九年级数学期中试卷及答案

合集下载

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。

2024-2025学年江苏盐城盐都区九年级五校联考11月期中数学试题及答案

2024-2025学年江苏盐城盐都区九年级五校联考11月期中数学试题及答案

2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1.下列方程,属于一元二次方程的是()A.x2﹣xy=1 B.x2﹣2x+3=0 C.D.2(x+1)=x2.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3 B.1,﹣2,3 C.1,2,3 D.1,2,﹣33.若m、n是关于x的方程2x2﹣4x+1=0的两个根,则的值为()A.4 B.﹣4 C.D.4.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x,则方程可以列为()A.3(1+x)=18 B.3(1+x)2=18 C.3+3(1+x)2=18 D.3+3(1+x)+3(1+x)2=185.下列说法正确的是()A.三点确定一个圆B.平分弦的直径垂直于弦C.相等的圆心角所对的弦相等D.三角形的外心到三角形三个顶点的距离相等.6.如图,AB是⊙O的直径,弦CD交AB于点E,∠ACD=60°,∠ADC=40°,则∠AED的度数为()A.110°B.115°C.120°D.105°7.如图,圆O的半径是4,BC是弦,∠B=30°且A是弧BC的中点,则弦AB的长为()A.B.C.4 D.68.如图,⊙M的半径为4,圆心M的坐标为(6,8),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最大值为()A .13B .14C .12D .28二、填空题(每题3分,计30分)9.写一个一元二次方程,使它有两个相等的实数根: (写出一个即可).10.关于x 的方程x 2+kx +1=0有两个相等的实数根,则k 值为 .11.若m 是方程2x 2﹣3x ﹣1=0的一个根,则4m 2﹣6m +2022的值为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =8,EB =2,则⊙O 的半径为 . 13.任意抛掷一枚均匀的骰子,骰子各个面的点数分别为1,2,3,4,5,6,则朝上的点数是奇数的概率是 .14.为迎接全市的禁毒知识竞赛,某校进行了相关知识测试,经过层层预赛,小洋和小亮进入了最后的决赛,如图,是他们6次的测试成绩,若要从中选一名测试成绩稳定的同学去参加竞赛,则应选 .(填“小洋”或“小亮”).第12题 第14题15. 如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=°,则ABI ∠=.16.如图,60BAC ∠=°,45ABC ∠=°,AB =,D 是线段BC 上的一个动点,以AD 为直径画O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为______.17.如图有一个三角形点阵,从上向下有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,容易发现,10是三角点阵中前4行的点数之和.当三角点阵中点数之和是300时,则三角点阵点的行数为 .18.如图,在矩形ABCD 中,12AB =,16BC =,点E F 、分别是边AB BC 、上的动点,且10EF =,点G 是EF 的中点,连接AG CG 、,则四边形AGCD 面积的最小值为 .第15题 第16题 第17题 第18题三、解答题(共9题,计96分)19.解方程:(1)36x 2﹣1=0;(2)x 2+10x +21=0;20.初一某班16名男生在体检时测量了身高.以160cm 为基准,记录男生们的身高,超过160cm 记为正,不足160cm 记为负.前15名男生的相对身高(单位:cm )记录如表,第16名男生身高为171cm . 序号1 2 3 4 5 6 7 8 相对身高7− 4+ 0 16+ 2+ 3− 1+ 5− 序号9 10 11 12 13 14 15 16 相对身高 9− 3+ 4− 7+ 1+ 2− 1+ m(1)表格中m = ;(2)该班最高的男生与最矮的男生身高相差 cm ;(3)计算该班男生的平均身高.21.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃.为了方便出人,建造时,在BC 上用其它材料做了宽为2米的两扇小门,在EF 上用其它材料做了宽为1米的一扇小门.(1)设花圃的一边AB 长为x 米,请你用含x 的代数式表示另一边AD 的长为___________米;(2)若此时花圃的面积刚好为254m ,求此时花圃的长与宽.22.如图,在四边形ABCD 中,,AC BD 相交于点E ,且AB AC AD ==,经过A ,C ,D 三点的O 交BD 于点F ,连接CF .(1)求证:CF BF =;(2)若CD CB =,求证:CB 是O 的切线.23.已知x 1,x 2是关于x 的一元二次方程x 2﹣2(m +1)x +m 2+10=0的两实数根.(1)求m 的取值范围;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求m 的值和△ABC 的周长.24.定义:一元二次方程()200ax bx c a ++=≠,若根的判别式24b ac −是一个完全平方数(式),则此方程叫“完美方程”.(1)判断下列方程一定是“完美方程”的是 ;(直接填序号)①2430x x −−=;②220x mx m ++−=;③()210x b x b +++=;(2)若关于x 的一元二次方程222(1)20x m x m m −−+−=①证明:此方程一定是“完美方程”;②设方程的两个实数根分别为1x ,()212x x x <,是否存在实数k ,使得()12,P x x 始终在函数3y kx k =−+的图像上?若存在,求出k 的值;若不存在,请说明理由.25.某电商销售一款秋季时装,进价40元/件,售价110元/件,每天销售20件.为了庆祝二十大的胜利召开,未来30天,这款时装将开展“喜迎二十大,每天降1元”的促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.(1)这30天内该电商第几天的利润最大?最大利润是多少?(2)为了回馈社会,在这30天内,该电商决定每销售一件时装,向希望工程捐a 元(0,a >).要使每天捐款后的利润随天数t (t 为正整数)的增大而增大,求a 的取值范围.26.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E .(1)求证:点D 是边BC 的中点.(2)记的度数为α,∠C 的度数为β.探究α与β的数量关系.27.如图①,在四边形ABCD 中,9086BAD D AD CD AB m ∠=∠=°===,,,.过A B C ,,三点的O 的圆心位置和半径,随着m 的变化而变化.解决下列问题:【特殊情形】(1)如图②,当0m =时,圆心O 在AD 上,求O 的半径.【一般情形】(2)(Ⅰ)当2m =时,求O 的半径;(Ⅱ)当0m >时,随着m 的增大,点O 的运动路径是; (填写序号)①射线;②弧;③双曲线的一部分;④不规则的曲线【深入研究】(3)如图③,连接AC ,以O 为圆心,作出与CD 边相切的圆,记为小O .当小O 与AC 相交且与BC 相离时,直接写出m 的取值范围.参考答案1-4BAAD 5-8DACD9.x 2+2x +1=0(答案不唯一) 10.±2 11.2023 12.5 13.½ 14.小亮 15.50° 16.18.14219.解:(1)36x 2﹣1=0,36x 2=1,,解得,;(2)x 2+10x +21=0,x 2+10x =﹣21,x 2+10x +25=﹣21+25,即(x +5)2=4,x +5=±2,解得x 1=﹣3,x 2=﹣7;20.(1)解:由题意得,17116011m =−=+,故答案为:11+;(2)解:16(9)16925cm +−−=+=,即该班最高的男生与最矮的男生身高相差25cm ,故答案为:25;(3)解:1(740162315934712111)16016×−++++−+−−+−++−+++ 11616016=×+ 161cm =答:该班男生的平均身高为161cm .21.1)()273x −(2)长为9米,宽为6米22.(1)证明:AB AC = ,ACB ABC ∴∠=,AB AD = ,ADB ABD ∴∠=∠,又ADB ACF ∠=∠ , ACF ABD ∴∠=∠,ACB ACF ABC ABD ∴∠−∠=−∠,即:BCF CBF ∠=∠, CF BF ∴=;(2)证明:连接CO 并延长交O 于G 点,再连接GF ,CG 为O 直径,90GFC ∴∠=°,90G GCF ∴∠+∠=°,CDB G ∠=∠ ,90CDB GCF ∴∠+∠=°,CD CB = ,CDB CBD ∴∠=∠,CF BF = ,BCF CBD ∴∠=∠,BCF CDB ∴∠=∠,90BCF GCF ∴∠+∠=°,90BCG ∴∠=°,CG BC ∴⊥,CB ∴是O 的切线.23.解:(1)根据题意得Δ=4(m +1)﹣4(m 2+10)≥0,解得;(2)当腰长为7时,则x =7是一元二次方程x 2﹣2(m +1)x +m 2+10=0的一个解, 把x =7代入方程得49﹣14(m +1)+m 2+10=0,整理得m 2﹣14m +45=0,解得m 1=9,m 2=5,当m =9时,x 1+x 2=2(m +1)=20,解得x 2=13,则三角形周长为13+7+7=27;当m =5时,x 1+x 2=2(m +1)=12,解得x 2=5,则三角形周长为5+7+7=19;当7为等腰三角形的底边时,则x 1=x 2,所以,方程化为4x 2﹣44x +121=0,解得,三边长为, 其周长为, 综上所述,m 的值是9或5或,这个三角形的周长为27或19或18. 24.(1)解:①2430x x −−=,()()224441328b ac −=−−××−= ,不是完全平方数,2430x x ∴−−=不是“完美方程”; ②220x mx m ++−=, ()()22224424824b ac m m m m m −=−−=−+=−+ ,不是完全平方式,220x mx m ∴++−=不是“完美方程”;③()210x b x b +++=, ()()2222414211b ac b b b b b −+−−+− ,是完全平方式,()210x b x b ∴+++=是“完美方程”; 故答案为:③;(2)解:①证明:222(1)20x m x m m −−+−=()()2222242142484484b ac m m m m m m m −=−−−=−+−+= ,且4是完全平方数, ∴此方程一定是“完美方程”;②存在,理由如下:222(1)20x m x m m −−+−= ,()()20x m x m ∴−−−=, 0x m ∴−=或()20x m −−=, x m ∴=或2x m =−,设方程222(1)20x m x m m −−+−=的两个实数根分别为1x 、()212x x x <,12x m ∴=−,2x m =,()12,P x x 始终在函数3y kx k =−+的图像上,()23m k m k ∴=−−+,313m k m −∴==−, 即存在实数k ,使得PP (xx 1,xx 2)始终在函数3y kx k =−+的图像上,k 的值为1 25.解:(1)设销售利润为w 元,销售时间为x 天,由题意可知,(11040)(420),wx x =−−+ 242601400x x =−++24(32.5)5625,x =−−+∵50,a =−< ∴函数有最大值,∴当30x =时,w 取最大值为24302603014005600w =−×+×+=元, ∴第30天的利润最大,最大利润是5600元;(2)设未来30天每天获得的利润为y ,时间为t 天,根据题意,得(11040)(204)(204),y t t t a =−−+−+化简,得24(2604)140020,y t a t a =−+−+− 每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴260429.5,2(4)a −−>×− 解得,6,a又∵0,a >即a 的取值范围是:06a <<.26.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,点D 在圆上,∴∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,即点D 是BC 的中点;(2)解:β﹣α=45°; 如图,连接OE ,∵的度数为α,∴∠AOE =α,∵OA =OE ,∴∠OAE =,∵AB =AC ,AD ⊥BC ,∴∠CAD =∠OAE =45°﹣α, ∵∠CAD +∠C =90°,∴45°﹣α+β=90°即β﹣α=45°.27.(1)解:连接OC ,在O 中,设OA O =C r =,则8OD r =−. 在Rt OCD 中,90D ∠=︒,∴222OD CD OC +=,即222(8)6r r −+=.解得254r =. (2)(I )解:过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,∵OF 过圆心,OF AB ⊥, ∴1AF BF ==.∵90A D OFA ∠=∠=∠=°, ∴四边形AFED 是矩形.∴1AF DE ==.∴5CE CD DE =−=.设OE x =,则8OF x =−,在Rt COE 中222OE CE OC +=, 在Rt BOF 中222OF BF OB +=, ∴2222OE CE OF BF +=+,即2225(8)x x +=−21+. 解得52x =,∴2221254OC OE CE =+=,即r OC == (II )过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,如图:由(I )知:1,82BFAF DE m EF AD =====, 16,2CE CD DE m ∴=−=− 设OE x =,则8OF x =−,∵OC OB =,∴2222OE CE OF BF +=+, 即2222116(8)24x m x m +−=−+ , 整理得:1438m x +=, ∵0,m O >到AD 的距离12DEm =, 类比平面直角坐标系内xy 的几何意义, ∴O 的轨迹是一条射线,故答案为:①;(3)过O 作EF CD ⊥,交CD 于E ,交AB 于F ,过O 作OM AC ⊥于M ,作ON BC ⊥于N ,连接O ,C OB ,过B 作BG CD ⊥于G ,如图:由(II )知,1438m OE +=, ()222225420,64OC CE OE m m ∴+−+ 8,6,AD CD ==10,AC ∴= 15,2CM AC ∴== ()22222525420256464OM OC CM m m ∴=−=−+−=()2444,m m −− ,,,BG CD AD CD DG AB ⊥⊥∥ ∴四边形ABGD 是矩形,,8,DG AB m BG AD ∴====6,CG m ∴=−222212100,BC CG BG m m ∴=+=−+()2221112100,24CN BC m m ∴==−+ ()22221992900,64ON OC CN m m ∴=−=+− 小O 与AC 相交且与BC 相离, ,OM OE ON ∴<<222,OM OE ON ∴<< 即()()222251431444992900,64864m m m m m + −−<<+− 解得:1123m <<.。

江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析)

2023—2024学年度第一学期期中九年级数学试题2023.11满分:140分,时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分.四个选项中只有一个正确选项)1.已知O 的半径为3,点P 在O 内,则OP 的长可能是()A.5B.4 C.3D.2答案:D解析:解:∵O 的半径为3,点P 在O 内,∴3OP <,即OP 的长可能是2.故选:D .2.用配方法解方程2210x x --=,下列配方正确的是()A.2(1)0x -= B.2(1)1x -= C.2(1)2x += D.()212x -=答案:D解析:解:因为2210x x --=所以221x x -=则2212x x -+=即()212x -=故选:D3.给出下列说法:①经过平面内的任意三点都可以确定一个圆;②等弧所对的弦相等;③长度相等的弧是等弧;④相等的弦所对的圆心角相等.其中正确的是()A.①③④B.②C.②④D.①④答案:B解析:解:①经过平面内不共线的三点确定一个圆,故①不符合题意;②等弧所对的弦相等,正确,故②符合题意;③长度相等的弧不一定是等弧,故③不符合题意;④在同圆或等圆中,相等的弦所对的圆心角相等,故④不符合题意,∴其中正确的是②.故选:B .4.函数22y kx =-与()0ky k x=≠在同一平面直角坐标系中的图像大致是()A. B.C. D.答案:C解析:解:A 、二次函数的开口方向向上,即0k >,反比例函数经过第一、三象限,即0k >,因为22y kx =-的对称轴0x =,故该选项是不符合题意;B 、二次函数的开口方向向上,即0k >,反比例函数经过第二、四象限,即0k <,此时k 互相矛盾,故该选项是不符合题意;C 、二次函数的开口方向向下,即0k <,反比例函数经过第二、四象限,即0k <,因为22y kx =-的对称轴0x =,故该选项是符合题意;D 、二次函数的开口方向向下,即0k <,反比例函数经过第一、三象限,即0k >,此时k 互相矛盾,故该选项是不符合题意;故选:C5.有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?经过计算,你的结论是:长比宽多()A.12步B.24步.C.36步D.48步答案:A解析:设矩形田地的长为x 步(30)x >,则宽为(60)x -步,根据题意得,(60)864x x -=,整理得,2608640x x -+=,解得36x =或24x =(舍去),所以(60)12x x --=.故选A .6.如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若25B ∠=︒,则P ∠的度数为()A.40︒B.50︒C.25︒D.65︒答案:A解析:解:如图所示,连接OA ,∵25B ∠=︒,∴222550AOP B ∠=∠=⨯︒=︒,∵PA 是O 的切线,∴90OAP ∠=︒,∴90905040P AOP ∠=︒-∠=︒-︒=︒,∴P ∠的度数为40︒.故选:A .7.以正六边形ABCDEF 的顶点C 为旋转中心,按顺时针方向旋转,使得新正六边形A B CD E F '''''的顶点E '落在直线BC 上,则正六边形ABCDEF 至少旋转的度数为()A.60︒B.90︒C.100︒D.30︒答案:B解析:解:连接CE ,∵正六边形的每个外角360606︒==︒,∴正六边形的每个内角18060120=︒-︒=︒,∴60MCD ∠=︒,120D ∠=︒,∵DC DE =∴()1180120302DCE DEC ∠=∠=⨯︒-︒=︒∴90MCE DCE MCD ∠=∠+∠=︒∴正六边形ABCDEF 至少旋转的度数为90︒故选:B .8.二次函数26y x x =-的图像如图所示,若关于x 的一元二次方程260x x m --=(m 为实数)的解满足15x <<,则m 的取值范围是()A.5m >- B.9m <- C.95m -≤<- D.95m -<<-答案:C解析:解:方程260x x m --=的解相当于26y x x =-与直线y m =的交点的横坐标,∵方程260x x m --=(m 为实数)的解满足15x <<,∴当1x =时,21615y =-⨯=-,当5x =时,25655y =-⨯=-,又∵()22639y x x x =-=--,∴抛物线26y x x =-的对称轴为3x =,最小值为9y =-,∴当15x <<时,则95y -≤<-,∴当95y -≤<-时,直线y m =与抛物线26y x x =-在15x <<的范围内有交点,即当95y -≤<-时,方程260x x m --=在15x <<的范围内有实数解,∴m 的取值范围是95y -≤<-.故选:C .二、填空题(本大题共10小题,每小题4分,共40分)9.已知关于x 的方程20x x m --=的一个根是3,则m =_______.答案:6解析:解:∵关于x 的方程20x x m --=的一个根是3,∴2330m --=,解得:6m =,故答案为:6.10.请在横线上写一个常数,使得关于x 的方程26x x -+_______0=.有两个相等的实数根.答案:9解析:解:1,6a b ==-,224(6)410,b ac c ∆=-=--⨯⨯=Q 9.c ∴=故答案为:9.11.方程2261x x -=的两根为1x 、2x ,则12x x +=_______.答案:3解析:解:移项得:22610x x --=,12632x x -=-+=∴,故答案为:3.12.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.答案:15π解析:解:圆锥的侧面积=12•2π•3•5=15π.故答案为15π.13.某学习机的售价为2000元,因换季促销,在经过连续两次降价后,现售价为1280元,设平均每次降价的百分率为x ,根据题意可列方程为________.答案:()2200011280x -=解析:解:依题意得:()2200011280x -=,故答案为:()2200011280x -=.14.已知拋物线2(1)(0)y a x c a =-+<经过点()11,y -、()24,y ,则1y ________2y (填“>”“<”或“=”).答案:>解析:解:依题意得:抛物线的对称轴为:1x =,()11,y ∴-关于1x =对称点的坐标为:()13,y ,134<< ,且抛物线开口向下,12y y ∴>,故答案为:>.15.已知二次函数243y kx x =--的图象与坐标轴有三个公共点,则k 的取值范围是__.答案:43k >-且0k ≠解析:解:由题意可知:2(4)4(3)0k ∆=--⨯⨯->且0k ≠,解得:43k >-且0k ≠,故答案为:43k >-且0k ≠.16.如图是二次函数2y ax bx c =++的图像,给出下列结论:①240b ac ->;②2b a =;③0a b c -+>;④0abc <.其中正确的是________(填序号)答案:①②④解析:解:∵抛物线与x 轴有两个不同交点,∴240b ac ->,故结论①正确;∵对称轴为直线=1x -,∴12ba-=-,∴2b a =,故结论②正确;由图像知,当=1x -时,0y <,∴<0a b c -+,故结论③不正确;∵抛物线开口向上,∴0a >,∴20b a =>,∵抛物线与y 轴的交点在负半轴,∴0c <,∴0abc <,故结论④正确;∴正确的是①②④.故答案为:①②④.17.如图,在ABC 中,60A ∠=︒,43cm BC =,则能够将ABC 完全覆盖的最小圆形纸片的半径是_______cm .答案:4解析:解:要使能够将ABC 完全覆盖的最小圆形纸片,则这个小圆形纸片是ABC 的外接圆,作ABC 的外接圆O ,连接BO ,CO ,作OD BC ⊥交BC 于D ,如图:60A ∠=︒ ,3cm BC =,120BOC ∴∠=︒,123cm 2BD BC ==,1602BOD BOC ∴∠=∠=︒,在Rt BOD 中,60BOD ∠=︒,90ODB ∠=︒,234cmsin 32BD BO BOD ∴==∠,故答案为:4.18.如图,O 的半径为2,点C 是半圆AB 的中点,点D 是 BC的一个三等分点(靠近点B ),点P 是直径AB 上的动点,则CP DP +的最小值_______.答案:23解析:解:如图,作点D 关于直径AB 的对称点D ¢,则点D ¢在圆上,连接CD ',CD '交直径AB 于点P ,∴CP DP CP D P D C ''+=+=,则CP DP +的最小值是D C '的长,∵点C 是半圆AB 的中点,O 的半径为2,∴ BC等于半圆AB 的一半,∴90BOC ∠=︒,∵点D 是 BC 的一个三等分点(靠近点B ),∴ BD等于 BC 的13,∴11903033BOD BOC ∠=∠=⨯︒=︒,∵点D 与点D ¢关于直径AB 的对称,∴30BOD BOD '∠=∠=︒,∴903060COD D OD '∠=︒-︒=︒=∠,∴OD CD '⊥,6060120COD COD D OD ''∠=∠+∠=︒+︒=︒,∴2D C CM '=,∵OC OD '=,∴1801801203022COD C '︒-∠︒-︒∠===︒,∴112122OM OC ==⨯=,∴CM ===∴2D C CM '==,即CP DP +的最小值是.故答案为:三、解答题(本大题共8小题,共76分.要求写出解答或计算过程)19.解方程:(1)225x x =;(2)233x x +=.答案:(1)10x =或252x =(2)132x -=或232x -=小问1解析:解:225x x=则()250x x -=那么0x =或250x -=即10x =或252x =小问2解析:解:233x x +=则2330x x +-=故2491221b ac ∆=-=+=所以322b x a -±-==即132x -+=或232x -=20.下表是二次函数24y x x c =-++的部分取值情况:x⋯024⋯y⋯c51⋯根据表中信息,回答下列问题:(1)二次函数24y x x c =-++图象的顶点坐标是_______;(2)求c 的值,并在平面直角坐标系中画出该二次函数的图象;(3)观察图象,写出0y >时x 的取值范围:_______.答案:(1)()2,5(2)1c =,作图见解析(3)22x -<<+。

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。

西南大学附属中学校2024届九年级上学期期中数学试卷(含解析)

西南大学附属中学校2024届九年级上学期期中数学试卷(含解析)

重庆市西南大学附属中学2023-2024学年九年级上学期期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1. 下列各数中,不是无理数的是()A. B. C. D.答案:A解析:解:.属于有理数,不是无理数,符合题意;B.属于无理数,不合题意;C.属于无理数,不合题意;D.属于无理数,不合题意;故选:A.2. 观察下列图形,是中心对称图形的是( )A. B. C. D.答案:B解析:解:选项A、C、D的图形都不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:B.3. 如图,和是以点O为位似中心的位似图形,,的周长为8,则的周长为()A. 12B. 18C. 20D. 50答案:C解析:解:和是以点为位似中心的位似图形,,,,,,,,故选:C.4. 估计2×(﹣1)的运算结果应在( )A. 7到8之间B. 8到9之间C. 9到10之间D. 10到11之间答案:B解析:2×(﹣1)=2×(2﹣1)=12﹣2,∵9<12<16,∴3<<4,∴3<2<4,∴8<12﹣2<9.故选:B.5. 下列说法正确的是( )A. 对角线相等的四边形一定是矩形B. 顺次连接矩形各边中点形成的四边形一定是正方形C. 对角线互相平分且相等的四边形一定是菱形D. 经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分答案:D解析:解:对角线相等的平行四边形才是矩形,故A错误;顺次连接矩形各边中点形成的四边形一定是菱形,故B错误;对角线互相平分且相等的四边形一定是矩形,故C错误;经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,故D正确;故选:D.6. 自11月以来,万州疫情越来越严峻.万州二中决定分高中部和初中部同时开展全员核酸检测,初中部比高中部每小时少检测300人,高中部检测800人所用时间是初中部检测600人所用时间的一半.设高中部每小时检测人,根据题意,可列方程为()A. B.C. D.答案:A解析:设高中部每小时检测人,则初中部每小时检测人,高中部检测完需要:小时,初中部检测完需要:,又高中部检测800人所用时间是初中部检测600人所用时间的一半,则,故选:A.7. 用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑩个图案中正方形的个数为()A. 32B. 33C. 37D. 41答案:D解析:解:由题知,第①个图案中有个正方形,第②个图案中有个正方形,第③个图案中有个正方形,第④个图案中有个正方形,…,第个图形中有个正方形,∴第⑩个图案中正方形的个数为,故选:D.8. 如图,AB是⊙O的直径,弦CD⊥AB于点E,AC=CD,⊙O的半径为2,则△AOC的面积为( )A. B. 2 C. 2 D. 4答案:C解析:∵AB是⊙O的直径,弦CD⊥AB于点E,∴直径AB平分弦CD,E为CD中点,∴CE=CD=AC,∴∠CAO=30°,∴∠ACE=60°,又∵OC=OA=,∴∠CAO=∠ACO=30°,∴∠OEC=30°,∴Rt△OCE中有OE=OC=,CE=OE=,则△AOC的面积为:,故选:C.9. 如图,在正方形中,点E,G分别在,边上,且,,连接、,平分,过点C作于点F,连接,若正方形的边长为4,则的长度是( )A. B. C. D. 答案:C解析:解:如图:延长交于H,∵平分,∴,∵,∴,在和中,,∴,∴,,而,∴,∵,正方形的边长为4,∴,,,在中,,在中,,∴,∴.故选:C.10. 若定义一种新运算:,例如:,,下列说法:①;②若,则,;③的解集为或;④函数与直线(为常数)有3个交点,则.其中正确的个数是()A. 4B. 3C. 2D. 1答案:B解析:因为,且,所以,故①正确;当时,,解得,,符合题意;当即时,,所以,此时即,显然不成立,所以②正确;当即时,,得到,解得,所以不等式的解集是;当即时,,得到,解得,所以不等式的解集是或;所以③不正确;当即时,此时因,图像为抛物线上的一部分;当即时,此时或,因为,图像为抛物线上的一部分,且当时,;当时,;符合题意的整体图象如下:故当时,函数与直线(为常数)有3个交点.所以④正确;故选B.二.填空题(共8小题,满分32分,每小题4分)11. ﹣tan60°=_____.答案:﹣1.解析:解:原式=2﹣×=2﹣3=﹣1.故答案为﹣1.12. 在,,3,0四个数中,随机选取一个数作为二次函数中的值,则该二次函数的对称轴在轴右侧的概率是______.答案:或0.5解析:解:二次函数的对称轴为,当对称轴在y轴右侧时,,得到,而-2,-1,3,0这四个数中,小于0的个数有2个,∴该二次函数的对称轴在轴右侧的概率为,故答案为:.13. 若多边形的内角和比外角和大540°,则该多边形的边数是______.答案:七或7解析:解:设这个多边形的边数是n,则(n-2)•180°=360°+540°,解得n=7.故答案为:七.14. 已知关于x的方程x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,则k=_____.答案:﹣2解析:解:设方程的两根分别为x1,x2,∵x2+(k2﹣4)x+k﹣1=0的两实数根互为相反数,∴x1+x2,=﹣(k2﹣4)=0,解得k=±2,当k=2,方程变为:x2+1=0,△=﹣4<0,方程没有实数根,所以k=2舍去;当k=﹣2,方程变为:x2﹣3=0,△=12>0,方程有两个不相等的实数根;∴k=﹣2.故答案为﹣2.15. 如图,在平行四边形ABCD中,,E为BC上一点,连接AE,将沿AE翻折得到,交AC于点G,若,,则AG的长度为______.答案:##解析:如图,过点F作交于点H,∵平行四边形ABCD,∴,∵,∴设,∴,∵,∴,∴,∵沿AE翻折得到,∴,,∴,∴是等腰直角三角形,∴,即,解得:,∴,∴,在中,,∴,即.故答案为:.16. 如图,在平面直角坐标系中,点A是反比例函数图象上的一点,连接,平移得到,当点落在y轴上时,点恰好落在反比例函数(,)的图象上,若,则k的值为______.答案:解析:解:过点A、分别作y轴的垂线,垂直分别为B、C,如图所示:由题意可知:,∴四边形是平行四边形,∴,∴,∵,∴,∵,∴,根据反比例函数k的几何意义可知:,∴,∴,∵反比例函数的图象在第二象限,∴;故答案为.17. 若关于y的不等式组的解集为,且关于x的分式方程的解是非负整数,则所有满足条件的整数a的值之和是_______.答案:19解析:解:由得:,由得:,∵不等式组的解集为,∴,∴,∵,,∴,∵方程的解是非负整数,∴是3的倍数,∵,∴,∴a的取值为,5,8,11,∴所有满足条件的整数a的值之和是19.故答案为:19.18. 若一个四位数的个位数字与十位数字的和与它们的差之积恰好是去掉个位数字与十位数字后得到的两位数,则这个四位数称为“和差数”,令的千位数字为,百位数字为,十位数字为,个位数字为,记,且,则____________________;当,均为整数时,的最大值为_________.答案:①. ②. 6318解析:解:,且,,,;四位数为“和差数”,,,,是整数,是整数,由为整数可知,,设(为整数且),,,或8,当时,①若,则,此时,不符合题意;②若,则,此时,;③若,则,此时,;④若,则,此时,;⑤若,则,不符合题意;当时,①若,则,此时,;②若,则,不符合题意.综上,符合条件的有1224,2736,4848,6318,其中最大值为6318.故答案为:;6318.三.解答题(共8小题,满分78分)19. 计算:(1);(2).答案:(1)(2)小问1解析:解:;小问2解析:解:.20. 如图,已知平行四边形ABCD.(1)用尺规完成以下基本作图:在CB的延长线上取点E,使CE=CD,连接DE交AB于点F,作∠ABC 的平分线BG交CD于点G.(保留作图痕迹,不写作法)(2)在第(1)问所作的图形中,求证:四边形BFDG为平行四边形.证明:∵BG平分∠ABC∴∠ABG=∠CBG∵四边形ABCD为平行四边形∴AB∥CD∴∠ABG=∠CGB,∠CDE=∠BFE∴∠CGB=① ∴CB=CG.∵CE=CD,CB=CG∴CE﹣CB=CD﹣CG,即BE=② ∵CD=CE∴∠CDE=③ ∵∠CDE=∠BFE,∠CDE=∠BEF∴∠BFE=④ ∴BE=BF∵BE=DG,BE=BF∴DG=⑤ ∵AB∥CD,DG=BF∴四边形BFDG为平行四边形.(推理根据:⑥ )答案:(1)见解析(2)①,②,③,④,⑤,⑥一组对边平行且相等四边形是平行四边形小问1解析:解:尺规作图结果如下:小问2解析:证明:平分,,∵四边形为平行四边形,,,,.,,即,,,,,,,,,四边形为平行四边形.(推理根据:一组对边平行且相等的四边形是平行四边形)21. 《中国诗词大会》以“赏中华诗词,寻文化基因,品生活之美”为宗旨,通过演播室比赛的形式,重温经典诗词,继承和发扬中华优秀传统文化,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣.现已成功播出7季,深受观众的喜欢和热捧.《中国诗词大会》第8季正在各地火热选拔.某校为了选择优秀同学参加《中国诗词大会》第8季选拔,在七、八年级所有同学中进行了初赛.现从七、八年级中各随机抽取20名初赛成绩的数据(单位:分)进行整理和分析,共分为四个分数段(表示初赛成绩,取整数):.;.;.;.,初赛成绩不低于90分进入下一轮复赛,下面给出部分信息:七年级抽取20名同学初赛成绩数据为:45,48,50,55,56,60,60,60,63,64,72,75,77,77,78,81,83,88,92,96.八年级抽取20名同学初赛成绩在分数段的所有数据为:71,71,72,74,76.年级平均数中位数众数七年级6968八年级6966根据以上信息,解答下列问题:(1)填空:______,______,七年级抽取同学初赛成绩扇形统计图中分数段对应扇形的圆心角度数为______度,并补全统计图;(2)根据以上数据分析,初赛成绩哪个年级更好?请说明理由(写出一条即可);(3)该校七年级有人,八年级有人,估计七、八年级能进入复赛的同学共有多少人?答案:(1),,,见解析(2)八年级,理由见解析(3)人小问1解析:解:七年级抽取20名同学初赛成绩数据中,分出现的次数最多,则;由八年级抽取20名同学初赛成绩统计图知,A分数段的人数有8人,则位于最中间的两个数分别是,其平均数为,故;七年级抽取同学初赛成绩扇形统计图中分数段对应扇形的圆心角度数为;(人),即八年级中位于C分数段的学生有4人,补充的统计图如下:小问2解析:解:八年级成绩更好;八年级学生的中位数高于七年级.小问3解析:七八两个年级抽取的学生中进入复赛的百分比分别为:,,七八两个年级抽取的学生中进入复赛的人数分别为:(人),(人),估计七、八年级能进入复赛的同学共有(人).22. 在全民健身运动中,骑自行车越来越受到市民青睐,从A地到B地有一条自行车骑行车道.小明从A地出发骑行去B地,小军从B地出发骑行去A地.(1)小明和小军相约在上午8时同时从各自出发地出发,匀速前行,到上午10时,他们还相距,到中午12时,两人又相距.求A、B两地间的自行车道的距离.(2)因骑自行车的市民越来越多,政府决定重新改建一条自行车道,改建的自行车道比A、B两地的距离多,某工程队由于采用了更加先进的修路技术和修路机器,每天可以比原计划的改建里程多,结果完成此项修路工程比原计划少用了5天.若每天付给工程队的施工费用为4万元,则完成工程后,一共付给工程队的费用是多少?答案:(1)A、B两地间的自行车道的距离(2)一共付给工程队的费用是100万元小问1解析:解:设两人的速度和为,第一次相距时用时:,第二次相距时用时:,,解得:,∴,答:A、B两地间的自行车道的距离.小问2解析:解:设实际用了天,则原计划用天,改建的自行车道距离:,,解得:,经检验,是原分式方程的根,∴付给工程队的费用:(万元),答:一共付给工程队的费用是100万元.23. 如图,在矩形中,,,动点P,Q分别从点B,A同时出发,P点以每秒1个单位长度的速度沿着运动,到达A点停止运动,点Q以每秒个单位长度的速度由运动,P点运动时间为t秒,令的面积为,的面积为,回答下列问题:(1)请直接写出,与t之间的函数关系式以及对应的t的取值范围;(2)请在平面直角坐标系中画出,的图象,并写出的一条性质;(3)求当时,t的取值范围.答案:(1);;(2)图见解析;当时,取得最大值,最大值为6(答案不唯一)(3)小问1解析:解:在矩形中,,,∴,∴,当点P在边上时,,此时,∴;当点P在上时,,此时,过点B作于点E,∵,∴,解得:,∴;∴与t之间的函数关系式为;根据题意得:,∴;小问2解析:解:对于当时,,对于当时,,当时,,对于,当时,,当时,,画出图象如下:观察图象得:当时,取得最大值,最大值为6;小问3解析:解:观察图象得:与相交,联立得:,解得:,∴当时,t的取值范围.24. 如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:)答案:(1)观测站A、B之间的距离为海里.(2)补给船能在83分钟之内到达C处,理由见解析.(2)过点B作,垂足为F,根据题意得:,,从而求出,然后在中,利用锐角三角函数定义求出的长,再在中,利用锐角三角函数的定义求出的长,进行计算即可解答.小问1解析:解:过点P作于D点,∴,在中,,海里,∴(海里),(海里),在中,,∴(海里),∴海里,∴观测站A,B之间的距离为海里;小问2解析:补给船能在82分钟之内到达C处,理由:过点B作,垂足为F,∴,由题意得:,,∴,在中,,∴海里,在中,,∴海里,∴补给船从B到C处的航行时间(分钟)分钟,∴补给船能在83分钟之内到达C处.25. 如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交点C,抛物线过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式.(2)在直线上方的抛物线上有一动点E,连接,与直线相交于点F,当时,求E 点坐标.(3)在(2)的条件下,若点E位于对称轴左侧,点M是抛物线对称轴上一点,点N是抛物线上一点,当以M,N,E,B为顶点的四边形是菱形时,直接写出点M的坐标.答案:(1)(2),(3)M的坐标为或)或或或小问1解析:在中,当时,当时,∴、,∵抛物线的图象经过A、C两点,∴,解得,∴抛物线的解析式为;小问2解析:令,解得,,∴,设点E的横坐标为t,则,如图,过点E作轴于点H,过点F作轴于点G,则,∴,∵,∴,∵,∴,∴点F的横坐标为,∴,∴,∴,解得,,当时,,当时,,∴,,小问3解析:∵抛物线的解析式为,抛物线顶点坐标为,对称轴方程为,在(2)的条件下,∵点E位于对称轴左侧,∴,∵点M是抛物线对称轴上一点,∴设,∵,∴,,,①当为菱形的边时,,即,,∴,∴,∴或;②当为菱形的对角线时,,即,∴,解得,∴;③当,即,∴,∴或,∴或;综上所述,M的坐标为或)或或或26.如图,在等腰中,,,垂足为,点为边上一点,连接并延长至,使,以为底作等腰.(1)如图1,若,,求的长;(2)如图2,连接,,点为的中点,连接,过作,垂足为,连接交于点,求证:;(3)如图3,点为平面内不与点重合的任意一点,连接,将绕点顺时针旋转得到,连接,.直线与直线交于点,为直线上一动点,连接并在的右侧作且,连接,为边上一点,,,请直接写出的最小值.答案:(1)(2)证明见解析部分(3)小问1解析:解:如图1中,过点作于点.,,,,,,,,,,,.小问2解析:证明:如图2中,连接,.是等腰直角三角形,,,,,,,,,,,,,,,,,,,,,,,,,;小问3解析:解:如图3中,设交于.,,,,,,,,点的运动轨迹是以为直径的,,,,,,点在运动轨迹是直线,如图4中,作点关于的对称点,连接,,,.是定值,,,,当,,,共线时,的值最小,如图5中,过点作于点,交的延长线于点.,,,,,,,四边形是矩形,,,,,,,,.的最小值为.。

湖北省荆州市监利市2024-2025学年上学期九年级期中学业水平监测数学试题(含答案)

湖北省荆州市监利市2024-2025学年上学期九年级期中学业水平监测数学试题(含答案)

监利市2024—2025学年度上学期九年级期中学业水平监测数学试题(本试卷共4页,满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔.一、选择题(共10题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题要求)1.中秋节是中国的传统节日,有“团圆”、“丰收”的寓意.月饼是首选传统食品,不仅美味,而且设计多样,下列月饼图案中,为中心对称图形的是A. B. C. D.2.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下图代表“大雪”,此图绕着它的旋转中心,按下列角度旋转,能与其自身重合的是A. B. C. D.3.若是方程的一个根,则的值为A.-2B.2C.4D.-44.如图,内接于,是的直径,若,则A. B. C. D.5.关于二次函数的性质,下列说法错误的是A.该函数图象的开口向上B.该函数图象的对称轴是C.该函数的最小值为-1D.当时,随的增大而减小90︒60︒45︒30︒3x =230x bx +-=b ABC △O CD O 50B ∠=︒ACD ∠=30︒40︒50︒60︒()2321y x =--2x =2x >y x6.用配方法解方程时,配方正确的是A. B.C. D.7.若,是方程的两个根,则的值为A.2026B.C.2022D.-20268.如图,以原点为圆心的圆交轴于点,两点,交轴的正半轴于点,为第一象限内上的一点,若,则的度数是A. B. C. D.9.掷实心球是多地高中阶段学校招生体育考试选考项目.如图1是一名男生投实心球,实心球行进路线是一条抛物线,行进高度与水平距离之间的函数关系如图2所示,掷出时起点处高度为,当水平距离为时,实心球行进至最高点处.该男生在此项考试中的成绩是A. B. C.D.10.如图是抛物线的部分图象,其顶点坐标为,且与轴的一个交点在点和之间.则下列结论:①;②;③一元二次方程有两个不相等的实数根:④.其中正确的结论是A.①②B.②③④C.①②④ D.③④二、填空题(共5题,每题3分,共15分)11.抛物线的顶点坐标是________.2620x x +-=()2311x +=()237x +=()2638x +=()2634x +=m n 2220240x x +-=23m m n ++2022-O x A B y C D O 65OCD ∠=︒DAB ∠40︒20︒50︒25︒()m y ()m x 9m 54m 3m 10m()4m ()4m +()20y ax bx c a =++≠()1,n x ()3,0()4,0240b ac ->20a b +=21ax bx c n ++=+420a b c -+<()223y x =-++12.在平面直角坐标系中,若点与关于原点对称,则=________.13.如图,是的半径,弦于点,连接,若的长为8cm ,的长为,则的半径长为________cm.14.在本届全市青少年校园足球比赛中,每两支足球队之间都要进行一次主场比赛和一次客场比赛,共有30场比赛,则参加本届足球比赛的足球队共有________支.15.在矩形中,,点在上,点在平面内,,,连按,将线段绕着点顺时针旋转得到,则线段的最大值为________.三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)解方程:(1),(2).17.(6分)已知函数是关于的二次函数.(1)求的值;(2)当为何值时,抛物线有最高点?并求出最高点的坐标.18.(6分)如图,在平面直角坐标系中,已知,,.(1)画出关于原点成中心对称的;(2)画出绕原点顺时针旋转后得到的.19.(8分)已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(),2m -()1,n m n +OA O BC OA ⊥D OB BC AD 2cm O ABCD 6AB =E BC F 2BE =3EF =AF AF A 90︒AP PE 2420x x +-=22150x x +-=()214m m y m xx -=-+x m m ()5,1A -()3,4B -()1,2C -ABC △O 111A B C △ABC △O 90︒222A B C △x ()222110x m x m --++=m(2)若该方程的两个实数根分别为,,且,求的值.20.(8分)如图,抛物线与直线相交于和,(1)求和的值,及抛物线的解析式:(2)结合图象直接写出不等式的解集.21.(8分)如图,是的直径,,是同侧圆上的两点,半径交于点,.(1)求证:;(2)若,求的半径.22.(10分)阳光玫瑰葡萄果肉鲜脆多汁,口感极佳,是一种比较畅销的水果,某水果店以16元/千克的价格购进某种阳光玫瑰葡萄,规定销售单价不低于成本价,且不高于28元/千克,试销期间发现,该种阳光玫瑰葡萄每周销售量(千克)与销售单价(元/千克)满足一次函数关系,部分数据如下表所示:销售单价(元/千克)222426销售量(千克)20018016(1)求与之间的函数关系式;(2)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获利1600元?(3)当销售单价定为多少时,水果店每周销售阳光玫瑰葡萄获得的利润(元)最大?最大利润是多少元?23.(11分)【问题情境】活动课上,同学们以等边三角形为背景开展旋转探究活动,数学小组经过研究发现“等边三角形在旋转过程中,对应边所在直线的夹角与旋转角存在一定的数量关系”(注:平面内两直线的夹角是指两直线相交形成的小于或等于的角).如图1,将等边绕点逆时针旋转得到,则线段与线段的夹角.如图2,将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角.1x 2x 12111x x +=-m 21y ax bx =+22y kx =+()2,0-()1,n k n 12y y >AB O C D AB //OD BC AC E 30BAC ∠=︒ CDBC =AC =O y x x y y x w 90︒ABC △A 20︒ADE △BC DE 20BMD ∠=︒ABC △A 100︒ADE △BC DE 80BMD ∠=︒【特例分析】(1)如图1,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;如图2,若将等边绕点逆时针旋转得到,则线段与线段所在直线的夹角度数为度;【类比分析】(2)如图3,若将等边绕点逆时针旋转得到,连接交于,求与的数量关系;【延伸应用】(3)如图4,已知是等边三角形,,分别在边和上截取和,使得,连接.将绕点逆时针旋转,连接,当和所在直线互相垂直时,请直接写出的长.24.(12分)如图,抛物线交轴于,两点在左边),交轴于点,点是第二象限内抛物线上任意一点,其横坐标为.(1)直接写出点,,的坐标;(2)如图1,连接,过点作直线轴,交于点.当线段的长度最大时,求点的坐标;(3)如图2,连接,,过点作直线,交轴于点.若平分线段,求直线的解析式.ABC △A 30︒ADE △BC DE ABC △A 130︒ADE △BC DE ABC △A 120︒ADE △CE AB F AB CE ABC △6AB =AB AC ADAE AD AE ==DE ADE △A CD BC DE CD 211242y x x =--+x A B A B y C P n A B C AC P //PD y AC D PD P AC BC P //PQ BC y Q AC PQ PQ监利市2024-2025学年度上学期九年级期中学业水平监测九年级数学答案与评分说明(请各位教师在阅卷前先做题审答案)一、选择题1.C2.B3.A4.B5.D6.A7.C8.B9.D 10.C二、填空题11.(-2,3) 12.11 13.5 14.6 15.三、解答题(其他解法,正确即可.)16.解:(1),,,,……(1分),3分)(2)因式分解,得,……(4分)或,,.……(6分)17.解:(1)函数是关于的二次函数,,解得,;……(2分)(2)抛物线有最高点,,,当时,抛物线有最高点,……(4分)二次函数的解析式为,当时,取最大值为2,最高点的坐标为.……(6分)18.解:(1)如图,即为所求;……(3分)31a =4b =2c =-()2441224∆=-⨯⨯-=2x ==-12x =-22x =-()()350x x -+=30x -=50x +=13x =25x =- ()214m m y m x x -=-+x 22m m ∴-=12m =21m =- 10m ∴-<1m ∴<∴1m =-∴224y x x =-+∴4124b m a =-=-=-y ∴()1,2111A B C △(2)如图,即为所求.……(6分)19.解:(1)根据题意得,,……(2分)解得,所以的取值范围是;……(4分)(2)根据题意得,,,……(5分)所以,……(6分)解得,,……(7分)又,所以.……(8分)20.解:(1)将代入得,,解得,……(1分),将代入得,,……(2分)将和分别代入得,解得,……(4分)抛物线的解析式为;……(5分)(2)不等式的解集为或.……(8分,答对一个结果得2分,答对两个结果得3分)21.解:(1)连接,222A B C △()()2221410m m ⎡⎤∆=---+>⎣⎦34m <-m 34m <-()1221211m x x m --+=-=-2212111m x x m +⋅==+1221212112111x x m x x x x m +-+===-+10m =22m =-34m <-2m =-()2,0-22y kx =+022k =-+1k =22y x ∴=+()1,n 22y x =+3n =()2,0-()1,321y ax bx =+0423a b a b =-⎧⎨=+⎩12a b =⎧⎨=⎩∴212y x x =+12y y >2x <-1x >OC是直径,,……(1分),,……(2分),……(3分),,,……(4分);……(5分)(2),,……(6分)设的半径为,则,在中,,即,……(7分)解得或(舍),答:的半径为2.……(8分)22.解:(1)设与之间的函数关系式为,将,和,分别代入得,解得,与之间的函数关系式为;……(3分)(2)根据题意得,……(4分)解得,(舍),……(5分)答:当销售单价定为26元时,水果店每周销售阳光玫瑰葡萄获利1600元;……(6分)(3)由题意得,……(7分),AB O 90ACB ∴∠=︒//OD BC OD AC ∴⊥ AD CD∴=30BAC ︒∠= 60AOD COD ∴∠=∠=︒260BOC BAC ∠=∠=︒ CDBC ∴=OD AC ⊥ AC =12AE AC ∴==O r 12OE r =Rt AOE △222AE OE AO +=22212r r ⎛⎫+= ⎪⎝⎭2r =2r =-O y x y kx b =+22x =200y =24x =180y =y kx b =+2002218024k b k b=+⎧⎨=+⎩10420k b =-⎧⎨=⎩y ∴x 10420y x =-+()()16104201600x x --+=126x =232x =()()21610420105806720w x x x x =--+=-+-100a =-<当时,取最大值,……(8分)当时,随的增大而增大,当时,最大为1680,……(9分)答:当销售单价定为28元时,水果店每周销售阳光玫瑰葡萄获得的利润最大,最大利润是1680元.……(10分)23.解:(1)30;50;……(2分)(2)根据旋转的性质可得,,,……(3分)是等边三角形,,,,,,……(5分),,在中,,即,,;……(7分)(3)如图,①当在直线的上方时,过点作于点,;……(9分)②当在直线的下方时,过点作于点,延长线交的延长线于点,……(11分)24.解:(1),,;……(3分)(2)设直线的解析式为,将代入得,解得,直线的解析式为,……(4分)点在第二象限的抛物线上,点在直线上,∴58029220bxa=-=-=-w∴1628x≤≤w x∴28x=w120EAC∠=︒ABC ADE△≌△ABC△60BAC∴∠=︒AB AC AE==60BAE EAC BAC BAC∴∠=∠-∠=︒=∠90AFE∴∠=︒EF CF=30AEF∴∠=︒2AE AF∴=Rt AEF△222AF EF AE+=()2222AF EF AF+=EF∴=2CE EF∴====DE AC D DH AC⊥H CD=DE AC D DH AC⊥H ED BC G CD=()4,0A-()2,0B()0,2CAC2y kx=+()4,0A-420k-+=12k=∴AC122y x=+P D AC,,,,……(5分)当时,最大,……(6分)此时点的坐标为;……(7分)(3)设直线的解析式为,将代入得,解得,直线的解析式为,……(8分),设直线的解析式为,将代入得,,,直线的解析式为,……(9分),线段的中点坐标为,……(10分)平分线段,线段的中点在直线上,将代入得,解得:,,(舍去)……(11分)直线的解析式为.……(12分)211,242P n n n ⎛⎫∴--+ ⎪⎝⎭()40n -<<1,22D n n ⎛⎫+ ⎪⎝⎭221111224224PD n n n n n ⎛⎫⎛⎫∴=--+-+=-- ⎪ ⎪⎝⎭⎝⎭∴12122b n a -=-=-=--PD P ()2,2-BC 2y mx =+()2,0B 220m +=1m =-∴BC 2y x =-+//PQ BC PQ y x b =-+211,242P n n n ⎛⎫--+ ⎪⎝⎭211242n n n b ∴--+=-+211242b n n ∴=-++∴PQ 211242y x n n =--++2110,242Q n n ⎛⎫∴-++ ⎪⎝⎭∴PQ 211,224n n ⎛⎫-+ ⎪⎝⎭AC PQ ∴PQ AC 211,224n n ⎛⎫-+ ⎪⎝⎭122y x =+2112244n n -+=+11n =-20n =∴PQ 54y x =-+。

山东省临沂市兰陵县2024届九年级上学期期中阶段质量调研数学试卷(含部分解析)

山东省临沂市兰陵县2024届九年级上学期期中阶段质量调研数学试卷(含部分解析)

2023-2024学年度上学期阶段质量调研九年级数学一、选择题(本题有12小题,每小题3分,共36分在每小题所给的选项中,只有一项是符合题目要求的)1.下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2.用配方法解一元二次方程26100x x --=时,下列变形正确的为()A .()231x +=B .()231x -=C .()2319x +=D .()2319x -=3.对于二次函数()21234y x =---,下列说法正确的是()A .开口向上B .对称轴为2x =C .图象的顶点坐标为()2,3--D .当2x >时,y 随x 的增大而增大4.若关于x 的方程220x x n --=没有实数根,则n 的值可能是()A .1-B .0C .1D .5.如图,AB 是O 的直径,50BAC ∠=︒,则D ∠=()A .20︒B .40︒C .50︒D .80︒6.在如图44⨯的正方形网格中,MNP △绕某点旋转一定的角度,得到111M N P △,则其旋转中心可能是()(第6题)A .点AB .点BC .点CD .点D7.如果二次函数2y ax c =+的图象如图所示,那么一次函数y ax c =+的图象大致是()(第7题)A .B .C .D .8.如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是()A .70︒B .105︒C .125︒D .155︒9.抛物线2y x =先向右平移5个单位,再向上平移3个单位,则新的抛物线式是()A .()253y x =-+B .()253y x =+-C .()253y x =--D .()253y x =++10.若()16,A y -,()23,B y -,()31,C y 为二次函数245y x x =+-图象上的三点,则1y ,2y ,3y 的大小关系是()A .123y y y <<B .231y y y <<C .312y y y <<D .213y y y <<11.某超市1月份营业额为90万元.1月、2月、3月总营业额为144万元,设平均每月营业额增长率为x ,则下面所列方程正确的是()A .()2901144x +=B .()2901144x -=C.()9012144x +=D .()()290190114490x x +++=-12.已知0m n >>,若关于x 的方程2230x x m +--=的解为1x ,()212x x x <,关于x 的方程2230x x n +--=的解为3x ,()434x x x <.则下列结论正确的是()A .3124x x x x <<<B .1342x x x x <<<C .1234x x x x <<<D .3412x x x x <<<二、填空题(共5小题,每小题4分,满分20分)13.一元二次方程240x x +=的两个根是______.14.在直角坐标系中,点()1,2-关于原点对称点的坐标是______.15.半径为3的圆中,一条弦长为3,则这条弦所对的圆周角的度数是______.16.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度/C t ︒4-2-014植物高度增长量/mml 4149494625科学家经过猜想、推测出l 与t 之间是二次函数关系,由此可以推测最适合这种植物生长的温度为______C ︒.17.如图是二次函数2y ax bx c =++图象的一部分,图象过点()3,0A -,对称轴为1x =-,给出以下结论:①0abc <②240b ac ->③40b c +<④若13,2B y ⎛⎫- ⎪⎝⎭、21,2C y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y >⑤当31x -≤≤时,0y ≥,其中正确的结论是(填写代表正确结论的序号)______.三、解答题(共64分)18.解方程(每小题4分,共8分)(1)2560x x --=(2)2410x x +-=19.(7分)ABC △在平面直角坐标系中的位置如图所示(一格代表一个单位长度).(1)将ABC △向右平移5个单位长度,同时向下平移4个单位长度得到111A B C △,请在方格纸中画出111A B C △;(2)将ABC △绕点A 顺时针旋转90︒得到22AB C △,连接12AC ,直接写出12AC 的长.20.(7分)已知二次函数的解析式为243y x x =+-.(1)直接写出顶点坐标(______);与x 交点坐标(______);(______);与y 轴交点坐标(______);(2)在平面直角坐标系xOy 中,画出这个二次函数图象的示意图.21.(8分)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求2020-2022年买书资金的平均增长率.22.(10分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.23.(11分)如图,将等腰ABC △绕顶点B 逆时针方向旋转α度到11A BC △的位置,AB 与11AC 相交于点D ,AC 与11AC 、1BC 分别交于点E 、F .(1)求证:1BCF BA D ≌△△.(2)当C α∠=度时,判定四边形1A BCE 的形状并说明理由.24.(13分)如图1.对称轴为直线1x =的抛物线经过()3,0B 、()0,4C 两点,抛物线与x 轴的另一交点为A .图1图2(1)求抛物线的解析式;(2)若点P 为抛物线对称轴上的一点,使PA PC +取得最小值,求点P 的坐标:(3)如图2,若M 是线段BC 上方抛物线上一动点,过点M 作MD 垂直于x 轴,交线段BC 于点D ,是否存在点M 使线段MD 的长度最大,如存在求出点M 的坐标;若不存在,请说明理由.九年级数学答案与解折一、选择题:相信你一定能选对!(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题3分,共42分)1.选:B .2.解析:解:方程移项得:2610x x -=,配方得:26919x x -+=,即()2319x -=,故选:D .3.解析:解:A 、由104a =-<知抛物线开口向下,此选项错误;B 、抛物线的对称轴为直线2x =,此选项正确;C .函数图象的顶点坐标为()2,3-,此选项错误:D 、当2x >时,y 随x 的增大而减小,此选项错误;故选:B .4.D 5.B 6.B 7.C 8.D9.解析:解:将抛物线2y x =先向右平移5个单位,再向上平移3个单位所得抛物线解析式为()253y x =-+.故选:A .10.解析:解:∵()16,A y -、()23,B y -、()31,C y 为二次函数245y x x =+-图象上的三点,∴17y =,28y =-,30y =,∴231y y y <<.故选:B .11.解析:解:设平均每月营业额的增长率为x ,则第二个月的营业额为:()901x ⨯+,第三个月的营业额为:()2901x ⨯+,则由题意列方程为:()()290190114490x x +++=-.故选:D .12.B二、填空悬(共7小题,每小题3分,满分21分)13.解析:解:方程整理得:()40x x +=,解得:10x =,24x =-.故答案为:10x =,24x =-.14.解析:解:在直角坐标系中,点()1,2-关于原点对称点的坐标是()1,2-,故答案为:()1,2-.15.30︒或150︒16.解析:解:设()20l at bt c a =++≠,选()0,49,()1,46,()4,25代入后得方程组494616425c a b c a b c =⎧⎪+==⎨⎪++=⎩,解得:1249a b c =-⎧⎪=-⎨⎪=⎩,所以l 与t 之间的二次函数解析式为:2249l t t =--+,当12bt a=-=-时,l 有最大值50,即说明最适合这种植物生长的温度是1C -︒.另法:由()2,49-,()0,49可知抛物线的对称轴为直线1t =-,故当1t =-时,植物生长的温度最快.故答案为:1-.17.解析:解:由图象可知,0a <,0b <,0c >,∴0abc >,故①错误.∵抛物线与x 轴有2个交点,∴240b ac ∆=->,所以②正确;∵抛物线与x 轴的一个交点坐标为()3,0-,抛物线的对称轴为直线1x =-,∴抛物线与x 轴的另一个交点坐标为()1,0,∴1x =时,0y =,即0a b c ++=,∴30a c +=,∴3c a =-,∴48350b c a a a +=-=<,所以③正确;∵点13,2B y ⎛⎫- ⎪⎝⎭到直线1x =-的距离大于点21,2C y ⎛⎫- ⎪⎝⎭到直线1x =-的距离,∴12y y =,所以④错误:当31x -≤≤时,0y ≥,所以⑤正确:故答案为:②③⑤三、开动脑筋,你一定能做对!(共63分)18.解析:解:(1)2560x x --=,()()610x x -+=,60x -=,10x +=,16x =,21x =-;(2)2410x x +-=,移项,得241x x +=,配方,得24414x x ++=+,即()225x +=,开方,得2x +=即12x =-+,22x =-.19.(1)解:如图:(2)解:如图:∴22126335AC =+=20.(1)()2,1,()1,0()3,0,()0,3-.(2)图省略21.解:设2020-2022年买书资金的平均增长率为x 由题意得()2500017200x +=解得10.2x =,2 2.2x =-(舍)答:2020-2022年买书资金的平均增长率为20%.22.解析:解:(1)由题意得,销售量()250102510500x x =--=-+,则()()2010500w x x =--+21070010000x x =-+-;(2)()22107001000010352250w x x x =-+-=--+.∵100-<,∴函数图象开口向下,w 有最大值,当35x =时,max 2250w =,故当单价为35元时,该文具每天的利润最大;(3)2030x <≤,对称轴左侧w 随x 的增大而增大,故当30x =时,w 有最大值,此时2000w =.23.解析:(1)证明:∵ABC △是等腰三角形,∴AB BC =,A C ∠=∠,∵将等腰ABC △绕顶点B 逆时针方向旋转α度到11A BC △的位置,∴1A B AB BC ==,1A A C ∠=∠=∠,11A BD CBC ∠=∠,在BCF △与1BA D △中,111A C AB BCA BD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴1BCF BA D ≌△△;(2)解:四边形1A BCE 是菱形,∵将等腰ABC △绕顶点B 逆时针方向旋转α度到11A BC △的位置,∴1A A ∠=∠,∵1ADE A DB ∠=∠,∴1AED A BD α∠=∠=,∴180DEC α∠=︒-,∵C α∠=,∴1A α∠=,∴111360180A BC A C A EC α∠=︒-∠-∠-∠=︒-,∴1A C ∠=∠,11A BC A EC ∠=∠,∴四边形1A BCE 是平行四边形,∵1A B BC =,∴四边形1A BCE 是菱形.24.(1)解:∵对称轴为直线1x =的抛物线经过()3,0B ,与x 轴的另一交点为A∴点A 的坐标为()1,0-设该抛物线的解析式为()()13y a x x =+-把()0,4C 代入,得43a=-解得43a =-故抛物线的解析式为()()2448134333y x x x x =-+-=-++;(2)解:设BC 所在的直线的解析式为()0y kx b k =+≠把B 、C 的坐标分别代入得:304k b b +=⎧⎨=⎩解得434k b ⎧=-⎪⎨⎪=⎩∴BC 的解析式为443y x =+,当1x =时,83y =∴81,3P ⎛⎫ ⎪⎝⎭此时PA PC PB PC BC +=+=取得小小值;(3)解:存在,设248,433M m m m ⎛⎫-++ ⎪⎝⎭,4,43D m m ⎛⎫-+ ⎪⎝⎭2224844434443333332MD m m m m m m ⎛⎫⎛⎫=-++--+=-+=--+ ⎪ ⎪⎝⎭⎝⎭,03m <<∵403a =-<,∴当32m =时,MD 取得最大值,此时点M 的坐标为3,52⎛⎫ ⎪⎝⎭.。

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)

20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。

2024-2025学年上学期期中质量检测九年级数学试卷

2024-2025学年上学期期中质量检测九年级数学试卷

2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在一元二次方程2x2+x-1=0中,二次项系数、一次项系数、常数项分别是(A)2,1,-1. (B)2,-1,1. (C)2,1,1. (D)2,-1,-1.2.下列APP图标中,是中心对称图形的是3.一元二次方程x2-2x-1=0的根的情况是(A)有两个相等的实数根. (B)有两个不相等的实数根.(C)只有一个实数根. (D)没有实数根.4.关于抛物线y=-2(x+5)2-4,下列说法正确的是(A)开口向上. (B)对称轴是直线x=-5. (C)函数有最小值-4.(D)可由抛物线y=-2x2向右平移5个单位再向下平移4个单位而得.5.如图,△ABC内接于⊙O,连OA,OB,若∠BOA-∠C=35°,则∠OAB的度数是(A)70°. (B)65°. (C)55°. (D)50°.6.如图,将△ABC绕点C逆时针旋转,点A的对应点为D,点B的对应点为E,若B恰好是线段CD与AE的交点,且∠DCE=34°,则∠A的度数是(A)34°. (B)39°. (C)42°. (D)45°.7.在平面直角坐标系中,点P坐标(3,-4),以P为圆心,4个单位长度为半径作圆,下列的是(A)原点O在⊙P内. (B)原点O在⊙P上.(C)⊙P与x轴相切,与y轴相交. (D)⊙P与y轴相切,与x轴相交.8.已知抛物线y =x 2-x+c 上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若-2<x 1<-1, 0<x 2<1,1<x 3<2,则y 1,y 2,y 3的大小关系是(A )y 1<y 2<y 2. (B )y 2<y 1<y 3 (C )y 2<y 2<y 1 (D )y 2<y 3<y 1.9.如图,四边形ABCD 内接于⊙O ,AB =BC ,∠ABC =90°,⊙O 的直径为10,四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是(A )y =√2x 2+10√2.(B )y =√2x +10√2.(C )y =√22x 2+10√2.(D )y =√22x +10√2. 10.在平面直角坐标系中,将函数y =x 2-2x+t 的图象记为C 1,将C ,绕原点旋转180°得到图象C 2,把C 1和C 2合起来的图形记为图形C.则当-1≤t ≤1时,直线y =x+1与图形C 的交点的个数是(A )2. (B )4. (C )2或3. (D )3或4.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.点A (2,-1)关于原点对称的点的坐标是____________________.12.某航空公司有若干个飞机场,每两个飞机场之间都开辟了一条航线,一共开辟了6条航线,这个航空公司共有__________________个飞机场.13.若关于x 的方程x 2+(k -2)x+1-k =0的两个实数根互为相反数,则k 的值是 _____________.14.中国传统数学重要的著作《九章算术》中记载了一个“圆材理壁”的问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?“用几何语言表达为:如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,EB =1寸,CD =10寸,则直径AB 长是__________________________寸.15.已知抛物线y =ax 2+bx+c (a ,b ,c 为常数,a <0)经过点(m ,0),m >0,且4a -2b+c =0,则下列四个结论:① c >0;② b -3a >0;③ 若方程ax 2+bx+c =b 有两个不相等的实数根x 1,x 2 (且x 1<x 2),则x 2<m;④ 若0<m <2,抛物线过点(0,1),且s =a+b+c ,则s <34.其中正确的结论是____________(填序号). 16.如图,已知△ABC ,△DEF 均为等腰直角三角形,∠BAC =∠DEF =90°,A 为DF 的中点,BF 的延长线交线段EC 于点G ,连接GD.若GD =10,GE =4,则GF =_____.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题8分)解方程:x 2-x -5=0.18.(本小题8分)如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 从点C 开始沿边CA 运动,速度为1cm/s.与此同时,点E 从点B 开始沿边BC 运动,速度为2cm/s.当点E 到达点C 时,点D ,E 同时停止运动.连接AE ,DE ,设运动时间为ts ,△ADE 的面积为Scm 2.(1)用含t 的代数式表示:CD =______cm ,CE =______cm;(2)当CD 为何值时S =58S △ABC ?19.(本小题8分)二次函数y =ax 2+bx -3中的x ,y 的部分取值如下表:根据表中数据填空:(1)该函数图象的对称轴是_________;(2)该函数图象与x 轴的交点的坐标是_________;(3)当0<x <3时,y 的取值范围是__________;(4)不等式ax 2+bx -3>x -3的解集是__________.x *** - I 0 1 2 3 *** y … m -3 n -3 0 ***如图,已知直线MA交⊙O于A,B两点,BD为⊙O的直径,E为⊙O上一点,BE平分∠DBM,过点E作EF⊥AB于点F.小求证:EF为⊙O的切线;2.若已知⊙O的半径为5,且EF-BF=2,求AB的长.21.(本小题8分)如图是由小正方形组成的5×5的网格,小正方形的顶点称为格点,A,B,C,D,E五个点均为格点,F是线段CD与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,每个画图任务的画线不得超过三条.(1)在图(1)中,若点A和B关于点O中心对称,画点O;2)在图(1)中,若点F绕点E逆时针旋转90°后得到点G,画点G;(3)在图(2)中,在线段BC上画点M,使∠AMB=∠BAC;(4)在图(2)中,画满足条件的格点N,使∠ANC=2∠ABC.(2)(第21题)在2024年巴黎奥运会上,全红鲜凭借总分425.60分的成绩蝉联奥运会女子10米跳台的冠军,成为中国奥运史上最年轻的三金王.在进行跳水训练时,运动员身体(视作一点)在空中的运动路线可视作一条抛物线,如图所示,建立平面直角坐标系xOy.已知AB为3米,OB为10米,跳水曲线在离起跳点A水平距离为0.5米时达到距水面最大垂直高度k米.(1)当k=11.25时,①求这条抛物线的解析式;②求运动员落水点与点A的距离;(2)图中OE=4.5米,OF=5.5米,若跳水运动员在区域EF内(含点E,F)人水时才能达到训练要求,请直接写出k的取值范围.23.(本小题10分)如图,在△ABC中,AC=BC,∠ACB=120°,点P为△ABC内一点.(1)如图(1),CP=CQ,∠QCP=120°,连接BP,AQ,求证:BP=AQ;(2)如图(2),D为AB的中点,若PC=2,PA=5,∠CPD=150°,求线段PD的长;(3)如图(3),在(2)的条件下,若点M为平面内一点,PM=PC,连BM,将线段BM绕点B顺时针旋转120°至BN,连PN,请直接写出PN的最大值.(第23题)已知抛物线y=ax2+bx+3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图(1),Q为抛物线上第一象限内一点,若∠AQC=2∠BAQ,求点Q 的坐标;(3)如图(2),P为x轴上方一动点,直线PM,PN与抛物线均只有唯一公共点M,N, OH⊥MN于点H,且△PAB的面积是10,求线段OH长度的最大值.(1)(2)(第24题)。

河南省安阳市幸福中学2023-—2024学年上学期九年级期中数学试卷(含详解)

河南省安阳市幸福中学2023-—2024学年上学期九年级期中数学试卷(含详解)

2023-2024学年河南省安阳市殷都区幸福路中学九年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)下列各式中:﹣3xy,π,,0,x2y﹣2,单项式有( )A.2个B.3个C.4个D.5个2.(3分)用四舍五入法对1.8971取近似数,精确到0.01,得到的正确结果是( )A.1.89B.1.9C.1.90D.1.8973.(3分)ChatGPT是由OpenAI开发的一种基于深度学习的自然语言处理模型,它可以生成流畅的文本回复,并且具备广泛的应用领域,如客户服务、智能助手等,今年8月份,ChatGPT的全球独立访问者(UV)数量从1.80亿增至1.805亿,其中1.805亿用科学记数法可表示为( )A.18.05×108B.1.805×108C.1.805×109D.1.805×1074.(3分)下列运算正确的是( )A.2ab﹣a=3b B.a+a=a2C.7a2b﹣7ab2=0D.6ab﹣2ab=4ab5.(3分)算式(﹣4)×(﹣4)×(﹣4)×(﹣4)可表示为( )A.(﹣4)4B.﹣44C.(﹣4)×4D.以上都不正确6.(3分)下列说法正确的是( )A.﹣m表示负数B.若|x|=x,则x是正数C.单项式的系数是2D.2+82x2y的次数是37.(3分)某学校组织学生乘车赴红色教育基地——红旗渠参观,若全部租用7座的车需要x辆,且最后一辆车还差2人未坐满,则此次参观的学生人数是( )A.7(x﹣1)+2B.7x+2C.7x﹣2D.7(x﹣1)﹣58.(3分)a是有理数,那么在①2a,②(﹣a)2,③|a|+,④|a﹣1|四个数中,一定是正数的有( )A.1个B.2个C.3个D.4个9.(3分)点A,B在数轴上的位置如图所示,其对应的有理数分别是a和b.下列四个结论:①a﹣b<0;②|a|<|b|;③a﹣3>0;④a+b>0.其中正确的是( )A.①②③④B.①②③C.①②④D.①③④10.(3分)七(1)班联欢会上有同学表演了一个魔术,魔术师背对小聪,让小聪拿着扑克牌按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于4张,且各堆牌的张数相同;第二步:从左边一堆拿出4张,从右边一堆拿出2张,放入中间一堆;第三步:右边一堆现在有几张牌,就从中间一堆拿几张牌放入右边一堆.这时,魔术师准确说出了中间一堆牌现有的张数,则他说出的张数是( )A.8B.9C.10D.11二、填空题(每小题3分,共15分)11.(3分)写出一个含有两项、常数项为负数,次数为2的多项式: .12.(3分)若单项式5a m﹣2b3与﹣a3b n的和仍是单项式,则m+n= .13.(3分)观察下面一列数:﹣,,﹣,,…,按照这个规律,第9个数应该是 .14.(3分)对于任意的有理数a,b如果满足=,那么我们称这一对数a,b为“相随数对”,若一对有理数m,n是“相随数对”,则18m﹣(2m﹣9n﹣10)= .15.(3分)如图,圆的周长为4个单位长度,在该圆的圆周4等分点处分别标上0,1,2,3,让圆周上标记数字0的点与数轴上表示﹣2的点重合,再将数轴(表示﹣2的点左侧的部分)按逆时针方向环绕在该圆上.则数轴上表示﹣2023的点与圆周上标记数字 的点重合.三、解答题(本大题共8个小题,共75分)16.(10分)计算:(1)(﹣+﹣)×36;(2)[10﹣(﹣4)2]÷.17.(9分)先化简,再求值:2(2x2y﹣xy2+2)﹣3(1+x2y﹣2xy2),其中x=﹣,y=﹣1.18.(9分)若有理数x,y满足|x|=4,|y|=1,且|x﹣y|=y﹣x,求x+y的值.19.(9分)如图,在一个长方形休闲广场的四个角都设计一个半径相同的四分之一圆形花坛,若花坛的半径为r米,广场长为m米,宽为n米.(1)列式表示广场空地的面积;(2)若休闲广场的长为300米,宽为200米,圆形花坛的半径为8米,求广场空地的面积(π取3.14,计算结果保留整数)20.(9分)在数学活动中,小明遇到了求式子的值的问题.他和同伴讨论设计了如图所示的几何图形来求式子的值.已知图中大正方形的面积为1,每一个小图形中的数字表示这个小图形的面积.(1)图中阴影部分的面积为 ;(用乘方的形式表示)(2)利用图示,求的值;(3)直接写出的值.(结果用含n的式子表示)21.(9分)已知A=x﹣3y+2x2y,B是多项式,小明在计算C=2A+B时,误将其按C=2A﹣B计算,得C =x﹣4y+x2y.(1)试求多项式B;(2)若|x2y+4|+(x﹣y﹣3)2=0,求A﹣2B的值.22.(10分)某商场销售一款运动鞋和运动袜,运动鞋每双定价180元,运动袜每双定价30元,商场决定开展促销活动,活动期间向客户提供两种优惠方案,方案一:买一双运动鞋送一双运动袜;方案二:运动鞋和运动袜都按定价的85%付款,现某客户要到该商场购买运动鞋6双和运动袜x双(x>6).(1)若该客户按方案一购买,需付款 元;若该客户按方案二购买,需付款 元;(需化简)(2)按方案二购买比按方案一购买省多少钱?(3)当x=10时,通过计算说明,上面的两种购买方案哪种省钱?23.(10分)阅读理解,完成下列各题.定义:已知点A,B,C为数轴上任意三点,若点C到点B的距离是它到点A的距离的2倍,则称点C 是[A,B]的2倍点,如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[﹣1,B]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是 的2倍点,点B是 的2倍点;(选用A,B,C,D表示,不能添加其他字母)(2)如图2,点M,N为数轴上两点,点M表示的数是﹣3,点N表示的数是0,若点E在M,N之间且点E是[M,N]的2倍点,则点E表示的数是多少?(3)若P,Q为数轴上两点,点P在点Q的左侧,且PQ=6,一动点H从点Q出发,以每秒2个单位长度的速度沿数轴向左运动,求运动多久时,点H恰好是P和Q两点的2倍点?2023-2024学年河南省安阳市殷都区幸福路中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.【解答】解:式子﹣3xy,π,0,符合单项式的定义,是单项式;式子,x2y﹣2,是多项式.故单项式有3个.故选:B.2.【解答】解:用四舍五入法对1.8971取近似数,精确到0.01,得到的正确结果是1.90;故选:C.3.【解答】解:1.805亿=180500000=1.805×108.故选:B.4.【解答】解:A、2ab﹣a≠3b,故A错误;B、a+a=2a≠a2,故B错误;C、7a2b﹣7ab2≠0,故C错误;D、6ab﹣2ab=4ab,故D正确.故选:D.5.【解答】解:(﹣4)×(﹣1)×(﹣4)×(﹣4)=(﹣4)4.故选:A.6.【解答】解:A、当m=0时,﹣m=0,即﹣m不一定表示负数,故此选项不符合题意;B、若|x|=x,则x是正数或0,故此选项不符合题意;C、单项式的系数是,故此选项不符合题意;D、2+82x2y的次数是3,故此选项符合题意;故选:D.7.【解答】解:∵全部租用7座的车x辆,且最后一辆车还差2人未坐满,∴一共有(7x﹣2)人,故选:C.8.【解答】解:①∵当a≤0时,2a≤0,∴①不一定是正数;②∵当a=0时,(﹣a)2=0,∴②不一定是正数;③∵|a|≥0,∴|a|+>0,∴③一定是正数;④∵当a=1时,|a﹣1|=0,∴④不一定是正数.综上所述:一定是正数是③,共1个,故选:A.9.【解答】解:根据图示,可得﹣3<a<0,b>3,①a﹣b<0,故①正确;②|a|<|b|,故②正确;③a﹣3<0,故③错误;④a+b>0,故④正确.∴正确的是①②④.故选:C.10.【解答】解:设第一步时候,每堆牌的数量都是x(x≥4),第二步时候:左边x﹣4,中间x+6,右边x﹣2,第三步时候:右边有(x﹣2)张牌,则从中间拿走(x﹣2)张,∴中间所剩牌数为(x+6)﹣(x﹣2)=x+6﹣x+2=8,∴他说出的张数是8.故选:A.二、填空题(每小题3分,共15分)11.【解答】解:含有两项、常数项为负数,次数为2的多项式可以为:xy﹣4.故答案为:xy﹣4(答案不唯一).12.【解答】解:由同类项定义可知m﹣2=3,n=3,解得m=5,n=3,∴m+n=5+3=8.故答案为:8.13.【解答】解:观察一列数:﹣,,﹣,,…,按照这个规律,第n个数为(﹣1)n,所以第9个数应该是﹣.故答案为:﹣.14.【解答】解:∵(m,n)是“相随数对”,∴+=,=,整理得:16m+9n=0,∴18m﹣(2m﹣9n﹣10)=18m﹣2m+9n+10=16m+9n+10=0+10=10,故答案为:10.15.【解答】解:∵圆的周长为4,∴圆上数字0对应数轴上的﹣2,圆上数字3对应数轴上的﹣3,圆上数字2对应数轴上的﹣4,圆上数字1对应数轴上的﹣5,……,∴每四个数循环对应圆上的四个数字,∵(2023﹣2)÷4=505……1,∴数轴上表示﹣2023的点与圆周上标记数字3的点重合.故答案为:3.三、解答题(本大题共8个小题,共75分)16.【解答】解:(1)(﹣+﹣)×36=﹣36×+36×﹣36×=﹣24+20﹣21=﹣4﹣21=﹣25;(2)[10﹣(﹣4)2]÷=(10﹣16)÷=﹣6÷=﹣6×3=﹣18.17.【解答】解:原式=4x2y﹣2xy2+4﹣3﹣4xy2+6x2y=10x2y﹣6xy2,+1,当x=﹣,y=﹣1时,原式=10×(﹣)2×(﹣1)﹣6×(﹣)×(﹣1)2+1=.18.【解答】解:∵|x|=4,∴x=±4,∵|y|=1,∴y=±1,∵|x﹣y|=y﹣x,∴y﹣x≥0,即y≥x,∴x=﹣4,y=1或x=﹣4,y=﹣1,∴x+y=﹣4+1=﹣3或x+y=﹣4+(﹣1)=﹣5,即x+y的值为﹣3或﹣5.19.【解答】解:(1)矩形的面积为mn,四分之一圆形的花坛的面积为πr2,则广场空地的面积为mn﹣4×πr2=mn﹣πr2,答:广场空地的面积为(mn﹣πr2)米2;(2)由题意得:m=300米,n=200米,r=8米,代入(1)的式子得:300×200﹣π×82=60000﹣64π=30000﹣64×3.14=30000﹣200.96≈29799(米2),答:广场空地的面积为29799米2.20.【解答】解:(1)由所给图形可知,图中阴影部分的面积为的一半,所以图中阴影部分的面积为:.故答案为:.(2)由所给图形可知,,所以==.(3)由所给图形可知,,所以=.21.【解答】解:(1)根据题意得:B=2A﹣C=2(x﹣3y+2x2y)﹣(x﹣4y+x2y)=2x﹣6y+4x2y﹣x+4y﹣x2y=x﹣2y+3x2y;(2)∵A=x﹣3y+2x2y,B=x﹣2y+3x2y,∴A﹣2B=x﹣3y+2x2y﹣2(x﹣2y+3x2y)=x﹣3y+2x2y﹣2x+4y﹣6x2y=﹣x+y﹣4x2y=﹣(x﹣y)﹣4x2y,∵|x2y+4|+(x﹣y﹣3)2=0,∴x2y=﹣4,x﹣y=3,则A﹣2B=﹣3﹣4×(﹣4)=13.22.【解答】解:(1)方案一:180×6+30×(x﹣6)=30x+900,方案二:180×85%×6+30×85%×x=25.5x+918,故答案为:30x+900;25.5x+918;(2)(30x+900)﹣(25.5x+918)=4.5x﹣18,∴方案二购买比按方案一购买省(4.5x﹣18)元;(3)当x=10时,方案一:30×10+900=1200元,方案二:25.5×10+918=1173元,∵1200>1173,∴方案二更省钱.23.【解答】解:(1)∵CA=2,DA=1,CA=2DA,∴点A是[C,D]的2倍点.∵BD=2,BC=1,BD=2BC,∴点B是[D,C]的2倍点.故答案为:[C,D][D,C];(2)∵NM=0﹣(﹣3)=3,∵点E在线段MN上,点E是[M,N]的2倍点,∴EN=MN=2.∴点E表示的数是﹣2,故答案为:﹣2;(3 )设运动t秒时,点H恰好是P和Q两点的2倍点,∵PQ=6,HQ=2t,∴PH=6﹣2t或2t﹣6,又∵点H恰好是P和Q两点的2倍点,∴点H是[P,Q]的2倍点或点H是[Q,P]的2倍点,∴PH=2HQ或HQ=2PH,即:2×2t=6﹣2t或2t=2(m﹣2t)或2t=2(2t﹣m),解得t=1或t=2或t=6.所以,当t=1或t=2或t=6时,点H恰好是P和Q两点的2倍点.。

浙江温州实验中学2024年九年级11月期中考试数学试卷+答案

浙江温州实验中学2024年九年级11月期中考试数学试卷+答案

2024-2025学年浙江省温州实验中学九年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(3分)已知⊙O半径为5,若点A在⊙O内,则线段OA的长可能是()A.4.5B.5C.5.5D.62.(3分)若,则=()A.B.C.D.3.(3分)将抛物线y=2(x﹣1)2先向左平移3个单位、再向下平移2个单位后,所得新抛物线的表达式是()A.y=2(x﹣4)2+2B.y=2(x﹣4)2﹣2C.y=2(x+2)2﹣2D.y=2(x+2)2+24.(3分)已知△ABC∽△DEF,若给定其相似比和DF的长,则下列线段长度能确定的是()A.AB B.DE C.AC D.EF5.(3分)如图,已知四边形ABCD是⊙O的内接四边形,E为AD延长线上一点,则∠CDE等于()A.64°B.60°C.54°D.52°6.(3分)如图,已知等边△ABC,以BC为直径的圆分别交边AB,E,若BC=2,则的长为()A.B.C.D.7.(3分)一个不透明的袋子里装有4个白球和若干个黑球,这些球除颜色外都相同.从袋子中随机摸一个球,记下颜色后放回搅匀,并绘制了如图所示的统计图.估计袋子里黑球的个数为()A.16B.18C.20D.228.(3分)如图,在△ABC中,∠BAC=90°,且BD=1,CD=3.连接AD,连结BE,DE()A.B.C.3D.9.(3分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第二象限,且过点(1,0)()A.1B.0.5C.﹣0.5D.﹣110.(3分)如图,已知A,B,C,D是⊙O上依逆时针顺序排列的四个点,设弦BC=x,AD=y,则在x,y值的变化过程中()A.x+y B.xy C.x2+y2D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)已知线段a=2cm,b=8cm,那么线段a和b的比例中项为cm.12.(4分)如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若,则DE的长为.13.(4分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,以水平方向为x轴,点O为原点建立直角坐标系,x轴上的点C,D为水柱的落水点,则两个水柱的最高点M,N之间的距离为m.14.(4分)如图,如果圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠E=40°,那么∠A=.15.(4分)已知二次函数y=x2﹣(﹣1≤x≤t),当x=﹣1时,函数取得最大值,函数取得最小值,则t的取值范围是.16.(4分)如图1是我校小杰同学设计的“温”字图案,图2是他在设计图案前所绘制的基本框架图,其中△DEF是等腰三角形,四边形EBGF是正方形且点E在BC上,DB,I.已知△DEH∽△DBE,C,D,F在同一直线上,则.三、解答题(本题有7小题,共66分.解答需写出必要的文字说明、演算步骤或证明过程)17.(7分)如图,D,E分别是AB,AC上的点,相似比是.(1)若DE=4cm,求BC的长.(2)若∠C=35°,∠A=20°,求∠EDA的度数.18.(7分)如图,已知⊙O的一条弦AB和该圆上的一点C.(1)请按尺规作图的要求作出⊙O上的点D,使得∠DAC=∠AOB;(2)在(1)的条件下,连结OA,若∠DAC=40°,⊙O的半径为119.(8分)某校开展数学文化节活动,其中八年级的活动项目是现场说题比赛,每位参赛的学生都需要从A,B(1)甲同学抽到题卡A的概率为.(2)用画树状图或列表的方法,求甲、乙两位同学抽到不同题卡的概率.20.(10分)如图,已知抛物线经过点(0,1),,B两点(B在A的右边).(1)求抛物线的函数表达式.(2)过点A作x轴的平行线分别交y轴与抛物线于C,D.若A是线段CD的中点,求t的值.21.(10分)如图,△ABC和△ABD内接于⊙O,直径AC与BD相交于点E,OB,∠BAC+2∠CBD=90°.(1)求证:BC∥OD.(2)若BE=OE,CE=2,求OE的长度.22.(12分)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)当a=1时,①若该函数图象的对称轴为直线x=2,且过点(1,4),求该函数的表达式.②若该函数的图象与x轴有且只有一个交点,求证:.(2)当时,若该函数的图象经过点(1,m),(3,n),(5,p)且满足m﹣n=4 23.(12分)如图1,在圆内接四边形ABCD中,点A是,使∠AEB=∠ABD.(1)若∠AEB=70°,求∠CBD的度数.(2)求证:CE=BD.(3)如图2,若BD为直径,BE=2,2024-2025学年浙江省温州实验中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(3分)已知⊙O半径为5,若点A在⊙O内,则线段OA的长可能是()A.4.5B.5C.5.5D.6【分析】根据点与圆的位置关系解答即可.【解答】解:∵⊙O半径为5,点A在⊙O内,∴OA<5,∴线段OA的长可能是5.5.故选:A.【点评】本题考查的是点与圆的位置关系,熟知点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r是解题的关键.2.(3分)若,则=()A.B.C.D.【分析】利用比例的性质,进行计算即可解答.【解答】解:∵,∴=3+=1+=,故选:A.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.3.(3分)将抛物线y=2(x﹣1)2先向左平移3个单位、再向下平移2个单位后,所得新抛物线的表达式是()A.y=2(x﹣4)2+2B.y=2(x﹣4)2﹣2C.y=2(x+2)2﹣2D.y=2(x+2)2+2【分析】根据“左加右减”的平移法则即可得到答案.【解答】解:将抛物线y=2(x﹣1)2先向左平移3个单位、再向下平移2个单位后7﹣2=2(x+4)2﹣2,故选:C.【点评】本题考查二次函数图象与几何变换,解题的关键是掌握“左加右减”的平移法则.4.(3分)已知△ABC∽△DEF,若给定其相似比和DF的长,则下列线段长度能确定的是()A.AB B.DE C.AC D.EF【分析】根据相似三角形的性质解答即可.【解答】解:∵△ABC∽△DEF,∴==,∵给定其相似比和DF的长,∴线段AC长度能确定.故选:C.【点评】熟知相似三角形的对应角相等,对应边的比相等是解题的关键.5.(3分)如图,已知四边形ABCD是⊙O的内接四边形,E为AD延长线上一点,则∠CDE等于()A.64°B.60°C.54°D.52°【分析】根据圆周角定理先求出∠ABC=64°,再根据圆内接四边形的性质求出∠ADC的度数,最后根据邻补角的定义即可求出答案.【解答】解:∵∠AOC=128°,∴∠ABC=64°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC=180°﹣64°=116°,∴∠CDE=180°﹣∠ADC=64°.故答案为:A.【点评】本题主要考查圆周角定理、圆内接四边形的性质等,灵活运用以上知识点是解题的关键.6.(3分)如图,已知等边△ABC,以BC为直径的圆分别交边AB,E,若BC=2,则的长为()A.B.C.D.【分析】根据等边三角形的性质,得到△OBD,△OCE均为等边三角形,进而求出∠DOE的度数,利用弧长公式进行求解即可.【解答】解:连接OD,OE,∵△ABC为等边三角形,∴∠B=∠C=60°,∵BC为直径,BC=2,∵OD=OB=OC=OE=1,∴△OBD,△OCE均为等边三角形,∴∠BOD=∠COE=60°,∴∠DOE=180°﹣60°﹣60°=60°,∴弧DE的长为;故选:B.【点评】本题考查弧长的计算,等边三角形的性质,关键是等边三角形性质的应用.7.(3分)一个不透明的袋子里装有4个白球和若干个黑球,这些球除颜色外都相同.从袋子中随机摸一个球,记下颜色后放回搅匀,并绘制了如图所示的统计图.估计袋子里黑球的个数为()A.16B.18C.20D.22【分析】根据统计图找到摸到白球的频率稳定到的常数,再根据大量重复试验中事件发生的频率等于事件发生的概率求解即可.【解答】解:观察发现:随着实验次数的增加频率逐渐稳定到常数0.2附近,∴估计摸到白球的概率为7.2,∴共有小球4÷4.2=20(个),∴估计袋子里黑球的个数为20﹣4=16(个).故选:A.【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.8.(3分)如图,在△ABC中,∠BAC=90°,且BD=1,CD=3.连接AD,连结BE,DE()A.B.C.3D.【分析】根据旋转的性质得出AD=AE,∠DAE=90°,再根据SAS证明△EAB≌△DAC得出∠C=∠ABE=45°,CD=BE,得出∠EBC=90°,再根据勾股定理即可求解.【解答】解:∵线段AD绕点A顺时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°∴∠EAB+∠BAD=90°,在△ABC中∠BAC=90°,AB=AC,∴∠BAD+∠CAD=90°,∠C=∠ABC=45°,∴∠EAB=∠CAD,∴△EAB≌△DAC(SAS),∴∠C=∠ABE=45°,CD=BE,∴∠EBC=∠EBA+∠ABC=90°,∵BD=1,CD=3,∴CD=BE=4,∴.故选:D.【点评】本题考查了全等三角形的判定与性质,勾股定理,旋转的性质,根据SAS证明△EAB≌△DAC 是解题的关键.9.(3分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第二象限,且过点(1,0)()A.1B.0.5C.﹣0.5D.﹣1【分析】依据题意,首先根据题意确定a、b的符号,然后进一步确定a的取值范围.【解答】解:∵抛物线的顶点在第二象限,且过点(1,∴开口向下.∴a<0,﹣<0,∴b<0,且b=﹣a﹣8,∴﹣a﹣1<0,得﹣8<a<0,∴a的值可能是﹣0.8,故选:C.【点评】本题主要考查了二次函数的图象与系数的关系,二次函数图象上点的坐标特征,解答此题的关键是分别求出a、b的取值范围.10.(3分)如图,已知A,B,C,D是⊙O上依逆时针顺序排列的四个点,设弦BC=x,AD=y,则在x,y值的变化过程中()A.x+y B.xy C.x2+y2D.【分析】过点A作⊙O直径AE,过点B作⊙O的直径BF,连接DE,CF,依题意得∠E+∠F=90°,∠E+∠A=90°,则∠A=∠F,由此可依据“AAS”判定△ADE和△FCB全等,则DE=BC,然后在Rt△ADE中,由勾股定理即可得出答案.【解答】解:过点A作⊙O直径AE,过点B作⊙O的直径BF,CF&nbsp;∵,∴+=180°,∴∠E+∠F=90°,∵AE,BF是⊙O的直径,∴AE=BF=20,∠ADE=∠FCB=90°,∴∠E+∠A=90°,∴∠A=∠F,在△ADE和△FCB中,,∴△ADE≌△FCB(AAS),∴DE=BC=x,在Rt△ADE中,AD=y,AE=20,由勾股定理得:DE2+AD2=AE5,即x2+y2=400,∴在x,y值的变化过程中7+y2的值不变.故选:C.【点评】此题主要考查了圆心角、弧、弦的关系,圆周角定理,全等三角形的判定和性质,理解圆心角、弧、弦的关系,圆周角定理,熟练掌握全等三角形的判定和性质是解决问题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)已知线段a=2cm,b=8cm,那么线段a和b的比例中项为4cm.【分析】比例的基本性质:两外项之积等于两内项之积.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=2×2,x=±4(线段是正数.故答案为4.【点评】考查了比例中项的概念,注意:求两条线段的比例中项的时候,应舍去负数.12.(4分)如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若,则DE的长为6.【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【解答】解:∵AD∥BE∥CF,∴==,∵EF=3,∴=,∴DE=6.故答案为:6.【点评】本题考查了平行线分线段成比例定理,根据定理得出比例式是解答此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.13.(4分)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,以水平方向为x轴,点O为原点建立直角坐标系,x轴上的点C,D为水柱的落水点,则两个水柱的最高点M,N之间的距离为10m.【分析】利用二次函数图象上点的坐标特征可求出点M、N的坐标,进而可得出MN之间的距离.【解答】解:由二次函数y=﹣(x﹣7)2+6的图象可知,当x=2时,y=6,故N点的坐标为(5,8);∵从A点向四周喷水,喷出的水柱为抛物线,∴M点的坐标为(﹣5,6),∴MN之间的距离为3+5=10(m).故答案为:10.【点评】本题考查了二次函数的应用,解题的关键是利用二次函数图象上点的坐标特征,求出点M、N 的坐标.14.(4分)如图,如果圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠E=40°,那么∠A=40° .【分析】根据圆内接四边形的性质得到∠ADC=∠FBC,根据三角形内角和定理得到∠ADC=180°﹣∠A﹣∠F,根据三角形的外角的性质得到∠FBC=∠A+∠E,列式计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC=∠FBC,∵∠ADC=180°﹣∠A﹣∠F,∠FBC=∠A+∠E,∴180°﹣∠A﹣∠F=∠A+∠E,则2∠A=180°﹣(∠F+∠E)=80°,解得,∠A=40°,故答案为:40°.【点评】本题考查的是圆内接四边形的性质、三角形的外角的性质以及三角形内角和定理的应用,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.15.(4分)已知二次函数y=x2﹣2x(﹣1≤x≤t),当x=﹣1时,函数取得最大值,函数取得最小值,则t的取值范围是1≤t≤3.【分析】根据当x=1时,函数取得最小值,得出x可取到1,再由x=﹣1时,函数取得最大值,利用抛物线的对称性即可解决问题.【解答】解:因为当x=1时,函数取得最小值,所以在﹣1≤x≤t的范围内,x可取到4,所以t≥1.因为抛物线的对称轴为直线x=1,所以x=﹣4时的函数值与x=3时的函数值相等,又因为当x=﹣1时,函数取得最大值,所以t≤4,综上所述,t的取值范围是:1≤t≤3.故答案为:7≤t≤3.【点评】本题主要考查了二次函数的性质及二次函数的最值,熟知二次函数的图象和性质是解题的关键.16.(4分)如图1是我校小杰同学设计的“温”字图案,图2是他在设计图案前所绘制的基本框架图,其中△DEF是等腰三角形,四边形EBGF是正方形且点E在BC上,DB,I.已知△DEH∽△DBE,C,D,F在同一直线上,则.【分析】连结CD,BF,由正方形的性质得EF=EB,∠CEF=∠BEF=90°,则BF=EB,∠DEC+∠DEF=90°,所以EB=BF,再推导出∠DEC=∠DCE,则DE=DC,所以DC=DF,由△DEH ∽△DBE,得∠DEH=∠DBE,可证明∠BDF=90°,由BD垂直平分CF,得BF=BC,则EB=BC,CE=BC,即可求得=,于是得到问题的答案.【解答】解:连结CD,BF,∵四边形EBGF是正方形,∴EF=EB,∠CEF=∠BEF=90°,∴BF==EB,∴EB=BF,∵C,D,F三点在同一直线上,∴∠DCE+∠DFE=90°,∵DE=DF,∴∠DEF=∠DFE,∴∠DEC=∠DCE,∴DE=DC,∴DC=DF,∵△DEH∽△DBE,∴∠DEH=∠DBE,∴∠BDF=∠DCE+∠DBE=∠DEC+∠DEH=∠CEF=90°,∴BD垂直平分CF,∴BF=BC,∴EB=BC,∴CE=BC﹣BC=,∴==,故答案为:.【点评】此题重点考查正方形的性质、等腰三角形的性质、相似三角形的性质、勾股定理等知识,正确地作出辅助线是解题的关键.三、解答题(本题有7小题,共66分.解答需写出必要的文字说明、演算步骤或证明过程)17.(7分)如图,D,E分别是AB,AC上的点,相似比是.(1)若DE=4cm,求BC的长.(2)若∠C=35°,∠A=20°,求∠EDA的度数.【分析】(1)根据相似三角形的对应边成比例即可得出结论;(2)先根据勾股定理求出∠B的度数,再由相似三角形的对应角相等即可得出结论.【解答】解:(1)∵△ADE∽△ABC,相似比是,∴=,即=,解得BC=10,故BC为10cm;(2)∵∠C=35°,∠A=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣35°=125°,∵△ADE∽△ABC,∴∠EDA=∠B=125°.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应角相等,对应边的比相等是解题的关键.18.(7分)如图,已知⊙O AB和该圆上的一点C.(1)请按尺规作图的要求作出⊙O上的点D,使得∠DAC=∠AOB;(2)在(1)的条件下,连结OA,若∠DAC=40°,⊙O的半径为1【分析】(1)在点C的上方作=,连接AD即可;(2)求出∠AOB=80°,利用扇形面积公式求解.【解答】解:(1)如图,点D即为所求;(2)∵∠DAC=∠AOB,∴∠AOB=80°,∴S扇形AOB==.【点评】本题考查作图﹣复杂作图,圆周角定理,扇形的面积等知识,解题的关键是理解题意,记住扇形的面积=.19.(8分)某校开展数学文化节活动,其中八年级的活动项目是现场说题比赛,每位参赛的学生都需要从A,B(1)甲同学抽到题卡A的概率为.(2)用画树状图或列表的方法,求甲、乙两位同学抽到不同题卡的概率.【分析】(1)根据概率公式即可得到结论;(2)先画树状图展示所有9种等可能结果,再求出甲、乙两位同学抽到不同题卡的结果数,然后根据概率公式计算.【解答】解:(1)甲同学抽到题卡A的概率=,故答案为:;(2)根据题意可得画树状图如下:共有9种可能的结果,其中甲,∴甲、乙两位同学抽到不同题卡的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.(10分)如图,已知抛物线经过点(0,1),,B两点(B在A的右边).(1)求抛物线的函数表达式.(2)过点A作x轴的平行线分别交y轴与抛物线于C,D.若A是线段CD的中点,求t的值.【分析】(1)用待定系数法可得抛物线的函数表达式为y=﹣x2+3x+1;(2)求出抛物线对称轴为直线x=3,设A的横坐标为m,则D的横坐标为3+(3﹣m)=6﹣m,根据A是线段CD的中点,有6﹣m=2m,即可得A(2,5),故5=﹣2+t,从而t=7.【解答】解:(1)把(0,1),x2+bx+c得:,解得,∴抛物线的函数表达式为y=﹣x7+3x+1;(2)如图:由y=﹣x2+7x+1=﹣(x﹣3)2+知抛物线对称轴为直线x=3,设A的横坐标为m,则D的横坐标为3+(3﹣m)=6﹣m,∵A是线段CD的中点,∴CD=2AC,即5﹣m=2m,解得m=2,在y=﹣x2+3x+1中,令x=2得y=3,∴A(2,5),把A(2,5)代入y=﹣x+t得:5=﹣5+t,解得t=7.【点评】本题考查待定系数法求抛物线解析式,二次函数性质和一次函数图象上点坐标特征,解题的关键是求出A的坐标.21.(10分)如图,△ABC和△ABD内接于⊙O,直径AC与BD相交于点E,OB,∠BAC+2∠CBD=90°.(1)求证:BC∥OD.(2)若BE=OE,CE=2,求OE的长度.【分析】(1)根据圆周角定理得到∠ABC=90°,得到∠ABO+∠OBC=90°,等量代换得到∠OBD=∠CBD OBD=∠ODB,根据平行线的判定定理得到结论.(2)设BE=OE=x,根据等腰三角形的性质得到∠BOC=∠OBE,求得∠BEC=∠OBC=∠C,得到BC=BE,得到BC=OE=x,根据相似三角形的判定和性质定理的定理即可得到结论.【解答】(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ABO+O∠BC=90°,∵OA=OB,∴∠BAC=∠ABO,∵∠BAC+2∠CBD=90°,∴∠OBC=2∠DBC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠DBC,∴BC∥OD.(2)解:设BE=OE=x,∵BE=OE,∴∠BOC=∠OBE,∵∠CBE=∠OBE,∴∠BOC=∠CBE,∴∠BEC=∠OBC=∠C,∴BC=BE,∴BC=OE=x,∵∠C=∠C,∴△BOC∽△CBE,∴,∴=,∴x=1+,∴OE=1+.【点评】本题考查了三角形的外接圆与外心,相似三角形的判定和性质,圆周角定理,平行线的判定,熟练掌握相似三角形的判定和性质定理是解题的关键.22.(12分)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)当a=1时,①若该函数图象的对称轴为直线x=2,且过点(1,4),求该函数的表达式.②若该函数的图象与x轴有且只有一个交点,求证:.(2)当时,若该函数的图象经过点(1,m),(3,n),(5,p)且满足m﹣n=4【分析】(1)①根据二次函数的对称轴公式即可求出b的值,再将(1,4)代入该二次函数的解析式即可求出c的值,即得出该函数的表达式;②根据该函数的图象与x轴有且只有一个交点,即说明其相关一元二次方程有且只有一个实数解,再利用其根的判别式即得出Δ=b2﹣4×1×c=0,整理为4c=b2,进而可求出b+4c=b2+b,再配方,结合二次函数的性质即可求解;(2)先将m、n、p用abc表示出来,然后根据m﹣n=4得到b=﹣4a﹣2,比较大小用作差法,所以得到p﹣n=8a﹣4,再根即可判断.【解答】解:(1)①∵a=1,∴该函数解析式为y=x2+bx+c.∵该函数图象的对称轴为直线x=6,∴x=﹣=﹣,解得:b=﹣5.∵该函数图象过点(1,4),∴2=12﹣6+c,解得:c=7,∴该函数解析式为y=x2﹣7x+7;②∵该函数解析式为y=x2+bx+c,且其图象与x轴有且只有一个交点,∴方程x3+bx+c=0有两个相等的实数解,∴Δ=b2﹣4×1×c=0,整理得:b4﹣4c=0,即4c=b2,∴b+4c=b4+b=(b+)6﹣,∵(b+)≥0,∴(b+)2﹣≥﹣,∴;(2)由题可知,m=a+b+c,p=25a+5b+c,∵m﹣n=a+b+c﹣9a﹣2b﹣c=﹣8a﹣2b=6,∴b=﹣4a﹣2,∴p﹣n=25a+4b+c﹣(9a+3b+c)&nbsp; &nbsp; &nbsp; &nbsp; =16a+5b&nbsp; &nbsp; &nbsp; &nbsp; =16a﹣8a﹣4&nbsp; &nbsp; &nbsp; &nbsp; =3a﹣4,∵a>,∴8a>4,∴8a﹣4>0,∴p﹣n>3,即n<p.【点评】本题考查二次函数的图象和性质,二次函数图象与x轴的交点问题,整式的加减,分解因式等知识.掌握二次函数图象上的点满足其解析式是解题关键.23.(12分)如图1,在圆内接四边形ABCD中,点A是,使∠AEB=∠ABD.(1)若∠AEB=70°,求∠CBD的度数.(2)求证:CE=BD.(3)如图2,若BD为直径,BE=2,【分析】(1)连接AC,利用等弧对等弦的性质,等腰三角形的性质,圆周角定理和三角形的内角和定理解答即可;(2)连接AC,利用圆周角定理和全等三角形的判定与性质解答即可;(3)利用全等三角形的性质得到AE=AB,∠EAC=∠BAD=90°,AC=AD=3;过点A作AM⊥BE于点M,利用等腰三角形的三线合一的性质得到EM=BM=BE=1;设AM=x,则CM=,利用相似三角形的判定与性质求得x值,再利用勾股定理求得BD,则结论可求.【解答】(1)解:连接AC,如图,∵点A是的中点,∴,∴AC=AD,∴∠ADC=∠ACD.∵∠ABD=∠ACD,∴∠ABD=∠ACD=∠ADC.∵∠AEB=∠ABD,∠AEB=70°,∴∠ADC=∠ACD=∠AEB=70°,∴∠CAD=180°﹣∠ADC﹣∠ACD=40°,∴∠CBD=∠CAD=40°;(2)证明:连接AC,如图,∵点A是的中点,∴,∴AC=AD,∵,∴∠ACE=∠ADB.在△AEC和△ABD中,,∴△AEC≌△ABD(AAS),∴CE=BD.(3)解:∵BD为直径,∴∠BAD=BCD=90°.由(2)知:△AEC≌△ABD,∴AE=AB,∠EAC=∠BAD=90°.过点A作AM⊥BE于点M,如图,则EM=BM=BE=4.设AM=x,则CM=,∵∠EAM+∠CAM=90°,∠CAM+∠ACM=90°,∴∠EAM=∠ACM,∵∠EMA=∠AMC=90°,∴△EMA∽△AMC,∴,∴,∴x4=9或x2=﹣10(不合题意,舍去),∴x=±3(负数不合题意,舍去),∴x=3.经检验:x=3是原方程的根,∴AM=8,∴AB=AE=,∴BD==10,∴圆的半径=BD=5.【点评】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的判定与性质,三角形的内角和定理,直角三角形的性质,勾股定理,全等三角形的判定与性质,相似三角形的判定与性质,添加适当的辅助线构造全等三角形和等腰三角形是解题的关键.。

辽宁省大连市金州区2024-2025学年九年级上学期11月期中数学试题(含答案)

辽宁省大连市金州区2024-2025学年九年级上学期11月期中数学试题(含答案)

金普新区2024-2025学年度第一学期期中质量检测试卷九年级数学2024.11(本试卷共23道题 满分120分 考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。

第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程中,是关于的一元二次方程的是( )A .B .C .D .2.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .3.下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是()A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线4.已知的半径为5,点在外,则的长可能是( )A .3B .4C .5D .65.若关于的一元二次方程有两个不相等的实数根,则的值可以是( )A .B .1C .2D .36.“读万卷书,行万里路.”某校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均阅读量从七年级的每年100万字增加到九年级的每年121万字.设该校七至九年级人均阅读量年均增长率为,则可列方程为()A .B .C .D .7.如图,为的直径,弦,垂足为点,若的半径为13,,则的长为()x 310x -=23x y +=2210x x +-=410x -=()1,3()1,3--()1,3-()1,3-()3,1O P O OP x 220x x k -+=k 1-x ()21001121x +=()21001%121x +=()10012121x +=()()210010011001121x x ++++=AB O CD AB ⊥E O 24CD =AE(第7题)A .5B .6C .7D .88.抛物线的对称轴是直线,且经过点,则的值为( )A .3B .C .6D .9.如图,在中,,将绕点按逆时针方向旋转得到,点恰好在边上,连接,则的长为( )(第9题)A .8B .C .D .610.如图,在矩形中,,点从点出发以的速度沿向点运动,同时点从点出发以的速度沿向点运动,设经过的时间为的面积为,则下列图象中能大致反映与之间的函数关系的是()(第10题)A .B .C .D .第二部分 非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.一天中,钟表时针从上午6时至上午9时旋转的度数为______.12.若是方程的一个实数根,则代数式的值为______.13.如图,是的切线,为切点,如果,则的长为______.221y x bx =++32x =()1,k k 3-6-Rt ABC △90,60,4ACB A AC ︒︒∠=∠==CAB △C CDE △D AB BEBEABCD 4cm,8cm AB BC ==P A 1cm /s AB B Q B 2cm /s BC C ,x s PBQ △2cm y y x x t =210x x --=22024t t -+,,AB AC BD O ,,P C D 8,5AB AC ==BD(第13题)14.如图是二次函数的部分图象,由图象可知,当时,自变量的取值范围是______.(第14题)15.如图,抛物线:与轴交于两点,点在第四象限的抛物线上,连接,将线段绕点逆时针旋转,得到线段,当点恰好落在轴上时,点的坐标为______.(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明,演算步骤或推理过程)16.(10分)(1)用配方法解方程:;(2)用公式法解方程:.17.(8分)如图所示,在正方形网格中,的顶点均在格点上,请在所给平面直角坐标系中按要求作图.2y ax bx c =++0y >x 223y x x =--x ,A B C BC CB C 90︒CD D y C 269x x -=-22340x x +-=ABC △(第17题)(1)以点为旋转中心,将绕点顺时针旋转得,画出,并写出的坐标;(2)直接写出线段与的关系:______.18.(8分)如图,四边形是的内接四边形,延长相交于点,且.求证:是等腰三角形.(第18题)19.(8分)如图,矩形画框由边框和内衬组成,其中画框的边框宽度相等,画框外框长为,宽为,且边框的面积为整个画框面积的,求这个矩形画框的边框宽度是多少厘米?(第19题)20.(8分)某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量(件)与每件售价(元)之间符合一次函数关系,如图所示.(第20题)(1)求与之间的函数关系式,并直接写出自变量的取值范围;(2)设商场销售这种商品每天获利(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?A ABC △A 90︒11ABC △11AB C △11,B C BC 11B C ABCD O ,DC ABE 2ABC E ∠=∠ADE △32cm 20cm 310y x y x x w21.(8分)如图1,是的直径,是弦,是的中点,与交于点,点在延长线上,且.(第21题图1)(1)求证:为的切线;(2)如图2,连接,若,求的长.(第21题图2)22.(12分)如图1,在中,,点是线段上一点(不与点重合),,以为旋转中心,将线段顺时针旋转得到线段,连接.(第22题图1)(1)求(用含的式子表示);(2)求证;;(3)如图2,当时,求的面积.(第22题图2)23.(13分)已知是自变量的函数,当时,称函数为函数的“相关函数”.AB O AC DAB CD AB E F AB CF EF =CF O BD 8,4CF BF ==BD ABC △,90AC BC ACB =∠=︒D AB ,A B ()045ACD αα︒∠=<<︒D DC 90︒DE EB EDB ∠αBE CB⊥2,AD CD ==BCD △1y x 213y xy =+2y 1y例如:函数,当时,则函数是函数的“相关函数”.(1)点在函数的图象上,判断点是否在函数的“相关函数”的图象上,并说明理由;(2)函数的“相关函数”为与的图象交于两点,点在点的左侧,的图象与轴交于点,点在的图象上,其横坐标为.①当点在第一象限时,过点作,垂足为点,当为何值时,线段的长度最大?最大值是多少?②当时,在的图象上,点与点之间部分(含点和点)的最大值与最小值之差为,求关于的函数解析式,并直接写出自变量的取值范围;③在②的条件下,函数图象上的点到直线的距离为时,直接写出自变量的值.(备用图)12y x =22132323y xy x x x =+=⋅+=+2223y x =+12y x =(),A m n 13y x =(),3B m mn +1y 2y 12y x =-+21,y y 2y ,A B A B 2y y C P 2y t P P PQ AB ⊥Q t PQ 0t >2y C P C P h h t t h 4h =72t金普新区2024-2025学年度第一学期期中质量检测九年级数学评分参考(※其他正确解法或证法请参照赋分)一,选择题(本题共10小题,每小题3分,共30分)1.C 2.A 3.C 4.D 5.A 6.A 7.D 8.B 9.C 10.B二、填空题(本题共5小题,每小题3分,共15分)11.;12.2025;13.3;14.;15..三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)解:(2)解:∴方程有两个不相等的实数根∴17.(8分)90︒15x -<<269x x -=-26999x x -+=-+()230x -=30x -=123x x ==22340x x +-=2,3,4a b c ===-()22Δ43424410b ac =-=-⨯⨯-=>x ==12x x ==(1)如图即为所求作.;(2)且18.(8分)证明:∵,,∴,又∵四边形是的内接四边形,∴,又∵,∴,∴,∴,∴是等腰三角形.19.(8分)解:设这个矩形画框的边框宽度是厘米.由题意得,解得,(不符题意,舍去)答:这个矩形画框的边框宽度是2厘米.20.(8分)解:(1)设:与之间的函数关系式为.由图象,把代入得,解得,∴与之间的函数关系式为.(2)∵,∴∵,开口向下,对称轴为直线,∴当随的增大而增大,∴当时,答:当每件商品的售价定为36元时,每天销售利润最大,最大利润是768元.21.(8分)(1)证明:如图1,连接.∵,∴,∵,∴,∵是中点,∴,∴,又∵,∴,()()113,1,2,3B C --11BC B C =11BC B C ⊥2ABC E ∠=∠ABC E BCE ∠=∠+∠E BCE ∠=∠ABCD O 180A DCB ∠+∠=︒180DCB BCE ∠+∠=︒A BCE ∠=∠A E ∠=∠AD ED =ADE △x ()()33222023220110x x ⎛⎫--=⨯⨯- ⎪⎝⎭122,24x x ==y x ()0y kx b k =+≠()()25,70,35,50y kx b =+70255035k b k b =+⎧⎨=+⎩2120k b =-⎧⎨=⎩y x 2120,2036y x x =-+≦≦2x 120y =-+()20w x y=-()()202120x x =--+()2240800x =--+20a =-<40x =2036,x w ≤≤x 36x =()223640800768w =-⨯-+=最大值,OD OC CF EF =ECF CEF ∠=∠OC OD =OCD ODC ∠=∠DAB AD BD =AOD BOD ∠=∠180AOD BOD ∠+∠=︒90BOD ∠=︒∴在中,,又∵,∴,∴,即,∴,又∵是半径,∴是切线.(2)证明:如图2,连接.设,∵,∴,∴,∵由(1)得,,∴在中,根据勾股定理,即,解得,∴,∴在中,根据勾股定理,∴22.(12分)(1)解:∵线段顺时针旋转得到线段,∴,∵,∴,∴,∴,∴,.(2)证明:如图,过点作,交延长线于点.∴,由(1)得,,∴,∴,∴,∵线段顺时针旋转得到线段,Rt EOD △90ODE OED ∠+∠=︒OED CEF ∠=∠90ODE CEF ∠+∠=︒90OCD ECF ∠+∠=︒90OCF ∠=︒OC CF ⊥OC O CF O ,OD OC OE x =8,4CF EF BF ===844EB EF BF =-=-=4,8OC OB OE EB x OF OE EF x ==+=+=+=+90OCF BOD ∠=∠=︒Rt OCF △222OC CF OF +=()()222488x x ++=+2x =46OB OD x ==+=Rt OBD △222OB OD BD +=BD ===DC 90︒DE 90CDE ∠=︒,90AC BC ACB =∠=︒,90A CBA A CBA ∠=∠∠+∠=︒45A CBA ∠=∠=︒45CDB A ACD α∠=∠+∠=+︒()909045EDB CDB α∠=-∠=-︒︒+︒45α=︒-D MD DB ⊥BC M 90MDB ∠=︒45CBA ∠=︒18045M MDB CBA ∠=-∠-=︒∠︒M CBA ∠=∠MD BD =DC 90︒DE∴,∵,∴,即,∴,∴,∴,即.(3)证明:过点作,且使,连接.过点作,垂足为点.∴,∴,即,又∵由(1)得,∴,∴,∴,∵在中,根据勾股定理,∴,∵在中,根据勾股定理,∴,∵,∴是中点,又∵,∴,∴.23.(13分)(1)解:点是在函数的“相关函数”的图象上.∵点在函数的图象上,∴,∵,∴,∴当时,,,90DC DE CDE =∠=︒90MDB CDE ∠=∠=︒MDB CDB CDE CDB ∠-∠=∠-∠MDC BDE ∠=∠()SAS MCD BDE ≌△△45M DBE ∠=∠=︒90CBE CBA DBE ∠=∠+∠=︒BE CB ⊥C CN CD ⊥CN CD =,BN DN C CP AB ⊥P 90DCN ACB ︒∠==∠DCN DCB ACB DCB ∠-∠=∠-∠ACD BCN ∠=∠,AC BC CD CN ===∠45A CBA ∠=∠=︒()SAS ACD BCN ≌△△2,45AD BN A CBN ==∠=∠=︒454590DBN CBA CBN ∠=∠+∠=︒+=︒︒Rt DCN △222CD CN DN +=22220DN =+=Rt DBN △222DB BN DN +=4DB ===,AC BC CP AB =⊥P AB 90ACB ∠=︒()()111243222CP AB AD DB ==+=⨯+=1143622BCD S DB CP =⋅=⨯⨯=△(),3B m mn +1y 2y (),A m n 13y x =3n m =213y xy =+233y x x =⋅+,3x m n m ==2333y m m mn =⋅+=+∴点是在函数的“相关函数”的图象上.(2)解:①∵函数的“相关函数”为,∴,如图,过点作轴,垂足为点,交直线于点.∴,∵把代入得,,把代入得,,∴,∴又∵由题意得,∴,∴,∴,∴,∵,∴,∴,∴,∴,∴在中,根据勾股定理,∴,∴,∵点在的图象上,其横坐标为.∴,∴,∴,∴,∵,开口向下,对称轴为直线,∴当时,(),3B m mn +1y 2y 12y x =-+2y ()21323y xy x x =+=-++223x x =-++()214x =--+P PN x ⊥N AB M 90PNF ∠=︒0x =1y 12y =10y =1y 2x =()()0,2,2,0E F 2OE OF ==90EOF ∠=︒,90OEF OFE OEF OFE ∠=∠∠+∠=︒45OEF OFE ∠=∠=︒18045NMF PNF OFE ∠=-∠-=︒∠︒45PMQ NMF ∠=∠=︒PQ AB ⊥90PQM ∠=︒18045QPM PQM PMQ ∠=-∠-=︒∠︒PMQ QPM ∠=∠PQ QM =Rt DBN △222PQ QM PM +=PM ===PQ PM =P 2y t ()2,23P t t t -++(),2M t t -+231PM t t =-++)223312PQ t t t ⎫=-++=-⎪⎭0a =<3,032t t -<<32t =PQ =最大值②令,∴,∵,抛物线顶点坐标,∴(ⅰ)当时,,∴,(ⅱ)当时,,∴(ⅲ)当时,,∴,综上,.③或.20,3x y ==()0,3C ()2,23P t t t -++()1,401t ≤<22223,3y t t y =-++=最大最小222332h t t t t =-++-=-+12t ≤<224,3y y ==最大最小431h =-=2t ≥2224,23y y t t ==-++最大最小()2242321h t t t t =--++=-+222,011,1221,2t t t h t t t t ⎧-+≤<⎪=≤<⎨⎪-+≥⎩1t =1+。

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023~2024学年第一学期期中九年级数学期中练习卷【含答案】

2023-2024学年度第一学期期中练习卷九年级数学(本试卷共6页.全卷满分120分.时间为120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在括号内) 1.下列方程中,是一元二次方程的是( ) A . 2x -y =5B .x +1x=0C .5x 2=1D .y 2-x +3=02.一元二次方程x 2-4x =-4的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定3.已知1是关于x 的一元二次方程x 2+x +k 2-3k -6=0的一个实数根,则实数k 的值是( ) A .4或-1 B .-4或1C .-1D .4 4.甲、乙两名运动员在6次射击测试中的成绩如下表(单位:环):甲的成绩 6 7 8 8 9 9 乙的成绩596 ?910如果两人测试成绩的中位数相同,那么乙第四次射击的成绩(表中标记为?)可以是( ) A .6环 B .7环 C .8环 D .9环5.如图,四边形ABCD 是⊙O 的内接四边形,若∠BCD =110°,则∠BOD 的度数是( ) A .70° B .120° C .140°D .160°6.如图,△ABC 内接于⊙O ,∠BAC =45°,AD ⊥BC ,垂足为D ,BD =6,DC =4. 则AB 的长( )A .6 2B .10C .12D .6 5 二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置.......上) 7.数据2、4、3、-4、1的极差是 .8.已知x 1,x 2是方程x 2-3x +2=0的实数根,则x 1+x 2- x 1x 2= .(第6题)(第5题)C9.已知⊙O 的半径为6cm ,点P 在⊙O 内,则线段OP 的长 6cm (填“<”、“=”或“>”).10.某公司决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目 创新能力综合知识语言表达测试成绩/分708090将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是 分.11.如图,AB 是半圆的直径,P 是AB 延长线上一点,PC 切半圆于点C ,若∠CAB=31°,则∠P = °.12.在⊙O 中,弦AB 的长为4,OC ⊥AB ,交AB 于点D ,交⊙O 于点C ,OD ∶CD =3∶2,则⊙O 半径长 .13.一个圆锥的底面半径为3,母线长为4,其侧面积是 .14.某企业2020年盈利3000万元,2022年盈利3662万元,该企业盈利的年平均增长率不变.设年平均增长率为x ,根据题意,可列出方程 .15.如图,AE 是正八边形ABCDEFGH 的一条对角线,则∠BAE = °.16.如图,在等腰直角三角形ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长 .P(第11题)D EABC(第15题) FG H(第16题)(第12题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)解方程:(1)x 2+2x -3=0; (2)(x -2)2=3x -6. 18.(8分)关于x 的一元二次方程x 2-4x -k -6=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1 =3x 2,求k 的值.19.(6分)如图,在⊙O 中,AB 是非直径的弦,CD 是直径,且CD 平分AB ,并交AB 于点M ,求证:CD ⊥AB ,AC ⌒=BC ⌒,AD ⌒=BD ⌒.(第20题)20.(9分)甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是 分、 分; (2)利用方差判断这两名同学该项测试成绩的稳定性; (3)结合数据,请再写出一条与(1)(2)不同角度的结论.21.(6分)要建一个面积为150 m 2的长方形养鸡场,为了节省材料,养鸡场的一边利用原有的一道墙,另三边用铁丝网围成,如果铁丝网的长为35 m .若墙足够长,则养鸡场的长与宽各为多少?(第19题)甲 乙(第21题)墙22.(8分)用直尺和圆规完成下列作图:(不写作法,保留作图的痕迹)(1)如图①,经过A 、B 、C 三点作⊙P ;(2)如图②,已知M 是直线l 外一点.作⊙O ,使⊙O 过M 点,且与直线l 相切.23.(8分)如图,在△ABC 中,AB =AC ,过点A ,C 的⊙O 与BC ,AB 分别交于点D ,E ,连接DE . (1)求证DB =DE ;(2)延长ED ,AC 相交于点P ,若∠P =33°,则∠A 的度数为▲________°.B(第23题)AED CO(第22题) BAClM①②24.(7分)某商店将进价为30元的商品按售价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得12000元的利润,且尽量减少库存,应涨价为多少元?25.(8分)如图,D为⊙O上一点,点C是直径BA延长线上的一点,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线BE交CD的延长线于点E.若BC=12,AC=4,求BE的长.C(第25题)26.(10分)如果关于x的一元二次方程ax2+bx+c=0满足a+b+c=0,那么称这样的方程为“美好方程”.例如,方程x2-4x+3=0,1-4+3=0,则这个方程就是“美好方程”.(1)下列方程是“美好方程”的是▲ ;①x2+2x-3=0 ②x2-3x=0 ③x2+1=0 ④x(x-1)=2(x-1)(2)求证:“美好方程”ax2+bx+c=0总有两个实数根;(3)若美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根,求证:a+c=2 b.27.(10分)(1)证明定理:圆内接四边形的对角互补.已知:如图①,四边形ABCD 内接于⊙O . 求证:∠A +∠C =∠B +∠D =180°.(2)逆命题证明:若四边形的一组对角∠A +∠C =180°,则这个四边形的4个顶点共圆(图②) 可以用反证法证明如下:在图②中,经过点A ,B ,D 画⊙O .假设点C 落在⊙O 外,BC 交⊙O 于点E ,连接DE , ∵四边形ABED 内接于⊙O∴可得 =180°, ∵∠A +∠C =180°,∴∠BED = ,与∠BED >∠C 得出矛盾; 同理点C 也不会落在⊙O 内, ∴A ,B ,C ,D 共圆.(3)结论运用:如图∠BAC =120°,线段AB =83,点D ,E 分别在射线AC 和线段AB 上运动,以DE 为边在∠BAC 内部作等边△DEF ,则BF 的最小值为 .②DCBAO①FCAEBD③2023~2024学年度第一学期期中练习卷 九年级数学数学试卷参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(每小题2分,共20分) 7.8 8. 1 9. <10.77 11.28° 12.5213.12π14.3000(1+x )2=366215.67.5°16.π三、解答题(本大题共11小题,共88分)17.(8分)(1)解:x 2+2x -3=0x 2+2x +1=3+1 ···················································································· 1分 (x +1)2=4 ····························································································· 2分 x +1=±2 ····························································································· 3分 ∴x 1=1, x 2=-3 ················································································ 4分 (2)解:(x -2)2-3(x -2)=0 ············································································ 5分(x -2) (x -2-3)=0 ··············································································· 6分 ∴x 1=2, x 2=5. ·················································································· 8分18.(8分)(1)∵x 2-4x -k -6=0有两个不相等的实数根 ∴(-4)2-4(-k -6) >0…………… …………… 2分 ∴k >-10………………………………………………4分(2)∵x 1,x 2是方程两个实数根∴x 1+x 2=4,x 1x 2=-k -6…………………………………………5分 ∵x 1 =3x 2∴4x 2=4∴x 2=1…………………………………………6分 ∴x 1 =3…………………………………7分 ∴x 1x 2=3=-k -6∴k =-9………………………………………8分题号 1 2 3 4 5 6 答案CAABCD19.(6分)证明:连接OA ,OB , ∵OA =OB,CD 平分AB∴∠AMO =∠BMO =90°,…………………2分 ∴CD ⊥AB ,…………………………3分 ∵CD 是直径,∴AC ⌒=BC ⌒,AD ⌒=BD ⌒. (6)20.(9分)(1)80,80 ··················································································· 2分 (2)方差分别是:s 2甲=(80-80)2+(90-80) 2+(80-80)2+(70-80)2+(80-80)25=40分2 ···································· 4分 s 2乙=(60-80)2+(70-80) 2+ (90-80)2+(80-80)2+(100-80)25=200分2 ································ 6分 由s 2甲<s 2乙可知,甲同学的成绩更加稳定. ·························································· 7分 (3)甲同学的成绩在70,80,90间上下波动,而乙的成绩从60分到100分,呈现上升趋势,越来越好,进步明显. ·················································································· 9分21.(6分)解 :设养鸡场的宽为x m ,则长为(35-2x )m ,由题意得: x (35-2x )=150…………………………………2分整理得:2x 2-35x +150=0…………………………………3分 解得:x 1=10,x 2=152.…………………………………4分当x 1=10时,35-2 x 1=15;当x 2=152时,35-2 x 2=20.……………………5分答: 养鸡场长为15 m ,宽为10 m 或长为20 m ,宽为152………………………6分 22.(本题8(1)(4分)(2)(lD(第20题)23.(本题8分)(1)∵AB=AC,∴∠B=∠C,又∵四边形AEDC为⊙O的内接四边形,∴∠AED+∠C=180°,∵∠BED+∠AED=180°,∴∠BED=∠C∴∠BED=∠B∴DB=DE.··························································································6分(2)38° ·······························································································8分24.(7分)解:设涨价x元,根据题意得:(50-30+x)(500-10x)=12000.…………………………3分解得:x1=10,x2=20. …………………………5分∵要尽量减少库存,∴x2=20(舍). …………………………6分答:涨价10元.…………………………7分25.(8分)证明:(1)连接OD.∴∠ADO=∠OAD,∵AB是⊙O的直径,∴∠BDA=90°,∴∠ABD+∠BAD=90°,∵∠CDA=∠CBD,∴∠CDO=∠CDA+∠ADO=90°,即CD⊥OD. ················································································ 3分分(43.∵BE2+BC2=EC∴x 2+122=(x+42.∴x=43.即BE的长为43.·········································································· 8分26.(10分)(1)①④…………………………………2分(2)证明:∵ax2+bx+c=0是“美好方程”∴a+b+c=0………………3分∴b=-a-c………………4分判别式b 2-4 ac=(-a-c)2-4 ac=c2-2 a c+a2=(c-a)2≥0………………5分∴“美好方程”ax2+bx+c=0总有两个实数根.………………6分(3)证明:方法一:∵美好方程(b-c)x2+(c-a)x+(a-b)=0有两个相等的实数根∴(c-a)2-4(b-c) (a-b) =0…………………………………7分∴c2-2 a c+a2-4 ab+4 b2+4 a c-4 b c=0∴c2+2 a c+a2-4 ab-4 b c+4 b2=0…………………………………8分∴(c+a)2-4(a+c) b+4 b2=0∴(c+a-2 b)2=0…………………………………9分∴c+a-2 b=0,即a+c=2 b.…………………………………10分方法二:将x=1代入美好方程(b-c)x2+(c-a)x+(a-b)=0左右两边,左边=右边从而得出x=1是方程的解。

2023-2024学年全国初中九年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级下数学人教版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题(每题1分,共5分)1. 在平面直角坐标系中,点P(a, b)关于原点对称的点是()。

A. (a, b)B. (a, b)C. (a, b)D. (b, a)2. 下列各数中,是无理数的是()。

A. √9B. √16C. √3D. √13. 下列函数中,是正比例函数的是()。

A. y = 2x + 1B. y = 3x²C. y = x/2D. y = 54. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC是()。

A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定5. 下列几何体中,体积一定的是()。

A. 球B. 正方体C. 长方体D. 圆柱二、判断题(每题1分,共5分)1. 任何两个无理数相加一定是无理数。

()2. 平行线的性质是同位角相等。

()3. 一元二次方程的解一定是实数。

()4. 两条平行线之间的距离是恒定的。

()5. 对角线互相垂直的四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 若a=3, b=4,则a²+b²=______。

2. 已知一组数据的方差是9,那么这组数据的标准差是______。

3. 在三角形中,若两边分别是8和15,则第三边的长度可能是______。

4. 一次函数y=2x+3的图象与y轴的交点坐标是______。

5. 体积为64立方厘米的正方体的边长是______厘米。

四、简答题(每题2分,共10分)1. 简述平行线的性质。

2. 解释无理数的概念。

3. 如何判断一个四边形是平行四边形?4. 一元二次方程的解的公式是什么?5. 简述概率的基本性质。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的对角线长度。

2. 若一元二次方程x²5x+6=0的解是x₁=2和x₂=3,求方程的系数。

3. 在直角坐标系中,点A(2, 3)和点B(4, 1),求线段AB的中点坐标。

2024年最新人教版九年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中试卷及答案一、选择题(每题1分,共5分)1. 下列函数中,哪一个是一次函数?A. y = 2x^2B. y = 3x + 1C. y = x^3D. y = √x2. 下列图形中,哪一个不是中心对称图形?A. 正方形B. 等边三角形C. 圆D. 矩形3. 下列各数中,无理数是?A. √9B. √16C. √3D. √14. 下列等式中,正确的是?A. (a + b)^2 = a^2 + b^2B. (a b)^2 = a^2 b^2C. (a + b)(a b) = a^2 b^2D. (a + b)(a + b) = a^2 + 2ab + b^25. 下列哪个比例尺表示的范围最大?A. 1:1000B. 1:100C. 1:10D. 1:1二、判断题(每题1分,共5分)1. 两条平行线上的任意两点到第三条直线的距离相等。

()2. 任何两个实数都可以比较大小。

()3. 两个负数相乘,结果是正数。

()4. 一元二次方程的解一定是实数。

()5. 对角线互相垂直的四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 已知一组数据的方差是9,那么这组数据的标准差是_______。

3. 一次函数y = 2x + 1的图象经过_______象限。

4. 若平行线l1:3x + 4y + 7 = 0,l2:3x + 4y 5 = 0,则两平行线的距离是_______。

5. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长是_______cm。

四、简答题(每题2分,共10分)1. 请简要说明平行线的性质。

2. 什么是二次根式?请举例说明。

3. 如何判断一个多项式是否有整数解?4. 请解释比例尺的意义。

5. 简述三角形的中位线定理。

五、应用题(每题2分,共10分)1. 某商店举行打折活动,原价200元的商品打8折,现价是多少元?2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,行驶的距离是多少?3. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求它的体积。

2024-2025学年广东省深圳市九年级上学期期中数学试题及答案

2024-2025学年广东省深圳市九年级上学期期中数学试题及答案

2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A 0B. 2C. 0 或 2D. 无解2. 一元二次方程2230x x +−=两根分别为12x x 、,则12x x ⋅的值为( ) A. 2B. 2−C. 3−D. 33. 关于x 的一元二次方程()21230k x x −+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠05. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( ).的A.1813B.139C.32D. 26. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9B. 12C. 12或15D. 158.我们把宽与长的比值等于黄金比例12−的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )AB.C.D.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________.10. 一元二次方程()()2311x x +−=解为 __. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______...的三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼的销售单价为多少元? 15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论.2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB ADAD AD AD −−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−−=−==== 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b ab ab a b−× +−+ =∴+=== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=,EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小,17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%.【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案.【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x ,由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋.(1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元?【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋.(2)鳕鱼的销售单价为70元.【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可.【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋.【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =,∵要最大限度让利消费者,∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答)【答案】20%【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可.【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x += 解得:10.220%x ==,2 2.2x =−(不合题意,舍去),答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解.【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ ,CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形,DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=,AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期中试卷2017.11本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填写在题答题卡的相应的括号内.) 1.下列关于x 的方程中,一定是一元二次方程的是( ▲ )A .x -1=0B .x 3+x =3C .x 2+3x -5=0D .ax 2+bx +c =02.关于x 的方程x 2+x -k =0有两个不相等的实数根,则k 的取值范围为( ▲ )A .k >-14B .k ≥-14C .k <-14D .k >-14且k ≠03.45°的正弦值为( ▲ )A .1B .12C .22D .324.已知△ABC ∽△DEF ,∠A =∠D ,AB =2cm ,AC =4cm ,DE =3cm ,且DE <DF , 则DF 的长为( ▲ )A .1cmB .1.5cmC .6cmD .6cm 或1.5cm5.在平面直角坐标系中,点A (6,3),以原点O 为位似中心,在第一象限内把线段OA 缩小为原来的13得到线段OC ,则点C 的坐标为( ▲ ) A .(2,1)B .(2,0)C .(3,3)D .(3,1)6.已知⊙A 半径为5,圆心A 的坐标为(1,0),点P 的坐标为(-2,4),则点P 与⊙A 的位置关系是( ▲ )A .点P 在⊙A 上B .点P 在⊙A 内C .点P 在⊙A 外D .不能确定7.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC =( ▲ )A .1︰3B .1︰4C .2︰3D .1︰28.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12,AD =4,BC =9,点P 是AB 上一动点,若△P AD 与△PBC 相似,则满足条件的点P 的个数有( ▲ )A . 1个B .2个C .3个D .4个 9.已知线段AB ,点P 是它的黄金分割点,AP >BP ,设以AP 为边的等边三角形的面积 为S 1,以PB 、AB 为直角边的直角三角形的面积为S 2,则S 1与S 2的关系是 ( ▲ )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .S 1≥S 210.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、 AC 的中点,P是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =10,PB =1,则QE 的值为( ▲ ) A . 3 B .3 2 C .4 D .4 2二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.已知x :y =2:3,则(x +y ):y =▲.12.在相同时刻的物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么影长为30m 的旗杆的高是▲m .13.某电动自行车厂三月份的产量为1 000辆,由于市场需求量不断增大,五月份的产量提高到1 210辆,则该厂四、五月份的月平均增长率为▲.14.在△ABC 中,∠A 、∠B 为锐角,且||tan A -1+(12-cos B )2=0,则∠C =▲°.15.如图,在□ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE =4:3,且BF =2,则DF =▲.AD F CBOE(第7题)A CP FEQ(第10题)ACD(第8题)A BCDE F(第15题)16.如图,在△ABC 中,AB =BC ,AC =8,点F 是△ABC 的重心(即点F 是△ABC 的两条中线AD 、BE 的交点),BF =6,则DF =▲.17.关于x 的一元二次方程mx 2+nx =0的一根为x =3,则关于x 的方程m (x +2)2+nx +2n =0的根为▲.18.如图,△ABC 是一张等腰直角三角形纸板,∠C =90°,AC =BC =2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S 1(如图1);在余下的Rt △ADE 和Rt △BDF 中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S 2(如图2);继续操作下去…;第2017次剪取后,余下的所有小三角形的面积之和是▲.三、解答题(本大题共10小题,共84分. 解答需写出必要的文字说明或演算步骤.) 19.计算或解方程:(每小题4分,共16分) (1)计算:(12)-2-4sin60°-tan45°;(2)3x 2-2x -1=0;(3)x 2+3x +1=0(配方法); (4)(x +1)2-6(x +1)+5=0.20.(本题满分6分)如图,在平面直角坐标系中,A (0,4)、B (4,4)、C (6,2). (1)在图中画出经过A 、B 、C 三点的圆弧所在圆的圆心M 的位置; (2)点M 的坐标为▲;(3)判断点D (5,-2)与⊙M 的位置关系.OABCxy(第20题)(图2) ACB DE ACDE FACDE F(图1)(第18题)AB DEF (第16题)……21.(本题满分6分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 中点.(1)求证:AC 2=AB •AD ;(2)若AD =4,AB =6,求ACAF 的值.22.(本题满分6分)已知关于x 的方程x 2+(m -3)x -m (2m -3)=0. (1)证明:无论m 为何值方程都有两个实数根.(2)是否存在正数m ,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m 的值;若不存在,请说明理由.23.(本题满分6分)某市的特色农产品在国际市场上颇具竞争力,其中属于菌类的一种猴头菇远销国外.上市时,有一外商按市场价格10元/千克收购了2 000千克猴头菇存入冷库中,据预测,猴头菇的市场价格每天每千克上涨0.5元,但冷库存放这批猴头菇时每天需要支出各种费用合计220元,而且这种猴头菇在冷库中最多能保存130天,同时,平均每天有6千克的猴头菇损坏不能出售.)(1)若外商要将这批猴头菇存放x 天后一次性出售,则x 天后这批猴头菇的销售单价为▲元,销售量是▲千克(用含x 的代数式表示);(2)如果这位外商想获得利润24 000元,需将这批猴头菇存放多少天后出售?ADCEF (第21题)24.(本题满分8分)如图1为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为50cm ,与水平桌面所形成的夹角∠OAM 为75°.由光源O 射出的边缘光线OC ,OB 与水平桌面所形成的夹角∠OCA ,∠OBA 分别为90°和30°.(不考虑其他因素,结果精确到0.1cm .参考数据:sin75°≈0.97,cos75°≈0.26,3≈1.73)(1)求该台灯照亮水平桌面的宽度BC .(2)人在此台灯下看书,将其侧面抽象成如图2所示的几何图形,若书与水平桌面的夹角∠EFC 为60°,书的长度EF 为24cm ,点P 为眼睛所在位置,当点P 在EF 的垂直平分线上,且到EF 距离约为34cm (人的正确看书姿势是眼睛离书距离约1尺≈34cm )时,称点P 为“最佳视点”.试问:最佳视点P 在不在灯光照射范围内?并说明理由.25.(本题满分9分)如图,以点P (-1,0)为圆心的圆,交x 轴于B 、C 两点(B 在C 的左侧),交y 轴于A 、D 两点(A 在D 的下方),AD =23,将△ABC 绕点P 旋转180°,得到△MCB .(1)求B 、C 两点的坐标;(2)请在图中画出线段MB 、MC ,并判断四边形ACMB 的形状(不必证明),求出点M 的坐标;(3)动直线l 从与BM 重合的位置开始绕点B 顺时针旋转,到与BC 重合时停止,设直线l 与CM 交点为E ,点Q 为BE 的中点,过点E 作EG ⊥BC 于点G ,连接MQ 、QG .请问在旋转过程中,∠MQG 的大小是否变化?若不变,求出∠MQG 的度数;若变化,请说明理由.OCE D PAC O P BDxy (第25题)26.(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)AB=▲;(2)当∠D=20°时,求∠BOD的度数.(3)若△ACD与△BCO相似,求AC的长.(第26题)27.(本题满分9分)定义:已知x为实数,[x]表示不超过x的最大整数.例如:[3.14]=3,[1]=1,[-1.2]=-2.请你在学习和理解上述定义的基础上,解决下列问题:设函数y=x-[x].(1)当x=2.15时,求y=x-[x]的值.(2)当0<x<2时,求函数y=x-[x]的表达式,并画出对应的函数图像.(3)当-2<x<2时,在平面直角坐标系中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x-[x]恰有一个公共点,请直接写出r的取值范围.(第27题)28.(本题满分10分)如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD ∥BC ,交AB 于点D ,连接PQ .已知点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t ≥0).(1)用含t 的代数式表示:QB =▲,PD =▲;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由.并探究如何改变匀速运动的点Q 的速度,使四边形PDBQ 在某一时刻为菱形,求出此时点Q 的速度.(3)如图2,在整个P 、Q 运动的过程中,点M 为线段PQ 的中点,求出点M 经过的路径长.ABC PDQ(图1)MA BCPQ(图2)九年级数学期中试卷参考答案与评分标准2017.11一.选择题(本大题共有10小题,每题3分,共30分)⒈C ⒉A ⒊C ⒋C ⒌A ⒍A ⒎D 8.B 9.B 10.D二、填空题(本大题共8小题,每小题2分,共计16分)11、5:3 12、18 13、10%14、75°15、16、2.517、1或-2 18、1/22016三、解答题(10小题,共84分)19.(每小题4分)(1)1—2(2)x1=1,x2=-(3)x1=,x2=(4)x1=0,x2=420.(本题6分)解:(1)略……2分(2)M的坐标:(2,0);……3分(3)∵,……4分∴……5分∴点D在⊙M内……6分21. 解:(1)∵AC平分∠DAB,∴∠DAC=∠BAC又∵∠ADC=∠ACB=90°∴△ADC∽△ACB …………………………………………(1分)∴=∴AC2=AB•AD ………………………………………(2分)(2)∵∠ACB=90°,E为AB中点.∴CE=AB=AE=3∴∠EAC=∠ECA ………………………………………(3分)又∵AC平分∠DAB,∴∠DAC=∠EAC∴∠DAC=∠ECA ………………………………………(4分)∴AD∥EC∴△ADF∽△ECF ………………………………………(5分)∴==∴=.………………………………………(6分)22.(1)(2分)(2)(6分,不排除扣2分)23.(1)10+0.5x,(1分) 2000―6x;(1分)(2)由题意得:(10+0.5x)(2000―6x)―10×2000―220x=24000.(2分)解得x1=40,x2=200(不合题意,舍去)(1分)答:存放40天后出售。

相关文档
最新文档