
n m
n
n
m
m
i =1
j=1
cj x j* = ( a ij y i* ) xj* = bi y i*
j=1 i =1
m
i =1
∴
j=1 i =1
( a ij y i* ) xj* - bi y I* =0
n
m n
21
• • • • •
原问题 Maxz=x1+x2 x1-x2≤-1 -x1+x2 ≤-1 x1, x2≥0
• • • • •
对偶问题 Minw=-y1+-y2 y1-y2≥1 -y1+y2 ≥ 1 y1, y2≥0
• (3)原问题有可行解而其对偶问题无可行解,则原 问题目标函数值无界;反之对偶问题有可行解而原 问题无可行解,则对偶问题的目标函数值无界。
17
例
max z= 8x1 +5x2
s.t.
-x1
3x1 2x1
+2x2
-x2 +4x2
≤4
=7 ≥8
x1≥0,
x2≤0
min w= s.t.
4y1 -y1 2y1
+7y2 +3y2 -y2
+8y3 +2y3 +4y3 ≥8 ≤5
y1≥0,
18
y2:unr
y3≤0
第二节 对偶问题的基本性质
与对偶有关的定理
14
非对称形式对偶规则
原问题(或对偶问题) A 约束系数矩阵 对偶问题(或原问题) 约束系数矩阵的转置
b 约束条件右端项
C 目标函数变量的系数 目标函数max z
目标函数变量的系数
约束条件右端项 目标函数min w
N个
变 量 ≥0 ≤0 无约束
N个
≥ ≤ =
约束 条件
约 束 条 件
m个
≤ ≥ =
15
XB , XN, , XS0
非基对应的矩阵, I—— 单位矩阵
XB ——最终表中基变量
XN——初始表与最终表中均为非基变量 2
CB
初始单纯形表
CN 非基变量
0 基变量 XS I 0
XB B CB
XN N CN
0 XS b σ
当基变量变为XB时,单纯形表中XB对应的系数矩阵变为I,约束方程两 端同乘B-1,则可得如下表达式: B-1 BXB+ B-1 NXN+ B-1 XS= B-1 b
23
4.对偶定理(强对偶性):若原问题LP有最优解X*,则其 对偶问题DP也一定有最优解Y*,且
z*=CTX * =bTY *=w*.
证: 由 = C- CB B-1 A 0 得 Y* A C -Y * = -CBB-1 0, 令 CBB-1 = Y* , Y* 0
因此, Y*是对偶问题的可行解, 又 CX* = CB (B-1 b) = CB B-1b = Y* b
7
二、对称形式下对偶问题的一般形式
满足下列条件的线性规划问题称为具有对称形式,其变量均 有非负约束,其约束条件当目标函数求极大时均取“≤”号, 当目标函数求极小时均取“≥”号。 定义 设以下线性规划问题 Max z=CX s.t. X≥0 为原问题。 AX ≤ b (LP)
8
• 则称以下问题 • Min z=bTY • s.t. ATY≥ C Y≥0 • 为原问题的对偶问题。
第二章 线性规划的对偶理论与灵敏度分析
• 第一讲 线性规划的对偶问题
第一节 第二节 第三节 第四节 单纯形法的矩阵描述 线性规划的对偶问题 对偶问题的基本性质 影子价格
• 第二讲 对偶单纯形法
第一节 对偶单纯形法 第二节 灵敏度分析 第三节 参数线性规划
1
第一节 单纯形原理的矩阵描述
19
对偶问题的基本性质
• 1.对称性:对偶问题的对偶问题是原问题 • 2.弱对偶性: 若 X0——原问题可行解,Y0——对偶问题可 行解,则恒有 CX0 Y0 b 证明:
∵ Y0 0, AX0 b, ∴ Y0 AX0 Y0 b, 而 Y0 A C , ∴ CX0 Y0AX0 , ∴ CX0 Y0 AX0 Y0 b
16
对偶规则简捷记法
•原问题标准则对偶问题标准 •原问题不标准则对偶问题不标准 •例 max ω=7y1+4y2-2y3 minZ=3x1+2x2-6x3+x5 2y1+ y2- y3 ≤3 2x1+x2-4x3+x4+3x5 ≥7 y1 +3y3 ≤2 x1+ 2x3 -x4 ≤4 -4y1+ 2y2 ≤-6 -x1+3x2 -x4+ x5 =-2 y1 -y2 -y3 ≥ 0 x1,x2,x3 ≥0; 3y1 +y3=1 x4 ≤ 0;x5无限制 y1 ≥ 0,y2 ≤ 0,y3 无约束
对偶问题:
minω=360y1+200y2+300y3 9y1+4y2+3y3 ≥70 4y1+5y2+10y3 ≥120 y1 ≥0, y2 ≥0, y3 ≥0
11
对偶规则
原问题一般模型: maxZ=CX
AX ≤b
X ≥0
对偶问题一般模型: min ω=Yb YA ≥C Y ≥0
12
对称形式对偶规则
( a ij xj* - bi )y i* =0
i =1 j=1
∴ 当 y i*>0,
n
j=1
a ij xj* - bi =0,
即 a ij xj* = bi
j=1
n
当 a ij xj* - bi <0,
j=1
y i*=0
26
• • • • • •
例题: Minw=2x1+3x2+5x3+2x4+3x5 x1+x2+2x3+x4+3x5 ≥ 4 2x1-x2+3x3+x4+x5 ≥ 3 xj ≥ 0 j=1…5 已知其对偶问题的最优解为y1=4/5,y2=3/5,z=5。试用 对偶理论找出原问题的最优解
Max z=CX st. AX b X0 标准形 Max z=CX+0Xs st.
AX +IXs = b X0
A=[ B N ]
XB X X N
CB=[ CB CN ]
max z=CBXB+ CNXN+0XS 式中, B——最终表中基对应的矩阵, st BXB+ NXN+IXS=b N——初始表与最终表中均为
基变量
最终表
非基变量 XN B-1N XS B-1
CB XB B-1b σ
XB I 0
CN-CBB-1N
1
3
-CBB-1
C CB B A
第二节 线性规划的对偶问题
• 例1. 生产计划问题 • 美佳公司生产Ⅰ、Ⅱ两种产品,相关数据如表所示:
产品 工序 A B C 单位产品获利 工时单耗 Ⅰ Ⅱ 0 6 1 3 5 2 1 5 生产能力 15 24 5