无功功率补偿原理及方法分析

合集下载

无功功率补偿的原理.

无功功率补偿的原理.

从原理来讲,即并联电容器是怎样无功补偿的?我来帮他解答满意回答2009-03-10 18:011、无功补偿的原理电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.2.无功补偿的意义(1补偿无功功率,可以增加电网中有功功率的比例常数(2减少发,供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cos4=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW.对原有设备而言,相当于增大了发,供电设备容量.因此,对新建,改建工程.应充分考虑无功补偿,便可以减少设计容量,从而减少投资.(3降低线损,由公式△P%=(1-cosΦ/cosΦX100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则cosΦ>cosΦ,所以提高功率因数后,线损率也下降了.减少设计容量,减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益.所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行.3.无功补偿的原则提高用电单位的自然功率因数,无功补偿分为集中补偿,分散补偿和随机随器补偿,应该遵循:全面规划,合理布局,分级补偿,就地平衡;集中补偿与分散补偿相结合,以分散补偿主;高压补偿与低压补偿相结合,以低压补偿为主;调压与降损相结合,以降损为主的原则.4.无功补偿装置的组合元件(1低压无功补偿设备的组合元件①无功功率自动补偿控制器根据电网无功功率是否达到无功设定值来控制电力电容器的投入和切除,并且有过,欠电压保护功能②无触点可控硅模块或智能复合开关③电容器(内带放电电阻④熔断器⑤电流互感器⑥避雷器⑦开关⑧电抗器(对无触点开关起到过电流保护作用;对防止电容器过电流也起到抑制作用另外,还装配监视用的电压表,电流表,功率因数表和信号指示灯等.其他回答共1条2009-03-09 22:24changmaojing|五级学过电磁学就知道了一般线路都是感性电路,为了让其功率因数达到或接近一,就要在电路旁边并联电容并且容量值大小是需要选取的,现在的工厂好像都有能自动调整容量的仪器的,这样做的好处是能减少无功电流,进而可以减少输电线的损失,可以充分发挥电力设备(发电机及变压器的潜力,因为发电机的发电潜力用KVA表示,提高功率因数它最多可以输出的功率可以提高很多。

无功功率补偿原理及方法分析

无功功率补偿原理及方法分析

无功功率补偿原理及方法分析摘要:无功功率补偿是保障电力系统能源质量的有效方法,其在降低电能消耗以及能源节约方面的效果是非常明显的,所以其在长距离电能运输中的作用是不可忽视的。

为保障电网系统运行的效益,我国加大了对无功功率补偿技术研究的力度,本文通过对电网系统进行研究,探讨一下无功功率补偿的原理和方法以及其在电网系统中的应用。

关键词:无功功率补偿补偿原理补偿方法无功功率补偿是当今电气自动化技术及电力系统研究领域所而临的一项重大课题,正在受到越来越多的关注。

电网中无功功率不平衡主要有以下两个为一面的原因:一为一而是供电部门传送的电力质量不高;另一为一而是用户的电气性能不够好,这两为一面的综合原因导致无功功率的不均匀分布和各种问题的产生。

显然,这此需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的为一法是在大量需要无功功率的地为一安装无功补偿装置并进行无功功率的就地补偿。

1无功补偿的原理电流在电感元件中做功时,电流滞后于电压90°;而电流在电容元件中作功时,电流超前于电压90\在同一电路中,电感电流与电容电流方向相反,互差180°o如果在电磁元件电路中安装一定的电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的道理。

图1和图2分别为感性阻抗和容性阻抗中电流、电压和功率的波形变化规则。

在第一个四分之一周期内,电流由零逐渐增大,此时,电感吸收功率, 转化为礦场能量,而电容放出储存在电场中的能量;第二个四分之一周期,电感放出礁场能量,电容吸收功率,以E的四分之一周期重复上述循环。

从图3可以看出并联电容器无功补偿原理。

将并联电容器C与供电设备(如变压器)或负荷(如电动机)并联,则供电设备或负荷所需要的无功功率,可以全部或部分由并联电容器供给,即并联电容器发出的容性无功,可以补偿负荷所消耗的感性无功。

图1电感中电流、电压和功率的变化图2电容中的电流、电压和功率的变化u Ir| ^3 |Il Czzo图3并联电容器无功补偿原理图4为并联电容器补偿向量图。

无功补偿的工作原理

无功补偿的工作原理

无功补偿的工作原理
无功补偿是指通过电力系统中的无功功率补偿装置来减少或消除无功功率的损耗,提高电力系统的功率因数。

其工作原理主要包括以下几个方面:
1. 无功功率的来源:电力系统中的电感元件(例如线圈、变压器等)和电容元件(例如电容器、电机等)会导致电流和电压之间存在一定的位移角,从而产生无功功率损耗。

无功功率由虚功和无功电流两部分组成。

2. 无功功率的补偿:无功补偿装置通过把适量的电容或电感接入电力系统中,可以产生相反的无功功率,从而达到补偿的目的。

例如,在电感元件造成的电感性负载时,可以通过并联的电容器来补偿正好与电感的无功功率相互抵消,提高功率因数。

3. 控制与调节:无功补偿装置通常通过控制器进行监测和控制,监测电流、电压、功率因数等参数,根据设定值进行相应的调节。

常见的控制器包括可编程逻辑控制器(PLC)和微处理器等。

4. 节能效果:无功补偿装置的主要目的是减少无功功率的消耗,提高电力系统的功率因数。

通过补偿无功功率,可以减少电流和电压之间的位移角度,降低电流和电压的幅值,从而减少电力系统的损耗,提高能源利用效率。

总之,无功补偿装置通过引入相反的无功功率来补偿电力系统
中的无功功耗,提高功率因数,减少能源损耗,并通过控制器进行监测和调节,实现节能效果。

补偿无功功率节电原理

补偿无功功率节电原理

补偿无功功率节电原理1. 简介随着现代电力系统的不断发展和用电负荷的增加,电力系统中的无功电流越来越大,这通常会导致许多问题,如电压波动,电力损耗增加,线路负荷过重等。

因此,补偿无功功率已成为现代电力系统中必不可少的一环。

补偿无功功率的目的是改善电力系统的质量,消除电压波动,提高电能利用率。

2. 无功功率的概念在交流电路中,电流通常可以被分为两个部分,即有功电流和无功电流。

有功电流是用来做功的电流或实际能量转换的电流,而无功电流是周期性能量转换的电流。

这里的周期性能量转换指的是由电感和电容反复存储和释放电能的过程。

在电力系统中,有功功率主要用来提供能量,如照明、电动机、加热器等。

而无功功率则主要用来维持电力系统中的电压稳定。

无功功率的大小与电路中的电感和电容等参数有关。

当电路中有较大的电感或电容时,就会产生较大的无功电流,从而降低电压质量。

3. 什么是补偿无功功率补偿无功功率是通过在电路中增加等量的电感或电容来消除电路中的无功功率,从而提高电路的效率和稳定性。

这种补偿方法被称作无功补偿或功率因数校正。

补偿无功功率有两种常见的方法,即串联电容器补偿和并联电感器补偿。

串联电容器补偿是指在电路中串联接一个或多个电容器,以减少电路中的无功功率。

而并联电感器补偿则是在电路中并联接一个或多个电感器,以消耗电路中的无功功率。

4. 无功功率补偿的作用补偿无功功率的作用主要包括三方面。

第一,补偿无功功率可以提高电路的功率因数。

功率因数是指有功功率和总视在功率的比值,通常用来衡量电路的效率。

电路的功率因数越大,则电路的效率越高。

第二,补偿无功功率也可以降低电路中的无功电流。

无功电流是电流的一种,通常不做功,只用于电能的储存和释放,对电力系统的运行效率和可靠性产生不利的影响。

第三,补偿无功功率还可以降低电力系统中的电能损耗和电能浪费。

5. 补偿无功功率的优点补偿无功功率具有许多优点。

首先,它可以改善电力系统的质量和可靠性。

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理.集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。

串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。

这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。

并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。

这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。

按电容器安装的位置不同,通常有三种方式。

1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。

可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。

2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。

这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。

但是分组补偿的效果比较明显,采用得也较普遍。

3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一个重要概念,用于解决电力系统中出现的无功功率不平衡问题。

本文将介绍无功补偿的作用和原理。

一、无功补偿的作用无功功率是指在交流电路中产生和消耗无功功率的能量,它不对机械负载做功,主要表现为电感和电容元件的无功功率。

而无功功率不仅会造成电力系统中的电能浪费,还会导致电压稳定性问题。

无功补偿的作用就是调整电力系统中的无功功率,以提高电能的利用效率和电压的稳定性。

具体而言,无功补偿可以实现以下几个方面的作用:1. 提高功率因数:功率因数是指有功功率与视在功率之比。

功率因数越接近1,说明电能的利用效率越高。

通过无功补偿,可以降低系统中的无功功率,从而提高功率因数。

2. 改善电压稳定性:电力系统中的负载变化会引起电压波动,尤其是大型电动机和变压器的启动和停止会产生较大的电压波动。

通过无功补偿,可以在负载变化时调整无功功率的产生和吸收,从而保持电压在合理范围内的稳定。

3. 减少线路损耗:无功功率不仅会增加变压器和输电线路的负荷,还会导致线路电压降低,从而增加线路上的电能损耗。

通过无功补偿,可以减少线路上的无功损耗,提高电能传输的效率。

二、无功补偿的原理无功补偿的原理主要涉及到无功功率的产生和吸收,可以通过电容器和电感器来实现。

电容器是一种能够存储电能的元件,可以在电路中产生无功功率。

当电容器与电源相连接时,由于电容器具有存储电能的特性,在电源电压较高的时候,电容器会吸收电能;而在电源电压较低的时候,电容器会释放电能。

通过调整电容器的容值和连接方式,可以实现对无功功率的产生和吸收。

电感器是一种能够存储磁能的元件,可以在电路中吸收无功功率。

当电感器与电源相连接时,由于电感器具有存储磁能的特性,在电源电压较低的时候,电感器会吸收电能;而在电源电压较高的时候,电感器会释放电能。

通过调整电感器的参数和连接方式,可以实现对无功功率的吸收。

无功补偿的原理可以通过自动或手动方式实现。

无功补偿的原理及作用有哪些

无功补偿的原理及作用有哪些

无功补偿的原理及作用有哪些
无功补偿是电力系统中的一种调节措施,用于改善电力系统的功率因数和电压稳定性。

其原理和作用如下:
原理:
1. 无功功率是电力系统中的虚功,它由电感和电容元件引起。

电感元件会产生感性无功功率,而电容元件会产生容性无功功率。

2. 无功补偿通过在电力系统中引入合适的电抗器(感性或容性)或者调节电容器的接入或退出,来消除或补偿系统中的无功功率。

3. 无功补偿的目标是使系统的功率因数接近于1,减少无功功率的流动,提高电压的稳定性。

作用:
1. 改善功率因数:无功补偿可以将系统的功率因数从低于1的值提高到接近1的值。

功率因数越接近于1,表示系统中的有功功率占比越高,系统的效率也越高。

2. 减少线路损耗:无功补偿可以减少电力系统中的传输线路损耗。

无功功率的流动会导致传输线路上的电流增大,从而增加线路损耗。

通过无功补偿,可以减小无功功率流动,降低线路损耗。

3. 提高电压稳定性:无功补偿可以调节电压的大小,确保系统中的电压稳定在合适的范围内。

在电力系统中,无功功率的流动会引起电压的波动,通过无功补偿可以抑制电压的波动,提高电压的稳定性。

4. 提高输电容量:无功补偿可以提高输电线路的有效容量。

通过补偿无功功率,可以减小电流的大小,从而提高输电线路的容量,减少电力系统的拥塞现象。

总之,无功补偿在电力系统中起到了改善功率因数、减少线路损耗、提高电压稳定性和提高输电容量等作用。

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法引言在电力系统中,无功功率是不可避免的。

无功功率对于电力系统的影响包括电压稳定性和输电损失等。

由于电容器具有“吞噬”无功功率的功能,因此并联电容器补偿无功功率是一种有效的方法。

本文将介绍并联电容器补偿无功功率的原理及相关方法。

无功功率的产生与影响无功功率是电力系统中不可避免的现象。

在电路中,一部分电能转化为有用功率,用于供电设备的工作,其他部分电能则被转化为无功功率,用于维持电路的电磁场。

一般来说,无功功率对电路性能的影响包括以下几个方面:电压波动电压波动是无功功率对电路性能的主要影响之一。

当无功功率过多时,会导致电路中电压的不稳定。

此时,电路中的各种设备会受到影响,其工作效率将大大降低。

特别是在对质量要求较高的行业中,电压波动将对设备带来严重的危害。

输电损失由于无功功率产生的电磁场的存在,线路中的电流将变得更大。

这意味着更多的电能将被转化为热量和其他不需要的形式的能量。

如果无功功率过多,将导致输电损失增加,进而降低电力系统的效率。

并联电容器补偿无功功率的原理并联电容器可以通过吸收无功功率的方式来调整电路的无功功率。

在电路中引入并联电容器后,电容器将在电流周期中积累电荷,然后在下一个周期中释放这些电荷。

换句话说,电容器通过在不同的周期中增加或减少电流的流动来调整电路的无功功率。

并联电容器补偿无功功率的原理可通过以下公式来描述:Qc = Qp * tan(acos(Pf))其中,Qc代表电容器的无功补偿容量,Qp代表电路的总无功功率,Pf为功率因数的余弦值。

并联电容器补偿无功功率的方法为了高效地补偿无功功率,需要根据实际情况选择合适的并联电容器进行安装。

并联电容器的选择通常基于电路的功率因素和负载特性。

以下是几种应用广泛的并联电容器安装方法:固定电容器固定电容器是一种直接在电路中并联安装的电容器。

这种方法对于负载电流比较稳定、功率因数波动不大的电路比较适用。

无功功率补偿控制器原理

无功功率补偿控制器原理

无功功率补偿控制器原理无功功率补偿控制器是一种用于电力系统中的设备,它的作用是对无功功率进行补偿,以提高电力系统的功率因数。

无功功率补偿控制器的原理是通过检测电力系统中的无功功率,然后根据检测结果控制补偿装置的操作,以实现无功功率的补偿。

在电力系统中,电力的传输过程中会产生一定的无功功率。

无功功率是由电感器件和电容器件引起的,它不直接进行功率传输,但会对电力系统的性能产生影响。

当电力系统中的无功功率过大时,会导致电压波动、电流不平衡等问题,甚至会影响电力设备的正常运行。

为了解决这些问题,需要对电力系统中的无功功率进行补偿。

无功功率补偿控制器通过检测电力系统中的无功功率,并根据检测结果控制补偿装置的操作,来实现无功功率的补偿。

具体来说,无功功率补偿控制器通过检测电力系统中的电压和电流,计算出电力系统的功率因数,然后根据功率因数的大小来控制补偿装置的操作。

无功功率补偿控制器的控制方式有两种,一种是手动控制,另一种是自动控制。

手动控制方式需要人工干预,根据功率因数的大小来手动调整补偿装置的操作。

自动控制方式则是通过预设的参数和控制算法,自动计算出补偿装置的操作,并实现自动补偿。

无功功率补偿控制器的核心是控制算法。

控制算法根据电力系统的电压和电流的变化情况,以及预设的参数来计算补偿装置的操作。

常用的控制算法有比例控制、微分控制和积分控制等。

这些控制算法可以根据实际情况进行组合,以提高无功功率补偿的效果。

无功功率补偿控制器的补偿装置主要包括电容器和电感器。

电容器用于补偿电力系统中的感性无功功率,而电感器用于补偿电力系统中的容性无功功率。

补偿装置通过控制电容器和电感器的连接和断开,来实现对电力系统中的无功功率的补偿。

无功功率补偿控制器的使用可以有效地提高电力系统的功率因数,减少无功功率的损耗。

同时,它还可以提高电力系统的稳定性和可靠性,减少电力设备的损坏。

因此,无功功率补偿控制器在电力系统中得到了广泛的应用。

无功功率补偿计算公式

无功功率补偿计算公式

无功功率补偿计算公式无功功率补偿计算公式是电力系统中重要的计算方法之一。

它用于衡量和补偿电路中产生的无功功率,以提高电网的功率因数和效率。

本文将介绍无功功率补偿计算公式的基本原理和应用。

我们需要了解什么是无功功率。

在电力系统中,电流和电压的相位差会导致电路中产生无功功率。

无功功率不会对电网产生实际功率贡献,但会影响电网的稳定性和能效。

为了消除或减少无功功率对电网的影响,我们需要进行无功功率补偿。

无功功率补偿的计算公式是基于功率三角形理论。

功率三角形是由有功功率、无功功率和视在功率构成的一个几何图形,它们之间存在特定的关系。

根据功率三角形理论,我们可以得到以下无功功率补偿计算公式:Q = S*sin(θ)其中,Q表示无功功率,S表示视在功率,θ表示功率因数角。

无功功率与视在功率的乘积再乘以功率因数角的正弦值,就是无功功率的大小。

在实际应用中,我们可以通过测量电路中的电流和电压以及功率因数角的值,来计算无功功率的大小。

具体的步骤如下:1. 测量电路中的电流和电压。

通过电流表和电压表,我们可以得到电路中的电流值和电压值。

2. 计算功率因数角。

根据电流和电压的相位差,我们可以计算功率因数角的值。

3. 计算视在功率。

根据电流和电压的大小,我们可以计算视在功率的值。

4. 计算无功功率。

根据上述公式,将视在功率和功率因数角代入公式,即可计算出无功功率的大小。

通过无功功率补偿计算公式,我们可以准确地计算出电路中的无功功率,并据此制定相应的补偿措施。

常用的无功功率补偿方法包括并联电容器补偿、串联电抗器补偿和静止无功功率补偿装置等。

并联电容器补偿是最常用的一种无功功率补偿方法。

通过在电路中并联连接电容器,可以补偿电路中产生的无功功率,提高功率因数,减少电网的无效功率损耗。

串联电抗器补偿则是通过在电路中串联连接电抗器,来补偿电路中产生的无功功率。

静止无功功率补偿装置是一种高效的无功功率补偿技术。

它通过控制电力电子器件,实时调整电路中的无功功率,以达到无功功率补偿的目的。

220kV无功补偿原理及应用要点分析

220kV无功补偿原理及应用要点分析

220kV无功补偿原理及应用要点分析摘要:有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率,无功功率比较抽象,它是用于电路与磁场的交换,并用来在电气设备中建立和维护磁场的电功率,它不对外做功,而是转变为其他形式的能量。

我场风电机组使用的是异步发电机,发电机工作过程中需要外界吸收励磁电流,也就是上面所说的无功功率。

SVC系统的运行维护,电容器、电抗器、隔离开关、阀组室的运行维护,及SVC系统的日常异常及事故处理。

一.无功补偿简介在交流电路中,有电源供给负载的功率有两种:一种是有功功率,一种是无功功率。

有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。

比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或拖拉机脱粒;各种照明设备将电能转换为光能,工人们生活和工作照明,有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW).无功功率比较抽象,它是用于电路与磁场的交换,并用来在电气设备中建立和维护磁场的电功率,它不对外做功,而是转变为其他形式的能量,凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。

比如40瓦的日光灯,除需40多瓦有功功率(镇流器也消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。

由于它不对外做功,才被叫无功。

无功功率的符号用Q表示。

单位用乏(Var)或千乏(kVar)。

二.无功补偿的种类1.集中补偿在高低压配电所内设置若干电容器,电容器接在配电母线上,补偿母线供电范围内的无功功率。

例如升压站内10千伏或35千伏母线上接的电容器。

2.单独就地补偿将电容器装于箱内,放置在电动机或发电机附近,对其进行单独的补偿。

补偿电容器的主要作用是通过补偿无功来提高用电设备的功率因数,有功电量消耗也不会有明显增加,但无功的消耗一定是明显降低的。

谐波抑制和无功功率补偿

谐波抑制和无功功率补偿

谐波抑制和无功功率补偿引言在电力系统中,谐波和无功功率是常见的问题,它们会导致电网的不稳定性、能源浪费和设备损坏等一系列负面影响。

因此,谐波抑制和无功功率补偿成为了电力系统优化和能源管理的重要课题。

本文将详细介绍谐波抑制和无功功率补偿的概念、原理、方法以及应用。

谐波抑制概念谐波是指在电力系统中频率为基波频率的整数倍的波形成分。

谐波的产生主要是由非线性负载设备引起的,例如电弧炉、电子设备等。

谐波会导致电压和电流的波形失真,进而影响电力系统的稳定性和设备的正常运行。

谐波抑制是指通过采取措施,减少或消除电力系统中的谐波成分,使电力系统的波形恢复正常,保证电力质量和设备的正常运行。

原理谐波抑制的原理主要包括两个方面:滤波和控制。

1.滤波:通过在电力系统中引入谐波滤波器,对谐波成分进行滤波,将谐波成分从电力系统中分离出来。

常用的谐波滤波器包括谐波阻抗滤波器、谐波电抗滤波器等。

2.控制:通过控制非线性负载设备的工作方式和参数,减少其对电力系统的谐波污染。

常用的控制方法包括谐波限制技术、谐波消除技术等。

方法谐波抑制的方法主要包括被动方法和主动方法。

1.被动方法:被动方法是指通过谐波滤波器等被动设备来实现谐波抑制。

被动方法具有成本低、稳定可靠等优点,但其抑制效果受到负载变化和谐波频率变化的限制。

2.主动方法:主动方法是指通过控制设备的工作方式和参数来实现谐波抑制。

主动方法具有灵活性强、抑制效果好等优点,但其成本较高。

应用谐波抑制广泛应用于电力系统中,特别是对于需要保证电力质量和设备正常运行的场合。

例如,工业生产中的电弧炉、电子设备等非线性负载设备常常会引起谐波,需要采取谐波抑制措施。

此外,谐波抑制也在电网规划、电力设备设计等领域得到广泛应用。

无功功率补偿概念无功功率是电力系统中的一种特殊功率,它与电压和电流之间的相位差有关。

无功功率的存在会造成电网电压的波动和能源的浪费,因此需要进行补偿。

无功功率补偿是指通过采取措施,使电力系统中的无功功率达到平衡,提高电网的稳定性和能源利用效率。

供电系统无功补偿原理

供电系统无功补偿原理

供电系统无功补偿原理
供电系统无功补偿的原理主要是通过并联电容器来实现的。

感性负载在运行过程中需要建立交变磁场,这种功率叫做无功功率。

感性负载所需要的无功功率可以由容性负荷输出的无功功率来补偿。

通过并联电容器,容性负荷能够提供感性负荷所需要的无功功率,从而减少无功功率在电网中的传输,降低电网的损耗,提高功率因数。

无功补偿可以提高功率因数,是一项投资少、收效快的降损节能措施。

无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。

这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率来补偿。

当前,国内外广泛采用并联电容器作为无功补偿装置。

这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。

通过无功补偿,可以改善电网的电压质量,提高输电稳定性和输电能力,满足用户的用电需求,提高用电质量。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一项重要技术,其作用是改善系统的功率因数,提高电能的利用效率。

本文将介绍无功补偿的作用和原理,并探讨其在电力系统中的应用。

一、无功补偿的作用1. 改善功率因数:功率因数是衡量电能利用效率的重要指标之一,它反映了电能的有功和无功成分之间的比例关系。

功率因数越低,表示系统中消耗的无功功率越多,而功率因数的提高可以减少这部分无功损耗。

通过无功补偿,可以实现功率因数的调整,将系统中的无功功率减少至最小。

2. 提高电网稳定性:无功补偿可以调节电力系统中的电压和无功功率的平衡,提高电网的稳定性和可靠性。

在发生大规模负载波动或故障时,无功补偿装置能够及时响应并自动调整,以确保电压的稳定运行。

3. 降低线路损耗:电力系统中的无功功率流动会导致线路的电压降低和电流增大,从而使线路的损耗增加。

通过无功补偿,可以有效抑制无功功率的流动,降低线路的损耗,提高输电效率。

二、无功补偿的原理1. 电容补偿:电容补偿是通过并联连接电容器来提供无功功率的补偿。

电容器呈现负电阻特性,在电网系统中,通过将电容器与负载并联连接,可以补偿系统中的感性无功功率,提高功率因数。

通过控制电容器的开关,可以实现无功补偿的自动调节。

2. 电感补偿:电感补偿是通过串联连接电感器来提供无功功率的补偿。

电感器呈现正电阻特性,在电网系统中,通过将电感器与负载串联连接,可以补偿系统中的容性无功功率,提高功率因数。

与电容补偿相比,电感补偿的响应速度较慢,但在一些特殊的情况下具有更好的补偿效果。

3. 静态无功发生器:静态无功发生器(SVC)是一种通过电子元件实现无功补偿的装置。

SVC采用可控硅等器件来实现无功功率的快速补偿,具有响应速度快、补偿能力强的优势。

SVC常用于大规模电力系统中,能够准确、可靠地调整系统的功率因数和电压。

综上所述,无功补偿在电力系统中具有重要的作用,它能够改善功率因数,提高电网稳定性,降低线路损耗。

电力系统中的无功补偿

电力系统中的无功补偿
整理课件
(2)并联补偿:把电容器直接与 被补偿设备并接于同一电路上,以 提高功率因数。它的作用是: 1)补偿无功功率,提高功率因数; 2)提高设备出力; 3)降低功率损耗和电能损失; 4)改善电压质量。
整理课件
3、并联电容器无功补偿的一 般方法 并联电容器无功补偿通常采用 的方法主要有3种:低压个别 补偿、低压集中补偿、高压集 中补偿。下面简单介绍这3种 补偿方式的适用范围及使用该 种补偿方式的优缺点。
整理课件
无功功率补偿的原理是:把具 有容性功率负荷的装置与感性 负荷并联在同一电路,当容性 负荷释放能量时,感性负荷吸 收能量;而感性负荷释放能量 时,容性负荷吸收能量,能量 在两种负荷之间转换。这样, 感性负荷所吸收的无功功率可 由容性负荷输出的无功功率中 得到补偿,这就是无功功率补 偿的原理。
整理课件
(1)补偿是有级的、定时的,因而补偿 精度差,跟随性不强,不能适应负荷 变化快的场合;受交流接触器操作频 率及寿命的限制,静态补偿装置一般 均设有投切延时功能,其延时时间一 般为30s。对一般稳定负荷,即负荷变 化周期大于30s的负荷,这类补偿装置 是有效的,但对一些变化较快的负荷, 如电梯、起重、电焊等,这类补偿装 置就无法进行跟踪补偿。
整理课件
图3 高尚堡变电站电容器一次原理图
整理课件
4、电容器容量的选择 在实际工程中首先应根据负荷情况和供电部 门的要求确定补偿后所需达到的功率因数值, 然后再计算电容器的安装容量:
Qc = P(tanφ1 - tanφ2) 式中: Qc——电容器的安装容量,单位:千乏 (kvar); P——系统的有功功率,单位:千瓦 (kW); tanφ1——补偿前的功率因数角; tanφ2——补偿后的功率因数角。
整理课件

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一项重要技术,它的作用是提高电力系统的功率因数,稳定电压,并减少无功功率的损失。

本文将从无功补偿的作用和原理两个方面进行探讨。

一、无功补偿的作用1. 提高功率因数:功率因数是衡量电力系统效率的重要指标,当功率因数低于0.95时,电力系统的能量利用率会显著下降。

无功补偿可以通过引入合适的电容器或电抗器来提高功率因数,减少系统中的无功功率,从而提高电力系统的能效。

2. 稳定电压:电力系统中的无功功率流动会导致电压波动,从而引发电力设备的故障和损坏。

无功补偿可以通过补偿无功功率,稳定电压,提高电力系统的稳定性和可靠性。

3. 减少无功功率损耗:无功功率的存在会引发电力系统中的损耗,特别是在输电线路和变压器中,无功功率的损耗占比较大。

通过采用无功补偿技术,可以减少无功功率的损耗,提高电力系统的效益。

二、无功补偿的原理无功补偿的原理主要涉及到两个方面:电容器的无功功率补偿和电抗器的无功功率补偿。

1. 电容器的无功功率补偿:电容器可以储存电能并在需要时释放,通过控制电容器的充电和放电状态来实现无功功率的补偿。

当电压上升时,电容器处于充电状态,吸收电力系统中的无功功率;当电压下降时,电容器处于放电状态,释放储存的能量,补偿电力系统中的无功功率。

2. 电抗器的无功功率补偿:电抗器是一种能够产生感抗性阻力的电器元件,通过引入电抗器来补偿电力系统中的无功功率。

当电流流过电抗器时,会产生电感作用,使得电抗器吸收无功功率。

通过合理选择电抗器的参数,可以实现无功功率的补偿。

在实际应用中,常常会将电容器和电抗器组合起来进行无功功率的补偿。

这种组合称为补偿装置或无功补偿装置,通过调节补偿装置的工作状态,实现无功功率的补偿和电力系统的稳定运行。

总结:无功补偿技术在现代电力系统中具有重要的应用价值,它可以提高电力系统的能效和稳定性,降低无功功率的损耗。

无功补偿的原理主要涉及电容器和电抗器的补偿机制,通过合理调节补偿装置的工作状态,实现无功功率的补偿。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中的一项重要措施,其主要作用是改善电力系统的功率因数,提高电网的稳定性和效率。

本文将介绍无功补偿的作用和原理,并探讨其在电力系统中的应用。

一、无功补偿的作用无功补偿主要通过调节电压和电流的相位差来实现,它的作用主要有以下几个方面:1. 改善功率因数:无功补偿可以将电力系统中的被动无功功率转变为有功功率,从而提高功率因数。

功率因数是衡量电力系统能效的重要指标,通过无功补偿可以使功率因数接近1,减少无功损耗,提高电网的能效。

2. 提高电网的稳定性:在电力系统中,大量的无功负荷会导致电压的波动,甚至引发电网的不稳定,无功补偿可以通过调整电压和电流的相位差,提高电网的稳定性。

尤其是在电力负荷变化较大的情况下,无功补偿能够有效地维持电网的电压水平,保持供电质量的稳定。

3. 提高输电效率:电力系统中,电流在输送过程中会产生一定的无功损耗,无功补偿可以减少这些无功损耗,提高电能的有效输送效率。

通过合理的无功补偿措施,可以降低输电线路的损耗以及输电损耗带来的电力资源浪费。

二、无功补偿的原理无功补偿的原理主要包括静态无功补偿和动态无功补偿两个方面。

1. 静态无功补偿静态无功补偿主要通过并联连接电容器和电抗器来实现。

电容器可以在电压低谷时释放无功功率,而电抗器则可以在电压高峰时吸收无功功率,实现系统的无功平衡。

静态无功补偿可以根据负载的实际需求进行调节,使系统达到最佳的电能传输状态。

2. 动态无功补偿动态无功补偿主要通过控制器和功率电子器件来实现。

控制器可以感知电网的无功功率需求,并根据需要调节功率电子器件的开关状态,以实现对电流相位的精确控制。

动态无功补偿具有响应速度快、控制精度高等优点,适用于对无功补偿精度要求较高的场合。

三、无功补偿的应用无功补偿广泛应用于各个领域的电力系统中,尤其是在电力输配电网、重要工业用电系统以及电力电容器等设备中。

1. 电力输配电网:在电力输配电网中,无功补偿可以提高电网的稳定性和负载能力,降低线损和电压波动,保证供电质量的稳定。

无功补偿的方案及分析

无功补偿的方案及分析

无功补偿的方案及分析无功补偿是指在电力系统中,由于电感电容等元件的存在,所产生的无功功率需要通过无功补偿装置来进行补偿,以提高电力系统的功率因数。

下面将介绍无功补偿的方案及其分析。

一、无功补偿方案1.静态无功补偿装置(SVC):SVC是一种采用电力电子技术实现的无功补偿装置,可以通过电容器和电感器的组合实现电力系统的无功调节。

静态无功补偿装置可以实现高速响应、精密补偿的特点,广泛应用于电力系统中。

2.静态同步补偿装置(STATCOM):STATCOM是一种利用电力电子技术实现的无功补偿装置,通过控制电压的相位和幅值来提供无功功率的调节。

STATCOM具有可调节容量、快速响应、高精度、无接触的优点,可广泛应用于电力系统中。

3.动态无功补偿装置(DSTATCOM):DSTATCOM是一种通过电力电子技术实现的无功补偿装置,主要用于电力系统中电压暂时性的调节和电力系统的无功稳定。

DSTATCOM可以实现快速响应、精确补偿、动态调节等特点,适用于电力系统中无功补偿的需求。

4.串联无功补偿装置(SVCUPFC):SVCUPFC是一种通过串联电容和电抗器实现电力系统无功调节的装置。

SVCUPFC可以实现动态调节、可调节容量的特点,适用于电力系统中的无功补偿需求。

二、无功补偿分析1.能够提高电力系统的功率因数:通过无功补偿装置的应用,可以减少电力系统的无功功率损耗,提高电力系统的功率因数,降低电力系统的无功功率流动,提高电力系统的效率和稳定性。

2.能够提高电力系统的电压稳定性:在电力系统中,无功补偿装置可以通过调节电压的相位和幅值,稳定电力系统的电压,减少电力系统中的电压波动,提高电力系统的稳定性。

3.能够提高电力系统的负载能力:通过无功补偿装置的应用,可以有效地调节电力系统中的无功功率,提高电力系统的负载能力,降低电力系统的负载损耗,延长电力设备的使用寿命。

4.能够减少电力设备的故障率:在电力系统中,无功补偿装置可以有效地减少电力设备的负荷压力,提高电力设备的工作环境,降低电力设备的故障率,延长电力设备的使用寿命。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中一个重要的技术手段,它的作用是提高电力系统的功率因素,减少无功功率的流动,改善电能质量,提高电网稳定性。

本文将探讨无功补偿的作用和原理。

一、无功补偿的作用1. 提高电力系统的功率因数功率因数是衡量电力负载效应的一个重要指标,合理的功率因数对于电力系统的供电质量和节能减排具有重要意义。

通过无功补偿,可以将电力系统的功率因数调整到接近1的水平,减少系统中无功功率的流动,提高系统的有功功率利用率,降低线损。

2. 减少电能质量的损耗无功补偿可以减少电能质量的损耗,提高电能的传输效率。

在电力系统中,由于电网中存在电感性负载设备,会产生大量的无功功率,导致电能质量下降,电压波动,频率偏离等问题。

通过无功补偿装置的设置,可以实时地对这些问题进行补偿,减少无功功率的损耗,提高电网稳定性和电能质量。

3. 改善电网稳定性无功补偿可以提高电网的稳定性。

电力系统中,由于负载变化和突发故障引起的电压波动和频率偏离,会对电力网络的稳定运行产生不利影响。

通过无功补偿装置的应用,可以在电网中实时地适应电流的变化,控制电压和频率的稳定性,保持电力系统的正常运行。

二、无功补偿的原理无功补偿通过引入合适的无功电流,将系统中产生的无功功率与负载需求相抵消,从而实现功率因数的调整。

1. 无功补偿装置无功补偿装置主要包括电容器和电抗器。

电容器用来消耗无功功率,提高功率因数;而电抗器则用来补偿电感性负载设备产生的无功功率。

2. 无功补偿控制无功补偿控制是实现无功补偿的核心技术。

常用的无功补偿控制方法有定时补偿、容性补偿、自动补偿和静态补偿等。

这些方法主要通过控制补偿装置的开关(电容器或电抗器)状态,来实现电力系统负载的无功功率的补偿。

3. 系统监测和调节无功补偿需要对电力系统的无功功率进行实时监测和调节。

通过安装相应的无功补偿装置,结合高精度的电能仪表和监测系统,可以实现对电力系统无功功率的准确监测,从而精确地进行无功补偿。

无功补偿的作用和原理

无功补偿的作用和原理

无功补偿的作用和原理无功补偿是电力系统中重要的一项技术措施,用于解决电力系统中的功率因数问题。

本文将讨论无功补偿的作用和原理,并探讨其在电力系统中的应用。

一、无功补偿的作用1. 改善功率因数:在电力系统运行中,负载电流中可能存在有功功率和无功功率成分。

功率因数是描述有功功率和无功功率之间关系的参数。

当负载电流中存在大量的无功功率成分时,功率因数较低。

功率因数越低,说明系统中所消耗的有功功率越少,电网运行效率低下。

无功补偿可以通过补偿电容或电感的方式,使系统中的无功功率成分减少,从而提高功率因数,改善电网的运行效率。

2. 提高电网稳定性:电力系统中的无功功率流动会引起电压不稳定性问题。

当无功功率流入电力系统时,会导致电网电压升高,而无功功率流出电力系统时,会导致电网电压降低。

这样的电压不稳定性会对电力设备和用户的正常运行产生不利影响。

通过无功补偿,可以调整电力系统中的无功功率流动,使电压保持在稳定的水平,提高电网的稳定性。

3. 提高电力系统的传输能力:无功补偿可以减少电力系统传输线路上的无功功率流动,从而增加有功功率的传输能力。

传输线路在传输电能时,除了有功功率外,还会带有一定量的无功功率。

过多的无功功率流动会减少传输线路的有效传功能力,限制系统的输电能力。

通过无功补偿装置的补偿作用,可以减少无功功率流动,提高电力系统的传输能力。

二、无功补偿的原理无功补偿的主要原理是改变电力系统中的电流相位差,实现无功功率的补偿。

根据补偿的方式不同,无功补偿可分为电容式和电感式两种。

1. 电容式无功补偿:电容式无功补偿是通过并联连接电容器的方式,将电网中的无功功率进行补偿。

补偿电容器能够储存电能,并在电网电压下释放出来,产生无功功率供电网使用。

电容式无功补偿主要用于消除电网中的电感性负载和补偿电容性负载。

2. 电感式无功补偿:电感式无功补偿是通过串联连接电感器的方式,将电网中的无功功率进行补偿。

补偿电感器能够产生电磁感应,吸收电网中的无功功率,减少电网的无功功率流动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无功功率补偿原理及方法分析摘要:无功功率补偿是保障电力系统能源质量的有效方法,其在降低电能消耗以及能源节约方面的效果是非常明显的,所以其在长距离电能运输中的作用是不可忽视的。

为保障电网系统运行的效益,我国加大了对无功功率补偿技术研究的力度,本文通过对电网系统进行研究,探讨一下无功功率补偿的原理和方法以及其在电网系统中的应用。

关键词:无功功率补偿补偿原理补偿方法无功功率补偿是当今电气自动化技术及电力系统研究领域所面临的一项重大课题,正在受到越来越多的关注。

电网中无功功率不平衡主要有以下两个为一面的原因:一为一面是供电部门传送的电力质量不高;另一为一面是用户的电气性能不够好,这两为一面的综合原因导致无功功率的不均匀分布和各种问题的产生。

显然,这此需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的为一法是在大量需要无功功率的地为一安装无功补偿装置并进行无功功率的就地补偿。

1 无功补偿的原理电流在电感元件中做功时,电流滞后于电压90o;而电流在电容元件中作功时,电流超前于电压90o。

在同一电路中,电感电流与电容电流方向相反,互差180o。

如果在电磁元件电路中安装一定的电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的道理。

图1和图2分别为感性阻抗和容性阻抗中电流、电压和功率的波形变化规则。

在第一个四分之一周期内,电流由零逐渐增大,此时,电感吸收功率,转化为磁场能量,而电容放出储存在电场中的能量;第二个四分之一周期,电感放出磁场能量,电容吸收功率,以后的四分之一周期重复上述循环。

从图3可以看出并联电容器无功补偿原理。

将并联电容器C与供电设备(如变压器)或负荷(如电动机)并联,则供电设备或负荷所需要的无功功率,可以全部或部分由并联电容器供给,即并联电容器发出的容性无功,可以补偿负荷所消耗的感性无功。

图1 电感中电流、电压和功率的变化图2 电容中的电流、电压和功率的变化图3 并联电容器无功补偿原理图4为并联电容器补偿向量图。

当未接电容C时,流过电感L的电流为IL,流过电阻R的电流为IR,电源供给的电流为I1, I1=IR+jIL,此时相位角为φ1,,功率因数为cosφ1;并联接入电容C后,由于电容电流IC与电感电流IL方向相反,使电源供给的电流由I1减小为I2, I2=IR+j(IL-IC),相角由φ1减小到φ2,功率因数则由cosφ1提高到cosφ2。

设负荷有功功率为P(千瓦),无功功率为Q(千乏),视在功率为S(千伏安),电压有效值为 ,电流有效值为I,功率三角形如图5,则有:图4 并联电容器补偿向量图图5 有功、无功、视在功率向量图2 无功补偿的作用在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。

如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。

但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。

1)根据用电设备的功率因数,可测算输电线路的电能损失。

通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。

2)采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。

3)无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。

4)减少电力损失,一般工厂动力配线依据不同的线路及负载情况,其电力损耗约2%--3%左右,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。

5)改善供电品质,提高功率因数,减少负载总电流及电压降。

于变压器二次侧加装电容可改善功率因数提高二次侧电压。

6)延长设备寿命。

改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷降低,因此可以降低温升增加寿命(温度每降低10℃,寿命可延长1倍)7)最终满足电力系统对无功补偿监测要求,消除因为功率因数过低而产生的罚款。

8)无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少,收效快的节能措施。

9)无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的。

3 电网系统中的无功补偿类别我国电网系统中的武功功率补偿方法类别是有区分依据的,例如补偿方式、补偿类别以及电网类型等都是无功功率补偿方法的划分标准的所以我国电网系统中的无功功率的补偿类别主要有以下几种表现形式:3.1补偿方式类别按电网系统无功功率补偿方式进行类别的划分主要可分为六个部分:电网随线补偿,其补偿无功功率的方法主要是在电网系统的高压配电线路上以分散并联的方式安装电容器直接提高电网电网运行功率,降低损耗二变电站处集中补偿其补偿方法,即是在高、低压配电线路中采用组装并联的方式安装电容器对主变空载以及输电线路进行无功功率补偿,实现变电站终端电压的提高,随器、随机补偿,此种补偿方法效益比较高,其连接方式简单,安装容易配置灵活,对低压输电线路的作用比较高,但是其产生的谐波较难控制;低压集中式补偿,此补偿方式在用户变压器中应用较多,由于其在管理和维护上存在制约因素,公共变压器中不经常使用;电动机器就地补偿,此补偿方式以单台电动机器为基础,以联动的方式安装电容器,保障电能功率消耗降低的同时,提高输电线路的输电能力,低压分散式补偿此补偿方式没有针对性,而且其降损节能的效果较为明显,但是其在设备利用上容易造成电容器的闲置。

3.2补偿设备类别按电网系统补偿设备类型进行类别的划分主要分为四类:移相电容器,此补偿设备因在电网系统中使用的功耗小利用率高,但是其只能采用分级的方式进行补偿,不能完全吸收无功的功率而,且其对环境和电压的是有一定要求的;静止补偿装置,此补偿装置由电容器和电抗器共同组成,可对无功功率进行调节,可实现电压在周波内迅速调节;同步调相机,此补偿装置主要是以机器的负载为对象,向电网系统提供具备感应性的无功功率,保持电网系统运行的稳定性;同步电动机,此补偿设备与同步调相机类似,不同之处是其作用对象为电网系统的功率因子。

3.3网络目的类别电网系统无功率补偿方式以网络类型进行分类可分为输配电补偿和配电线补偿,其两者的共同目的即是提高电网系统运行的稳定性,理论是以线路环式连接方式为主的,但是以实际电网线路运行来看,为避免线路中产生电磁影响,一般采用开环的方式连接。

4 无功补偿方式4.1变电站集中补偿变电站集中补偿方式指的是在变电站装设无功补偿装置,包括并联电容器、同步调相机、静IF补偿器等等。

通常采用的调节方式是按照九区图的控制策略,将无功补偿装置与有载调压抽头配合调节,实现电压和无功功率的控制。

这种无功补偿方式的优点是维护方便、管理方式简单,但缺点是无法降低配电网的电能损耗厂4.2低压集中补偿低压集中补偿方式主要应用在变压器低压侧,是国内较普遍采用的另一种无功补偿方式。

其中补偿装置通常采用微机控制的低压并联电容器柜,可根据用户负荷水平的波动来投入适当数量的电容器,从而进行跟踪补偿。

这种补偿方式可改善专用变压器用户的功率因数,实现无功功率的就地平衡,进一步降低配电网及变压器的电能损耗,从而保证用户的电压水平。

然而其缺点在于当线路电压基准偏高或偏低时,无功功率的投切量难以满足实际需求量,就有可能出现无功功率补偿过量或不足的情况。

另外,面向用户的公用变压器通常安装在户外杆架上,在这些变压器上安装集中补偿装置则难以维护、控制和管理,容易产生安全隐患。

因此,这种无功补偿有一定的局限性。

4.3杆上无功补偿为了降低线路网损,把l OkV户外并联电容器安装在架空线路的杆塔上进行无功功率补偿,这样可以提高配电网的功率因素,降低线损,提升电压。

为了避免因杆上安装并联电抗器远离变电站而引起的保护不易配置、控制成本高、维护难度大、安装环境受限等问题,杆上无功补偿必须做到:补偿点宜少、控制方式从简、不设分组投切、补偿容量宜小、接线宜简单及保护方式简化等。

杆上无功补偿方式具有投资小、补偿效率高、便于管理和维护等优点。

在负荷波动的情况下,这种固定的补偿方式适应能力较差。

4.4用户终端分散补偿由于低压用户负荷小、波动大、地点分散、管理较难,因此直接在用户末端进行无功补偿将最恰当地维持配电网的电压水平,降低电力系统的电能损耗。

尤其是企业和厂矿中的电动机更应该进行就地无功补偿。

这种补偿方法的无功装置应具有智能型控制、免维护、易安装、占地面积小、功能完善等特点。

分散补偿的优点是:能大幅降低线损,改善电压质量及提高线路输电能力。

缺点是大量电容器轻载时会闲置,设备利用率不高。

参考文献:[1l何仰赞,温增银.电力系统分析M武汉:华中科技大学出版社,2002[2]崔驰低压配网无功补偿浅析[[J].电网技术,2000. 24 (7) : 71- 72.[3]刘建强,陈刚.配电网四种无功补偿技术方案比较[[J].电力电容器,2003. (3):14- 18[4]张玉珠,杨丽徙,侯向阳,周哲.全网无功优化的变电站电压无功控制策略[J]继电器,2007.35 (12) : 36- 40.。

相关文档
最新文档