(完整)初一培优专题:数轴上动点问题(有答案)
(完整版)初一上学期动点问题(含答案)
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
初一数轴动点问题(有答案)
数轴动点问题1、如图,有一数轴原点为O,点A所对应的数是-1,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K 和点C所对应的数.2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3s后,两点相距15cm(单位长度为1cm).已知动点A、B的速度比是1∶4 (速度单位:cm/s).(1)求出3s后,A、B两点在数轴上对应的数分别是多少?(2)若A、B两点从(1)中的位置同时向数轴负方向运动,经过几秒,原点恰好处在两个动点的正中间?3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?(1)若点P到点A、点B的距离相等,求点P对应数。
(3-(-1))/2=2 3-2=1 所以P=1.(2)|x-(-1)|+|x-3|=|x+1|+|x-3|=5 所以,存在,X=3.5或X=-1.5.(3)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?设时间是t. t分后,P是-1*t=-t,A是-1-5t,B是3-20t. |-t-(-1-5t)|=|-t-(3-20t)| |-t+1+5t |=|-t-3+20t| |4t+1|=|19t-3| 所以有: 4t+1=19t-3,解得t=4/15. 或者说4t+1=3-19t,得t=2/23 所以,出发的时间是2/23分或4/15分钟.4、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数.(注:文档可能无法思考全面,请浏览后下载,供参考。
专题十三:数轴中动点问题(1)——行程问题(方法专题);人教版七年级上学期培优专题讲练(含答案)
专题十三:数轴中动点问题(1)——行程问题方法点睛数轴上的行程问题一般设运动时间为t,用含t的式子表示出点与点之间的距离(用绝对值表示距离),运用方程思想及分类讨论思想计算即可得到结果。
典例精讲1.如图,数轴上点A、B分别表示的数是﹣2、6,动点P从A点出发以每秒2个单位长度的速度沿数轴运动,设运动时间为t秒.(1)AB长为_______个单位长度;(2)当t=2时,此时P点表示的数是_______;(3)若另一动点Q从B点处与P点同时出发,以每秒1个单位长度的速度沿数轴运动,经过多少秒后,点P、Q重合.举一反三2.如图所示,已知数轴上点A表示的数是﹣1,点B表示的数是2,若点A以每秒1个单位长度的速度在数轴上移动,点B以每秒2个单位长度的速度在数轴上移动,且点A始终在点B的左侧,求经过几秒时,A、B两点的距离为6个单位长度.专题过关3.如图,A、B两点在数轴上对应的数分别是﹣20、24,点P、Q两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒、4个单位/秒,它们运动的时间为t秒,当点P、Q 在A、B之间相向运动,且满足OP=OQ,则点P对应的数是_________________.4.已知,如图A,B分别为数轴上的两点,点A对应的数是﹣10,点B对应的数为40.现在有一只电子蚂蚁P从点A出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:(1)试求出点C在数轴上所对应的数;(2)何时两只电子蚂蚁在数轴上相距12个单位长度?5.如图,在数轴上有四个点A、B、C、D,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15,AB长2个单位长度,CD长1个单位长度.(1)点B在数轴上表示的数是_______,点C在数轴上表示的数是_______,线段BC=_______.(2)若点B以1个单位长度/秒的速度向右运动,同时点C以2个单位长度/秒的速度向左运动设运动时间为t秒,若BC长6个单位长度,求t的值;(3)若线段AB以1个单位长度/秒的速度向左运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒.①用含有t的式子分别表示点A、B、C、D,则A是_______,B是_______,C是_______,D是_______.②若0<t<24时,设M为AC中点,N为BD中点,试求出线段MN的长.6.如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是_______,当点P运动到AB中点时,它所表示的数是_______;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?(3)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:①当点P运动多少秒时,点P追上点Q?②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.【参考答案】1。
部编数学七年级上册培优专题09数轴上册的动点问题解析版含答案
培优专题09 数轴上的动点问题【专题精讲】数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
类型一:求运动后点对应的数1.(2022·安徽·定远县第一初级中学七年级期末)如图,已知A,B两点在数轴上,点A表示的数为-10,3=,点M以每秒3个单位长度的速度从点A向右运动.点N以每OB OA秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是______.(2)经过几秒,点M、点N重合?【答案】(1)30(2)10【分析】(1)根据点A表示的数为-10,OB=3OA,可得点B对应的数;(2)点M、点N重合时,即点M追上点N,此时两点在数轴上的运动路程之差为10,以此列式即可求出.(1)解:OB=3OA=30.故B点对应的数是30.(2)点M、点N重合时,此时两点在数轴上的运动路程之差为10,设时间为t秒,则有3t-2t=10解得:t=10故经过10秒,点M、点N重合.【点睛】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.2.(2022·全国·七年级课时练习)已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为 ,点B表示的数为 ;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);②t为何值时,P,Q两点重合;③请直接写出t为何值时,P,Q两点相距5个单位长度.在数轴上点P表示的数是104t-+,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.【答案】(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,则6436BC t t t =+-=+,()32225AB t t t=---=+()62544BC AB t t t\-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.类型二:求运动中的时间5.(2022·全国·七年级专题练习)综合与探究阅读理解:数轴是一个非常重要的数学工具,使数和数轴上的点建立起对应关系,这样能够用“数形结合”的方法解决一些问题.数轴上,若A ,B 两点分别表示数a ,b ,那么A ,B 两点之间的距离与a ,b 两数的差有如下关系:||AB a b =-或b a -.问题解决:如图,数轴上的点A ,B 分别表示有理数2,5-.填空:(1)A ,B 两点之间的距离为_______;(2)点C 为数轴上一点,在点A 的左侧,且6AC =,则点C 表示的数是_______;(3)拓展应用:在(2)的条件下,动点P 从点A 出发,以每秒2个单位长度的速度在数轴上匀速运动,设运动时间为t 秒(0t >),当t 为何值时,P ,C 两点之间的距离为12个单位长度?【答案】(1)7(2)4-(3)3t =或9秒时,P ,C 两点之间的距离为12个单位长度【分析】(1)根据公式计算即可 .(2) 设C 表示的数为C x ,根据公式AC =|2-C x |=6,计算后,结合定C 的位置确定答案即可.(3) 解答时,分点P 向左运动和向右运动两种情况求解.(1)∵数轴上的点A ,B 分别表示有理数2,5-,∴AB =|-5-2|=7,故答案为:7.(2)设C 表示的数为C x ,根据题意,得AC =|2-C x |=6,∴2-C x =6或2-C x = -6,解得C x = -4或C x =8,∵点C 在点A 的左侧,∴C x <2A x =,∴C x = -4,故答案为:-4.(3)①当点P 向右运动时,点P 表示的数为2+2t ,根据题意,得 22(4)12t +--=,解这个方程,得 3t =;②当点P 向左运动时,点P 表示的数为2-2t ,根据题意,得4(22)12t ---=,解这个方程,得9t =,故当3t =或9秒时,P ,C 两点之间的距离为12个单位长度.【点睛】本题考查了数轴上的动点问题,两点间的距离,分类思想,熟练掌握公式,正确理解距离的意义是解题的关键.6.(2021·江苏·扬州市江都区第三中学七年级阶段练习)如图,直径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是 ;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是 ;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:第1次第2次第3次第4次第5次+1+2﹣1﹣4+3①第几次滚动后,A点距离原点最远?此时点A所表示的数是多少?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?(以上小题结果保留p)【答案】(1)p-;(2)2π或−2π;(3)①第2次,3p;②11p,p【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【详解】解:(1)∵圆片沿数轴滚动1周的长度为d p p=∴把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是-p.故答案为:-p;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,则滚动的长度为2p,点D 表示的数是2π或−2π.故答案为:2π或−2π;(3)①由表格可得第1次滚动后,A点距离原点为p;第2次滚动后,A点距离原点为3p;第3次滚动后,A点距离原点为2p;第4次滚动后,A点距离原点为-2p;第5次滚动后,A点距离原点为p;∴第2次滚动后,A点距离原点最远;②∵|+1|+|+2|+|-1|+|−4|+|+3|=11,∴11×p=11p,∴A点运动的路程共有11p个单位,此时点A所表示的数是p.【点睛】此题主要考查了数轴以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.7.(2022·全国·七年级专题练习)如图,在数轴上,点A、B、C表示的数分别为-2、1、6(点A与点B之间的距离表示为AB).(1)AB= ,BC= ,AC= .(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:2BC-AC的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,求其值.(3)若点C以每秒3个单位长度的速度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动.求随着运动时间t的变化,AB、BC、AC之间的数量关系.【答案】(1)3,5,8;(2)会,理由见解析;(3)当t<1时,AB+BC=AC;当t大于或等于1,且t小于或等于2时,BC+AC=AB;当t>2时,AB+AC=BC【分析】(1)根据点A、B、C在数轴上的位置,写出AB、BC、AC的长度;(2)求出BC和AB的值,然后求出2BC−AB的值,判断即可;(3)分别表示出AB、BC、AC的长度,然后分情况讨论得出之间的关系.【详解】解:(1)由图可得,AB=3,BC=5,AC=8,故答案为:3,5,8;(2)2BC−AB的值会随着时间t的变化而改变.设运动时间为t秒,则2BC−AB=2[6+5t−(1+2t)]−[1+2t−(−2−t)]=12+10t−2−4t−1−2t−2−t=3t+7,故2BC−AB的值会随着时间t的变化而改变;(3)由题意得,AB=t+3,BC=5−5t(t<1时)或BC=5t−5(t≥1时),AC=8−4t(t≤2时)或AC=4t−8(t>2时),当t<1时,AB+BC=(t+3)+(5−5t)=8−4t=AC;当1≤t≤2时,BC+AC=(5t−5)+(8−4t)=t+3=AB;当t>2时,AB+AC=(t+3)+(4t−8)=5t−5=BC.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是能求出两点间的距离.8.(2022·全国·七年级专题练习)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”.(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是______;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M、N的幸福中心,则C所表示的数可以是______(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,74秒时,电子蚂蚁是A和B的幸福中心吗?请说明理由.类型三:求运动中的速度等问题9.(2022·全国·七年级课时练习)如图,在数轴上,点A,B分别表示15-,9,点P、Q 分别从点A、B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒,在运动过程中,当点P,点Q和原点O这三点中的一点恰好是另外两点为端点的线段的中点时,则满足条件整数t的值()A.22B.33C.44D.5510.(2022·全国·七年级课时练习)已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为( )A .34B .14 或 34C .14或32D .322+|b ﹣4|=0,记AB =|a ﹣b |.(1)求AB 的值;(2)如图,点P 、Q 分别从点A 、B 同时出发沿数轴向右运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,当BQ =2BP 时,P 点对应的数是多少?(3)在(2)的条件下,点M 从原点与P 、Q 点同时出发沿数轴向右运动,速度是每秒x 个单位长度(1<x <2),若在运动过程中,2MP —MQ 的值与运动的时间t 无关,求x 的值.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)解得:21mn=ìí=î,答:P点的运动速度2单位长度/秒,Q点的运动速度1单位长度/秒.【点睛】本题考查数轴上的点表示的数及两点间的距离、一元一次方程的应用,二元一次方程组的应用等知识,根据题中描述找到等量关系式是解题的关键.。
2024年浙教版七年级上册数学期末培优复习第13招线段上动点的常见题型
.
又因为3× -10=
,
所以当点 M 运动到数轴上表示
2 BN .
的点时, AM =
返回
分类训练
数轴上的动点问题
1. 如图,数轴上点 A 表示的数为-2,点 B 表示的数为8,
点 P 从点 A 出发,以每秒3个单位长度的速度沿数轴向右
匀速运动,同时点 Q 从点 B 出发,以每秒2个单位长度的
浙教版 七年级上
第13招
线段上动点的常见题型
CONTENTS
目
录
01
典例剖析
02
分类训练
教你一招
解决线段上的动点问题一般需注意:找准点的各种可能
的位置;通常可用设元法表示出移动变化后线段的长(若是
常数,那就是定值),再由题意列方程求解.
返回
典例剖析
如图,已知在数轴上有 A , B , O 三点,点 A 表示的
点 P 从 A 出发,以2 cm/s的速度沿 AB 向右运动,终点为
B ;点 Q 从点 B 出发,以1 cm/s的速度沿 BA 向左运动,
终点为 A . 已知 P , Q 同时出发,当其中一点到达终点
时,另一点也随之停止运动.设运动时间为 x s.
(1) AC =
12
cm,当 x =
1
2
3
4
5
数为-10,点 O 表示的数为0, OB =3 OA ,点 M 以每秒3个
单位长度的速度从点 A 向右运动,点 N 以每秒2个单位长度
的速度从点 O 向右运动(点 M , N 同时出发).
(1)数轴上点 B 表示的数是
;
七年级上册数学培优专题训练4 动点问题附解析学生版
七年级上册数学培优专题训练4 动点问题附解析学生版一、单选题(共8题;共16分)1.(2分)数轴上表示整数的点称为整点,某数轴的单位长度为1cm,若在数轴上画出一条长2020cm的线段AB,则线段AB盖住的整点个数是()A.2020B.2021C.2020或2021D.2019或2020 2.(2分)已知动点A在数轴上从原点开始运动,第一次向左移动1厘米,第二次向右移动2厘米,第三次向左移动3厘米,第四次向右移动4厘米,……,移动第2022次到达点B,则点B在点A点的()A.左侧1010厘米B.右侧1010厘米C.左侧1011厘米D.右侧1011厘米3.(2分)数轴上有O,A,B,C,D五个点,各点的位置与所表示的数如图所示,且3<|d|<5.若数轴上有一点M,M所表示的数为m,且|m−d|=|m−3|,则关于点M的位置,下列叙述正确的是()A.M在O,B之间B.M在O,C之间C.M在C,D之间D.M在A,D之间4.(2分)有理数a,b,c在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①abc<0;②a−b+c<0;③|a|a+|b|b+|c|c=3;④|a−b|−|b+c|+|a−c|=2a.A.4个B.3个C.2个D.1个5.(2分)正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续翻转,则在数轴上与2020对应的点是()A.A B.B C.C D.D6.(2分)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是()A.12B.13C.14D.157.(2分)如图,在数轴上,点P表示−1,将点P沿数轴做如下移动,第一次点P向右平移2个单位长度到达点P1,第二次将点P1向左移动4个单位长度到达P2,第三次将点P2向右移动6个单位长度,按照这种移动规律移动下去,第n次移动到点P n,给出以下结论:①P5表示5;②P12>P11;③若点P n到原点的距离为15,则n=15;④当n为奇数时,|P n−P n−1|=2P n;以上结论正确的是()A.①②③B.①②④C.②③D.①④8.(2分)如图,A、O、B两点在数轴上对应的数分别为﹣20、0、40,C点在A、B之间,在A、B两点处各放一个挡板,M、N两个小球同时从C处出发,M以2个单位/秒的速度向数轴负方向运动,N以4个单位/秒的速度向数轴正方向运动,碰到挡板后则反方向运动,速度大小不变.设两个小球运动的时间为t秒钟(0<t<40),当M小球第一次碰到A挡板时,N小球刚好第一次碰到B挡板.则:①C点在数轴上对应的数为0;②当10<t<25时,N在数轴上对应的数可以表示为80﹣4t;③当25<t<40时,2MA+NB始终为定值160;④只存在唯一的t值,使3MO=NO,以上结论正确的有()A.①②③④B.①③C.②③D.①②④二、填空题(共12题;共12分)9.(1分)如图,已知A,B两点在数轴上,点A表示的数为−10,点B表示的数为30,点M以每6个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N同时出发,经过秒,点M、点N分别到点B的距离相等.10.(1分)如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若甲的速度是乙的速度的3倍,则它们第2021次相遇在边.11.(1分)如图,数轴上相邻两个整数之间的距离为1个单位,圆的周长为4个单位长,在圆的4等分点处分别标上0、1、2、3.先让圆周上表示数字0的点与数轴上表示-2的点重合,再将数轴右半轴按顺时针方向环绕在该圆上(如:圆周上表示数字1的点与数轴上表示-1的点重合…),则数轴上表示2020的点与圆周上表示数字的点重合.12.(1分)同学们都知道:|5−(−2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,同理,|x+2|+|x+3|可以表示数轴上有理数x所对应的点到-2和3所对应的点的距离之和,则|x+2|+|x+3|的最小值为.13.(1分)如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2020.14.(1分)如图所示,在数轴上,点A表示1,现将点A沿轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n 与原点的距离不小于20,那么n的最小值是.15.(1分)如图,已知数轴上的点C表示的数为6,点A表示的数为-4,点B是AC的中点,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,运动时间为1秒(t> 0),另一动点Q,从B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,且P,Q同时出发,当t为秒时,点P与点Q之间的距离为2个单位长度。
(完整版)初一培优专题:数轴上动点问题(有答案)
培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。
-,则A与B两点之间的距离用式子2.若数轴上点A表示的数为x,点B表示的数为1可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。
3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t,则A点运动的路程可以用式子表示为______________。
-,A点在数轴上以2个单位长度/秒的速度向右运动,4.若数轴上点A表示的数为1若运动时间为t,则A点运动t秒后到达的位置所表示的数可以用式子表示为______________。
答案:1、3; 2、1x+,x+1; 3、2t; 4、12t-+二、已做题再解:1、半期考卷的第25题:如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足-2++8=a16(b)0(1)点A表示的数为_________,点B表示的数为________。
(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。
(完整版)初一上学期动点问题(含答案)
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
七年级数学培优-数轴上的动点问题专题(一)(版)
动点问题专题(一)前言:数轴上的动点问题离不开数轴上两点之间的距离,为了便于我们对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数-左边点表示的数.2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度,这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为;向右运动b 个单位后所表示的数为.3.数轴是数形结合的产物,分析数轴上点的运动耍结合图形进行分析.直在数轴上运动形成的路径可看作数轴上线段的和差关系,一、基础能力过关测试1.数轴上表示-5的点离原点的距离是个单位长度,数轴上离原点6个单位长度的点有个,它们表示的数是.2.数轴上的A 点与表示-3的点距离4个单位长度,则A 点表示的数为.3.数轴上A 、B 两点离原点的距离分别为2和3,则AB 间距离是.4.点A 、B 在数轴上对应的数分别是m 、n ,(n 在m 的右边).则AB 间距离是.5.数轴上表示x 和-2的两点间距离是;若︱x +2︱=5,则x =.6.若︱a ︱=︱b ︱,则a 、b 的关系是;若︱x -3︱=︱4-2x ︱,则x =7.若点A 、点B 表示的数分别是-2、6,则AB 的中点为,若点A 、点B 表示的数分别是a 、b ,则AB 的中点为.二、例题解析【例1】如图,动点A 从原点出发向数轴负方向运动,同时动点B 也从原点出发,向数轴正方向运动,A的速度为a 个单位长度/秒,B 的速度为b 个单位长度/秒,且a 、b 满足21(2)352a b -=--(1)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动到3秒时的位置;(2)若A 、B 两点在(1)中的位置,在数轴上存在一点C ,且AC =2BC ,求C 点对应的数-15-12-9-6-315129630(3)若A 、B 两点从(1)中的位置同时按原速度向数轴负方向运动,几秒时,原点恰好在两个动点的正中间;(4)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,问几秒后点A和点B 相距2个单位长度;(5)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,同时点C从原点出发,以1个单位长度/秒的速度向数轴负方向运动,问几秒后点C到点A的距离与到点B的距离相等.【例2】已知数轴上有A、B两点,分别表示的数为-40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动,设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为,线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点约经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为-5?并直接写出在这一运动过程中点M的运动方向和运动速度.【例3】己知如图,数轴上A、B、C三点对应有理数a,b,c.(1)若︱a︱>︱b︱>︱c︱,化简:3︱b-c︱-2︱a+2b︱+︱b+c︱;aC BAb c(2)若ab+c=0,︱a+5︱=7,且点B、A之间的距离与点B、C之间的距离相等,求b的值(3)在(2)的条件下,数轴上是否存在点P,使得点P分别到A、B、C三点的距离之和等于30?若存在,求出点P的数轴上所对应的数;若不存在,请说明理由.【例4】在数轴上有顺次排列的三点A、B、C,A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足︱a+2︱+(c-7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC =.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【例5】如图,点A、B为数轴上两点(A点在负半轴,用数a表示;B点在正半轴,用数B表示)a0b(1)若︱b-a︱=︱3a︱,试求a、b的关系式;(2)在(1)的条件下,Q是线段OB上一点,且AQ –BQ =OQ,求OQ:AB的值;(3)在线段AO上有一点C,OC=4,在线段OB上有一动点D(OD>4),M、N分别是OD、CD 的中点,下列结论:①OM-ON的值不变;②OM+ON的值不变,其中只有一个结论是正确的,请你找出正确的结论,并求值.【例6】已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:P A=,PC=.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以相同的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.BA0C。
人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(五)【有答案】
人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(五)1.国庆放假时,小明一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了6千米到超市买东西,然后又向东走了2千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)根据数轴回答超市A和外公家C相距千米.(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家所经历路程小车的耗油量.2.一个点从数轴上的原点开始,先向右移动1个单位长度到达A点,再向左移动2个单位长度到达B点,然后向右移动5个单位长度到达C点(1)直接写出点A,B,C三点所对应的数;(2)若点A,B分别以每秒2个单位长度和5个单位长度的速度向左运动,同时,若点C 以每秒1个单位长度的速度向右运动,设移动时间为t秒,把点A到点B距离记为AB,点A到点C距离记为AC,请问:AC﹣AB的值是否会随着t的变化而改变吗?若变化,请说明理由;若不变,请求其值.3.已知,等边△ABC(三条边都相等的三角形)在数轴上的位罝如图所示.(1)将△ABC从如图所示的位置沿数轴向左滚动一圈(滚动一圈指线段AC再次落在数轴上),则点A表示的数是.(2)将△ABC从如图所示的位置沿数轴向右滚动,则数2018表示的点与点重合;(3)将△ABC从如图所示的位置沿数轴滚动,向右滚动的圈数记为正数,向左滚动的圈数记为负数,依次运动情况记录如下:2,﹣1,+3,﹣4.﹣2.①第次滚动后,点A离原点最远;②当△ABC结束滚动时,点C表示的数是.4.已知,数轴上三个点A、O、B.点O是原点,固定不动,点A和B可以移动,点A表示的数为a,点B表示的数为b.(1)若AB移动到如图所示位置,计算a+b的值.(2)在图的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数a,并计算b﹣|a|.(3)在图的情况下,点A不动,点B向右移动15.3个单位长,此时b比a大多少?请列式计算.5.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.6.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P 从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)当x=秒时,点P到达点A.(2)运动过程中点P表示的数是(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.7.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t 值.8.已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m 到小夏家C处.(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;(2)小红家在学校什么位置?离学校有多远?9.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.如图,数轴上A、B、C三点表示的数分别为a、b、c,且a、b满足|a+8|+(b﹣12)2=0.(1)则a=,b=;(2)动点P从A点出发,以每秒10个单位的速度沿数轴向右运动,到达B点停留片刻后立即以每秒6个单位的速度沿数轴返回到A点,共用了6秒;其中从C到B,返回时从B到C(包括在B点停留的时间)共用了2秒.①求C点表示的数c;②设运动时间为t秒,求t为何值时,点P到A、B、C三点的距离之和为23个单位?。
(完整版)七年级上期末动点问题专题(附答案)
七年级上期末动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB 向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A 点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q 相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB 向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A 点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q 相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=4,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。
第二章 有理数的运算第8 讲 再探数轴上动点问题培优训练 2024-2025学年人教版七年级数学上册
第8 讲再探数轴上动点问题培优讲练专题1 数轴上的动点问题(1)模型一若A点在数轴上表示的数为a,(1)向右运动m个单位后对应的数为a+m. 模型二(2)向左运动m个单位后对应的数为a-m.【典例】如图,A,B两点在数轴上,这两点在数轴上对应的数分别为-12,16.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/秒、4个单位长度/秒,它们运动的时间为t秒,O点对应的数是0.(规定:数轴上两点A,B之间的距离记为AB).问题:点P,Q在A,B之间相向运动.(1)P点表示的数为,Q点表示的数为;(2)若P,Q在M点相遇,则点M对应的数是多少?方法:(1)设时间为t;(2) xp=-12+2t, xq=16-4t;(3)结合距离关系列方程.题型二不知动点在数轴上位置,OP=|xp|变式1.点 P,Q在点A,B 之间相向运动,满足OP =OQ,求 P 点对应的数;变式2.点P,Q都向左运动,它们在M 点处相遇,求M 点对应的数;变式3.点P,Q都向左运动,满足QO=23PO,求 P 点对应的数.专题 2 数轴上的动点问题(2)——追及与相遇问题题型一两个动点问题,注意分类讨论【典例】如图,已知a,b满足|4a−b|+(a−4)²=0,,分别对应数轴上的A,B两点.(1)a=____________,并在数轴上画出A,B两点;(2)若点 P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍?(3)数轴上还有一点C 对应的数为30,若点P 和点Q同时从点A 和点 B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P点到达C点后,立刻以同样的速度返回,运动到终点A,求点 P 和点Q 运动多少秒时,P,Q两点重合?并求此时点 Q对应的数.题型二线段中点问题,注意中点坐标公式变式.数轴上点 A 表示的数为-4,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为t秒( (t⟩0).(1)A,B两点间的距离为,线段AB 的中点表示的数为;(2)求当 t 为何值时, AB=2PQ?专题 3 数轴上的动点问题(3)题型注意点的位置不确定时,线段带绝对值如图,A,B 两点在数轴上分别表示有理数a,b,且| |a+3|+(b−9)²=0,点O为原点,点C 在数轴上O,B两点之间,且. AC+OC=BC.(1)直接写出:a=,,点C 所对应的数是;(2)动点 P从C点出发,以每秒1个单位长度的速度向左运动,同时动点Q从B 点出发,以每秒2个单位长度的速度向左运动,运动时间为t秒.①若PC=3CQ,求t的值;②若动点M同时从A 点出发,以每秒4个单位长度的速度向右运动,与点Q 相遇后,动点M立即以同样的速度返回,当t为何值时,点M恰好是线段PQ的中点.专题 4 数轴上的动点问题(4)——数轴上追及与相遇问题题型一点的折返问题,注意分类讨论【典例】如图,数轴上m,n,q所对应的点分别为点M,点N,点Q,若点 Q到点M的距离表示QM,点N 到点Q的距离表示为NQ.我们有QM=q-m,NQ=n-q.(1)点A,点B,点C在数轴上分别对应的数为-4,6,c.且BC=CA,直接写出c的值为 ;(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从A,C两点出发向右运动,甲的速度为每秒4个单位长度,乙的速度为每秒1个单位长度,求经过几秒,点B 与两只蚂蚁的距离和等于7.(3)在(1)(2)的条件下,电子蚂蚁乙运动到点 B 后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至点 B 后也以原速返回,到达自己的出发点后又折返向B 运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动.求运动时间为多少时,两只蚂蚁相遇.题型二数轴上相向而行问题,注意分区间讨论变式.如图,已知数轴上有A,B两个点对应的数分别是a,b,且满足| |a+3|+(b−9)²=0.(1)求a,b的值;(2)点C是数轴上A,B之间的一个点,使得. AC+OC=BC,,求出点C 所对应的数;(3)在(2)的条件下,点P,Q为数轴上的两个动点,点P 从A 点以1个单位长度/秒的速度向右运动,点Q同时从B点以2个单位长度/秒的速度向左运动,点P 运动到点C时,P,Q两点同时停止运动,设P 的运动时间为t秒,当( OP+BQ=3PQ时,求t 的值.专题5 数轴上的动点问题(5)——挡板问题〈坐标关系问题〉题型一注意设参与整体代换【典例】在数轴上的点 M 和点 N 处各竖立一个挡板(点M 在原点左侧,点N 在原点右侧),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向左运动,乙弹珠以1个单位/秒的速度沿数轴向右运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等,设M对应的数为m,N对应的数为n,试探究m与n是否满足某种数量关系,请写出它们的关系式,并说明理由.题型二注意速度变化变式1.如图,小钢珠A,B放置在数轴对应-4,—6的点位置后,钢珠A 以30个单位/秒的速度向右运动,同时钢珠B 以15个单位/秒的速度向左运动,当它碰到数轴—21处的垂直钢板时立即反弹,速度保持不变,设两个钢珠的运动时间为t秒,当215<t<125时,是否存在一个 k值,使得k·OB-OA 的值与t 值无关,若存在,请求出k值以及对应的(k·OB-OA)的值;若不存在,请说明理由.(钢珠的大小忽略不计)题型三利用速度关系发现路程关系列方程变式2.如图1,已知数轴上的点 A 对应的数是a,点B 对应的数是b,且满足( (a+5)²+|b−1|=0.(1)求数轴上到点A,点B距离相等的点C对应的数;(2)动点P 从点A 出发,以2个单位长度/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P 到点A 的距离是点 P 到点B 的距离的2倍? 若存在,请求出t的值;若不存在,请说明理由;(3)如图2,在数轴上的点M 和点N 处各竖立一个挡板(点M在原点左侧,点N 在原点右侧),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位长度/s沿数轴向左运动,乙弹珠以1个单位长度/s沿数轴向右运动,甲弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点 M和点 N 的距离相等.试探究点M 对应的数与点 N 对应的数是否满足某种数量关系,请写出它们的关系式,并说明理由.专题6 数轴上的动点问题(6)——动点定值问题题型注意点与点之间的位置关系进行分类讨论如图,A,B是数轴上的两点,点A 表示的数是a,点B 表示的数是b,且|a+2|+(2b−24)2=0.4(1)直接写出: a=___,b=___,线段 AB 中点对应的数为;(2)点M,N都从点A出发同时开始运动,点M 向右运动,点N 向左运动,且M点速度为N点速度的3倍.8秒后,以A,M,N,B四个点为端点的所有线段长度之和刚好为线段MN长度的4倍,求M点的运动速度;(3)如图,C,D两点对应的数分别为一6,8,若线段BD 固定不动,线段AC 以每秒2个单位长度的速度向右运动,E,F分别为AC,BD中点,设运动时间为t秒.在线段AC 向右运动的某一个时间段内,始终有EF+AD 为定值.求出这个定值,并直接写出相应的时间t的取值范围.。
1.2.2数轴培优训练数轴上的动点问题人教版2024—2025学年七年级上册
1.2.2数轴培优训练数轴上的动点问题人教版2024—2025学年七年级上册一、与数轴上的动点问题相关的基本概念数轴上的动点问题离不开数轴上两点之间的距离.主要涉及以下几个概念:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d =|a -b|,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数—左边点表示的数.2.两点中点公式:线段AB 中点坐标=2a b 3.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度.这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a ,向左运动b 个单位后表示的数为a—b ;向右运动b 个单位后所表示的数为a+b .4.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系.二、 数轴上的动点问题基本解题思路和方法1.表示出题目中动点运动后的坐标(一般用含有时间t 的式子表示).2.根据两点间的距离公式表示出题目中相关线段长度(一般用含有时间t 的式子表示).3.根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4.解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似。
类型一数轴与行程问题例1.如图,在数轴上点A 、点B 表示数a 、b ,且满足|a ﹣30|+(b +6)2=0.点O 是数轴原点.(1)点A 表示的数为 ,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?变式1:如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c 满足|a+3|+(c﹣9)2=0,b=1.(1)a=,c=;(2)若将数轴折叠,使得A点与点C重合,则点B与数表示的点重合.(3)在(1)的条件下,若点P为数轴上一动点,其对应的数为x,求当x取何值时代数式|x﹣a|﹣|x﹣c|取得最大值,并求此最大值.(4)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点C处以2个单位/秒的速度也向左运动,在点Q到达点B后,以原来的速度向相反的方向运动,设运动的时间为t(秒),求第几秒时,点P、Q之间的距离是点C、Q之间距离的2倍?变式2:如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
初一数学上学期动点问题专题培优(含答案)
初一数学上学期动点问题专题培优(含答案)初一上学期动点问题练1.已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒。
1) 表示点B的数和点P的数的代数式为:B的数为-6,P 的数为8-5t。
2) 若点P和点Q同时出发,点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,问点P运动多少秒时追上点Q?设点P运动x秒时,在点C处追上点Q。
则AC=5,BC=3,由AB=14得AC-BC=AB,解得AC-BC=7.因此,点P 运动7秒时,在点C处追上点Q。
3) 点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长。
线段MN的长度不发生变化。
当点P在点A和点B之间运动时,MN=MP+NP=AP+BP=(AP+BP)=AB=7;当点P运动到点B的左侧时,MN=MP-NP=AP-BP=(AP-BP)=AB=7.2.已知数轴上有A、B、C三点,分别表示有理数-26、-10、10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。
1) 表示点P到点A和点C的距离的代数式为:PA=t,PC=36-t。
2) 当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A。
当点Q开始运动后,请用t的代数式表示P、Q两点间的距离。
当16≤t≤24时,PQ=t-3(t-16)=-2t+48;当24<t≤28时,PQ=3(t-16)-t=2t-48;当28<t≤30时,PQ=72-3(t-16)-t=120-4t;当30<t≤36时,PQ=t-[72-3(t-16)]=4t-120.已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒。
七年级寒假培优数轴上的动点问题
数轴上的动点问题1.(本题满分8分)在数轴上依次有A,B,C 三点,其中点A,C 表示的数分别为-2,5,且BC=6AB .(1)在数轴上表示出A,B,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是2,21,41(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,求点P 对应的数;若不存在,请说明理由.2.(本题8分)已知多项式x 3-3xy 2-4的常数项是a ,次数是b(1) 直接写出a ,b ,并将这两个数在数轴上所对应的点A 、B 表示出来(2) 数轴上A 、B 之间的距离记作|AB |,定义:|AB |=|a -b |,设点P 在数轴上对应的数为x ,当|PA |+|PB|=13时,直接写出x 的值_____________(3) 若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,23AO =OB ,求点B 的速度3.(本题12分)已知A 、B 两个动点同时在数轴上匀速运动,且保持运动的方向不变.若A 、B 两点的起始位置分别用有理数a 、b 表示,c 是最大的负整数,且|a -19c 2|+|b -8c 3|=0(1) 求a 、b 、c 的值(2) 根据题意及表格中的已知数据,填写完表格:运动时间(秒)0 5 7 t A 点位置a -1 B 点位置b 17 27 (3) 若A 、B 两点同时到达点M 的位置,且点M 用有理数m 表示,求m 的值(4) A 、B 两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A 、B 两点表示的有理数;如果不能,请说明理由4.(本题7分)已知ab <0,ac >0,且|c |>|b |>|c |,数轴上a 、b 、c 对应的点是A 、B 、C (1) 若|a |=-a 时,请在数轴上标出A 、B 、C 的大致位置(2) 在(1)的条件下,化简:|a -b |-|b +c |+|c +a |5.(本题12分)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0(1) 求点C 表示的数(2) 点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t(3) 若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①PCPB PA 的值不变;②2BM -BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值6.(本题满分12分)数轴上点A 对应的数是﹣1,B 点对应的数是1,一只小虫甲从点B 出发沿着数轴的正方向以每秒4个单位的速度爬行至C 点,再以同样速度立即返回到A 点,共用了4秒钟.(1)求点C 对应的数;(2)若小虫甲返回到A 点后再作如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位, 第3次向右爬行7个单位,第4次向左爬行9个单位,……依次规律爬下去,求它第10次爬行后停在点所对应的数.(3)①若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点B 出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t 秒后,甲、乙两只小虫的距离为: .(用含t 的式子表示)②若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B 和点C 出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。
-,则A与B两点之间的距离用式子2.若数轴上点A表示的数为x,点B表示的数为1可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。
3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t,则A点运动的路程可以用式子表示为______________。
-,A点在数轴上以2个单位长度/秒的速度向右运动,4.若数轴上点A表示的数为1若运动时间为t,则A点运动t秒后到达的位置所表示的数可以用式子表示为______________。
答案:1、3; 2、1x+,x+1; 3、2t; 4、12t-+二、已做题再解:1、半期考卷的第25题:如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足-2++8=a16(b)0(1)点A表示的数为_________,点B表示的数为________。
(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。
(3)在(2)的条件下,若点P 运动到达B 点后按原路原速立即返回,点Q 继续按原速原方向运动,从P 、Q 在点C 处相遇开始,再经过多少秒,P 、Q 两点的距离为4个单位长度?解:(1)点A 表示的数为 __16-__,点B 表示的数为___8____(2) 设P 、Q 同时运动t 秒在点C 处相遇3t+t=24 解得t=6此时点C 所表示的数是16+36=2-⨯答:点C 所表示的数是2.(2)再经过a 秒,P 、Q 两点的距离为4个单位长度分类讨论:① 从点C 处相遇后反向而行,点P 到达B 点前相距4个单位长度3a+a=4 解得a=1② 点P 到达B 点后返回,此时相当于点Q 在P 点前4个单位长度()a 63a 64+--= 解得a=4③ 点P 到达B 点后返回,从后追上Q 点后又相距4个单位长度,此时相当于点P 在点Q 前4个单位长度()3a 6a 64--+= 解得a=8答:再经过1秒或4秒或8秒,P 、Q 两点的距离为4个单位长度。
备用图备用图2、七年级上学期期中模拟(1)的第10题:数轴上有A、B 两点表示—10,30,有两只蚂蚁P、Q同时分别从A、B 两点相向出发,速度分别是2单位单位长度/秒、3个单位长度/秒,当它们相距10个单位长度时,则蚂蚁P在数轴上表示的数是()解:经过t秒,P、Q相距10个单位长度,则P点运动路程为2t,运动后P点表示数为—10+2t,Q点运动路程为3t分类讨论:①还未相遇前相距10个单位长度2t+3t=40-10 解得t=6此时P点表示数为—10+2×6=2②相遇后又相距10个单位长度2t+3t=40+10 解得t=10此时P点表示数为—10+2×10=10综上所述,蚂蚁P在数轴上表示的数是2或10挑战题:1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
分析:如图1,易求得AB=14,BC=20,AC=34⑴设x秒后,甲到A、B、C的距离和为40个单位。
此时甲表示的数为—24+4x。
①甲在AB之间时,甲到A、B的距离和为AB=14甲到C的距离为10—(—24+4x)=34—4x依题意,14+(34—4x)=40,解得x=2②甲在BC之间时,甲到B、C的距离和为BC=20,甲到A的距离为4x依题意,20+4x)=40,解得x=5即2秒或5秒,甲到A、B、C的距离和为40个单位。
⑵是一个相向而行的相遇问题。
设运动t秒相遇。
依题意有,4t+6t=34,解得t=3.4相遇点表示的数为—24+4×3.4=—10.4 (或:10—6×3.4=—10.4)⑶甲到A、B、C的距离和为40个单位时,甲调头返回。
而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。
①甲从A向右运动2秒时返回。
设y秒后与乙相遇。
此时甲、乙表示在数轴上为同一点,所表示的数相同。
甲表示的数为:—24+4×2—4y;乙表示的数为:10—6×2—6y依题意有,—24+4×2—4y=10—6×2—6y,解得y=7相遇点表示的数为:—24+4×2—4y=—44 (或:10—6×2—6y=—44)②甲从A向右运动5秒时返回。
设y秒后与乙相遇。
甲表示的数为:—24+4×5—4y;乙表示的数为:10—6×5—6y依题意有,—24+4×5—4y=10—6×5—6y,解得y=—8(不合题意,舍去)即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为—44。
点评:分析数轴上点的运动,要结合数轴上的线段关系进行分析。
点运动后所表示的数,以起点所表示的数为基准,向右运动加上运动的距离,即终点所表示的数;向左运动减去运动的距离,即终点所表示的数。
2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
分析:⑴设AB中点M对应的数为x,由BM=MA所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇,依题意有,4t+6t=120,解得t=12(或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12)相遇C点表示的数为:—20+4t=28(或100—6t=28)⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。
P、Q为同向而行的追及问题。
依题意有,6y—4y=120,解得y=60(或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60)D点表示的数为:—20—4y=—260 (或100—6y=—260)点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。
⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。
在⑵、⑶中求出相遇或追及的时间是基础。
3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。
依题意,3—x=x—(—1),解得x=1⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。
①P在点A左侧,PA=—1—x,PB=3—x依题意,(—1—x)+(3—x)=5,解得x=—1.5②P在点B右侧,PA=x—(—1)=x+1,PB=x—3依题意,(x+1)+(x—3)=5,解得x=3.5⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。
故P 点总位于A点右侧,B可能追上并超过A。
P到A、B的距离相等,应分两种情况讨论。
设运动t分钟,此时P对应的数为—t,B对应的数为3—20t,A对应的数为—1—5t。
①B未追上A时,PA=PA,则P为AB中点。
B在P的右侧,A在P的左侧。
PA=—t—(—1—5t)=1+4t,PB=3—20t—(—t)=3—19t依题意有,1+4t=3—19t,解得 t=②B追上A时,A、B重合,此时PA=PB。
A、B表示同一个数。
依题意有,—1—5t=3—20t,解得t=即运动或分钟时,P到A、B的距离相等。