七年级数学绝对值PPT教学课件 (2)
合集下载
人教版七年级数学上册1.2.4《绝对值》课件 (13张PPT)
人民教育出版社七年级上册
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
1.2.4(1) 绝对值
1、数轴三要素
2、什么是互为相反数
谁离乒乓球网架远呢?
20 20
-20 -15 -10 -5 5 10 0 15 20 -20与+20在数轴上所表示的点到原点的距离都是 20个单位,距离20是-20和20的绝对值.
-20的绝对值表示-20的点到原点的距离,它的绝对值是20. -3的绝对值表示什么呢?它的绝对值是多少呢?
数轴原点表示的是0,0绝对值是0
绝对值性质:对于任意一个有理数a都有, 1、当a>0 时, |a|= _____ a ;
0 ; 2、当a=0 时, |a|= _____
3、当a<0 时, |a|= _____. -a
绝对值的代 数意义
1.填空:
1.7 |-1.7|_____ ; -4 ; -|-4|=____
-7 7
绝 对 值 发 生 器
7 7
、数轴原点右边表示的是什么数?该数的绝对值与这个数有什 么关系?
数轴原点右边表示的是正数,正数的绝对值是它本身
、数轴原点左边表示的是什么数?该数的绝对值与这个数有 什么关系?
数轴原点左边表示的是负数,负数的绝对值是它的相反数
、数轴原点表示的是什么数?该数的绝对值是多少?
1、绝对值的几何意义及表示方法 2、绝对值的代数意义 (1)一个正数的绝对值是它本身;
(2)零的绝对值是零;
(3)一个负数的绝对值是它的相反数;
1、必做题:习题1.2 第5、8题 2、选做题:绝对值评测训练
2的绝对值表示什么呢?它的绝对值是多少呢? 2 3 的绝对值表示什么呢?它的绝对值是多少呢?
2 3
-3 -2 -1
0
1.2.4 绝对值(课件)七年级数学上册(人教版2024) (2)
课堂反馈
会用数形结合法解绝对值有关的问题. 【例 2】写出绝对值大于 2 小于 5 的所有整数. 【思路分析】绝对值等于 2 的数是±2,绝对值等于 5 的数是±5,所以绝对 值大于 2 且小于 5 的整数在-5~-2 和 2~5 之间. 【规范解答】绝对值大于 2 小于 5 的整数有 3,4,-3,-4. 【方法归纳】已知一个数的绝对值,求这个数,根据绝对值的几何意义分 析,即绝对值等于一个正数的数有两个,它们互为相反数,注意不要漏掉 负数;绝对值为 0 的数只有 0.
0
10
以O为原点,取适当的单位长度画数轴,并在数 轴上标出A、B的位置,则A、B两点与原点距离分别 是多少?它们的实际意义是什么?
B
O
A
-10
0
10
我们把一个数在数轴上对应的点到原点的距离叫做 这个数的绝对值,用“| |”表示.
-5到原点的距 离是5,所以-5 的绝对值是5, 记做|-5|=5
0到原点的距 离是0,所以0 的绝对值是0, 记做|0|=0
新课本练习
4.化简下列各数:
3.5 , 5 , 11 , 15 , 7 , 9
6
3.5 3.5
5 5 66
11 11
7 7
9 9
15 15
随堂练习
1.下列说法正确的是( B ) A.一个数的绝对值一定是正数 B.负数的绝对值等于它的相反数 C.一个数的绝对值一定是非正数 D.绝对值是它本身的数有两个,分别是0和1
10
O
10
- 10
0
上述这个问题反映了什么数学知识?
10 东
新知探究
1.绝对值的意义及求法
甲、乙两辆出租车在一条东西走向的街道上行驶,记 向东行驶的里程数为正.两辆出租车都从O地出发,甲车 向东行驶10km到达A处,记作 +10 km,乙车向西行驶 10km到达B处,记做 -10 km.
人教版七年级数学上册1.2.4《绝对值》 课件(共23张ppt)
课堂小结
3.不论有理数a取何值,它的绝对值总是正数或0(非负数), 即对任意有理数a,总有|a|≥0.
4.互为相反数的两个数的绝对值相等. 5.数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从 小到大的顺序,即左边的数小于右边的数.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
课堂小结
6.有理数大小比较法则: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
课件PPT部编版课件统编版部编版人 教版七 年级数 学上册1.2.4《 绝对值 》 课件(共23张ppt)课件优质课课件免 费课件PPT
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7
,
∴
- 8 >- 3
21
7
.
(3)化简,得:-(-0.3)=0.3,-
1 3
=
1 3
.
1 ∵0.3< 3 ,
∴-(-0.3)<
-1 3
.
课堂练习
1.比较大小:
(1)-2_<__5,
-7 2
_>__
+
3 8
,
-0.01_>__-1;
4 (2)- 5
合作探究
一个正数的绝对值是什么?0的绝对值是什么?负数呢?
归纳:一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0.
1.2.4绝对值(课时2)课件(新人教版七年级上数学)
求两个负数的大小的步骤:(1)先求出 两个负数的绝对值;(2)比较两个绝 (1) -1和 – 5; (2)- 5 和 2.7 6 对值的大小;(3)写出正确的判断. 解法一(利用绝对值比较两个负数的大小) 解: (1)因为| -1| = 1,| -5 | = 5 ,1﹤5
例1. 比较下列每组数的大小
任意两个有理数的大小如何比较?
1.利用数轴比较: 2.由数轴上数的特点可知:
数轴上表示的两个数,右边的总比左边的大。
正数大于0, 0大于负数,正数大于负数.
特别地,两个负数,绝对值大的反而小.
例题
1.利用数轴比较有理数的大小. 2.利用绝对值比较有理数的大小.
达标题
1.异号两数比较大小,要考虑它们的 要考虑它们的 . 2.用“>、=、<”号填空: -3 -5; -2.25
所以 - 1> - 5
(2)因为| 5 6
5 | 6
=
5 6
,|- 2.7| =2.7,
﹤2.7,所以 -
5 ﹥-2.7 6
解法二 (利用数轴比较两个负数的大小) 解:(1) 因为- 5在 –1左边,所以 - 5﹤ - 1
(2) 因为- 2.7在 - 5 的左边,所以 2.7 ﹤- 5 6 6
总结归纳
1. 在数轴上表示下列各数,并比较 它们的大小: - 1.5 , - 3 , - 1 , - 5
2. 求出(1)中各数的绝对值,并比 较它们的大小
解:(1)
1.5
3. 你发现了什么?
-5
-3 -2 -1 0 1 2
- 5 < - 3 <- 1.5 < - 1 (2)| -1.5 | = 1.5 ; | - 3 | = 3; | -1 | = 1 ; | - 5 | = 5. 1 < 1.5 <3 <5 (3)由以上知:两个负数比较大小, )由以上知:两个负数比较大小, 绝对值大的反而小
数学七年级上册1.2.4绝对值(共16张PPT)
两个负数,绝对值大的反而小 .
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.
作业: 教科书习题1.2第5,6,7,8题.
总有 ≥a0
问题5:互为相反数的两个数的绝对值有什么关系?
学生观察讨论:一对相反数虽然分别 在原点两边,但它们到原点的距 的绝对值相等.
问题6:请同学们观察教科书第13页思考中的 图,回答下面问题.
1.题目中涉及到14个不同的气温,你能把这 14个数用数轴上的点表示出来吗?
结论:它们的行驶路线不同,行驶路程相同.
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2
呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作 a .
例如上面的问题中在数轴上表示-3的点和表 示3的点到原点的距离都是3,所以3和-3的绝对 值都是3,即|-3|=| 3 |=3.你能说说-2和2吗?
2.最低气温是多少?最高气温是多少?
3.你觉得两个有理数可以比较大小吗 ?应怎 样比较两个数的大小呢?
数学中规定:在数轴上表示有理数,它们 从左到右的顺序,就是从小到大的顺序,即左 边的数小于右边的数.
问题7:对于正数、0和负数这三类数,它们 之间有什么大小关系?
请同学们小组讨论,利用数轴探究结论!
1.2 有理数(第4课时) 1.2.4 绝对值
课件说明
• 本节课学习绝对值的意义.
• 学习目标: 了解绝对值的表示方法,理解绝对值的意义,会计算 有理数的绝对值.
• 学习重点: 绝对值的代数意义和几何意义.
问题1:看图回答问题. 两辆汽车从同一处O出发,分别向东、
西方向行驶10 km,到达A,B两处,它们的 行驶路线相同吗?它们的行驶路程相同吗?
1.正数大于0,0大于负数,正数大于负数; 2.两个负数,绝对值大的反而小.
北师大七年级数学上册《绝对值》课件(共25张PPT)
A.5
B.-5
1 C.5
D.-15
答案:A
2.下列各组数中,互为相反数的是( )
A.2 和-2
B.-2 和12
C.-2 和-12
D.12和 2
答案:A
3.一个数的相反数是12,则这个数是( )
A.-12 C.-2
1 B.2 D.2
答案:A
4.相反数等于本身的数为( )
A.正数
B.负数
C.零
答案:C
本身
相反数
0
4.(1)正数的绝对值是它_____;负相数等的绝对值是它
的_______;0的9绝对值是___.
(2)互为相反数的两个数的绝对值_____.如小-9和9的
绝对值都是____.
(3)两个负数比较大小,绝对值大的反而____.
1.什么是相反数?它如何表示? 2.绝对值如何理解? 3.两个负数如何比较大小?
3 绝对值
自 主预 习
1.了解相反数、绝对值的概念,会求有理数的相反 数和绝对值.(重点)
2.会利用绝对值比较两个负数的大小.(难点) 3.在绝对值概念的形成过程中,渗透数形结合的思 想.
相反数
互为相反数
1.如果两个数只0 有符号不同,互那为么相称反其数中一个数为
另一个数的________,也称这两个数___________.特别
A.12
B.0
答案:D
C.1
D.-2
9.下列各式中,正确的是( )
A.|-0.1|≤|0.01|
B.|-13|<14
C.-|-23|>|-34| 学科网
答案:D
D.-|18|>-17
10.写出一个x的值,使|x-1|=x-1成立.你写出的x的
北师大七年级数学上册《绝对值》课件(共21张PPT)
点将游戏1
A同学任意说出 一个有理数,再 随意地点另一个 同学B回答它的 相反数。
B同学回答后, 也任意说出一个 有理数,再点另 一个同学C回答 它的相反数……
1、teacher affects eternity; he can never tell where his influence stops.教师的影响是永恒的;无法估计他的影响会有多 深远。
作 业:
必做题:
习题2.3,知识技能第2,3,4,5题.
选做题:
若 a a, 则a
0;
若 a a, 则a
0.
也就是说绝对值等于2的数是___ .
2.在数轴上表示下列各数,并求它们的绝对值:
3 2
, 6 , -3 ,
5 4
3.比较下列各组数的大小:
(1) 0.5,3 2; (2) 110,7 2;
(3)
0,
2 3
;
(4) 7 , 7 .
4.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小; (3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等.
小 结:这节课你学到了什么?
1、相反数的意义:只有符号不同的两个数互为相反数 。 0的相反数是 0
2、绝对值 :在数轴上,一个数所对应的点与原点
的距离叫做该数的绝对值.
正数的绝对值是它本身; 负数的绝对值是它的相反数;
0 的绝对值是 0. 互为相反数的两个数的绝对值相等. 3、会用绝对值比较两个负数的大小:
6、does not mean teaching people to kow what they do not know ; it means teachng them to behave as they do not behave. 教育不在于使人知其所未知,而在于按其所未行而行。2021年11月2021/11/252021/11/252021/11/2511/25/2021
华东师大版(2024)数学七年级上册 1.4 绝对值 课件 (共19张PPT)
C B′ D A′
–4a –3
–2 b–1
O
1
c<
-b
2
<
d
<3 -a 4
c 的绝对值最小.
总结 一个数的绝对值越小,数轴上表示它的点 离原点越近,反过来,数轴上表示它的点离原点 越近,它的绝对值越小.
练一练 3. 已知 | x - 4 | + | y - 3 | = 0,求 x + y 的值.
分析:| a |≥0
| x - 4 |≥0; | y - 3 |≥0
解:根据题意可知
x-4=0,y-3=0. 所以 x=4,y=3,故 x+y=7.
| x - 4 | = 0; |y-3|=0
课后小结
绝 对 值
Байду номын сангаас
一般地,数轴上
表示数 a 的点与 原点的距__离__叫做
数 a 的绝对值
如果 a>0,那么 |a| =__a_; 如果 a=0, 那么 |a| =_0__; 如果 a<0,那么 |a| =_-_a_
15, 1 , 4.75,10.5. 2 10
解: 15 15, 1 1 ,
10 10
| -4.75 |=4.75,| 10.5 |=10.5.
典例精析
例2 化简:
(1)
1 2
;(2)
1 1 3
.
解:(1)
1 2
1 = 1. 22
(2)
11 3
11 . 3
练一练
1.写出下列各数的绝对值: -(+5)、-(-3.5)、-(-20124)、-[-(-65 )].
–6 –5 –4 –3 –2 –1
0
1
2
绝对值(37张PPT)数学
16
17
解 如图,
(2)超市D距货场A多远?
解
返回
解 向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,5.5-1.5-2=2(km),超市D距货场A有2 km.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(3)货车一共行驶了多少千米?
解 货车一共行驶了5.5+2+1.5+2=11(km).
答案
解析
7.计算:|-2|+2=____.
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 |-2|+2=2+2=4.
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
9.绝对值不大于5的整数共有____个.
11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 绝对值不大于5的整数有-5,-4,-3,-2,-1,0,1,2,3,4,5,共11个.
A
2.|-3|等于( )
C
答案
1
2
3
4
5
6
7
8
17
解 如图,
(2)超市D距货场A多远?
解
返回
解 向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,5.5-1.5-2=2(km),超市D距货场A有2 km.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(3)货车一共行驶了多少千米?
解 货车一共行驶了5.5+2+1.5+2=11(km).
答案
解析
7.计算:|-2|+2=____.
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 |-2|+2=2+2=4.
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
9.绝对值不大于5的整数共有____个.
11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析 绝对值不大于5的整数有-5,-4,-3,-2,-1,0,1,2,3,4,5,共11个.
A
2.|-3|等于( )
C
答案
1
2
3
4
5
6
7
8
人教版(2024)数学七年级上册1.2.4绝对值课件(共15张PPT)
一般地,数轴上表示数a的点与原点的距离 叫作数a的绝对值,记作|a| .
这里的数a可以是 正数、负数和0
例1 借助数轴求出2,4,-5,-1,-2.5,0的绝对值.
0
5
2.5 1
4 2
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
解: 表示2的点到原点的距离是2,所以2的绝对值是2; 表示4的点到原点的距离是4,所以4的绝对值是4;
本节我们继续学习有理数的相关概念!
新知学习
如图,10和-10互为相反数,在数轴上分别用A、B两点表示,可以发现:点A、B与原
点的距离都是10
B
O
A
-10到原点的距离是10, 所以-10的绝对值是10, 记做|-10|=10
-10
0
10
0到原点的距离是0,所以0 的绝对值是0,记做|0|=0
10到原点的距离是 10,所以10的绝对值 是10,记做|10|=10
44
(2)如图,数轴上的点A,B,C,D分别表示有理数a,b,c,d,这四个数中, 绝对值最小的是哪个数?
A
B
C
D
-4 -3 -2 -1 0 1 2 3
解:因为在点A,B,C,D中,点C离原点最近, 所以在有理数a,b,c,d中,c的绝对值最小.
分析:一个数的绝对值越小, 数轴上表示它的点离原点越 近;反过来,数轴上的点离 原点越近,它所表示的数的 绝对值越小
1 2
1 2
2.5 3
-3 -2 -1 0 1 2 3
距离原点为
1
Hale Waihona Puke 3、2,2.5的点分别有2个(一个正数,一个负数),如上图所示.
2.这些数字之间有什么关系?
1.2.4 有理数 绝对值 课件(共13张PPT)2024—2025学年七年级上学期数学人教版
满足条件的所有x的值为
0,1,-1,2,-2,-3
.
同学们,再见!
的距离叫做a的绝对值,记
知识点1 绝对值的概念及符号的理解
【例1】(1)6的绝对值是
是
0
,-8的绝对值是
6
,0的绝对值
8
;
-4.5的绝对值
(2)(多维原创)|-4.5|读作
上表示-4.5的点与原点的距离
5
【变式1】(1)2的绝对值是
绝对值是
,其结果等于
,它表示
4.5
.
,-3.9的绝对值是
3.9
点之间的距离,那么|5+2|可以看作|5-(-2)|,表示5与-2
这两个数在数轴上所对应的两点之间的距离.
(1)数轴上,有理数4与-1所对应的点之间的距离为
5
;
(2)结合数轴找出符合条件的整数x,使|x+1|=3,则x=
2或
-4 ;
(3)利用数轴分析,若x是整数,且满足|x+3|+|x-2|=5,则
,反之,绝对值相等的两个
.
1.-3的绝对值是(
1
A.
3
C )
1
B.-
3
C.3
D.-3
2.(2023·深圳一模)下列各数中,绝对值最小的是(
A.-2
B.3
3.若|x|=9,则x的值是(
A.9
B.-9
C.0
C
D.-3
)
C.±9
D.0
C
)
4.(人教7上P11T2改编)判断下列说法,正确的是
③④
.
①符号相反的数互为相反数;
C
A.x=y
B.x与y互为相反数
0,1,-1,2,-2,-3
.
同学们,再见!
的距离叫做a的绝对值,记
知识点1 绝对值的概念及符号的理解
【例1】(1)6的绝对值是
是
0
,-8的绝对值是
6
,0的绝对值
8
;
-4.5的绝对值
(2)(多维原创)|-4.5|读作
上表示-4.5的点与原点的距离
5
【变式1】(1)2的绝对值是
绝对值是
,其结果等于
,它表示
4.5
.
,-3.9的绝对值是
3.9
点之间的距离,那么|5+2|可以看作|5-(-2)|,表示5与-2
这两个数在数轴上所对应的两点之间的距离.
(1)数轴上,有理数4与-1所对应的点之间的距离为
5
;
(2)结合数轴找出符合条件的整数x,使|x+1|=3,则x=
2或
-4 ;
(3)利用数轴分析,若x是整数,且满足|x+3|+|x-2|=5,则
,反之,绝对值相等的两个
.
1.-3的绝对值是(
1
A.
3
C )
1
B.-
3
C.3
D.-3
2.(2023·深圳一模)下列各数中,绝对值最小的是(
A.-2
B.3
3.若|x|=9,则x的值是(
A.9
B.-9
C.0
C
D.-3
)
C.±9
D.0
C
)
4.(人教7上P11T2改编)判断下列说法,正确的是
③④
.
①符号相反的数互为相反数;
C
A.x=y
B.x与y互为相反数
1.2.4 绝对值 课件-人教版(2024)数学七年级上册 (2)
+
÷ −
【解】 −
×|-9|= ×9=24.
.
÷ −
1
2
= ×
3
4
= .
5
6
7
6. 如图,在数轴上有两滴墨水将数污染,根据图中数值,你
能确定墨迹盖住的整数是哪几个吗?并求其绝对值的和.
1
2
3
4
5
6
7
【解】由数轴可知在-6.3与-1之间被盖住的整数有-
6,-5,-4,-3,-2共5个,在0与4.1之间被盖住的整
-25,-36,+55,-45,+47,+32,-54,+43,-23.
如果进出库的装卸费都是8元/吨,那么这8天中进出货品需要
付装卸费多少元?
1
2
3
4
5
6
7
【解】|+38|+|-25|+|-36|+|+55|+|-
45|+|+47|+|+32|+|-54|+|+43|+|-
23|=398(吨),398×8=3 184(元).
第一章 有理数
1.2.4 绝对值
知识点1 绝对值的定义
1.2的绝对值是
是
0
2 ,- 的绝对值是
,0的绝对值
.
变式1下列四个数中,绝对值最大的是(
-
A. -3
B.
C. 0
D. +2
1
2
3
4
5
6
7
A
)
知识点2 绝对值的意义
人教版(2024)数学七年级上册1.2 有理数及其大小比较 第4课时《绝对值》PPT教学课件
3.经历学习活动的过程,让学生充分感受数学与生活的密切 联系,使学生获得学习数学的信心和乐趣.
图片导入
三只动物在离家不远的地方玩耍.观察图片,并回答问题. (1)大象和两只小狗分别距离原点多远? (2)从图中你还能知道哪两只动物之间的距离?
情境导入
体育课上,你和同学在操场上玩扔沙包的 游戏,如果你向左扔一个沙包,落在离你 10 米的地方,向右扔了一个,落在离你 同样远的位置,规定向右为正. (1)两次的位置分别可以记作什么? (2)它们与你的距离都是多少米?
【发现】①绝对值是一个正数的数有_2__个,它们互为_相__反___数;
②根据上面的规律发现,不论正数、负数,还是0,它们的绝对 值一定是_非__负__数_____.
【应用】①若|x|=2,则x的值是( C )
A.2
B.-2
C.±2
D.都不对
②若|a-1|+|b-2|=0,则a=1____,b=2____.
人教版(2024)数学七年级上册
绝对值
1.2 有理数及其大小比较 第4课时
汇报人:XXX 时间:2024.
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过实例,了解绝对值的概念,理解利用数轴表示绝对值 的意义,培养学生数形结合的பைடு நூலகம்想.
2.通过观察、思考、探究等学习活动,体会绝对值的几何意 义和代数意义,发展学生的形象思维和抽象思维能力.
问题导入
同学们,老师这里有几个问题,你们能帮老师解答一下吗? 早晨小明爸爸开车送小明去学校,东行3千米到学校,之后向西行6千米到图 书馆拿办公资料,如果规定向东为正,且小明家、学校、图书馆在同一条直 线上. (1)计算小明爸爸所行的总路程. (2)请你画一条数轴,原点表示小明家,在数轴上画出表示学校、图书馆的 点,学校和图书馆在数轴上表示的数是多少?到小明家的距离分别是多少?
图片导入
三只动物在离家不远的地方玩耍.观察图片,并回答问题. (1)大象和两只小狗分别距离原点多远? (2)从图中你还能知道哪两只动物之间的距离?
情境导入
体育课上,你和同学在操场上玩扔沙包的 游戏,如果你向左扔一个沙包,落在离你 10 米的地方,向右扔了一个,落在离你 同样远的位置,规定向右为正. (1)两次的位置分别可以记作什么? (2)它们与你的距离都是多少米?
【发现】①绝对值是一个正数的数有_2__个,它们互为_相__反___数;
②根据上面的规律发现,不论正数、负数,还是0,它们的绝对 值一定是_非__负__数_____.
【应用】①若|x|=2,则x的值是( C )
A.2
B.-2
C.±2
D.都不对
②若|a-1|+|b-2|=0,则a=1____,b=2____.
人教版(2024)数学七年级上册
绝对值
1.2 有理数及其大小比较 第4课时
汇报人:XXX 时间:2024.
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过实例,了解绝对值的概念,理解利用数轴表示绝对值 的意义,培养学生数形结合的பைடு நூலகம்想.
2.通过观察、思考、探究等学习活动,体会绝对值的几何意 义和代数意义,发展学生的形象思维和抽象思维能力.
问题导入
同学们,老师这里有几个问题,你们能帮老师解答一下吗? 早晨小明爸爸开车送小明去学校,东行3千米到学校,之后向西行6千米到图 书馆拿办公资料,如果规定向东为正,且小明家、学校、图书馆在同一条直 线上. (1)计算小明爸爸所行的总路程. (2)请你画一条数轴,原点表示小明家,在数轴上画出表示学校、图书馆的 点,学校和图书馆在数轴上表示的数是多少?到小明家的距离分别是多少?
七年级数学上册教学课件《绝对值》
探究新知
素养考点 求相反数
2.3 绝对值
例 如果a与﹣2互为相反数,那么a等于( B )
A.-拨:求一个数的相反数的方法:求一个具体数的 相反数时,只需改变这个数前面的符号,其他部分不变.
巩固练习
变式训练
下列说法: ①-2是相反数; ② 2是相反数; ③-2是2的相反数; ④-2和2互为相反数. 其中正确的有( B ) A.1个 B.2个 C.3个 D.4个
;
3 6
<
46;
所以−0.5
>
−
2 3
.
连接中考
2.3 绝对值
1. 在0,-1,2,-3这四个数中,绝对值最小的数是( A ) A.0 B.-1 C.2 D.-3
2. |x-3|=3-x,则x的取值范围是_x__≤__3_.
课堂检测
基础巩固题
2.3 绝对值
1. 下列结论正确的是( B )
A.-4与+(-4)互为相反数 C.-23与32互为相反数
问题2:互为相反数的两个数的绝对值又有什么关系呢?
结论: 1.│a│就是数轴上表示数a的点与原点的距离. 2.互为相反数的两个数的绝对值相等.
.探究新知
做一做
|+2|=___2_____, |-2|=____2____, -|-2|=__-_2_____,-|+2|=___-_2____,
|0|=___0_____.
数学 七年级 上册
2.3 绝对值
2.3 绝对值
导入新知
2.3 绝对值
观察下列每对数,并把它们在数轴上标出: 5和- 5,3和 -3,1.5和-1.5
-5 -3 -1.5
1.5 3
5
人教七年级数学上册《绝对值(2)》课件(共13张PPT)
7. 若m<0,则 m+︱m︱等于(
)
A . 0 B. -2m C .2m D .不确定
三.解答题
1.已知a和b互为相反数,c与d互为倒数,
m的绝对值为2,求
ab cdm
的值.
m
2. 若2﹤x﹤3, 则︱x-2︱=___, ︱x-3︱=____
︱2-x︱=___, ︱3-x︱=____.
3.有理数a,b,c在数轴上位置如图所 示,化简|c|+|b+a|+|c-a|
绝对值(2) 学.科.网
回顾: ①绝对值的几何意义: |a|表示在数轴上___________与________的距离。 ②绝对值的代数意义(即求一个数绝对值的一般方法): ________, ________ , ________ ③绝对值的性质1: 绝对值具有_______性,即|a|____0。 ④绝对值的性质2: 两个互为相反数的数的绝对值_____.
谢谢观赏
You made my day!
我们,还在路上……
二.选择
1.如果|a|+|b|=0,则a与b的关系一定是( )
A. a=b=0
B. a与b不相等
C. a与b同号 D. a与b异号
2.如果|x-55|+|y+29| +|z-26|= 0,
则x+y+z=_____
3.下列结论中正确的是( ) A.|a|一定是正数 B.-|c|一定是负数 C.︱-a-b︱=-︱b+a︱ D. - |a|一定是非正数
4.绝对值不大于2的非负整数是_______
5.已知整数x的绝对值大于3.2且不大于6, 则 x=_____
6. ︱x-1︱的最小值是______ 2+ ︱x-1︱的最小值是______ 2-︱x-4︱的最__ 值是______
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断:
× (1)若一个数的绝对值是 2 , 则这个数是2 。
√ (2)|5|=|-5|。 √ (3)|-0.3|=|0.3|。 √ (4)|3|>0。 √ (5)|-1.4|>0。
× (6)有理数的绝对值一定是正数。
√ (7)若a=b,则|a|=|b|。
× (8)若|a|=|b|,则a=b。 × (9)若|a|=-a,则a必为负数。
绝对值是利用数轴这一直观条件得出的; 它主要是解决在数轴上表示数的点到原点有 几个单位长度(距离)的问题,这是绝对值 的几何意义 。
(1)如果a表示有理数,那么︱a ︱有什么含义?
(2)互为相反数的两个数的绝对值有什么关系?
结论:互为相反数的两个数的绝对值相等
例1 求下列各数的绝对值: -21, +4/9, 0, -7.8, 15.5
得 性 质 :
一个负数的绝对值是它的相反数 0的绝对值是0.
非负数
别忘了0既不 是正数也不是 负数;0的相反 数是0.
字母 a表示一个数,-a表示什么?-a一
定是负数吗?
解:字母a表示一个数,-a表示 a的相
反数,-a不一定是负数,比如0.
如果一个数用a表示,那么 a =?
a
a 如果a>0, 0 如果a=0
解: ∣ - 21∣=21, ∣0∣=0, ∣15.5∣=15.5
∣+4/9∣=4/9, ∣ - 7.8∣=7.8,
提问:-21=21对吗?∣-21∣是负数吗?
一个数的绝对值与这个数有什么关系?
例如:|3|=3,|+6|=6
绝 对
一个正数的绝对值是它本身
值 例如:|-3|=3,|-1.5|=1.5
方3、你发现了什么?
法 两个负数比较大小,绝对值大的反而小 。 :
例2 比较下列每组数的大小: (1)-1和-5 (2)-5/6和-2.7 解:(1)因为∣-1∣=1 , ∣-5∣=5,1<5, 所以-1>-5.
(2)因为∣-5/6∣=5/6 , ∣-2.7∣=2.7 ,5/6<2.7, 所以-5/6 >-2.7
或a
a 如果a<0
a (a≥0)
-a (a≤0)
两 1、在数轴上表示下列每小题的两个数,并比 个较它们的大小: (1)-3和- 1.5 ,
负(2)-5和 -3
数 比
-3 <-1.5
-5 <-3
较2、求出⑴中各小题两个数的绝对值,并比较它
大们的大小。
小 ︱-3 ︱ < ︱ -1.5 ︱
的 ︱ -5 ︱ < ︱ -3 ︱
(4)绝对值小于10的整数一共有多少个?
_正_一_数_个_或_数_零_的_绝_. 对值是它本身,那么这个数一定是
绝对值小于5的整数有_9__个,
分别是__4_,_3__,2__,_1_,_0__,-_1__,_-_2_,_-_3_,_-_4__
33
想 你一还想能举:3与出-这3有样什的么两相个同数点吗??2 与- 2 呢?5与-5呢?
如果两个数只有符号不同,那么称其中一个数 为另一个数的,也称这两个数互为相反数。特 别地,0的相反数是0.
做一做
画出数轴、并用数轴上的点表示下 列各数: -1.5 , 0 , -6 ,2 , +6 ,-3 ,3
的概念──绝对值。
绝对值: │-5│=5 A
│4│=4
B
-6 -5 -4 -3 -2 -1 原点的距离叫做这个数的绝对值。
大象离原点4个单位长度: │4│=4
那么两只小狗呢? 如果一个数为-5,则它的绝对值呢?
│-5│=5
对绝对值的理解
绝对值的意义是在什么条件下给出的(即几何 意义)
解:
-6
-3 -1.5 0
23
+6
- 6 - 5 - 4 - 3 - 2 - 1 0 12 3 4 5 6
大象距原 点多远?
两只小狗分别 距原点多远?
-3-2 -1 0 1 2 3 4
-3所对应的点与3所对应的点与原点的距 离有什么关系?
§2.3绝对值
在生活中,有些问题我们只考虑数 的大小而不考虑方向,如:每天早上, 同学们从各自的家中走往学校所用的时 间不同,决定时间的因素是你家距学校 的路程,而没有强调你在学校所处的方 向。再如:为了计算汽车行驶所耗的汽 油,起主要作用的是汽车行驶的路程而 不是行驶的方向,这就需要引进一个新
√ (10)互为相反数的两个数的绝对值相等。
写出四个绝对值大于5 的正数
写出四个绝对值小于5 的数
大于-2且小于3的整数 有
这些数里面绝对值相等 的数是
(1)绝对值是7的数有几个?各是什么? 有没有绝对值是-2的数
(2)绝对值是0的数有几个?各是什么
(3)绝对值小于3的数是否都小于绝对值 小于5的数?