算法设计与分析实验报告 统计数字问题
《算法设计与分析》实验报告实验一...
《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
算法设计与分析实验报告(模版)
武汉工程大学计算机科学与工程学院《算法设计与分析》实验报告专业班级实验地点学生学号指导教师学生姓名实验时间实验项目算法基本工具和优化技巧实验类别基本性实验实验目的及要求目的与要求:练习算法基本工具和优化技巧的使用实验内容要点:1、熟悉循环和递归的应用2、熟悉数据结构在算法设计中的应用3、了解优化算法的基本技巧4、掌握优化算法的数学模型成绩评定表类别评分标准分值得分合计上机表现积极出勤、遵守纪律主动完成实验设计任务30分实验报告及时递交、填写规范内容完整、体现收获70分说明:评阅教师:日期:年月日一、狼找兔子问题:一座山周围有n个洞,顺时针编号为0,1,2.,…,n-1。
一只狼从0号洞开始,顺时针方向计数,每当经过第m个洞时,就进洞找兔子。
输入m,n,问兔子有没有幸免的机会?如果有,该藏哪里?代码设计:。
结果:。
二、有52张牌,使他们全部正面朝上,第一轮是从第2张开始,凡是2的倍数位置上的牌翻成正面朝下;第二轮从第3张牌开始,凡是3的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上;第三轮从第4张开始,凡是4的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上,以此类推,直到翻的牌超过104张为止。
统计最后有几张正面朝上,以及他们的位置号。
代码设计:。
结果:。
三、A、B、C、D、E 5人为某次竞赛的前5名,他们在名次公布前猜名次。
A说:B得第三名,C得第五名。
B说:D得第二名,E得第四名。
C说:B得第一名,E得第四名。
D说:C得第一名,B得第二名。
E说:D得第二名,A得第三名。
结果每个人都猜对了一半,实际名次是什么呢?代码设计:。
结果:。
算法分析与设计实验报告
算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。
算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。
本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。
二、算法分析算法分析是评估算法性能的过程。
在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。
常用的算法分析方法包括时间复杂度和空间复杂度。
1. 时间复杂度时间复杂度衡量了算法执行所需的时间。
通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。
常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。
2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。
通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。
常见的空间复杂度有O(1)、O(n)和O(n^2)等。
其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。
三、算法设计算法设计是构思和实现算法的过程。
好的算法设计能够提高算法的效率和可靠性。
常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。
1. 贪心算法贪心算法是一种简单而高效的算法设计方法。
它通过每一步选择局部最优解,最终得到全局最优解。
贪心算法的时间复杂度通常较低,但不能保证得到最优解。
2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。
它通过保存子问题的解,避免重复计算,提高算法的效率。
动态规划适用于具有重叠子问题和最优子结构的问题。
3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。
算法与分析实验报告
算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。
本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。
二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。
具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。
实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。
三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。
- 实现顺序搜索和二分搜索算法。
2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。
3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。
4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。
- 多次重复同样的操作,取平均值以减小误差。
5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。
四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。
- 插入排序:执行效率一般,在中等规模数据排序中表现良好。
- 快速排序:执行效率最高,适用于大规模数据排序。
2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。
- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。
实验结果表明,不同算法适用于不同规模和类型的问题。
正确选择和使用算法可以显著提高程序的执行效率和性能。
五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。
a算法求解八数码问题 实验报告
题目: a算法求解八数码问题实验报告目录1. 实验目的2. 实验设计3. 实验过程4. 实验结果5. 实验分析6. 实验总结1. 实验目的本实验旨在通过实验验证a算法在求解八数码问题时的效果,并对其进行分析和总结。
2. 实验设计a算法是一种启发式搜索算法,主要用于在图形搜索和有向图中找到最短路径。
在本实验中,我们将使用a算法来解决八数码问题,即在3x3的九宫格中,给定一个初始状态和一个目标状态,通过移动数字的方式将初始状态转变为目标状态。
具体的实验设计如下:1) 实验工具:我们将使用编程语言来实现a算法,并结合九宫格的数据结构来解决八数码问题。
2) 实验流程:我们将设计一个初始状态和一个目标状态,然后通过a 算法来求解初始状态到目标状态的最短路径。
在求解的过程中,我们将记录下每一步的状态变化和移动路径。
3. 实验过程我们在编程语言中实现了a算法,并用于求解八数码问题。
具体的实验过程如下:1) 初始状态和目标状态的设计:我们设计了一个初始状态和一个目标状态,分别为:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 42) a算法求解:我们通过a算法来求解初始状态到目标状态的最短路径,并记录下每一步的状态变化和移动路径。
3) 实验结果在实验中,我们成功求解出了初始状态到目标状态的最短路径,并记录下了每一步的状态变化和移动路径。
具体的实验结果如下:初始状态:1 2 34 5 67 8 0目标状态:1 2 38 0 47 6 5求解路径:1. 上移1 2 37 8 62. 左移1 2 3 4 0 5 7 8 63. 下移1 2 3 4 8 5 7 0 64. 右移1 2 3 4 8 5 0 7 65. 上移1 2 3 0 8 5 4 7 61 2 38 0 54 7 67. 下移1 2 38 7 54 0 68. 右移1 2 38 7 54 6 0共计8步,成功从初始状态到目标状态的最短路径。
《算法设计与分析》课程实验报告 (贪心算法(一))
《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。
编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。
若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。
用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。
3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。
设计一个有效的贪心算法进行安排。
(这个问题实际上是著名的图着色问题。
若将每一个活动作为图的一个顶点,不相容活动间用边相连。
使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。
)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。
(2)掌握通过迭代求最优的程序实现技巧。
(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。
三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。
(2)给出题1的贪心选择性质的证明。
(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。
算法分析实验一报告
《算法设计与分析》实验报告目录一、实验内容描述和功能分析.二、算法过程设计.三、程序调试及结果(附截图).四、源代码(附源代码).一、实验内容描述和功能分析.1.彼岸内容描述:突破蝙蝠的包围,yifenfei来到一处悬崖面前,悬崖彼岸就是前进的方向,好在现在的yifenfei已经学过御剑术,可御剑轻松飞过悬崖。
现在的问题是:悬崖中间飞着很多红,黄,蓝三种颜色的珠子,假设我们把悬崖看成一条长度为n的线段,线段上的每一单位长度空间都可能飞过红,黄,蓝三种珠子,而yifenfei 必定会在该空间上碰到一种颜色的珠子。
如果在连续3段单位空间碰到的珠子颜色都不一样,则yifenfei就会坠落。
比如经过长度为3的悬崖,碰到的珠子先后为“红黄蓝”,或者“蓝红黄”等类似情况就会坠落,而如果是“红黄红”或者“红黄黄”等情况则可以安全到达。
现在请问:yifenfei安然抵达彼岸的方法有多少种?输入:输入数据首先给出一个整数C,表示测试组数。
然后是C组数据,每组包含一个正整数n (n<40)。
输出:对应每组输入数据,请输出一个整数,表示yifenfei安然抵达彼岸的方法数。
每组输出占一行。
例如:输入:2 输出:92 2132.统计问题内容描述:在一无限大的二维平面中,我们做如下假设:1、每次只能移动一格;2、不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);3、走过的格子立即塌陷无法再走第二次;求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。
输入:首先给出一个正整数C,表示有C组测试数据接下来的C行,每行包含一个整数n (n<=20),表示要走n步。
输出:请编程输出走n步的不同方案总数;每组的输出占一行。
例如:输入:2 输出:31 723.Message Decowing内容描述:The cows are thrilled because they've just learned about encrypting messages. Theythink they will be able to use secret messages to plot meetings with cows on other farms.Cows are not known for their intelligence. Their encryption method is nothing like DES or BlowFish or any of those really good secret coding methods. No, they are using a simple substitution cipher.The cows have a decryption key and a secret message. Help them decode it. The key looks like this:yrwhsoujgcxqbativndfezmlpkWhich means that an 'a' in the secret message really means 'y'; a 'b' in the secret message really means 'r'; a 'c' decrypts to 'w'; and so on. Blanks are not encrypted; they are simply kept in place. Input text is in upper or lower case, both decrypt using the same decryption key, keeping the appropriate case, of course.输入:* Line 1: 26 lower case characters representing the decryption key* Line 2: As many as 80 characters that are the message to be decoded输出:* Line 1: A single line that is the decoded message. It should have the same length as the second line of input.例如:输入:eydbkmiqugjxlvtzpnwohracsfKifq oua zarxa suar bti yaagrj fa xtfgrj输出:Jump the fence when you seeing me coming二、算法过程设计.第一题是一个典型的递归问题,通过对开始的几项附初始值,通过循环利用通项公式依次递归调用公式便可以得到第n项的值。
《算法设计与分析》课程实验报告
《算法设计与分析》课程实验报告实验序号:实验项目名称:随机化算法一、实验题目1.N后问题问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后,任何两个皇后不放在同一行同一列,同一斜线上,问有多少种放法。
2.主元素问题问题描述:设A是含有n个元素的数组,如果元素x在A中出现的次数大于n/2,则称x是A的主元素。
给出一个算法,判断A中是否存在主元素。
二、实验目的(1)通过N后问题的实现,体会拉斯维加斯随机算法的随机特点:运行次数随机但有界,找到的解一定为正确解。
但某次运行可能找不到解。
(2)通过实现主元素的不同算法,了解蒙特卡罗算法的随机特性:对于偏真的蒙特卡罗算法,找到为真的解一定是正确解;但非真的解以高概率给出解的正确率------即算法找到的非真解以小概率出现错误。
同时体会确定性算法与随机化算法的差异及各自的优缺点。
(3)通过跳跃表的实现,体会算法设计的运用的广泛性,算法设计的思想及技巧不拘泥独立问题的解决,而在任何需要计算机解决的问题中,都能通过算法设计的技巧(无论是确定性还是随机化算法)来灵巧地解决问题。
此实验表明,通过算法设计技巧与数据组织的有机结合,能够设计出高效的数据结构。
三、实验要求(1)N后问题分别以纯拉斯维加斯算法及拉斯维加斯算法+回溯法混合实现。
要求对同一组测试数据,完成如下任务a.输出纯拉斯维加斯算法找到解的运行次数及运行时间。
b.输出混合算法的stopVegas值及运行时间c.比较a、b的结果并分析N后问题的适用情况。
(2)主元素问题,要求对同一组测试数据,完成如下任务:a.若元素可以比较大小,请实现O(n )的确定性算法,并输出其运行时间。
b.(选做题)若元素不可以比较大小,只能比较相同否,请实现O(n) 确性算法,并输出其运行时间。
c.实现蒙特卡罗算法,并输出其运行次数及时间。
d.比较确定性算法与蒙特卡罗算法的性能,分析每种方法的优缺点。
(3)参照教材实现跳跃表(有序)及基本操作:插入一个结点,删除一个结点。
算法分析与设计实验报告
算法分析与设计实验报告1. 引言算法是计算机科学中的核心概念之一,它为解决问题提供了一种清晰、有效的方法。
本实验报告旨在通过分析与设计一个特定算法的实验过程,来加深对算法的理解和应用。
2. 实验背景在现代社会中,算法的应用无处不在。
无论是搜索引擎的排序算法,还是社交媒体的推荐算法,都离不开算法的支持。
因此,学习算法的分析与设计,对于计算机科学相关领域的学生来说具有重要的意义。
3. 实验目的本实验的主要目的是通过分析与设计一个特定算法,加深对算法的理解和应用。
通过实际操作,学生将能够熟悉算法的设计过程,并能够分析算法的效率和复杂性。
4. 实验步骤4.1 确定算法目标在开始实验之前,我们需要明确算法的目标。
在本实验中,我们将设计一个排序算法,用于对一组数字进行排序。
4.2 了解算法原理在设计算法之前,我们需要对目标算法的原理进行深入了解。
在本实验中,我们将选择经典的冒泡排序算法作为实现对象。
冒泡排序算法的基本思想是通过比较相邻的元素,并根据需要交换位置,使得每一轮循环都能使最大(或最小)的元素“冒泡”到数组的末尾。
通过多次迭代,最终实现整个数组的排序。
4.3 实现算法在了解算法原理后,我们将根据算法的步骤逐步实现。
具体步骤如下:1.遍历待排序数组,从第一个元素开始。
2.比较当前元素与下一个元素的大小。
3.如果当前元素大于下一个元素,则交换它们的位置。
4.继续比较下一个元素,直到遍历完整个数组。
5.重复上述步骤,直到没有需要交换的元素。
4.4 测试算法在实现算法之后,我们需要对其进行测试,以验证其正确性和效率。
我们可以准备一组随机的数字作为输入,并对算法进行测试。
通过比较输入和输出结果,我们可以判断算法是否正确。
同时,我们还可以通过计算算法的时间复杂性和空间复杂性来评估其效率。
在本实验中,我们将使用时间复杂性分析来评估算法的效率。
4.5 分析与总结通过测试和分析,我们将得出算法的执行时间和空间复杂性。
《算法设计与分析》课程实验报告 (算法问题求解基础1)
}
int s2[10] = {0,9,189,2889,38889,488889,5888889,68888889,788888889};
int a;
scanf("%d",&a);
int count;
count = 0;
while(a > 0){
题目二:最大间隙
源码:
#include<iostream>
#include<cstdio>
using namespace std;
double a[10000] = {0};
int main(){
int n;
cin>>n;
for(int i = 0 ; i < n ; i++){
cin>>a[i];
样例输出:
3.2
二、实验目的
(1)理解算法的概念
(2)理解函数渐近态的概念和表示方法
(3)初步掌握算法时间复杂度的计算方法
三、实验要求
(1)对于每个题目提交实验代码。
(2)根据程序设计测试数据,并记录测试结果,要求边界情况必须测试
(3)使用我们学过的分析方法分析你的算法的时间效率,如果可能,请进行算法的优化,尽量减小算法的时间效率或空间效率。
《算法设计与分析》课程实验报告
实验序号:1 实验项目名称:算法问题求解基础
一、实验题目
题目一:统计数字问题
题目描述
一本书的页码从自然数1开始顺序编码直到自然数n。输的页码按照通常的习惯编排,每个页码都不含有多余的前导数字0.例如,第6页用数字6表示,而不是06或者006等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2...8,9。
算法设计与分析实验报告_2
课程设计报告题目:计算机算法基础实验报告课程名称:专业班级:学号:姓名:指导教师:报告日期:计算机科学与技术学院目录一、实验目的 (3)二、实验题目 (3)三、设计分析 (3)1.生成最短路径问题设计分析 (3)2.最优二分检索树问题设计分析 (4)四、算法描述 (5)1.生成最短路径问题算法描述(用流程图表示) (5)2.最优二分检索树问题算法描述(用流程图表示) (6)五、程序 (7)1. 生成最短路径问题算法代码 (7)2.最优二叉检索树源代码 (10)六、测试与分析 (13)1.生成最短路径问题算法 (13)2.最优二叉检索树源测试及分析 (15)七、实验总结及体会 (16)八、参考书目 (17)一、实验目的1.掌握贪心方法、动态规划的基本思想2.了解适用贪心方法、动态规划的问题类型,并能设计相应的贪心法算法3.掌握贪心算法、动态规划算法时间空间复杂度分析,以及问题复杂性分析方法二、实验题目1.实现单源点生成最短路径的贪心方法,完善算法,求出长度,并推导路径上的结点序列2.实现最优二分检索树算法,计算各C(i,j)、R(i,j)、W(i,j)的值,并推导树的形态三、设计分析1.生成最短路径问题设计分析为了制定产生最短路径贪心算法,对于这个问题需要想出一个多级解决方案和最优的量度标准。
方法之一是逐条构造这些最短路径,可以用迄今已经生成的所有路径长度之和作为一种量度,为了使这一量度达到最小,其单独的每一个路径都必须具有最小长度。
使用这一个量度标准时,假定已经构造了i条最短路径,则下面要构造的路径应该是下一个最小的长度路径。
生成从源点v0到所有其他结点的最短路径的贪心方法就是按照路径长度的非降次序生成这些路径。
首先,生成一条到最短结点的最短路径,然后生成一条到第二近结点的最短路径,依次往下进行…。
为了按照这样的路径生成这些最短路径,需要确定与其生成最短路径的下一个结点,以及到这一结点的最短路径。
算法设计与分析实验报告三篇
算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }} 五.程序调试中的问题调试过程,页码出现报错。
算法设计与分析实验报告
实验课程名称:算法设计与分析这里的数据包括1到100的所有数字,55在这个序列中。
2.当没找到所要寻找的数字时,输出该数据并不存在于数据库中:0并不存在于这个序列中。
一、时间复杂性分析:1.最好情况下:这里的最好情况,即为第一次查找就找到了要找的数据,故时间复杂性为O (1)。
2.最坏情况下:这里的最坏情况意味着要将所有数据都找一遍最后才能找到要查找的数据,随着数据库的增大,查找次数会随之增长,故其时间复杂度为O (n )。
3.平均情况下:这种情况考虑了数据时等概率的分布于数据库中。
ASL=-101-121111=2=(1*2+2*2+...+*2)log (+1)-1nkj k i i i j p c j k n nn==≈∑∑折半查找的时间复杂性为O (2log n )。
二、空间复杂度分析:这里查找的过程中并不需要额外的空间,只需要存放数据的空间,故空间复杂度为O (n ),n 为数组的大小。
三、算法功能:其功能主要是用来查找数据,若对它进行一下拓展,可以由自主确定数据库,并可对他进行操作;这里的数据也可以不只是包括整数。
实验二结果:1.当数组的容量不大于0时,显示错误:2.当输入数据错误时,显示错误:3.当输入正确时的显示结果:一、时间复杂性分析:1.最好情况下:T (n )≤2 T (n /2)+n ≤2(2T (n /4)+n /2)+n =4T (n /4)+2n ≤4(2T (n /8)+n /4)+2n =8T (n /8)+3n … … …≤nT (1)+n log 2n =O (n log 2n ) 因此,时间复杂度为O (n log 2n )。
2.最坏情况下:待排序记录序列正序或逆序,每次划分只得到一个比上一次划分少一个记录的子序列(另一个子序列为空)。
此时,必须经过n -1次递归调用才能把所有记录定位,而且第i 趟划分需要经过n -i 次关键码的比较才能找到第i 个记录的基准位置,因此,总的比较次数为: 因此,时间复杂度为O (n 2)。
算法分析与设计实验报告
1. 算法分析基础——Fibonacci 序列问题
或
2. 分治法在数值问题中的应用——最近点对问题
要
3. 减治法在组合问题中的应用——8 枚硬币问题
求
4. 变治法在排序问题中的应用——堆排序问题
5. 动态规划法在图问题中的应用——全源最短路径问题
99. 退出本实验
-------------------------
printf("\n\t\t请输入您所要执行的操作(1,2,3,4,5,99):");
}
void main()
{
int a;
程
while(1)
{
序
Meun();
//调用菜单函数显示菜单
scanf("%d",&a);
代
switch(a)
{
码
case 1:
{
printf("\n\t\tFibonacci 序列问题\t\t\n");
printf("\n\t\t4、变治法在排序问题中的应用——堆排序问题\n");
Printf("\n\t\t4、动态规划法在图问题中的应用——全源最短路径问题\n");
动态规划法在图问题中的应用——全源最短路径问题
printf("\n\t\t99、退出本实验\n");
printf("\n\t\t-------------------------");
《算法设计与分析》实验\n");
printf("\n\t\t-------------------------\n");
printf("\n\t\t1、算法分析基础——Fibonacci序列问题\n");
算法分析与设计实验报告
算法分析与设计实验报告算法分析与设计实验报告⼀.实验⽬的1掌握回溯法解题的基本思想以及算法设计⽅法;2.掌握动态规则法和分⽀限界法的基本思想和算法设计⽅法;3掌握深度优先遍历法的基本思想及运⽤;4.进⼀步的对N皇后问题,⼦集和数问题,0-1背包问题做深⼊的了解。
⼆.实验内容1.实现求n 皇后问题和⼦集和数问题的回溯算法。
2.⽤动态规划的⽅法实现0/1背包问题。
3.⽤分⽀限界法实现0/1背包问题。
4.⽤深度优化的⽅法遍历⼀个图,并判断图中是否有回路存在,如果有,请输出回路。
三.实验设计1. N 皇后问题:我是采取了尊循 top-down design 的顺序来设计整个算法和程序。
采⽤ OOP 的思想,先假设存在⼀个 · 表⽰棋盘格局的类 queens ,则定义回溯函数 solve_from(queens configuration),configuration 表⽰当前棋盘格局,算法不断扩展棋盘的当前格局(找到下⼀个⾮冲突位置),当找到⼀个解决⽅案时打印该⽅案。
该递归函数采⽤回溯法求出所有解。
main 函数调⽤ solve_from 时传递的实参是⼀个空棋盘。
对于模拟棋盘的 queens 类,我们可以定义三个数据成员: 1.size :棋盘的边长,即⼤⼩ .2. count :已放置的互不冲突的皇后数 3.array[][]:布尔矩阵,true 表⽰当前格有皇后这⾥需要稍加思考以便稍后可以简化程序:因为每⾏只能放⼀个皇后,从上到下,从左到右放,那么 count 个皇后占⽤的⾏为 0——count -1。
所以count 还表⽰下⼀个皇后应该添加在哪⼀⾏。
这样,和 remove 操作的⼊⼝参数就只需要提供列号就⾏了, add 降低了耦合度:)下⾯是程序运⾏结果:2.⼦集和数问题:本设计利⽤⼤⼩固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表⽰是否包含了权数W (i ).⽣成图中任⼀结点的⼉⼦是很容易的。
算法设计与分析实验报告
算法设计与分析实验报告1. 引言本实验旨在设计和分析一个算法,解决特定的问题。
通过对算法的设计、实现和性能分析,可以对算法的优劣进行评估和比较。
本报告将按照以下步骤进行展开:1.问题描述2.算法设计3.算法实现4.性能分析5.结果讨论和总结2. 问题描述在本实验中,我们面临的问题是如何在一个给定的无序数组中寻找一个特定元素的位置。
具体而言,给定一个包含n个元素的数组A和一个目标元素target,我们的目标是找到target在数组A中的位置,如果target不存在于数组中,则返回-1。
3. 算法设计为了解决上述问题,我们设计了一个简单的线性搜索算法。
该算法的思想是从数组的第一个元素开始,逐个比较数组中的元素与目标元素的值,直到找到匹配的元素或搜索到最后一个元素。
算法的伪代码如下:function linear_search(A, target):for i from 0 to len(A)-1:if A[i] == target:return ireturn -14. 算法实现我们使用Python编程语言实现了上述线性搜索算法。
以下是算法的实现代码:def linear_search(A, target):for i in range(len(A)):if A[i] == target:return ireturn-15. 性能分析为了评估我们的算法的性能,我们进行了一系列实验。
我们使用不同大小的数组和不同目标元素进行测试,并记录了每次搜索的时间。
实验结果显示,线性搜索算法的时间复杂度为O(n),其中n是数组的大小。
这是因为在最坏的情况下,我们需要遍历整个数组才能找到目标元素。
6. 结果讨论和总结通过对算法的设计、实现和性能分析,我们可以得出以下结论:1.线性搜索算法是一种简单但有效的算法,适用于小规模的数据集。
2.线性搜索算法的时间复杂度为O(n),在处理大规模数据时可能效率较低。
3.在实际应用中,我们可以根据具体的问题和数据特征选择合适的搜索算法,以提高搜索效率。
算法分析与设计求最大公约数问题实验报告
算法设计与分析实验报告书实验名称:算法设计与分析之实验一------ 求两个数的最大公约数学号:2012210890姓名:王朔一实验目的和要求(1)复习上课所讲的内容;(2)掌握并应用算法的数学分析和后验分析方法;(3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。
(4)至少设计出三个版本的求最大公约数算法;(5)上机实现算法,并用测算三种算法的运行时间;(6)通过分析对比,得出自己的结论。
二实验内容设计三种算法求两个自然数 m 和 n 的最大公约数,并分析每种算法运行所需时间.三实验环境PCWin7系统, VISUALC++6.0四设计思想及实验步骤1.欧几里得辗转相除算法:①输入两个正整数m,n(m>n);②求出两个数的最大值Max和最小值Min;③计算Max除以Min所得的余数r;④Max=Min,Min=r;⑤若r=0,则m,n的最大公约数等于Max;否则转到②;⑥输出最大公约数Max。
2.蛮力法算法:①输入两个正整数m,n;②令常量factor = 1;循环变量i从2~min(m,n);③如果i是m和n的公因子,则执行④;④factor = factor*i; m = m/i; n = n/i;⑤如果i不是m和n的公因子,则i = i +1;⑥输出factor;3.欧几里得减法算法:①输入两个正整数a,b;②求出两个数的最大值Max和最小值Min;③若Max等于Min,转到⑥;④把Max-Min的差赋予r;⑤如果Min>r,那么把Min赋给Max,把r赋给Min;否则把r赋给Max,执行③;⑥输出最大公约数Min。
测试三种算法,在例举数的范围内产生随机数,且在每个范围内运行1000次,求出所需总时间,最后输出计算每种算法平均执行一次所需的时间。
六核心源代码// 2012210890王朔.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include "stdio.h"#include "stdlib.h"#include "time.h"#include "windows.h"int CommFactor1(int m,int n);int CommFactor2(int m,int n);int CommFactor3(int m,int n);int main(int argc, char* argv[]){int a[10] ={10000,20000,40000,80000,100000,200000,500000,1000000,2000000,4000000};LARGE_INTEGER BegainTime;LARGE_INTEGER EndTime;LARGE_INTEGER Frequency;QueryPerformanceFrequency(&Frequency);QueryPerformanceCounter(&BegainTime);srand((unsigned)time(NULL));for(int i=0;i<10;i++){for(int j=0;j<1000;j=j+1){double k = (rand()*0.1);long m = (long)(a[i]+k);k = (0.1*rand());long n = (long)(a[i]-k);CommFactor1(m,n);}}QueryPerformanceCounter(&EndTime);printf("算法一总耗时: %.10f 秒\n",(double)(EndTime.QuadPart-BegainTime.QuadPart)/(Frequency.QuadPart*10000));system("pause");return 0;}int CommFactor1(int m, int n){int c = m%n;while(c!=0){m = n;n = c;c= m%n;}return n;}int CommFactor2(int m, int n){int i, factor = 1;for(i = 2; i<= m && i<=n; i++){while(m % i == 0 && n % i == 0){factor = factor*i;m= m/i; n = n/i;}}return factor;}int CommFactor3(int m, int n){ int i,r;if(n>m){i = m;m = n;n = i;}r = m%n;while (r!=0){m = m-n;if(n>m){i = m;m = n;n = i;}r = m%n;}return n;}七实验结果及分析八实验体会(包括本实验中遇到的问题、具体的解决方法、还没有解决的问题、实验收获等)此次实验初步了解了算法分析,三种算法虽然结果相同但是效率却不同。
算法设计与分析 实验报告
算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。
本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。
二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。
给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。
三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。
1. 暴力法暴力法是一种朴素的解决方法。
它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。
然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。
2. 动态规划法动态规划法是一种高效的解决方法。
它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。
对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。
通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。
最后,我们返回dp数组中的最大值即为所求的最大子序列和。
该算法的时间复杂度为O(n),效率较高。
四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。
1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。
为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。
2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。
同时,我们还对两种算法的运行时间进行了比较。
结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。
五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。
我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。
《算法设计与分析》课程实验报告 (分治法(三))
《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计与分析实验报告
实验名称统计数字问题评分
实验日期年月日指导教师
姓名专业班级学号
一.实验要求
1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容
统计数字问题
1、问题描述
一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)
2、编程任务
给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)
三.程序算法
将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码
#include<iostream.h>
int s[10]; //记录0~9出现的次数
int a[10]; //a[i]记录n位数的规律
void sum(int n,int l,int m)
{
if(m==1)
{
int zero=1;
for(int i=0;i<=l;i++) //去除前缀0
{
s[0]-=zero;
zero*=10;
}
}
if(n<10)
{
for(int i=0;i<=n;i++)
{
s[i]+=1;
}
return;
}//位数为1位时,出现次数加1
//位数大于1时的出现次数
for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1)
{
m=1;int i;
for(i=1;i<t;i++)
m=m*10;
a[t]=t*m;
}
int zero=1;
for(int i=0;i<l;i++)
{
zero*= 10;
} //求出输入数为10的n次方
int yushu=n%zero; //求出最高位以后的数
int zuigao=n/zero; //求出最高位zuigao
for(i=0;i<zuigao;i++)
{
s[i]+=zero;
} //求出0~zuigao-1位的数的出现次数
for(i=0;i<10;i++)
{
s[i]+=zuigao*a[l];
} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数
//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数
if(yushu==0) //补上所缺的0数,并且最高位加1
{
s[zuigao]++;
s[0]+=l;
}
else
{
i=0;
while((zero/=10)>yushu)
{
i++;
}
s[0]+=i*(yushu+1);//补回因作模操作丢失的0
s[zuigao]+=(yushu+1);//补回最高位丢失的数目
sum(yushu,l-i-1,m+1);//处理余位数
}
}
void main()
{
int i,m,n,N,l;
cout<<"输入数字要查询的数字:";
cin>>N;
cout<<'\n';
n = N;
for(i=0;n>=10;i++)
{
n/=10;
} //求出N的位数n-1
l=i;
sum(N,l,1);
for(i=0; i<10;i++)
{
cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n';
}
}
五.程序调试中的问题
调试过程中总是有这样那样的问题,通过一步步的修改,最终得以实现。
六.实验结果。