乘法公式培优提高专题

合集下载

乘法公式提高训练资料.doc

乘法公式提高训练资料.doc

乘法公式提高训练(难度较大)、填空1、(x+y) (x —y) ( __________ ) =x4-2x2y2+y4, (x2+2x—1) (- 2x+1+*) = ________________2、4m2+ ________ +9 = ( 2m+ ________ ) 2, 9x2— __________ +8仁(3x—________________ ) 2—16x2 + ____________ —9y2=—(4x+ ___________ ) 2, 3x2+ ___________ +12y2=3 (( ________ )—24a2c2+( _______ ) = ( ______ —4c2)2, ( +5n ) 2=9用 __________________3、已知a+b=4 , a2—b2=20,贝U a—b= ___ 。

4、若(3x+2y) 2= (3x—2y) 2+A,贝U A= _____ 。

若x+y=5, xy=4,贝U x—y= ________ 。

2 2 25、(3x+2yf —(3x —2y) = _________ , (3a —2a+1)(3a +2a+1)= ___________6、已知,4x2+M+9y2是一个完全平方式,则M= ____________________ 。

7、已知4a2+16b2+12a—8b+10=0,则a+b= ________。

若m+n=3 mn=2 贝U 3“—5mn+3n= _____ 。

8、观察下列各式:1 X 3=22—1, 3X 5=42—1, 5 X 7=62—1, 7X 9=82—1,…请你把发现的规律用含n (n为正整数)的等式表示为_______________ 。

二、选择题1、(-5) 101+(-5) 100所得的结果是( )A.—5 B 4X 5100C 1 D 51002、化简(一x4) •( —x3) •( —x) 2的结果是( ) A. x9B.—x9C.x6D.—x63、在下列多项式的乘法中,可以用平方差公式计算的是()A.(x+1)(1+x)B.(a+b)(b —a)C.(-a+b)(a-b)D.(x 2—y)(x+y 2)4、若4x2+axy+9y2 是一个完全平方式,则a=( ) A 、土12 B、12 C 、—12 D、土65、若4x2—20x+n2 是一个完全平方式,则m=( ) A、5 B 、一5 C、土5 D 、256、(3a2—4b2) ( —3a2+4b2)的运算结果是( )A、—9a4—4b4 B 、—9a4+24a2b2—16b4 C 、9a4—16b4 D 、9a4—24a2b2+ 16b47、已知:(a+b) 2=11,(a—b) 2=19,则2ab 的值为( )A 2 B、4 C 、8 D 、—48、有理数a、b满足a2b2+a2+b2—4ab+仁0,则a、b的值分别为( )A、a=1, b=1 B 、a=—1, b=—1 C 、a=b=1 或a=b=—1 D 、不能确定三、用适当的方法计算(1) (9-a 2)2-(3-a)(3-a)(9+a) 2四、解答1、比较大小:1995X 1998 与 1996X 1997。

乘法公式(提高)知识讲解

乘法公式(提高)知识讲解

乘法公式(提高)【学习目标】1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义;2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算;3. 能灵活地运用运算律与乘法公式简化运算.【要点梳理】【高清课堂 乘法公式 知识要点】要点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型(2)系数变化:如(35)(35)x y x y +-(3)指数变化:如3232()()m n m n +-(4)符号变化:如()()a b a b ---(5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++要点二、完全平方公式完全平方公式:()2222a b a ab b +=++ 2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+ ()()224a b a b ab +=-+ 要点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.要点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 要点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±; 33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++.【典型例题】 类型一、平方差公式的应用1、计算(2+1)(221+)( 421+)(821+)(1621+)(3221+)+1.举一反三:【变式1】计算:(1)2(3)(9)(3)x x x -++ (2)(a +b )( a -b )( 22a b +)( 44a b +)【变式2】(内江)(1)填空:(a ﹣b )(a+b )= ;(a ﹣b )(a 2+ab+b 2)= ;(a ﹣b )(a 3+a 2b+ab 2+b 3)= .(2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.2、(牟定县校级期末)新实验中学校园正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?举一反三:【变式】解不等式组:(3)(3)(2)1,(25)(25)4(1).x x x x x x x x +--->⎧⎨---<-⎩类型二、完全平方公式的应用3、运用乘法公式计算:(1)2(23)a b +-;(2)(23)(23)a b c a b c +--+.举一反三:【变式】运用乘法公式计算:(1)()()a b c a b c -++-; (2)()()2112x y y x -+-+;(3)()2x y z -+; (4)()()231123a b a b +---.4、已知△ABC 的三边长a 、b 、c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.举一反三:【变式】多项式222225x xy y y -+++的最小值是____________.【巩固练习】一.选择题1.下列各多项式相乘,可以用平方差公式的有( ).①()()2552ab x x ab -++ ②()()ax y ax y ---③()()ab c ab c --- ④()()m n m n +--A.4个B.3个C.2个D.1个 2. 若214x kx ++是完全平方式,则k 值是( ) A. 2± B. 1± C. 4± D. 13.下面计算()()77a b a b -++---正确的是( ).A.原式=(-7+a +b )[-7-(a +b )]=-27-()2a b + B.原式=(-7+a +b )[-7-(a +b )]=27+()2a b + C.原式=[-(7-a -b )][-(7+a +b )]=27-()2a b + D.原式=[-(7+a )+b ][-(7+a )-b ]=()227a b +- 4.(a +3)(2a +9)(a -3)的计算结果是( ).A.4a +81B.-4a -81C. 4a -81D.81-4a 5.下列式子不能成立的有( )个.①()()22x y y x -=- ②()22224a b a b -=- ③()()()32a b b a a b -=-- ④()()()()x y x y x y x y +-=---+ ⑤()22112x x x -+=-- A.1 B.2 C.3D.4 6.(开江县期末)计算20152﹣2014×2016的结果是( )A .﹣2B .﹣1C .0D .1二.填空题7.多项式28x x k -+是一个完全平方式,则k =______.8. 已知15a a +=,则221a a+的结果是_______. 9. 若把代数式223x x --化为()2x m k -+的形式,其中m ,k 为常数,则m +k =_______.10.(深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .11.对于任意的正整数n ,能整除代数式()()()()313133n n n n +---+的最小正整数是_______.12. 如果()()221221a b a b +++-=63,那么a +b 的值为_______.三.解答题13.计算下列各值.22(1)10199+ ()()()2222(2)224m m m +-+(3)()()a b c a b c +--+ 2(4)(321)x y -+14.(成华区月考)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.15. 已知:()26,90,a b ab c a -=+-+=求a b c ++的值.。

2023年初中数学培优竞赛讲座第讲乘法公式

2023年初中数学培优竞赛讲座第讲乘法公式

第十八讲 乘法公式乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应当做到以下几点:1.熟悉每个公式的结构特性,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题【例1】 (1)已知两个连续奇数的平方差为2023,则这两个连续奇数可以是 .(江苏省竞赛题)(2)已知(2023一a)(1998一a)=1999,那么(2023一a)2+(1998一a)2= . (重庆市竞赛题) 思绪点拨 (1)建立两个连续奇数的方程组;(2)视(2023一a)·(1998一a)为整体,由平方和想到完全平方公式及其变形.注:公式是如何得出来的?一种是由已知的公式,通过推导,得到一些新的公式;另一种是从大量的特殊的数量关系入手,并用字母表达数来揭示一类数量关系的一般规律—一公式.从特殊到一般的过程是人类结识事物的一般规律,而观测、发现、归纳是发现数学规律最常用的方法. 乘法公式常用的变形有:(1)ab b a b a 2)(222 ±=+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++;(3) ab b a b a 4)()(22=--+; (4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( ) A .M>N B . M<N C . M=N D .无法拟定 思绪点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1; (天津市竞赛题)(2)1.345×0.345×2.69—1.3452一1.345×0.3452. (江苏省竞赛题)思绪点拨 若按部就班计算,显然较繁.能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特性,对于(2),由于数字之间有联系,可用字母表达数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特性.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值. (“希望杯”邀请赛试题) (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由. (河北省竞赛题)思绪点拔 对于(1),(2)两个未知数一个等式或不等式,须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表达,作差比较它们的大小.注: 有些问题经常不能直接使用公式,而需要发明条件,使之符合乘法公式的特点,才干使用公式.常见的方法是:分组、结合,拆添项、字母化等.完全平方公式逆用可得到两个应用广泛的结论: (1)0)(2222≥±=+±b a b ab a ;揭示式子的非负性,运用非负数及其性质解题. (2)ab b a 222≥+应用于代数式的最值问题.代数等式的证明有以下两种基本方法:(1) 由繁到简,从一边推向另一边; (2)相向而行,寻找代换的等量.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思绪点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明.学力训练1.观测下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= . (武汉市中考题) 2.已知052422=+-++b a b a ,则ba b a -+= . (杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ; (3)2199919991999199719991998222-+ .4.如图是用四张全等的矩形纸片拼成的图形,请运用图中空白部分的面积的不同表达方法写出一个关于a 、b 的恒等式 . (大原市中考题)5.已知51=+a a ,则2241aa a ++= . (菏泽市中考题) 6.已知5,3-=+=-cb b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 (扬州市中考题) 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 (重庆市竞赛题) 8.若4,222=+=-y x y x ,则20022002y x +的值是( ).A .4B .20232C . 22023D .420239.若01132=+-x x ,则441xx +的个位数字是( ). A .1 B .3 C . 5 D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+ (陕西省中考题)11.(1)设x+2z =3z ,判断x 2一9y 2+4z 2+4xz 的值是不是定值?假如是定值,求出它的值;否则请说明理由.(2)已知x 2一2x=2,将下式先化简,再求值:(x —1)2+(x+3)(x 一3)+(x 一3)(x 一1). (上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观测:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2023×2023×2023×2023+1的结果(用一个最简式子表达). (黄冈市竞赛题)14.你能不久算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n 为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n =3……这些简朴情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成 ;852=7225可写成 .(2)从第(1)题的结果,归纳、猜想得(10n+5)2= .(3)根据上面的归纳猜想,请算出19952= . (福建省三明市中者题)15.已知014642222=+-+-++z y x z y x ,则z y x ++= . (天津市选拔赛试题)16.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= .(2)若a-b=3,则a 3-b 3-9ab = .17.1,2,3,……,98共98个自然数中,可以表达成两整数的平方差的个数是 . (初中数学联赛)18.已知a-b=4,ab+c 2+4=0,则a+b=( ). A .4 B .0 C .2 D .一219.方程x 2-y 2=1991,共有( )组整数解. A .6 B .7 C .8 D .920.已知a 、b 满足等式)2(4,2022a b y b a x -=++=,则x 、y 的大小关系是( ).A .x ≤yB .x ≥yC .x<yD .x>y (大原市竞赛题)21.已知a=1999x+2023,b =1999x+2023,c =1999x+2023,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3 (全国初中数学竞赛题)22.设a+b=1,a 2+b 2=2,求a 7+b 7的值. (西安市竞赛题)23.已知a 满足等式a 2-a-1=0,求代数式487-+a a 的值. (河北省竞赛题)24.若b a y x +=+,且2222b a y x +=+,求证:1997199719971997b a y x+=+. (北京市竞赛题)25.有l0位乒乓球选手进行单循环赛(每两人间均赛一场),用xl ,y 1顺次表达第一号选手胜与负的场数;用x 2,y 2顺次表达第二号选手胜与负的场数;……;用x 10、y 10顺次表达十号选手胜与负的场数.求证:21022212102221y y y x x x +++=+++ .26.(1)请观测: 222233*********,335112225,351225,525====写出表达一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选此外两个类似26、53的数,使它们能表达成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?注:有人称这样的数“不变心的数”.数学中有许多美妙的数,通过度析,可发现其中的奥秘.瑞士数学家欧拉曾对26(2)的性质作了更进一步的推广.他指出:可以表达为四个平方数之和的甲、乙两数相乘,其乘积仍然可以表达为四个平方数之和.即(a 2+b 2+c 2十d 2)(e 2+f 2+g 2+h 2)=A 2+B 2+C 2+D 2.这就是著名的欧拉恒等式.第十八讲 乘法公式参考答案。

八年级数学竞赛培优专题及答案 02 乘法公式

八年级数学竞赛培优专题及答案  02 乘法公式

专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用 即根据待求式的结构特征,模仿公式进行直接的简单的套用; 3.逆用 即将公式反过来逆向使用; 4.变用 即能将公式变换形式使用;5.活用 即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】 1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是 .(全国初中数字联赛试题)解题思路:因22()()a b a b a b -=+-,而a b +a b -的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知,a b 满足等式2220,4(2)x a b y b a =++=-,则,x y 的大小关系是( )A .x y ≤B .x y ≥C .x y <D .x y >(山西省太原市竞赛试题)(2)已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,则a b c ++的值等于( ) A .2B .3C .4D .5(河北省竞赛试题)解题思路:对于(1),作差比较,x y 的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1) 2486(71)(71)(71)(71)1+++++;(天津市竞赛试题) (2)221.23450.76552.4690.7655++⨯;(“希望杯”邀请赛试题)(3)22222222(13599)(246100)++++-++++.解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设221,2a b a b +=+=,求77a b +的值. (西安市竞赛试题)解题思路:由常用公式不能直接求出77a b +的结构,必须把77a b +表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:222123415;2345111;3456119;⨯⨯⨯+=⨯⨯⨯+=⨯⨯⨯+=(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算20002001200220031⨯⨯⨯+的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设,,a b c 满足2223331,2,3,a b c a b c a b c ++=++=++=求:(1)abc 的值; (2)444a b c ++的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A 级1.已知22(3)9x m x --+是一个多项式的平方,则m = . (广东省中考试题) 2.数4831-能被30以内的两位偶数整除的是 .3.已知222246140,x y z x y z ++-+-+=那么x y z ++= .(天津市竞赛试题)4.若3310,100,x y x y +=+=则22x y += .5.已知,,,a b x y 满足3,5,ax by ax by +=-=则2222()()a b x y ++的值为 .(河北省竞赛试题)6.若n 满足22(2004)(2005)1,n n -+-=则(2005)(2004)n n --等于 . 7.22221111(1)(1)(1)(1)2319992000----等于( ) A .19992000 B .20012000 C .19994000D .200140008.若222210276,251M a b a N a b a =+-+=+++,则M N -的值是( )A .正数B .负数C .非负数D .可正可负9.若222,4,x y x y -=+=则19921992xy +的值是( )A .4B .19922C .21992D .4199210.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学? (“CASIO ”杯全国初中数学竞赛试题)11.设9310382a =+-,证明:a 是37的倍数. (“希望杯”邀请赛试题)12.观察下面各式的规律:222222222222(121)1(12)2;(231)2(23)3;(341)3(34)4;⨯+=+⨯+⨯+=+⨯+⨯+=+⨯+ 写出第2003行和第n 行的式子,并证明你的结论.B 级1.()na b +展开式中的系数,当n =1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出901.1的值为 . (《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,,a b c ,则222a b c ab bc ac ++---的值为 .(天津市竞赛试题)3.已知,,x y z 满足等式25,9,x y z xy y +==+-则234x y z ++= .4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为 .(全国初中数学联赛试题)5.已知19992000,19992001,19992002a x b x c x =+=+=+,则多项式222a b c ab bc ac ++---的值为( ) A .0B .1C .2D .36.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种(北京市竞赛试题)7.若正整数,x y 满足2264x y -=,则这样的正整数对(,)x y 的个数是( )A .1B .2C .3D .4(山东省竞赛试题)8.已知3a b -=,则339a b ab --的值是( )A .3B .9C .27D .81(“希望杯”邀请赛试题)9.满足等式221954m n +=的整数对(,)m n 是否存在?若存在,求出(,)m n 的值;若不存在,说明理由.第2题图11 2 1 1 3 31146 4 11 5 10 10 5 1 … … … … … … …10.数码不同的两位数,将其数码顺序交换后,得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数.(天津市竞赛试题)11.若x y a b +=+,且2222x y a b +=+, 求证:2003200320032003x y a b +=+.12.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如222222420,1242,2064,=-=-=-因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正值)是神秘数吗?为什么? (浙江省中考试题)专题02 乘法公式例1 73 提示:满足条件的整数是奇数或是4的倍数.例2 (1)B x -y =(2a +4a +a )+(2b -8b +16)=()22a ++()24b -≥0,x ≥y .(2)B 3个等式相加得:()23a -+()21b ++()21c -=0,a =3,b =-1,c =1.a +b +c =3-1+1=3.例3 (1)167 (2)4 (3)-5050例4718 提示:由a +b =1,2a +2b =2得ab =-12,利用1n a ++1n b +=(n a +n b )(a +b )-ab (1n a -+1n b -)可分别求得3a +3b =52,4a +4b =72,5a +5b =194,6a +6b =264,7a +7b =718.例5 (1)设n 为自然数,则n (n +1)(n +2)(n +3)+1=()2231n n ++ (2)由①得,2000×2001×2002×2003+1=24006001.例6(1)设⎪⎩⎪⎨⎧=++=++=++③②①.3,2,1333222c b a c b a c b a2①-②,得ab +b c +a c =21-,∵333c b a ++-3ab c =(a +b +c )(222c b a ++-ab -b c -a c ), ∴ab c =31(333c b a ++)-31(a +b +c )(222c b a ++-ab -b c -a c )=31×3-31×1×(2+21)=61. (2)将②式两边平方,得,4222222222444=+++++a c c b b a c b a ∴()2222224442224a c c b b a c b a ++-=++ =4-2()[])(22c b a abc ac bc ab ++-++=4-2⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯-⎪⎭⎫ ⎝⎛-1612212=625.A 级1.0或6 2.26,28 3.2 4.40 5.34 6.0 7.D 8.A 9.C10.原有136或904名学生.设⎪⎩⎪⎨⎧=-=+②①.1208,120822m x m xm ,n 均为正整数,且m >n ,①-②得(m +n )(m -n )=240=5324⨯⨯.2m ,2n 都是8的倍数,则m ,n 能被4整除,m +n ,m -n 均能被4整除.得⎩⎨⎧=-=+460n m n m 或⎩⎨⎧=-=+1220n m n m , ∴⎩⎨⎧==2812n m 或⎩⎨⎧==416n m8x =2m -120=904或8x =2m -120=136.11.因为a =910+338-2=(910-1)+(338-1)=999 999 999+37×(238+38+1),而999 999 999=9×111 111 111=9×3×37 037 037=27×37×1 001 001=37×(27×1 001 001). 所以37|999 999 999,且37|37×(238+38+1),因此a 是37的倍数.12.第2003行式子为:()2222004200420032003+⨯+=()2120042003+⨯.第n 行式子为:()()222211++++n n n n =()221++n n .证明略B 级 1.1.0942.76 提示:由13+a =9+b =3+c 得a -b =-4,b -c =-6,c -a =10 3.13 4.156 5.D6.C 提示:(x +y )(x -y )=2009=7×7×41有6个正因数,分别是1,7,41,49,287和2009,因此对应的方程组为:⎩⎨⎧------=-------=+.1,7,41,49,287,2009,1,7,41,49,287,2009;2009,287,49,41,7,1,2009,287,49,41,7,1y x y x 故(x ,y )共有12组不同的表示. 7.B 8.C9.提示:不存在符合条件的整数对(m ,n ),因为1954不能被4整除.10.设所求两位数为AB ,由已知得22BA AB -=2k (k 为整数),得2119.k A B A B =⨯+⨯-而11A B +=⎧11A B +=⎧解得65A B =⎧⎨=⎩或56A B =⎧⎨=⎩,即所求两位数为65,5611. 设2222x y a bx y a b+=+⎧⎨+=+⎩①②, 则由2,-①②得22xy ab = ③②-③, 得22()()x y a b -=-, 即x y a b -=- x y a b ∴-=-或x y b a -=-分别与x y a b +=+联立解得x a y b =⎧⎨=⎩或x by a =⎧⎨=⎩2003200320032003x y a b ∴+=+12. (1)22284786,=⨯=- 2220124503504502=⨯=-, 故28和2012都是神秘数 (2)22(22)(2)4(21),k k k +-=+为4的倍数(3)神秘数是4的倍数,但一定不是8的倍数. 22(21)(21)8n n n +--=,故两个连续奇数的平方差不是神秘数。

2020-2021学年七年级数学湘教版下册2.2乘法公式培优提升训练(附答案)

2020-2021学年七年级数学湘教版下册2.2乘法公式培优提升训练(附答案)

2020-2021年度湘教版七年级数学下册2.2乘法公式培优提升训练(附答案)1.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣672.下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a)B.(﹣n2﹣m2)(m2+n2)C.D.(2x﹣3y)(2x+3y)3.如图是用4个相同的小长方形与1个小正方形密铺而成的大正方形图案,已知其中大正方形的面积为64,小正方形的面积为9.若用x,y分别表示小长方形的长与宽(其中x >y),则下列关系式中错误的是()A.4xy+9=64B.x+y=8C.x﹣y=3D.x2﹣y2=94.若x2+2(m﹣1)x+16是完全平方式,则m的值为()A.±8B.﹣3或5C.﹣3D.55.若一个正整数能表示为两个连续奇数的平方差,则称这个正整数为“好数”.下列正整数中能称为“好数”的是()A.205B.250C.502D.5206.计算(1﹣a)(1+a)(1+a2)的结果是()A.1﹣a4B.1+a4C.1﹣2a2+a4D.1+2a2+a47.已知a﹣b=1,ab=12,则a+b等于()A.7B.5C.±7D.±58.已知x+y=3,xy=2,则|x﹣y|的值为()A.±1B.1C.﹣1D.09.若(2x﹣y)2+M=4x2+y2,则整式M为()A.﹣4xy B.2xy C.﹣2xy D.4xy10.已知a+3b=2,则a2﹣9b2+12b的值是()A.2B.3C.4D.611.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为.12.如图,两个正方形的边长分别为a,b,若a+b=10,ab=20,则四边形ABCD的面积为.13.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,分别计算这两个图形的阴影部分的面积,验证了公式.14.已知(a+b)2=1,(a﹣b)2=49,则ab=.15.一个长方形的长减少3cm,同时宽增加2cm,就成为一个正方形,并且这两个图形的面积相等,则原长方形的长是,宽是.16.如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD和正方形PBEF,连接MD和ME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为.17.若4y2﹣my+25是一个完全平方式,则m=.18.计算:(a+b﹣c)2=.19.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=.20.已知4x=10,25y=10,则(x﹣2)(y﹣2)+3(xy﹣3)的值为.21.利用乘法公式计算:(1)198×202;(2)(2y+1)(﹣2y﹣1).22.计算:(x﹣y﹣3)(x+y﹣3).23.已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.24.若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面问题:(1)若x满足(x﹣2004)2+(x﹣2007)2=31,求(x﹣2004)(x﹣2007)的值;(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF、DF作正方形MFRN和正方形GFDH,求阴影部分的面积.25.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积(2)比较两图的阴影部分面积,可以得到乘法公式:(用字母表示)【应用】请应用这个公式完成下列各题①已知4m2﹣n2=12,2m+n=4,则2m﹣n的值为②计算:(2a+b﹣c)(2a﹣b+c)【拓展】①(2+1)(22+1)(24+1)(28+1)…(232+1)+1结果的个位数字为②计算:1002﹣992+982﹣972+…+42﹣32+22﹣1226.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)图2所表示的数学等式为;(2)利用(1)得到的结论,解决问题:若a+b+c=12,a2+b2+c2=60,求ab+ac+bc的值;(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,D三点在同一直线上,连接AE,EG,若两正方形的边长满足a+b=15,ab=35,求阴影部分面积.27.乘法公式的探究及应用:(1)如图,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是,长是,面积是(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4)运用你所得到的公式,计算下列式子:(2m+n﹣p)(2m﹣n+p)参考答案1.解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78﹣11=67,故选:C.2.解:A、原式=b2﹣a2,本选项不合题意;B、原式=﹣(m2+n2)2,本选项符合题意;C、原式=q2﹣p2,本选项不合题意;D、原式=4x2﹣9y2,本选项不合题意,故选:B.3.解:A、因为正方形图案面积从整体看是64,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=64,故此选项正确;B、因为正方形图案的边长8,同时还可用(x+y)来表示,故此选项正确;C、中间小正方形的边长为3,同时根据长方形长宽也可表示为x﹣y,故此选项正确;D、根据A、B可知x+y=8,x﹣y=3,则x2﹣y2=(x+y)(x﹣y)=24,故此选项错误;故选:D.4.解:∵x2+2(m﹣1)x+16是完全平方式,而16=42,∴m﹣1=4或m﹣1=﹣4,∴m=5或﹣3.故选:B.5.解:根据平方差公式得:(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n×2=8n.所以两个连续奇数构造的“好数”是8的倍数205,250,502都不能被8整除,只有520能够被8整除.故选:D.6.解:(1﹣a)(1+a)(1+a2)=(1﹣a2)(1+a2)=1﹣a4.故选:A.7.解:∵a﹣b=1,ab=12,∴(a+b)2=a2+2ab+b2=(a﹣b)2+4ab=1+48=49,∴a+b=±7,故选:C.8.解:∵x+y=3,xy=2,∴(x﹣y)2=(x+y)2﹣4xy=32﹣4×2=1.∴x﹣y=±1,∴|x﹣y|=1.故选:B.9.解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.10.解:因为a+3b=2,所以a2﹣9b2+12b=(a+3b)(a﹣3b)+12b=2(a﹣3b)+12b =2a﹣6b+12b=2a+6b=2(a+3b)=2×2=4,故选:C.11.解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:由①+②得:x2+y2=18,∴,故答案为18.12.解:根据题意可得,四边形ABCD的面积=(a2+b2)﹣﹣b(a+b)=(a2+b2﹣ab)=(a2+b2+2ab﹣3ab)=[(a+b)2﹣3ab];代入a+b=10,ab=20,可得:四边形ABCD的面积=(10×10﹣20×3)÷2=20.故答案为:20.13.解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b).14.解:∵(a+b)2=1,(a﹣b)2=49,∴a2+2ab+b2=1,a2﹣2ab+b2=49,两式相减,可得4ab=﹣48,∴ab=﹣12.故答案为:﹣12.15.解:设这个长方形的长为xcm,宽为ycm,由题意得,,解得:.故答案为:9cm,4cm.16.解:∵AP=a,BP=b,点M是AB的中点,∴AM=BM=,∴S阴影=S正方形APCD+S正方形BEFP﹣S△ADM﹣S△BEM=a2+b2﹣a×﹣b×=a2+b2﹣(a+b)2=(a+b)2﹣2ab﹣(a+b)2=100﹣40﹣25=35,故答案为:35.17.解:∵4y2﹣my+25是一个完全平方式,∴(2y)2±2•2y•5+52,即﹣my=±2•2y•5,∴m=±20,故答案为:±20.18.解:原式=[(a+b)﹣c]2=(a+b)2﹣2(a+b)c+c2=a2+2ab+b2﹣2ac﹣2bc+c2,故答案为:a2+2ab+b2﹣2ac﹣2bc+c2.19.解:∵n是正整数,且x2n=5,∴(2x3n)2÷(4x2n)=4x6n÷(4x2n)=(4÷4)x6n﹣2n=x4n=(x2n)2=52=25.故答案为:25.20.解:∵∴由①得4xy=10y,③由②得25xy=10x,④∴③×④得4xy•25xy=10y•10x,即(4×25)xy=10x+y,∴(102)xy=10x+y,∴102xy=10x+y,∴2xy=x+y(x﹣2)(y﹣2)+3(xy﹣3)=xy﹣2x﹣2y+4+3xy﹣9=4xy﹣2(x+y)﹣5=4xy﹣2×2xy﹣5=﹣5故答案为:﹣5.21.解:(1)原式=(200﹣2)(200+2)=2002﹣22=40000﹣4=39996;(2)原式=﹣(2y+1)2=﹣(4y2+2×2y×1+12)=﹣(4y2+4y+1)=﹣4y2﹣4y﹣1.22.解:(x﹣y﹣3)(x+y﹣3)=(x﹣3)2﹣y2=x2﹣6x+9﹣y2.23.解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.24.解:(1)设x﹣2004=a,x﹣2007=b,∴a2+b2=31,a﹣b=3,∴﹣2(x﹣2004)(x﹣2007)=﹣2ab=(a﹣b)2﹣(a2+b2)=9﹣31=﹣22,∴(x﹣2004)(x﹣2007)=11;(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴FM=DE=x﹣1,DF=x﹣3,∴(x﹣1)•(x﹣3)=48,∴(x﹣1)﹣(x﹣3)=2,∴阴影部分的面积=FM2﹣DF2=(x﹣1)2﹣(x﹣3)2.设(x﹣1)=a,(x﹣3)=b,则(x﹣1)(x﹣3)=ab=48,a﹣b=(x﹣1)﹣(x﹣3)=2,∴(a+b)2=(a﹣b)2+4ab=4+192=196,∵a>0,b>0,∴a+b>0,∴a+b=14,∴(x﹣1)2﹣(x﹣3)2=a2﹣b2=(a+b)(a﹣b)=14×2=28.即阴影部分的面积是28.25.解:(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n)∴(2m﹣n)=12÷4=3故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=505026.解:(1)由图可得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)由(1)可得:==42;(3)=====95.27.解:(1)由图可得,阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可得,矩形的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)依据两图的阴影部分面积相等,可以得到乘法公式(a+b)(a﹣b)=a2﹣b2;故答案为:(a+b)(a﹣b)=a2﹣b2;(4)(2m+n﹣p)(2m﹣n+p)=(2m)2﹣(n﹣p)2=4m2﹣(n2﹣2np+p2)=4m2﹣n2+2np﹣p2.。

【能力培优】14.2乘法公式(含答案)

【能力培优】14.2乘法公式(含答案)

14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b22.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1 B.x4+1 C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.参考答案:1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.祝福语祝你考试成功!。

乘法公式(提高)知识讲解

乘法公式(提高)知识讲解

乘法公式(提高讲义)【重点梳理】重点一、平方差公式平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.重点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+(6)增因式变化:如2244()()()()a b a b a b a b -+++ 重点二、完全平方公式完全平方公式:()2222a b a ab b +=++2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.重点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:()2222a b a b ab +=+-()22a b ab =-+()()224a b a b ab +=-+重点三、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.重点诠释:添括号与去括号是互逆的,符号的变化也是一致的,可以用去括号法则检查添括号是否正确. 重点四、补充公式2()()()x p x q x p q x pq ++=+++;2233()()a b a ab b a b ±+=±;33223()33a b a a b ab b ±=±+±;2222()222a b c a b c ab ac bc ++=+++++. 【典型例题】类型一、平方差公式的应用例1、计算(2+1)(221+)( 421+)(821+)(1621+)(3221+)+1.【思路点拨】本题直接计算比较复杂,但观察可以发现2+1与2-1,221+与221-,421+与421-等能够构成平方差,只需在前面添上因式(2-1),即可利用平方差公式逐步计算. 【答案与解析】解:原式=(2-1)(2+1)( 221+)(421+)(821+)(1621+)(3221+) +1 =(221-)( 221+)( 421+)(821+)(1621+)(3221+)+1 =642-1+1=642.【总结升华】对于式子较为复杂的数的计算求值问题,不妨先仔细观察,看是否有规律,然后去解决,会事半功倍,提高解题能力. 举一反三:【变式1】(2019秋﹒平山县期末)用简便方法计算: (1)1002-200×99+992 (2)2018×2020-20192【分析】(1)将原式转化为1002-2×100×(100-1)+(100-1)2,再利用完全平方公式进行计算, (2)2018×2020转化为(2019-1)(2019+1),再利用平方差公式计算即可. 【解答】解:(1)1002-200×99+992 =1002-2×100×(100-1)+(100-1)2 =[100-(100-1)]2=12 =1;(2)2018×2020-20192=(2019-1)(2019+1)-20192=20192-1-20192 =-1.【点评】考查平方差公式、完全平方公式的应用,掌握公式特征是关键.【变式2】(2019•内江)(1)填空: (a ﹣b )(a+b )= ;(a ﹣b )(a 2+ab+b 2)= ;(a ﹣b )(a 3+a 2b+ab 2+b 3)= . (2)猜想:(a ﹣b )(a n ﹣1+a n ﹣2b+…+ab n ﹣2+b n ﹣1)= (其中n 为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2. 【答案】解:(1)(a ﹣b )(a+b )=a 2﹣b 2;(a ﹣b )(a 2+ab+b 2)=a 3+a 2b+ab 2﹣a 2b ﹣ab 2﹣b 3=a 3﹣b 3;(a ﹣b )(a 3+a 2b+ab 2+b 3)=a 4+a 3b+a 2b 2+ab 3﹣a 3b ﹣a 2b 2﹣ab 3﹣b 4=a 4﹣b 4;故答案为:a 2﹣b 2,a 3﹣b 3,a 4﹣b 4; (2)由(1)的规律可得:原式=a n﹣b n,故答案为:a n ﹣b n;(3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342.例2、(2019秋﹒甘井子区期末)数学兴趣小组在“用面积验证平方差公式”时,经历了如下的探究过程:(1)小明的想法是:将边长为a 的正方形右下角剪掉一个边长为b 的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,并用两种方式表示这两部分面积的和,请你按照小明的想法验证平方差公式.(2)小白的起法是:在边长为a 的正方形内部任意位置剪掉一个边长为b 的正方形(如图2),再将剩下部分进行适当分割,并将分割得到的几部分面积和用两种方式表示出来,请你按照小白的想法在图中用虚线画出分割线,并验证平方差公式.【考点】平方差公式的几何背景.乘法公式的几何验证方法∴①+②的面积=a 2-b 2;①+②的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.(2)①+②的面积=(a-b)b=ab-b 2, ③+④的面积=(a-b)a=a 2-ab, ∴①+②+③+④=a 2-b 2;①+②+③+④的面积=大正方形的面积-小正方形的面积=a 2-b 2, ∴(a+b)(a -b)=a 2-b 2.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键. 举一反三:【变式】(2019秋﹒南昌期末)如图1的两个长方形可以按不同的形式拼成图2和图3两个图形.(1)在图2中的阴影部分面积S 1可表示为a 2-b 2a 2-b 2,在图3中的阴影部分的面积S 2可表示为a 2-b 2a 2-b 2,由这两个阴影部分的面积得到的一个等式是BB . A .(a+b)2=a 2+2ab+b 2B .a 2-b 2=(a+b)(a-b) C .(a-b)2=a 2-2ab+b 2(2)根据你得到的等式解决下面的问题: ①计算:67.52-32.52; ②解方程:(x+2)2-(x-2)2=24.【考点】平方差公式的几何背景.【专题】整式;一次方程(组)及应用;运算能力. 【分析】(1)由正方形的面积,可得S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2;所以a 2-b 2=(a+b)(a-b);(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500;②展开整理,得8x=24,解得x=3,所以方程的解是x=3.【解答】解:(1)由正方形的面积,可得 S 1=a 2-b 2;由长方形的面积,可得S 1=(a+b)(a-b)=a 2-b 2; ∴a 2-b 2=(a+b)(a-b); 故答案为a 2-b 2,a 2-b 2,选B ;(2)①67.52-32.52=(67.5+32.5)(67.5-32.5)=100×35=3500; ②(x+2)2-(x-2)2=24, 展开整理,得8x=24, 解得x=3, ∴方程的解是x=3.【点评】本题考查平方差公式的几何背景;理解题意,结合图形面积的关系得到公式,并能灵活运用公式是解题的关键.类型二、完全平方公式的应用例3、运用乘法公式计算:(1)2(23)a b +-;(2)(23)(23)a b c a b c +--+.【思路点拨】(1)是一个三项式的平方,不能直接运用完全平方公式,可以用加法结合律将23a b +-化成(23)a b +-,看成a 与(23)b -和的平方再应用公式;(2)是两个三项式相乘,其中a 与a 完全相同,2b ,3c -与2b -,3c 分别互为相反数,与平方差公式特征一致,可适当添加括号,使完全相同部分作为“一项”,互为相反数的部分括在一起作为“另一项”. 【答案与解析】解:(1)原式222[(23)]2(23)(23)a b a a b b =+-=+-+-22464129a ab a b b =+-+-+ 22446129a b ab a b =++--+.(2)原式22222[(23)][(23)](23)4129a b c a b c a b c a b bc c =+---=--=-+-. 【总结升华】配成公式中的“a ”“b ”的形式再进行计算. 举一反三:【变式】运用乘法公式计算:(1)()()a b c a b c -++-; (2)()()2112x y y x -+-+; (3)()2x y z -+; (4)()()231123a b a b +---. 【答案】解:(1) ()()a b c a b c -++-=[a -(b -c )][ a +(b -c )]=()()222222a b c a b bc c--=--+=2222a b bc c -+-.(2) ()()2112x y y x -+-+ =[2x +(y -1)][2x -(y -1)]=()()()222221421x y x y y --=--+=22421x y y -+-.(3)()()()()22222x y z x y z x y x y z z -+=-+=-+-+⎡⎤⎣⎦=222222x xy y xz yz z -++-+.(4) ()()231123a b a b +---=()2231a b -+-=-22[(23)2(23)1]a b a b +-++=-()22(2)2233461a a b b a b ⎡⎤+⋅⋅+--+⎣⎦=224129461a ab b a b ---++-例4、已知△ABC 的三边长a 、b 、c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.【思路点拨】通过对式子变化,化为平方和等于零的形式,从而求出三边长的关系. 【答案与解析】解:∵ 2220a b c ab bc ac ++---=,∴ 2222222220a b c ab bc ac ++---=,即222222(2)(2)(2)0a ab b b bc c a ac c -++-++-+=. 即222()()()0a b b c a c -+-+-=. ∴ 0a b -=,0b c -=,0a c -=,即a b c ==,∴ △ABC 为等边三角形.【总结升华】式子2220a b c ab bc ac ++---=体现了三角形三边长关系,从形式上看与完全平方式相仿,但差着2ab 中的2倍,故想到等式两边同时扩大2倍,从而得到结论. 举一反三:【变式】多项式222225x xy y y -+++的最小值是____________. 【答案】4;提示:()()2222222514x xy y y x y y -+++=-+++,所以最小值为4.。

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案

中考数学总复习《乘法公式》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、平方差公式1.计算:(1)(3x+5)(3x−5);(2)(12x+13)(12x−13);(3)(2x+y)(2x−y).2.利用乘法公式计算:(1)5002﹣499×501.(2)5023×49133.已知m=√5+1,n=√5−1.求值:(1)m2+n2;(2)nm +mn.4.(1)先化简,再求值:(2x+1)(2x−1)−5x(x−1)+(x−1)2,其中x=−13;(2)计算:20222−2021×2023−992.5.如图,有一个边长为2a(a>10)米的正方形池塘,为了创建文明农村,需在南北方向上扩大3米,东西方向上减少3米,从而得到一个长方形池塘.(1)求改造后的长方形池塘的面积;(2)改造后的长方形池塘的面积比原正方形池塘的面积变大还是变小了,请通过计算说明.6.如图,一长方形模具长为2a,宽为a,中间开出两个边长为b的正方形孔.(1)求图中阴影部分面积(用含a、b的式子表示)(2)用分解因式计算当a=15.7,b=4.3时,阴影部分的面积.二、完全平方公式 10.运用完全平方公式计算:(1)(4m +n)2;(2)(y −12)2.11.解方程:(3x −1)2=(2−5x )2.12.(a −2b +c )213.计算:(7+4√3)(7−4√3)−(√3−1)2.14.放学时,王老师布置了一道因式分解题:(x +y )2+4(x -y )2-4(x 2-y 2),小明思考了半天,没有得出答案.请你帮小明解决这个问题.15.回答下列问题(1)若x 2+1x 2=4,则(x +1x )2=________,(x −1x )2=________.(2)若a +1a =5,则a 2+1a 2=________;(3)若a 2−6a +1=0,求2a 2+2a 2的值.16.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.17.阅读下列文字:我们知道,图形是一种重要的数学语言,我国著名的数学家华罗庚先生曾经说:“数缺形时少直观,形缺数时难入微”.例如,对于一个图形,通过不同的方法计算图形的面积,就可以得到一个数学等式.(1)模拟练习:如图,写出一个我们熟悉的数学公式:______;(2)解决问题:如果a+b=10,ab=12求a2+b2的值;(3)类比探究:如果一个长方形的长和宽分别为(8−x)和(x−2),且(8−x)2+(x−2)2=20,求这个长方形的面积.18.为了纪念革命英雄夏明翰,衡阳市政府计划将一块长为(2a+b)米,宽为(a+b)米的长方形(如图所示)地块用于宣传革命英雄事迹,规划部门计划将阴影部分进行绿化,中间将修建一座夏明翰雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a+b=5,ab=6请求出绿化面积.19.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个大正方形,如图2所示.(1)请直接写出(a+b)2,(a−b)2,ab之间的等量关系________.(2)若xy=−3,x−y=4求x+y的值.(3)如图3,线段AB=10,C点是AB上的一点,分别以AC、BC为边长在AB的异侧做正方形ACDE和正方形CBGF,连接AF;若两个正方形的面积S1+S2=32,求阴影部分△ACF面积.20.如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b 的正方形拼成的.(1)利用正方形ABCD面积的不同表示方法,直接写出(a+b)2、a2+b2、ab之间的关系式,这个关系式是;(2)若m满足(2024−m)2+(m−2023)2=4047,请利用(1)中的数量关系,求(2024−m)(m−2023)的值;(3)若将正方形EFGH的边FG、GH分别与图①中的PG、MG重叠,如图②所示,已知PF= 8,NH=32求图中阴影部分的面积(结果必须是一个具体数值).参考答案1.解:(1)原式=5002−(500−1)×(500+1)=5002−(5002−1)=5002−5002+1=1;(2)原式=(50+23)×(50−23)=2500−49=249959.2.解:(1)(3x +5)(3x −5)=(3x)2−52=9x 2−25;(2)(12x +13)(12x −13) =(12x)2−(13)2 =14x 2−19; (3)(2x +y )(2x −y )=(2x)2−y 2=4x 2−y 2.3.(1)解:∵m =√5+1 n =√5−1∵m 2+n 2=(√5+1)2+(√5−1)2=5+2√5+1+5−2√5+1=6+6=12;(2)解:由题意知=12(√5+1)(√5−1)=124=3.4.解:(1)原式=4x 2−1−5x 2+5x +x 2−2x +1=3x .当x =−13时,原式=3×(−13)=−1. (2)原式=20222−(2022−1)×(2022+1)−(100−1)2=20222−20222+1−10000+200−1=−98005.解:(1)由题可得,改造后池塘的长为(2a +3)m ,宽为(2a -3)m∵改造后的面积为:(2a−3)(2a+3)=(4a2−9)m2.(2)原来的面积为:2a×2a=4a2(m2)∵4a2−(4a2−9)=9>0∵改造后的长方形池塘的面积与原来相比变小了.6.解:(1)2a•a﹣2b2=2(a2﹣b2);(2)当a=15.7,b=4.3时,阴影部分的面积2(a2﹣b2)=2(a+b)(a﹣b)=2(15.7+4.3)(15.7﹣4.3)=456.7.(1)解:1√14−√13=√14+√13(√14+√13)(√14−√13)=√14+√13(√14)2−(√13)2=√14+√1314−13=√14+√13(2)解:(1√2+1+1√3+√2+1√4+√3+⋯+1√2021+√2020)×(√2021+1)=(√2-1+√3-√2+√4-√3+……+√2021-√2020)×(√2021+1)=(√2021-1)×(√2021+1)=2021-1=2020(3)解:34−√13−6√13−√7−23+√7=(4+√13)-(√13+√7)-(3-√7)=4+√13-√13-√7-3+√7=18.(1)解:S阴影=S边长为a的正方形−S边长为b的正方形,即S阴影=a2−b2.故答案为:a2−b2.(2)观察图形可知,阴影部分裁剪下来,重新拼成一个长方形,它的宽是a−b,长是a+b,面积是(a+b)(a−b).故答案为:a−b a+b(a+b)(a−b).(3)图1和图2表示的面积相等,可得a2−b2=(a+b)(a−b).故答案为:a2−b2=(a+b)(a−b).(4)①20222−2021×2023=20222−(2022−1)(2022+1)=20222−(20222−1)=1②(2m+n+p)(2m+n−p)=[(2m+n)+p][(2m+n)−p]=(2m+n)2−p2=4m2+4mn+n2−p29.(1)解:图1中阴影部分的面积为a2−b2,图2中的阴影部分的面积为(a+b)(a−b)∵图1和图2中两阴影部分的面积相等∵上述操作能验证的等式是a2−b2=(a+b)(a−b)故答案为:a2−b2=(a+b)(a−b);(2)解:①∵9a2−b2=36∵(3a+b)(3a−b)=36∵3a+b=9∵3a−b=4故答案为:4;②(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋅⋅⋅(1−120222)=(1+12)×(1−12)×(1+13)×(1−13)×(1+14)×(1−14)×⋯×(1+12022)(1−12022)=32×12×43×23×54×34×⋯×20232022×20212022=12×(32×23)×(43×34)×⋯×(20212022×20222021)×20232022=12×1×20232022=20234044.10.解:(1)(4m+n)2=(4m)2+2⋅(4m)⋅n+n2=16m 2+8mn +n 2;(2)(y −12)2=y 2−2⋅y ⋅12+(12)2=y 2−y +14. 11.解:∵(3x −1)2=(2−5x )2∵3x −1=±(2−5x )解得x =12或x =38.12.解:原式=(a −2b)2+2c(a −2b)+c 2=a 2−4ab +4b 2+2ac −4bc +c 2=a 2+4b 2+c 2−4ab +2ac −4bc .13.解:原式=49−48−(3−2√3+1)=2√3−314.解:把(x +y ),(x -y )看作完全平方公式里的a ,b .解:设x +y =a ,x -y =b则原式=a 2+4b 2-4ab =(a -2b )2=[(x +y )-2(x -y )]2=(3y -x )2.故答案为(3y -x )2.15.(1)解:∵x 2+1x 2=4∵(x +1x )2=x 2+2x ⋅1x +1x 2=x 2+2+1x 2=6,(x −1x )2=x 2−2x ⋅1x +1x 2=x 2−2+1x 2=2故答案为:6;2;(2)解:∵a +1a =5 ∵(a +1a )2=a 2+2+1a 2=25∵a 2+1a 2=(a +1a )2−2=23 故答案为:23;(3)解∵a 2−6a +1=0∵a ≠0∵a −6+1a =0∵a +1a =6∵(a+1a )2=a2+2+1a2=36∵a2+1a2=(a+1a)2−2=34∵2a2+2a2=2(a2+1a2)=68.16.解:∵两个正方形的面积=a2+b2=(a+b)2−2ab=100−40=60 ,SΔADC=12a2SΔFGC=12(a+b)⋅b∵阴影部分的面积为:60−12a2−12(a+b)⋅b=60−12a2−12ab−12b2=60−12(a2+b2)−12ab=60−12×60−12×20=20.17.(1)解:(1)用大正方形面积公式求得图形的面积为:(a+b)2;用两个小正方形面积加两个长方形面积和求出图形的面积为:a2+2ab+b2.故答案为:(a+b)2=a2+2ab+b2;(2)解:(2)∵a+b=10ab=12∴a2+b2=(a+b)2﹣2ab=100﹣24=76;(3)解:(3)设8﹣x=a x﹣2=b∵长方形的两邻边分别是8﹣x x﹣2∴a+b=8﹣x+x﹣2=6∵(8﹣x)2+(x﹣2)2=20∴a2+b2=(a+b)2﹣2ab=62﹣2ab=20∴ab=8∴这个长方形的面积=(8﹣x)(x﹣2)=ab=8.18.解:(1)根据题意可得绿化的面积为:(2a+b)(a+b)−a2=2a2+2ab+ab+b2−a2=a2+3ab+b2;(2)∵a+b=5∵a2+3ab+b2=a2+2ab+b2+ab=(a+b)2+ab=52+6=31(平方米).19.(1)解:由图2各部分的面积关系得:(a+b)2−(a−b)2=4ab故答案为:(a+b)2−(a−b)2=4ab;(2)由(1)题结果可得(x+y)2=(x−y)2+4xy=16−12=4∵x+y=±√4=±2∵x+y的值为±2;(3)设AC=x,BC=y则x2+y2=32 x+y=10∵2xy=(x+y)2−(x2+y2)=102−32=68∵xy=682=34∵S△ACF=12AC×CF=12×34=17∵阴影部分△ACF面积为17.20.解:(1)(a+b)2=a2+b2+2ab(2)设2024−m=a m−2023=b则(2024−m)(m−2023)=ab a+b=1由已知得:a2+b2=4047(a+b)2=a2+b2+2ab∵12=4047+2ab∵ab=−2023∵(2024−m)(m−2023)=−2023(3)设正方形EFGH的边长为x,则PG=x−8NG=32−x∵S阴=S正方形APGM+2S长方形PBNG+S正方形CQGN∵S阴=(x−8)2+2(x−8)(32−x)+(32−x)2∵(a+b)2=a2+b2+2ab=[(x−8)+(32−x)]2=242=576∵S阴。

乘法公式培优专题-2

乘法公式培优专题-2

现在出发,准备好了吗?提问开始,你们都要回答。

跟上节奏,启动查克拉。

ARE YOU READY?LET‘S GO!初中数学竞赛专题——乘法公式石狮一中黄约翰一、内容提要1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。

2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。

完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。

②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b)5. 由公式的推广③可知:当n为正整数时a n-b n能被(a-b)整除,a2n+1+b2n+1能被(a+b)整除,a2n-b2n能被(a+b)及(a-b)整除。

14.2乘法公式培优练习人教版2024—2025八年级上册

14.2乘法公式培优练习人教版2024—2025八年级上册

14.2乘法公式培优练习人教版2024—2025八年级上册一、夯实基础1.下列各式不能用平方差公式计算的是()A.(y+2x)(2x﹣y)B.(﹣x﹣3y)(x+3y)C.(2x2﹣y2)(2x2+y2)D.(4a+b)(4a﹣b)2.在运用乘法公式计算(2x﹣y+3)(2x+y﹣3)时,下列变形正确的是()A.[(2x﹣y)+3][(2x+y)﹣3]B.[(2x﹣y)+3][(2x﹣y)﹣3]C.[2x﹣(y+3)][2x+(y﹣3)]D.[2x﹣(y﹣3)][2x+(y﹣3)] 3.已知x﹣y=5,则x2﹣y2﹣10y的值是()A.10B.15C.20D.254.若a﹣b=2,则式子a2﹣b2﹣4a的值等于.5.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为6.若多项式4x2﹣(k﹣1)xy+25y2是关于x、y的完全平方式,则k的值为()A.21B.19C.21或﹣19D.﹣21或19 7.已知实数a,b满足,则3a2+4b2+1012a﹣2024b+1的值是()A.65B.105C.115D.20258.已知关于x的整式9x2+(2k﹣1)x+4是某个关于x的整式的平方,求k的值.二、能力提升(一)利用乘法公式计算1.计算:(a+2b﹣3c)(a﹣2b﹣3c).2.计算:(x+2y﹣3z)(2y+3z+x).3.求不等式(3x﹣4)(3x+4)<9(x+2)2+21的负整数解.4.计算:(a+1)2(a﹣1)2(a2+1)2.5.计算.6.用简便算法计算.(1)20242﹣2025×2023;(2)4+4×196+982.(二)乘法公式的变形1.已知(a﹣b)2=25,ab=﹣6,求下列各式的值.(1)a2+b2;(2)a4+b4.2.若m﹣2n=﹣1,求代数式m2﹣4n2+4n的值.3.已知a2﹣4a﹣1=0.(1)求的值;(2)求的值.4.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.5.已知,求xy的值.6.已知:m,n为非负整数,且m2﹣n2=11,求m,n的值.7.已知x2﹣4y+y2+8x+20=0,求xy的值.8.已知a+b=2,b+c=17,求2a2+3b2+3c2+2ab+4bc﹣2ac=.9.完全平方公式经过适当的变形,可以解决很多数学问题.例如:若a+b=3,ab=1求a2+b2的值.解:因为a+b=3,ab=1所以(a+b)2=9,2ab=2所以a2+b2+2ab=9,所以a2+b2=7.根据上面的解题思路与方法解决下列问题:(1)若a﹣b=﹣5,ab=3,则a2+b2=.(2)若(a+b)2=17,(a﹣b)2=13求a2+b2的值.(3)已知x2+3x﹣1=0,求的值.10.我们学过很多数学公式不仅保持了结构的对称性,还体现了数学的和谐、简洁美.根据你所学的知识解决下列问题:①若a=2023,b=2024,c=2025,求出a2+b2+c2﹣ab﹣bc﹣ac的值;②若a2+b2+c2=89,a+b+c=9,求出ab+bc+ac的值.三、乘法公式与几何图形结合1.我们知道,利用图形的面积能解释与得出代数恒等式,请你解答下列问题:(1)如图,根据3个正方形和6个长方形的面积之和等于大正方形ABCD的面积.可以得到代数恒等式:(a+b+c)2=.(2)若n、t满足:(n﹣2024)2+(2026﹣12n)2+(n+1)2=t2+2t﹣18,(n ﹣2024)(2026﹣2n)+(n﹣2024)(n+1)+(2026﹣2n)(n+1)=1﹣t,求t 的值.2.现有若干个正方形纸片,从中任取两个大小不等的正方形如图摆放,A、D、E三点在一条直线上,(1)如图①,AE=m,CG=n,这两个正方形的面积之和是.(用m、n的代数式表示)(2)如图②,如果大正方形ABCD和小正方形DEFG的面积之和是5,图中阴影部分的面积为2,求(mn)2是多少?(3)如图③,大正方形ABCD和小正方形DEFG的面积之和是25,AE的长度等于7,图中阴影部分的面积是.(4)如图④,正方形ABCD和正方形DEFG的边长分别为a、b(a>b),如果a+b=8,ab=6,求图中阴影部分面积之和是多少?3.在“综合与实践”课上,老师准备了如图1所示的三种卡片,甲、乙两位同学拼成了如图2、图3所示的正方形.(1)【理解探究】①观察图2,用两种不同方式表示阴影部分的面积可得到(a+b)2,2ab,a2+b2之间的等量关系式:.②观察图3,用两种不同方式表示阴影部分的面积可得到等量关系式:.(2)【类比应用】根据(1)中的等量关系,解决如下问题:已知m+n=5,m2+n2=20,求mn 和(m﹣n)2的值.(3)【拓展升华】如图4,在△BCE中,∠BCE=90°,CE=8,点Q是边CE上的点,在边BC 上取一点M,使BM=EQ,设BM=x(x>0),分别以BC,CQ为边在△BCE 外部作正方形ABCD和正方形COPQ,连接BQ,若CM=3,△BCQ的面积等于,直接写出正方形ABCD和正方形COPQ的面积和:.4.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.5.数与形是数学研究的两大部分,它们间的联系称为数形结合,整式乘法中也可以利用图形面积来论证数量关系,现用砖块相同的面(如材料图,长为a,宽为b的小长方形)拼出以下图形,延长部分边框,则把这些拼图置于如图所示的正方形或大长方形内,请解答下列问题.(1)图1中空白面积为S1,根据图形中的数量关系,用含a、b的式子表示S1;(2)图3中空白面积为S3,根据图形中的数量关系,用含a、b的式子表示S3;(3)图1,图2中空白部分面积S1、S2分别为19、68,求ab值.6.【教材原题】观察图①,用等式表示图中图形的面积的运算为.【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为.【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a2+b2=.(2)若x满足(11﹣x)(x﹣8)=2,求(11﹣x)2+(x﹣8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD,AC⊥BD于点E,AE=DE,BE=CE.该校计划在△AED和△BEC区域内种花,在△CDE和△ABE的区域内种草.经测量种花区域的面积和为,AC=7,直接写出种草区域的面积和.7.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)若xy=7,x+y=5,直接写出x2+y2的值;(2)若x(3﹣x)=4,则x2+(x﹣3)2=;(3)两块完全相同的特制直角三角板(∠AOB=∠COD=90°)如图2所示放置,其中A,O,D在一直线上,连接AC,BD,若AD=16,S△AOC +S△BOD=60,求一块三角板的面积.。

专题03乘法公式专项培优训练(原卷版)

专题03乘法公式专项培优训练(原卷版)

专题03 乘法公式 专项培优训练1.(2021•莱山区期末)如果用平方差公式计算(x ﹣y +5)(x +y +5),则可将原式变形为( )A .[(x ﹣y )+5][(x +y )+5]B .[(x +5)﹣y ][(x +5)+y ]C .[(x ﹣y )+5][(x ﹣y )﹣5]D .[x ﹣(y +5)][x +(y +5)]2.(2021·成都市七年级期中)若x ﹣1x =3,则241x x +=( ) A .11 B .7 C .111 D .173.(2021•南安市期中)设a =192×918,b =8882﹣302,c =10532﹣7472,则数a ,b ,c 按从小到大的顺序排列,结果是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a4.(2021•镇江期中)小妍将(2020x +2021)2展开后得到a 1x 2+b 1x +c 1;小磊将(2021x ﹣2020)2展开后得到a 2x 2+b 2x +c 2,若两人计算过程无误,则c 1﹣c 2的值为( )A .4041B .2021C .2020D .15.(2021·浙江瑞安.初一期中)已知18221n ++是一个有理数的平方,则n 不能为( ) A .20- B .10 C .34 D .366.(2021•宝安区模拟)如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:5=32﹣22,5就是一个智慧数,则下列各数不是智慧数的是( )A .2020B .2021C .2022D .20237.(2021·郑州枫杨外国语学校七年级月考)若x 2﹣(2a ﹣1)x +25是完全平方式,则a =__________________.8.(2021·安徽八年级月考)已知22(2019)(2020)2021a a -+-=,则(2019)(2020)a a --=_____________.9.(2021·福建初一期中)已知:,且则 . 10.(2021·四川成都.初一期中)已知a 、b 、m 均为正整数,若存在整数k 使得a b km -=,则称a 、b 关于m 同余,记作(mod )a b m ≡。

第3讲--乘法公式专题培优辅导

第3讲--乘法公式专题培优辅导

第三讲 整式的乘法及乘法公式专题培优辅导一、知识要点: 乘法公式⑴22()()a b a b a b +-=- ⑵222()2a b a ab b ±=±+⑶2()()()x a x b x a b x ab ++=+++ ⑷2233()()a b a ab b a b -++=-⑸2233()()a b a ab b a b +-+=+ ⑹2222()222a b c a b c ab ac bc ++=+++++ ⑺33223()33a b a a b ab b +=+++ ⑻33223()33a b a a b ab b -=-+-乘法公式常用的变形有:(1) 222()2a b a ab b ±=±+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++; (3) ab b a b a 4)()(22=--+;(4) 4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 二.经典例题讲解 例1【例1计算:1.______________)3)(32(=-+y x y x ; 2._______________)52(2=+y x ; 3.______________)23)(32(=--y x y x 4. ______________)32)(64(=-+y x y x ; 5. ________________)221(2=-y x 6.____________)9)(3)(3(2=++-x x x ; 7.___________1)12)(12(=+-+x x ; 84))(________2(2-=+x x ; 9._____________)3)(3()2)(1(=+---+x x x x ;10.____________)2()12(22=+--x x ;11.224)__________)(__2(y x y x -=-+;12、()()()()111124-+++a a a a =基础训练1.计算(a-b )(a-b )其结果为( )A .a 2-b 2B .a 2+b 2C .a 2-2ab+b 2D .a 2-2ab-b 2 2.(x+a )(x-3)的积的一次项系数为零,则a 的值是( ) A .1 B .2 C .3 D .4 3.如果(x+3)(x+a )=x 2-2x-15,则a 等于( ) A .2 B .-8 C .-12 D .-5 4.解方程:(2x+3)(x-4)-(x+2)(x-3)=x 2+6.5.先化简,再求值:5x (x 2+2x+1)-x (x-4)(5x-3),其中x=1.【例2】 1. 如果多项式92+-mx x 是一个完全平方式,则m 的值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式培优专题
知识要点:
平方差公式:22))((b
a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=±
立方和(差)公式:)
)((2233b ab a b a b a +±=± 三项的完全平方公式:ca bc ab c b a c b a 222)(2222+++++=++
一、选择题
1.下列式子:①2)13()13)(13(-=-+x x x ; ②22293)3(y xy x y x +-=-; ③422241)21(y x xy -=-; ④ 22212)1(a
a a a ++=+中正确的是( ) A .① B .①② C .①②③ D .④
2.=--2
)(y x ( )
A .222y xy x ++
B .222y xy x ---
C .222y xy x +-
D .222y xy x -+ 3.若,)()(22y x M y x -=-+,则M 为( ).
A .xy 2
B .xy 2±
C .xy 4
D .xy 4±
4.一个正方形的边长为,acm 若边长增加,6cm 则新正方形的面积增加了( ).
A .236cm
B .212acm
C .2
)1236(cm a + D .以上都不对
5.若一个多项式的平方的结果为,12422m ab a ++则=m ( ) A .29b B .23b C .29b - D .b 3
6.下列多项式不是完全平方式的是( ).
A .442--x x
B .
m m ++241 C .2269b ab a ++ D .91242++t t 7.已知,21=+
x x 则下列等式成立的是( ) ①2122=+x x ②2144=+x x ③218
8=+x x ④01=-x x A .① B .①② C .①②③ D .①②③④
8.若)1)((2
+-=--x m x m x x 且,0≠x 则m 等于( )
A .-1
B .0
C .1
D .2 9.)(q x +与)5
1
(+x 的积不含x 的一次项,则q 应是( )
A .5
B .51
C .-51
D .-5 10.计算22222)])([(b a b a +-等于( )
A .42242b
b a a +- B .64462b b a a ++ C .64462b b a a +- D .84482b b a a +- 11.已知,2,11)(2==+ab b a 则2)(b a -的值是( )
A .11
B .3
C .5
D .19
12.若y x ,互为不等于0的相反数n ,为正整数,你认为正确的是( )
A .n n y x ,互为相反数
B .n n y x )1(,)1
(互为相反数 C .n n y x 22,互为相反数 D .1212,---n n y x 相等
二、填空题
1.已知,0152
=+-x x 则=+221x
x ________. 2.①=+⨯⨯)130(31292 ________.②=⨯3
1213220_______. 3.已知,1,53222=++=-=-c b a c b b a 则=++ca bc ab _______. 4.已知y x ,满足,24
522y x y x +=++则代数式y x xy +的值是________. 5.计算:2011
22013201120122011201222
2⨯+⨯--的值是________. 6.已知,1000)2003)(2005(=--a a 请你猜想=-+-22)2003()2005(a a _______.
三、解答题
1.计算: ①)213)(321(a b b a -
-;②)()(2y x y x -+;③2)2(p n m -+;④)32)(32(b a c c b a +-+-. 2.计算:
①n n (1)12()12)(12)(12(242+++++ 是正整数);②2
3)13()13)(13)(13(4016
200842-++++ . 3.解方程: ①5)13)(13()59(=+---x x x x ;②)3(5)12)(12()2(2
+=-+++x x x x x .
4.已知,03410622=++-+n m n m 求n m +的值. 5.计算:2020
201920202019200182001720018200176565434321212
22222222+-++-+++-++-++-
6.(1)已知,01461322=+-+-x y xy x 求10
13)(x y x ⋅+的值. (2)已知,5)()1(2
=+-+b a a a 求ab b a -+222的值. (3)已知,91,19222=++=--c b a c b a 求ab ca bc --的值.
7.对于任何实数,我们规定符号c a d b =bc ad -,例如:31 4
2=3241⨯-⨯=2- (1)按照这个规律请你计算32- 5
4的值; (2)按照这个规定请你计算,当0132=+-a a 时,
21-+a a 13-a a 的值. 8.实践与探索:
(1)比较下列算式结果的大小:
2234+____342⨯⨯;
221)2(+-____1)2(2⨯-⨯;
22)241(24+____24
1242⨯⨯; 2222+____222⨯⨯;
(2)通过观察、归纳、比较:2
220082007+____200820072⨯⨯;
(3)请你用字母b a ,写出能反应上述规律的式子:
9.①如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,设图1中的阴影部分面积为,s 则=s ___(用含b a ,代数式表示)
②若把图1中的图形,沿着线段AB 剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.
10.下列纸片中有两张是边长为a 的正方形,三张是长为,a 宽为b 的长方形纸片,一张是边长为b 的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.
11.已知1≠x ,计算,1)1)(1(,1)1)(1(322x x x x x x x -=++--=-+4
321)1)(1(x x x x x -=+++-.
(1)观察以上各式并猜想:=++++-)1)(1(2n x x x x ______.n (为正整数)
(2)根据你的猜想计算:
①=+++++-)22221)(21(5432______.
②=++++n 222232 ______n (为正整数).
③=++++++-)1)(1(2979899x x x x x x _______.
(3)通过以上规律请你进行下面的探索:
①=+-))((b a b a _______.
②=++-))((2
2b ab a b a ______.
③=+++-))((3223b ab b a a b a ______.
…… =++++++-------))((12322321n n n n n n b ab b a b a b a a b a _____.
12.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).
(1)上述操作能验证的等式是___;(请选择正确的一个)
A .222)(2b a b ab a -=+-
B .))((22b a b a b a -+=-
C .)(2b a a ab a +=+
(2)应用你从(1)选出的等式,完成下列各题:
①已知,42,12422=+=-y x y x 求y x 2-的值.
②计算:)2011)(1911()411)(311)(211(2
2222----- 13.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.
(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为c b a ++的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.
(2)如图2,是将两个边长分别为a 和b 的正方形拼在一起,G C B ,,三点在同一直线上,连接BD 和,BF 若两正方形的边长满足,20,10==+ab b a ,你能求出阴影部分的面积吗?。

相关文档
最新文档