【高考数学】圆锥曲线经典习题—抛物线大题合集5
圆锥曲线(椭圆、双曲线、抛物线)(精选20题)(解析版)
![圆锥曲线(椭圆、双曲线、抛物线)(精选20题)(解析版)](https://img.taocdn.com/s3/m/b0080989a48da0116c175f0e7cd184254b351b2a.png)
圆锥曲线(椭圆、双曲线、抛物线)(精选20题)保持做题的“手感”。
临近高考,考生仍要保持做数学题的手感,勤于动笔,勤于练习。
考前很多考生心态波动较大,比如看到考试成绩下降,就会非常焦虑。
实际上成绩有波动很正常,因为试卷的难度不一样,考生的发挥也不一样,试卷考查的知识点和考生掌握的情况也不一样。
考生不要因为一次考试而让自己过于焦虑,要辩证地去看待考试成绩。
在考试过程中,如果遇到新题或难题,一定要稳住心态。
考生要想到的是:我觉得难,别人也一样。
当然我们也不能因为题目简单就疏忽大意,要把自己的水平发挥出来,保证自己会做的题都不出错,难题尽可能多拿分。
圆锥曲线解题技巧尽量做出第一问,第二问多套模板拿步骤分1.利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤:(1)设直线方程,设交点坐标为x 1,y 1 、x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解2.若直线l :y =kx +b 与圆雉曲线相交于A (x 1,y 1),B (x 2,y 2)两点,由直线与圆锥曲线联立,消元得到Ax 2+Bx +C =0(Δ>0)则:x 1+x 2=-B A ,x 1x 2=CA则:弦长AB =x 1-x 2 2+y 1-y 2 2=x 1-x 2 2+kx 1-kx 2 2=1+k 2x 1-x 2 =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-B A 2-4C A=1+k 2B 2-4ACA 2=1+k 2⋅ΔA或|AB |=1+1k2⋅y 1-y 22=1+1k2⋅y 1-y 2一、解答题1(2024·浙江温州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,左右顶点分别是A -2,0 ,B 2,0 ,椭圆的离心率是22.点P 是直线x =32上的点,直线PA 与PB 分别交椭圆C 于另外两点M ,N .(1)求椭圆的方程.(2)若k AM =λk BN ,求出λ的值.(3)试证明:直线MN 过定点.【答案】(1)x 22+y ²=1(2)12(3)证明见解析【分析】(1)由题意结合a 2=b 2+c 2计算即可得;(2)设出点P 坐标,借助斜率公式计算即可得;(3)设出直线MN 方程,联立曲线方程,借助韦达定理与(2)中所得λ计算即可得.【详解】(1)由题意可得a =2,c a =22,即a 2=2c 2=b 2+c 2=2,所以b =c =1,则椭圆C :x22+y 2=1;(2)设P 32,n ,由于k AM =λk BN ,则λ=k PA k PB =n32+2n 32-2=2242=12;(3)显然MN 斜率不为0,设l MN :x =ty +m ,M x 1,y 1 ,N x 2,y 2 ,联立方程x =ty +mx 22+y 2=1,则有t 2+2 y 2+2tmy +m 2-2=0,Δ=4t 2m 2-4t 2+2 m 2-2 =8t 2-m 2+2 >0,则有y 1+y 2=-2tm t 2+2,y 1y 2=m 2-2t 2+2,由于k AM =λk BN ,则λ=kMA k BN =y 1x 2-2 y 2x 1+2 =y 1x 2-2 x 2+2 y 2x 1+2 x 2+2 =y 1x 22-2y 2x 1+2 x 2+2,因为x 222+y 22=1,故λ=-2y 1y 2x 1+2 x 2+2 =-2y 1y 2ty 1+m +2 ty 2+m +2 =4-2m 22m 2+42m +4=12,即3m 2+22m =2,解得m =-2或m =23,当m =-2时,2m 2+42m +4=0,故舍去,即m =23,适合题意,故MN :x =ty +23,则直线MN 过定点23,0.2(2024·辽宁·模拟预测)在直角坐标系xOy 中,点P 到点(0,1)距离与点P 到直线y =-2距离的差为-1,记动点P 的轨迹为W .(1)求W 的方程;(2)设点P 的横坐标为x 0(x 0<0).(i )求W 在点P 处的切线的斜率(用x 0表示);(ii )直线l 与W 分别交于点A ,B .若PA =PB ,求直线l 的斜率的取值范围(用x 0表示).【答案】(1)x 2=4y(2)(i )x 02,(ii )答案见解析【分析】(1)设点P 的坐标为(x ,y ),利用距离公式列式化简求解即可;(2)(i )利用导数的几何意义求得切线斜率;(ii )分析直线l 斜率存在设为y =kx +m ,与抛物线方程联立,韦达定理,表示出线段AB 中点M 的坐标,利用斜率关系得x 024=-1k x 0-x M +y M ,从而m =x 204+x 0k-2k 2-2,根据Δ>0,得k k -x 02 k 2+x02k +2 <0,分类讨论解不等式即可.【详解】(1)设点P 的坐标为(x ,y ),由题意得(x -0)2+(y -1)2-|y -(-2)|=-1,即x 2+(y -1)2=|y +2|-1,所以y +2≥0,x 2+(y -1)2=y +1. 或y +2<0,x 2+(y -1)2=-y -3.整理得y +2≥0,x 2=4y .或y +2<0,x 2=8y +8.故W 的方程为x 2=4y .(2)(i )因为W 为y =x 24,所以y =x2.所以W 在点P 处的切线的斜率为:x 02;(ii )设直线l 为y =kx +m ,点M 为线段AB 的中点,当k =0时,不合题意,所以k ≠0;因为点A ,B 满足x 2=4y ,y =kx +m . 所以x A ,x B 满足x 2-4kx -4m =0,从而Δ=16k 2+16m >0,x M =x A +xB 2=2k ,y M =kx M +m =2k 2+m .因为直线PM 的方程为y =-1k x -x M +y M ,所以x 024=-1kx 0-x M +y M ,即x 204=-1k x 0-2k +2k 2+m ,从而m =x 204+x 0k -2k 2-2.因为Δ=16k 2+16m >0,所以k 2+x 204+x0k -2k 2-2>0,即k -x 02 k 2+x 02k +2k<0,等价于k k -x 02 k 2+x02k +2 <0(其中x 0<0).①当x 204-8<0时,即x 0∈(-42,0)时,有k 2+x 02k +2>0,此时x 02<k <0,②当x 204-8=0时,即x 0=-42时,有k k -x 02 k +x 04 2<0,此时x 02<k <0,③当x 024-8>0时,即x 0∈(-∞,-42)时,有k k -x 02 k --x 0-x 20-324 k --x 0+x 20-324<0,其中x 02<0<-x 0-x 20-324<-x 0+x 20-324,所以k ∈x 02,0 ∪-x 0-x 20-324,-x 0+x 20-324.综上,当x 0∈[-42,0)时,k ∈x02,0 ;当x 0∈(-∞,-42)时,k ∈x 02,0 ∪-x 0-x 20-324,-x 0+x 20-324.3(2024·山西太原·三模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右顶点分别为A 与B ,点D 3,2 在C 上,且直线AD 与BD 的斜率之和为2 .(1)求双曲线C 的方程;(2)过点P 3,0 的直线与C 交于M ,N 两点(均异于点A ,B ),直线MA 与直线x =1交于点Q ,求证:B ,N ,Q 三点共线.【答案】(1)x 23-y 2=1(2)证明见解析【分析】(1)由题意点D 3,2 在C 上,且直线AD 与BD 的斜率之和为2,建立方程组求解即可;(2)B ,N ,Q 三点共线,即证BN ⎳BQ,设出直线的方程联立双曲线的方程,由韦达定理,求出M ,N 的坐标,由坐标判断BN ⎳BQ,证明即可.【详解】(1)由题意得A -a ,0 ,B a ,0 ,且9a 2-2b2=123+a +23-a=2∴a 2=3b 2=1∴x 23-y 2=1(2)由(1)得A -3,0 ,B 3,0 ,设直线MN 的方程为x =ty +3t ≠±3 ,M x 1,y 1 ,N x 2,y 2 ,则BN=x 2-3,y 2 ,由x =ty +3x23-y 2=1 得t 2-3y 2+6ty +6=0,∴y 1+y 2=-6t t 2-3,y 1y 2=6t 2-3,直线AM 的方程为y =y 1x 1+3x +3 ,令x =1,则y =y 1x 1+31+3 ,∴Q 1,1+3 y 1x 1+3 ,∴BQ =1-3,1+3 y 1x 1+3,∵x 2-3 ⋅1+3 y 1x 1+3-1-3 y 2=1x 1+3x 2-3 ⋅1+3 y 1-1-3 x 1+3 y 2=1x 1+3ty 2+3-3 ⋅1+3 y 1-1-3 ty 1+3+3 y 2 =1x 1+3ty 2+3-3 ⋅1+3 y 1+3-1 ty 1+3+3 y 2 =23x 1+3ty 1y 2+y 1+y 2 =23x 1+36t t 2-3-6tt 2-3=0,∴BN ⎳BQ, 所以B ,N ,Q 三点共线.4(2024·重庆·模拟预测)如图,DM ⊥x 轴,垂足为D ,点P 在线段DM 上,且|DP ||DM |=12.(1)点M 在圆x 2+y 2=4上运动时,求点P 的轨迹方程;(2)记(1)中所求点P 的轨迹为Γ,A (0,1),过点0,12作一条直线与Γ相交于B ,C 两点,与直线y =2交于点Q .记AB ,AC ,AQ 的斜率分别为k 1,k 2,k 3,证明:k 1+k2k 3是定值.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)设P x ,y ,则有M x ,2y ,根据M 在圆x 2+y 2=4上运动,即可求解x 、y 的关系式即为点P 的轨迹方程;(2)设出直线方程,直曲联立利用韦达定理求出x 1+x 2=-4k1+4k2x 1x 2=-31+4k2,求出k 1+k 2=4k 3,对y =kx +12,令y =2,得Q 32k ,2,求出k 3=2k3,即可求出k 1+k 2k 3是定值.【详解】(1)设P x ,y ,根据题意有M x ,2y ,又因为M 在圆x 2+y 2=4上运动,所以x 2+2y 2=4,即x 24+y 2=1,所以点P 的轨迹方程为:x 24+y 2=1.(2)根据已知条件可知,若直线BC 的斜率不存在,不合题意,若直线BC 斜率为0,直线BC 与直线y =2平行无交点也不合题意,所以直线BC 的斜率存在设为k ,直线BC 的方程为y =kx +12,联立x 24+y 2=1y =kx +12,则有1+4k 2x 2+4kx -3=0,且Δ>0,设B x 1,y 1 ,C x 2,y 2 ,则x 1+x 2=-4k1+4k2x 1x 2=-31+4k2,k 1=y 1-1x 1,k 2=y 2-1x 2,所以k 1+k 2=y 1-1x 1+y 2-1x 2=x 2kx 1-12 +x 1kx 2-12x 1x 2=2kx 1x 2-12x 1+x 2x 1x 2=2k -31+4k2-12-4k1+4k 2-31+4k 2=4k 3,对y =kx +12,令y =2,得x Q =32k ,所以Q 32k,2 ,所以k 3=2-132k=2k 3,所以k 1+k 2k 3=4k332k=2为定值.5(2024·湖北武汉·模拟预测)己知圆E :(x +6)2+y 2=32,动圆C 与圆E 相内切,且经过定点F 6,0(1)求动圆圆心C 的轨迹方程;(2)若直线l :y =x +t 与(1)中轨迹交于不同的两点A ,B ,记△OAB 外接圆的圆心为M (O 为坐标原点),平面上是否存在两定点C ,D ,使得MC -MD 为定值,若存在,求出定点坐标和定值,若不存在,请说明理由.【答案】(1)x 28+y 22=1(2)存在定点C -465,0 ,D 465,0 ,使得MC -MD =853(定值)【分析】(1)根据椭圆的定义得到动圆圆心的轨迹焦点在x 轴上的椭圆,进而求得椭圆的方程;(2)联立l :y =x +t 与椭圆方程,根据韦达定理得x 1+x 2=-8t 5,x 1x 2=4t 2-85,进而得出OA 和OB 的中垂线方程,联立方程求出交点即为圆心坐标的关系为x 2-y 2=4825,根据双曲线定义可得C -465,0 ,D 465,0 及MC -MD =853,方法二,设△OAB 外接圆方程为x 2+y 2+d x +ey =0,联立直线和与圆的方程,利用韦达定理和参数方程消去参数得圆心的坐标关系为x 2-y 2=4825,根据双曲线定义可得C -465,0 ,D 465,0 及MC -MD =853【详解】(1)设圆E 的半径为r ,圆E 与动圆C 内切于点Q .∵点F 在圆E 内部,∴点C 在圆E 内部.∴CE +CF =CE +CQ =r =42>EF =26,∴点C 的轨迹是焦点在x 轴上的椭圆,其方程为x 28+y 22=1.(2)(方法一)联立l :y =x +t 与椭圆方程,消y 得5x 2+8tx +4t 2-8=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-8t 5,x 1x 2=4t 2-85,OA 的中垂线方程为:y -y 12=-x 1y 1x -x 12 ,即y =-x 1y 1x +x 212y 1+y 12①OB 的中垂线方程为:y =-x 2y2x +x 222y 2+y 22②由①②两式可得-x 1y 1x +x 212y 1+y 12=-x 2y 2x +x 222y 2+y 22,∴△OAB 外接圆圆心M 的横坐标x M =x 22y 1-x 21y 2+y 2-y 1 y 1y 22x 2y 1-x 1y 2 ,其中x 2y 1-x 1y 2=x 2x 1+t -x 1x 2+t =t x 2-x 1x 22y 1-x 21y 2+y 2-y 1 y 1y 2=x 22x 1+t -x 21x 2+t +x 2-x 1 x 1+t x 2+t =x 22x 1-x 12x 2 +t x 22-x 12 +x 2-x 1 x 1+t x 2+t=x 2-x 1 x 1x 2+t x 2+x 1 +x 1+t x 2+t =x 2-x 1 2x 1x 2+2t x 2+x 1 +t 2 ∴x M =x 2-x 1 2x 1x 2+2t x 2+x 1 +t 22t x 2-x 1=2x 1x 2+2t x 2+x 1 +t 22t =x 1x 2t +x 2+x 1+t 2=-3t 10-85t,又∵AB 的中垂线方程为y -y 1+y 22=-x -x 1+x 22 ,即y =-x -3t5,∴圆心M 的纵坐标为y M =--3t 10-85t -35t =-3t 10+85t,∴x M 2-y M 2=-3t 10-85t 2--3t 10+85t 2=4825,∴圆心M 在双曲线x 2-y 2=4825上,∴存在定点C -465,0 ,D 465,0 ,使得MC -MD =853(定值),(方法二)设△OAB 外接圆方程为x 2+y 2+d x +ey =0,联立l :y =x +t 与圆的方程,消y 得2x 2+2t +d +e x +t 2+et =0,则x 1+x 2=-2t +d +e 2=-8t 5,x 1x 2=t 2+et 2=4t 2-85∴2t +d +e =16t 5,t 2+et =8t 2-165,解得d =3t 5+165t ,e =3t 5-165t,设圆心坐标为M x ,y ,则x =-d 2=-3t 10-85t ,y =-3t 10+85t,∴x 2-y 2=-3t 10-85t 2--3t 10+85t 2=4825,∴圆心M 在双曲线x 2-y 2=4825上,∴存在定点C -465,0 ,D 465,0 ,使得MC -MD =853(定值),6(2024·山西·三模)已知抛物线E :y 2=2px p >0 的焦点F 到准线的距离为2,O 为坐标原点.(1)求E 的方程;(2)已知点T t ,0 ,若E 上存在一点P ,使得PO ⋅PT=-1,求t 的取值范围;(3)过M -4,0 的直线交E 于A ,B 两点,过N -4,43 的直线交E 于A ,C 两点,B ,C 位于x 轴的同侧,证明:∠BOC 为定值.【答案】(1)y 2=4x (2)6,+∞ (3)证明见详解【分析】(1)根据题意可知焦点F 到准线的距离为p =2,即可得方程;(2)设P x ,y ,利用平面向量数量积可得t -4=x +1x,结合基本不等式运算求解;(3)设A y 214,y 1 ,B y 224,y 2 ,C y 234,y 3,求直线AB ,AC 的方程,结合题意可得-16+y 1y 2=0-16-43y 1+y 3 +y 1y 3=0 ,结合夹角公式分析求解.【详解】(1)由题意可知:焦点F 到准线的距离为p =2,所以抛物线E 的方程为y 2=4x .(2)设P x ,y ,可知y 2=4x ,x ≥0,则PO =-x ,-y ,PT =t -x ,-y ,可得PO ⋅PT=-x t -x +y 2=x 2-tx +4x =x 2+4-t x =-1,显然x =0不满足上式,则x >0,可得t -4=x +1x,又因为x +1x ≥2x ⋅1x =2,当且仅当x =1x,即x =1时,等号成立,则t -4≥2,即t ≥6,所以t 的取值范围为6,+∞.(3)设Ay214,y1,B y224,y2,C y234,y3,则直线AB的斜率k AB=y1-y2y214-y224=4y1+y2,可得直线AB的方程y-y1=4y1+y2x-y214,整理得4x-y1+y2y+y1y2=0,同理可得:直线AC的方程4x-y1+y3y+y1y3=0,由题意可得:-16+y1y2=0-16-43y1+y3+y1y3=0,整理得y1=16y24y3-y2=3y1y3+16,又因为直线OB,OC的斜率分别为k OB=y2y224=4y2,k OC=y3y234=4y3,显然∠BOC为锐角,则tan∠BOC=k OB-k OC1+k OB⋅k OC=4y2-4y31+4y2⋅4y3=4y2-y3y2⋅y3+16=3y2⋅y3+16y2⋅y3+16=3,所以∠BOC=π3为定值.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.7(2024·湖北·模拟预测)平面直角坐标系xOy中,动点P(x,y)满足(x+2)2+y2-(x-2)2+y2 =22,点P的轨迹为C,过点F(2,0)作直线l,与轨迹C相交于A,B两点.(1)求轨迹C的方程;(2)求△OAB面积的取值范围;(3)若直线l与直线x=1交于点M,过点M作y轴的垂线,垂足为N,直线NA,NB分别与x轴交于点S,T,证明:|SF||FT|为定值.【答案】(1)x22-y22=1(x≥2)(2)S△OAB∈[22,+∞)(3)证明见解析【分析】(1)根据双曲线的定义求解即可;(2)设直线l的方程为:x=my+2,与双曲线联立,利用面积分割法计算出S△OAB,在利用复合函数单调性求出S△OAB的范围;(3)首先计算出M,N的坐标,再计算出S,T的坐标即可证明|SF||FT|为定值。
全国卷高考数学圆锥曲线大题(带答案)
![全国卷高考数学圆锥曲线大题(带答案)](https://img.taocdn.com/s3/m/2896ba557e21af45b207a80a.png)
全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
高中数学抛物线大题精选30道(含答案)
![高中数学抛物线大题精选30道(含答案)](https://img.taocdn.com/s3/m/1f015f7e01f69e3143329413.png)
抛物线大题30题1 .已知抛物线的顶点在原点,焦点与椭圆224520x y +=的一个焦点相同,(1)求椭圆的焦点坐标与离心率;(2)求抛物线方程.2 .过抛物线y 2=4x 的焦点作直线AB 交抛物线于 A .B,求AB 中点M 的轨迹方程。3 .已知直线l 过定点()0,4A ,且与抛物线2:2(0)C ypx p = >交于P 、Q 两点,若以PQ 为直径的圆经过原点O ,求抛物线的方程.4 .已知p :方程2212x y m m+=-表示椭圆;q :抛物线y =221x mx ++与 x 轴无公共点,若p 是真命题且q 是假命题,求实数m 的取值范围.5 .在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上。
(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D .E 两点,ME=2DM , 记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式。
6 .直线y=2x 与抛物线y=-x 2-2x+m 相交于不同的两点 A .B ,求(1)实数m 的取值范围;(2)∣AB ∣的值(用含m 的代数式表示).7 .已知抛物线1C :24(0)y px p =>,焦点为2F ,其准线与x 轴交于点1F ;椭圆2C :分别以12F F 、为左、右焦点,其离心率12e =;且抛物线1C 和椭圆2C 的一个交点记为M .(1)当1p =时,求椭圆2C 的标准方程;(2)在(1)的条件下,若直线l 经过椭圆2C 的右焦点2F ,且与抛物线1C 相交于,A B 两点,若弦长||AB 等于12MF F ∆的周长,求直线l 的方程.8 .如图,已知直线l :2y kx =-与抛物线C :22(0)x py p =->交于A ,B 两点,O 为坐标原点,(4,12)OA OB +=--。(Ⅰ)求直线l 和抛物线C 的方程; (Ⅱ)抛物线上一动点P 从A 到B 运动时, 求△ABP 面积最大值.9.设圆Q 过点P (0,2), 且在x 轴上截得的弦RG 的长为4.(Ⅰ)求圆心Q 的轨迹E 的方程;(Ⅱ)过点F (0,1),作轨迹E 的两条互相垂直的弦AB ,CD ,设AB 、CD 的中点分别为M ,N ,试判断直线MN 是否过定点?并说明理由. 10.已知抛物线2:2C y px =的准线方程14x =-,C 与直线1:y x =在第一象限相交于点1P ,过1P 作C的切线1m ,过1P 作1m 的垂线1g 交x 轴正半轴于点1A ,过1A 作1的平行线2交抛物线C 于第一象限内的点2P ,过2P 作抛物线1C 的切线2m ,过2P 作2m 的垂线2g 交x 轴正半轴于点2A ,…,依此类推,在x 轴上形成一点列1A ,2A ,3A ,…,(*)n A n N ∈,设点n A 的坐标为(,0).n a(Ⅰ)试探求1n a +关于n a 的递推关系式; (Ⅱ)求证:13322n n a -≤⋅-; (Ⅲ)求证:()()1234211(23)2(23)6(23)13321n n n a a a n n n ++++≥-+⋅+⋅+⋅⋅+⋅⋅+. 11.已知直线1:++=k kx y l ,抛物线x y C 4:2=,定点M(1,1)。(I)当直线l 经过抛物线焦点F 时,求点M 关于直线l 的对称点N 的坐标,并判断点N 是否在抛物线C 上;(II)当)0(≠k k 变化且直线l 与抛物线C 有公共点时,设点P(a,1)关于直线l 的对称点为Q(x 0,y 0),求x 0关于k 的函数关系式)(0k f x =;若P 与M 重合时,求0x 的取值范围。12.位于函数4133+=x y 的图象上的一系列点 ),,(,),,(),,(222111n n n y x P y x P y x P ,这一系列点的横坐标构成以25-为首项,1-为公差的等差数列{}n x . (Ⅰ)求点n P 的坐标;(Ⅱ)设抛物线 ,,,,,321n C C C C 中的每一条的对称轴都垂直于x 轴,对于n ∈*N 第n 条抛物线n C 的顶点为n P ,抛物线n C 过点)1,0(2+n D n ,且在该点处的切线的斜率为n k ,求证:10111113221<+++-n n k k k k k k . 13.已知抛物线24y x =的焦点为F , A .B 为抛物线上的两个动点.(Ⅰ)如果直线AB 过抛物线焦点,判断坐标原点O 与以线段AB 为直径的圆的位置关系, 并给出证明;(Ⅱ)如果4OA OB ⋅=-(O 为坐标原点),证明直线AB 必过一定点,并求出该定点.14.已知点F(2 ,0) ,直线:1l x =-,动点N 到点F 距离比到直线l 的距离大1;(1)求动点N 的轨迹C 的方程; (2)直线2y x =-与轨迹C 交于点A,B,求ABO ∆的面积.15.(本小题共13分)已知抛物线C :2y x =,过定点()0,0A x 01()8x ≥,作直线l 交抛物线于,P Q (点P 在第一象限). (Ⅰ)当点A 是抛物线C 的焦点,且弦长2PQ =时,求直线l 的方程;(Ⅱ)设点Q 关于x 轴的对称点为M ,直线PM 交x 轴于点B ,且BQ BP ⊥.求证:点B 的坐标是0(,0)x -并求点B 到直线l 的距离d 的取值范围.16.抛物线()2:20C ypx p=上横坐标为32的点到焦点F 的距离为2(I )求p 的值;(II )过抛物线C 的焦点F.,作相互垂直的两条弦AB 和CD , 求AB CD +的最小值。
高考圆锥曲线经典大题
![高考圆锥曲线经典大题](https://img.taocdn.com/s3/m/6283b244cbaedd3383c4bb4cf7ec4afe04a1b17d.png)
圆锥曲线经典大题1.过点A (-4,0)的动直线l 与抛物线G :*2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC→=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值围.2.如图,(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅.〔Ⅰ〕求动点P 的轨迹C 的方程。
〔Ⅱ〕过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . 〔1〕1MA AF λ=,2MB BF λ=,求12λλ+的值; 〔2〕求MA MB ⋅的最小值. 3.设点F 是抛物线G :*2=4y 的焦点.〔1〕过点P 〔0,-4〕作抛物线G 的切线,求切线的方程;〔2〕设A ,B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,分别延长AF ,BF 交抛物线G 于C ,D 两点,求四边形ABCD 面积的最小值.4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,.〔Ⅰ〕求证:A M B ,,三点的横坐标成等差数列;〔Ⅱ〕当M 点的坐标为(22)p -,时,AB = 5.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,假设112OF AF +=0〔其中O 为坐标原点〕. 〔1〕求椭圆M 的方程;〔2〕设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径〔E 、F 为直径的两个端点〕,求PF PE ⋅的最大值.6.双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率2e =,顶点到渐近线的距离为5。
(I ) 求双曲线C 的方程;(II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分别位于第一、二象限,假设1,[,2]3AP PB λλ=∈,求AOB ∆面积的取值围。
历年高考数学《圆锥曲线》真题集锦
![历年高考数学《圆锥曲线》真题集锦](https://img.taocdn.com/s3/m/7fefc150be23482fb4da4c44.png)
以下题目全是经典的高考题目,希望对您有帮助!!圆锥曲线1.如图,设抛物线方程为x 2=2py (p >0),M 为直线p y 2-=上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列; (2)已知当M 点的坐标为(2,p 2-)时,AB = (3)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. 解:(1)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p =,则,x y p'= 所以12,.MA MB x x k k p p ==因此直线MA :102(),x y p x x p +=- 直线MB :202().xy p x x p+=-所以211102(),2x x p x x p p +=- ① 222202().2x x p x x p p+=- ② 由①、②得: 0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列. (2)解:由(1)知,当x 0=2时, 将其代入①、②并整理得:2211440,x x p --= 2222440,x x p --=所以x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.AB k p =由弦长公式AB==又AB=p=1或p=2,因此所求抛物线方程为22x y=或24.x y=(3)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),则CD的中点坐标为123123(,),22x x x y y yQ++++设直线AB的方程为011(),xy y x xp-=-由点Q在直线AB上,并注意到点1212(,)22x x y y++也在直线AB上,代入得033.xy xp=若D(x3,y3)在抛物线上,则2330322,x py x x==因此x3=0或x3=2x0. 即D(0,0)或22(2,).xD xp(1’ 当x0=0时,则12020x x x+==,此时,点M(0,-2p)适合题意.(2’ 当x≠,对于D(0,0),此时221222221212002(2,),,224CDx xx x x xpC x kp x px+++==又0,ABxkp=AB⊥CD,所以22220121221,44AB CDx x x x xk kp px p++===-即222124,x x p+=-矛盾.对于22(2,),xD xp因为2212(2,),2x xC xp+此时直线CD平行于y轴,又00,ABxkp=≠所以直线AB与直线CD不垂直,与题设矛盾,所以x≠时,不存在符合题意的M点. 综上所述,仅存在一点M(0,-2p)适合题意.2.已知曲线11(0)xyC a ba b+=>>:所围成的封闭图形的面积为1C的内切圆半径为3.记2C为以曲线1C与坐标轴的交点为顶点的椭圆.(O为坐标原点)(Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=,当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得23ab ⎧=⎪⎨= 又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k +=+=+=+++.设()M x y ,由(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k=-,即x k y =-,因此22222222222220120()4545x y x y x y x y x y λλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠,所以2225420x y λ+=,故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 轨迹222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k+=+. 解法一:由于22214AMBSAB OM =△2222180(1)20(1)44554k k k k ++=⨯⨯++ 2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时最小409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△.综上,AMB △的面积的最小值为409.解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++2224554920(1)20k k k +++==+,又22112OA OMOAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.下同解法一. 3.已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?解: (1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21mk m =+ 因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立 所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦;(2)不能.由(1)知l 的方程为()4y k x =-,其中12k ≤; 圆C的圆心为()4,2C -,半径2r =;圆心C到直线l的距离d =由12k ≤,得1d ≥>,即2rd >,从而,若l 与圆C相交,则圆C截直线l 所得 的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两段弧; 4.双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.解:(Ⅰ)设OA m d =-,AB m =,OB m d =+则由题有:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()ay x c b=--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
高考复习—高考数学专项练习与试卷:高考大题专项(五) 圆锥曲线的综合问题
![高考复习—高考数学专项练习与试卷:高考大题专项(五) 圆锥曲线的综合问题](https://img.taocdn.com/s3/m/19d6b54fac02de80d4d8d15abe23482fb4da02ea.png)
高考大题专项(五) 圆锥曲线的综合问题突破1 圆锥曲线中的最大(小)值、范围问题1.(2020河南郑州模拟)已知椭圆x 2a 2+y 2b2=1(a>b>0)上的点到右焦点F (c ,0)的最大距离是√2+1,且1,√2a ,4c 成等比数列. (1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的垂直平分线交x 轴于点M (m ,0),求实数m 的取值范围.2.(2020湖南湘潭一模)已知F (√3,0)为椭圆C :x 2a 2+y 2b2=1(a>b>0)的一个焦点,点M (√3,12)在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 分别相交于A ,B 两点,且k OA +k OB =-12(O 为坐标原点),求直线l 的斜率的取值范围.3.已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于2√23,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =1. (1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N.如果线段MN 被直线2x+1=0平分,求直线l 的倾斜角的取值范围.4.(2020宁夏银川模拟)如图,椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1(-1,0),F 2(1,0),直线l :x=a 2交x 轴于点A ,且AF 1⃗⃗⃗⃗⃗⃗⃗ =2AF 2⃗⃗⃗⃗⃗⃗⃗ .(1)求椭圆的方程;(2)过点F 1,F 2分别作互相垂直的两条直线与椭圆分别交于D ,E ,M ,N 四点,试求四边形DMEN 面积的最大值和最小值.5.(2020山东济宁一模)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的离心率为√33,且椭圆C 过点(32,√22). (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点的直线l 与椭圆C 分别相交于A ,B 两点,且与圆O :x 2+y 2=2相交于E ,F 两点,求|AB|·|EF|2的取值范围.突破2 定点、定值问题1.(2019北京,理18)已知抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y=-1分别交直线OM ,ON 于点A 和点B.求证:以AB 为直径的圆经过y 轴上的两个定点.2.(2020重庆模拟)已知椭圆C :x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2.点M 在椭圆C 上运动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形. (1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q.设QA ⃗⃗⃗⃗⃗ =λPA ⃗⃗⃗⃗⃗ ,QB ⃗⃗⃗⃗⃗ =μPB ⃗⃗⃗⃗⃗ ,求证:λ+μ为定值,并求该定值.3.(2020甘肃白银联考)设椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,下顶点为A,O为坐标原点,点O到直线AF2的距离为√22,△AF1F2为等腰直角三角形.(1)求椭圆C的标准方程;(2)直线l与椭圆C分别相交于M,N两点,若直线AM与直线AN的斜率之和为2,证明:直线l恒过定点,并求出该定点的坐标.4.(2020湖南郴州教学质量监测)已知抛物线C:x2=2py(p>0)的焦点为F,过点F的直线分别交抛物线于A,B两点.(1)若以AB为直径的圆的方程为(x-2)2+(y-3)2=16,求抛物线C的标准方程;(2)过点A,B分别作抛物线的切线l1,l2,证明:l1,l2的交点在定直线上.突破3证明、探索性问题1.已知椭圆C:x 2a2+y2b2=1(a>b>0)的右焦点为F(1,0),离心率为12,直线l:y=k(x-4)(k≠0)与椭圆C交于不同两点M,N,直线FM,FN分别交y轴于A,B两点.(1)求椭圆C的方程;(2)求证:|FA|=|FB|.2.如图,已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为13,左、右焦点分别为F1,F2,A为椭圆C上一点,AF1与y轴相交于点B,|AB|=|F2B|,|OB|=43.(1)求椭圆C的标准方程;(2)设椭圆C的左、右顶点分别为A1,A2,过点A1,A2分别作x轴的垂线l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2分别交于M,N两点,求证:∠MF1N=∠MF2N.3.(2020云南曲靖模拟)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,F为左焦点,过点F作x轴的垂线交椭圆C于A,B两点,且|AB|=3.(1)求椭圆C的方程.(2)在圆x2+y2=3上是否存在一点P,使得在点P处的切线l与椭圆C相交于M,N两点,且满足OM⃗⃗⃗⃗⃗⃗ ⊥ON⃗⃗⃗⃗⃗⃗ ?若存在,求l的方程;若不存在,请说明理由.4.(2020江西新余模拟)已知F为椭圆C:x 2a2+y2b2=1(a>b>0)的右焦点,点P(2,√2)在椭圆C上,且PF⊥x轴.(1)求椭圆C的方程.(2)如图,过点F的直线l分别交椭圆C于A,B两点,交直线x=4于点M.判断直线PA,PM,PB的斜率是否构成等差数列?请说明理由.5.(2020湖南五市十校联考)已知动圆C过定点F(1,0),且与定直线x=-1相切.(1)求动圆圆心C的轨迹E的方程.(2)过点M(-2,0)的任意一条直线l与轨迹E分别相交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,说明理由.6.已知圆C :(x-1)2+y 2=14,一动圆与直线x=-12相切且与圆C 外切. (1)求动圆圆心P 的轨迹T 的方程.(2)若经过定点Q (6,0)的直线l 与轨迹T 交于A ,B 两点,M 为线段AB 的中点,过M 作x 轴的平行线与轨迹T 相交于点N ,试问是否存在直线l ,使得NA ⊥NB ?若存在,求出直线l 的方程;若不存在,请说明理由.参考答案高考大题专项(五) 圆锥曲线的综合问题突破1 圆锥曲线中的 最大(小)值、范围问题1.解(1)由已知可得{a +c =√2+1,1×4c =2a 2,a 2=b 2+c 2,解得{a =√2,b =1,c =1,所以椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设直线AB 的方程为y=k (x-1).与椭圆方程联立得{x 2+2y 2-2=0,y =k (x -1),消去y 可得(1+2k 2)x 2-4k 2x+2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k21+2k2,y 1+y 2=k (x 1+x 2)-2k=-2k 1+2k2.可得线段AB 的中点为N2k21+2k2,-k 1+2k2.当k=0时,直线MN 为y 轴,此时m=0.当k ≠0时,直线MN 的方程为y+k1+2k 2=-1k (x -2k21+2k2), 化简得ky+x-k21+2k2=0.令y=0,得x=k21+2k2.所以m=k21+2k2=11k2+2∈(0,12).综上所述,实数m 的取值范围为[0,12).2.解(1)由题意知,椭圆的另一个焦点为(-√3,0),所以点M 到两焦点的距离之和为√(2√3)2+(12)2+12=4.所以a=2.又c=√3,所以b=1,所以椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,结合椭圆的对称性可知,k OA +k OB =0,不符合题意. 故设直线l 的方程为y=kx+m (k ≠0),A (x 1,y 1),B (x 2,y 2),联立{x 24+y2=1,y =kx +m ,可得(4k 2+1)x 2+8kmx+4(m 2-1)=0.则x 1+x 2=-8km 4k 2+1,x 1x 2=4(m 2-1)4k 2+1.而k OA +k OB =y1x 1+y2x 2=(kx 1+m )x 2+(kx 2+m )x 1x 1x 2=2k+m (x 1+x 2)x 1x 2=2k+-8km 24(m 2-1)=-2km 2-1.由k OA +k OB =-12,可得m 2=4k+1, 所以k ≥-14.又由Δ>0,得16(4k 2-m 2+1)>0,所以4k 2-4k>0,解得k<0或k>1,综上,直线l 的斜率的取值范围为[-14,0)∪(1,+∞). 3.解(1)依题意,设椭圆E 的方程为y 2a 2+x 2b2=1(a>b>0),半焦距为c.因为椭圆E 的离心率为2√23, 所以c=2√23a ,b 2=a 2-c 2=a 29.因为以线段PF 1为直径的圆经过点F 2,所以PF 2⊥F 1F 2.所以|PF 2|=b2a .因为9PF 1⃗⃗⃗⃗⃗⃗⃗ ·PF 2⃗⃗⃗⃗⃗⃗⃗ =1, 所以9|PF 2⃗⃗⃗⃗⃗⃗⃗ |2=9b 4a 2=1.由{b 2=a 29,9b 4a 2=1,得{a 2=9,b 2=1,所以椭圆E 的方程为y 29+x 2=1.(2)因为直线x=-12与x 轴垂直,且由已知得直线l 与直线x=-12相交, 所以直线l 不可能与x 轴垂直, 所以设直线l 的方程为y=kx+m. 由{y =kx +m ,9x 2+y 2=9,得(k 2+9)x 2+2kmx+m 2-9=0.因为直线l 与椭圆E 交于两个不同的点M ,N ,所以Δ=4k 2m 2-4(k 2+9)(m 2-9)>0,即m 2-k 2-9<0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2kmk 2+9.因为线段MN 被直线2x+1=0平分, 所以2×x 1+x 22+1=0, 即-2kmk 2+9+1=0.由{m 2-k 2-9<0,-2kmk 2+9+1=0,得(k 2+92k )2-(k 2+9)<0.因为k 2+9>0,所以k 2+94k2-1<0,所以k 2>3,解得k>√3或k<-√3.所以直线l 的倾斜角的取值范围为π3,π2∪π2,2π3. 4.解(1)由题意知,|F 1F 2|=2c=2,A (a 2,0),因为AF 1⃗⃗⃗⃗⃗⃗⃗ =2AF 2⃗⃗⃗⃗⃗⃗⃗ ,所以F 2为线段AF 1的中点,则a 2=3,b 2=2,所以椭圆方程为x 23+y 22=1. (2)当直线DE 与x 轴垂直时,|DE|=2b2a=√3,此时|MN|=2a=2√3,四边形DMEN 的面积S=|DE |·|MN |2=4. 同理当MN 与x 轴垂直时, 也有四边形DMEN 的面积S=|DE |·|MN |2=4. 当直线DE ,MN 与x 轴均不垂直时,设直线DE :y=k (x+1)(k ≠0),D (x 1,y 1),E (x 2,y 2),代入椭圆方程,消去y 可得(2+3k 2)x 2+6k 2x+3k 2-6=0,则x 1+x 2=-6k22+3k 2,x 1x 2=3k 2-62+3k2,所以|x 1-x 2|=4√3×√k 2+12+3k2,所以|DE|=√k 2+1|x 1-x 2|=4√3(k 2+1)2+3k2.同理|MN|=4√3[(-1k)2+1]2+3(-1k )2=4√3(1k 2+1)2+3k 2,所以四边形DMEN 的面积S=|DE |·|MN |2=12×4√3(k 2+1)2+3k 2×4√3(1k 2+1)2+3k 2=24(k 2+1k 2+2)6(k 2+1k2)+13, 令u=k 2+1k2,则S=4-413+6u .因为u=k 2+1k2≥2,当且仅当k=±1时,等号成立,此时S=9625,且S 是以u 为自变量的增函数,则9625≤S<4.综上可知,9625≤S ≤4,故四边形DMEN 面积的最大值为4,最小值为9625. 5.解(1)由题意得c a =√33,所以a 2=32b 2,所以椭圆的方程为x 232b2+y 2b2=1,将点(32,√22)代入方程得b 2=2,即a 2=3,所以椭圆C 的标准方程为x 23+y 22=1.(2)由(1)可知,椭圆的右焦点为(1,0),①若直线l 的斜率不存在,则直线l 的方程为x=1, 则A (1,2√33),B (1,-2√33),E (1,1),F (1,-1), 所以|AB|=4√33,|EF|2=4,|AB|·|EF|2=16√33.②若直线l 的斜率存在,则设直线l 的方程为y=k (x-1),A (x 1,y 1),B (x 2,y 2).联立{x 23+y 22=1,y =k (x -1),消去y (2+3k 2)x 2-6k 2x+3k 2-6=0,则x 1+x 2=6k 22+3k2,x 1x 2=3k 2-62+3k2,所以|AB|=√(1+k 2)(x 1-x 2)2=√(1+k 2)[(6k22+3k2)2-4×3k 2-62+3k2]=4√3(k 2+1)2+3k2.因为圆心O (0,0)到直线l 的距离d=√k +1,所以|EF|2=4(2-k2k 2+1)=4(k 2+2)k 2+1,所以|AB|·|EF|2=4√3(k 2+1)2+3k2·4(k 2+2)k 2+1=16√3(k 2+2)2+3k2=16√33·k 2+2k 2+23=16√33(1+43k 2+23).因为k 2∈[0,+∞), 所以|AB|·|EF|2∈16√33,16√3.综上,|AB|·|EF|2的取值范围为16√33,16√3.突破2 定点、定值问题1.(1)解由抛物线C :x 2=-2py 经过点(2,-1),得p=2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y=1.(2)证明抛物线C 的焦点为F (0,-1).设直线l 的方程为y=kx-1(k ≠0).由{y =kx -1,x 2=-4y ,得x 2+4kx-4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1x 2=-4. 直线OM 的方程为y=y1x 1x.令y=-1,得点A 的横坐标x A =-x1y 1.同理得点B 的横坐标x B =-x2y 2.设y 轴上一点D (0,n ),则DA ⃗⃗⃗⃗⃗ =-x 1y 1,-1-n ,DB ⃗⃗⃗⃗⃗⃗ =-x 2y2,-1-n ,DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =x 1x 2y 1y 2+(n+1)2=x 1x 2(-x 124)(-x 224)+(n+1)2=16x 1x 2+(n+1)2=-4+(n+1)2.令DA ⃗⃗⃗⃗⃗ ·DB⃗⃗⃗⃗⃗⃗ =0, 即-4+(n+1)2=0,得n=1或n=-3.综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).2.(1)解由题意知,当点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,S △MF 1F 2=4,所以b=c 且S=12·2c·b=bc=4,解得b=c=2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明显然直线l 的斜率不为0,设直线l :x=t (y-1),联立{x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y+t 2-8=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y=0,则x=-t ,所以Q (-t ,0),因为QA ⃗⃗⃗⃗⃗ =λPA ⃗⃗⃗⃗⃗ ,所以y 1=λ(y 1-1), 所以λ=y1y 1-1. 因为QB ⃗⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ ,所以y 2=μ(y 2-1), 所以μ=y2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83.3.(1)解由题意可知,直线AF 2的方程为xc +y -b =1,即-bx+cy+bc=0,√b +c 2=bc a =√22.因为△AF 1F 2为等腰直角三角形,所以b=c , 又a 2=b 2+c 2,可得a=√2,b=1,c=1, 所以椭圆C 的标准方程为x 22+y 2=1. (2)证明由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y=kx+t (t ≠±1),代入x 22+y 2=1,得(1+2k 2)x 2+4ktx+2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt 1+2k2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2,所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t+1x 1+kx 2+t+1x 2=2k+(t+1)(x 1+x 2)x 1x 2=2k-(t+1)·4kt2t 2-2=2, 整理得t=1-k.所以直线l 的方程为y=kx+t=kx+1-k=k (x-1)+1,显然直线y=k (x-1)+1经过定点(1,1). 当直线l 的斜率不存在时,设直线l 的方程为x=m.因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ),所以k AM +k AN =n+1m +-n+1m =2m =2,解得m=1,此时直线l 的方程为x=1,显然直线x=1也经过定点(1,1).综上,直线l 恒过点(1,1).4.(1)解设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d=y M +p2.由抛物线的定义可知,d 1=|AF|,d 2=|BF|,所以d 1+d 2=|AB|=8, 由梯形中位线可得d=d 1+d 22=4,所以y M +p2=4. 又y M =3,所以3+p2=4,可得p=2, 所以抛物线C 的标准方程为x 2=4y. (2)证明设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y=x 22p ,则y'=x p ,所以直线l 1的方程为y-y 1=x1p (x-x 1),直线l 2的方程为y-y 2=x2λ(x-x 2),联立得x=x 1+x 22,y=x 1x22p ,即直线l 1,l 2的交点坐标为(x 1+x 22,x 1x 22p ).因为AB 过焦点F (0,p2),由题可知直线AB 的斜率存在,故可设直线AB 方程为y-p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx-p 2=0,所以x 1x 2=-p2,y=x 1x 22p =-p 22p =-p2,所以l 1,l 2的交点在定直线y=-p2上.突破3 证明、探索性问题1.(1)解由题意可得{c =1,ca=12,a 2=b 2+c 2,解得{a =2,b =√3,所以椭圆C 的方程为x 24+y 23=1.(2)证明设M (x 1,y 1),N (x 2,y 2)(x 1≠1且x 2≠1).联立{x 24+y 23=1,y =k (x -4)消去y ,得(4k 2+3)x 2-32k 2x+64k 2-12=0.依题意Δ=(-32k 2)-4(4k 2+3)·(64k 2-12)>0,即0<k2<14.则x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.因为k MF +k NF =y 1x 1-1+y 2x 2-1=k (x 1-4)x 1-1+k (x 2-4)x 2-1=k [2x 1x 2-5(x 1+x 2)+8](x 1-1)(x 2-1)=k [2·(64k 2-124k 2+3)-5·(32k24k 2+3)+8](x 1-1)(x 2-1)=0.所以直线MF 的倾斜角与直线NF 的倾斜角互补,即∠OFA=∠OFB. 又OF ⊥AB ,所以|FA|=|FB|.2.(1)解连接AF 2,由题意得|AB|=|F 2B|=|F 1B|,所以BO 为△F 1AF 2的中位线.又BO ⊥F 1F 2,所以AF 2⊥F 1F 2,且|AF 2|=2|BO|=b2a=83.又离心率e=c a=13,a 2=b 2+c 2,得a 2=9,b 2=8,故所求椭圆C 的标准方程为x 29+y 28=1.(2)证明由题可知,l 1的方程为x=-3,l 2的方程为x=3.直线l 的方程分别与直线l 1,l 2的方程联立得M (-3,-3k+m ),N (3,3k+m ),所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,-3k+m ),F 1N ⃗⃗⃗⃗⃗⃗⃗ =(4,3k+m ), 所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·F 1N ⃗⃗⃗⃗⃗⃗⃗ =-8+m 2-9k 2.联立{x 29+y 28=1,y =kx +m ,得(9k 2+8)x 2+18kmx+9m 2-72=0.因为直线l 与椭圆C 相切,所以Δ=(18km )2-4(9k 2+8)(9m 2-72)=0,化简得m 2=9k 2+8.所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ·F 1N ⃗⃗⃗⃗⃗⃗⃗ =-8+9k 2+8-9k 2=0,所以F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥F 1N ⃗⃗⃗⃗⃗⃗⃗ ,故∠MF 1N=π2.同理F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-4,-3k+m ),F 2N ⃗⃗⃗⃗⃗⃗⃗ =(2,3k+m ),F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ ·F 2N ⃗⃗⃗⃗⃗⃗⃗ =0,所以F 2M ⃗⃗⃗⃗⃗⃗⃗⃗ ⊥F 2N ⃗⃗⃗⃗⃗⃗⃗ ,∠MF 2N=π2.故∠MF 1N=∠MF 2N.3.解(1)∵e=√1-b2a 2=12,∴3a 2=4b 2.又|AB|=2b2a=3,∴a=2,b=√3.∴椭圆C 的方程为x 2+y 2=1.(2)不存在.理由如下,假设存在点P ,使得OM ⃗⃗⃗⃗⃗⃗ ⊥ON ⃗⃗⃗⃗⃗⃗ . 当直线l 的斜率不存在时, l :x=√3或x=-√3,与椭圆C :x 24+y 23=1相交于M ,N 两点,此时M (√3,√32),N √3,-√32或M -√3,√32,N -√3,-√32, ∴OM ⃗⃗⃗⃗⃗⃗ ·ON⃗⃗⃗⃗⃗⃗ =3-34=94≠0, ∴当直线l 的斜率不存在时,不满足OM ⃗⃗⃗⃗⃗⃗ ⊥ON ⃗⃗⃗⃗⃗⃗ . 当直线l 的斜率存在时,设y=kx+m ,联立{y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8kmx+4m 2-12=0.∵直线l 与椭圆C 相交于M ,N 两点, ∴Δ>0,化简得4k 2>m 2-3. 设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=-8km3+4k2,x 1x 2=4m 2-123+4k2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=3m 2-12k 23+4k2.∵OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗⃗ =0, ∴4m 2-123+4k2+3m 2-12k 23+4k2=0,∵7m 2-12k 2-12=0,又直线l 与圆x 2+y 2=3相切, ∴√3=√1+k ∴m 2=3+3k 2,∴21+21k 2-12k 2-12=0,解得k 2=-1,显然不成立,∴在圆上不存在这样的点P ,使OM ⃗⃗⃗⃗⃗⃗ ⊥ON⃗⃗⃗⃗⃗⃗ 成立. 4.解(1)因为点P (2,√2)在椭圆C 上,且PF ⊥x 轴,所以c=2.设椭圆C 的左焦点为E ,则|EF|=2c=4,|PF|=√2.在Rt △EFP 中,|PE|2=|PF|2+|EF|2=18,所以|PE|=3√2. 所以2a=|PE|+|PF|=4√2,a=2√2. b 2=a 2-c 2=4, 故椭圆C 的方程为x 2+y 2=1.(2)直线PA ,PM ,PB 的斜率构成等差数列,理由如下,由题意可设直线AB 的方程为y=k (x-2),令x=4得y=2k ,点M 的坐标为(4,2k ).联立{x 28+y 24=1,y =k (x -2),得(2k 2+1)x 2-8k 2x+8(k 2-1)=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k22k 2+1,x 1x 2=8(k 2-1)2k 2+1.①设直线PA ,PB ,PM 的斜率分别为k 1,k 2,k 3,从而k 1=y 1-√2x 1-2,k 2=y 2-√2x 2-2,k 3=2k -√24-2=k-√22. 因为直线AB 的方程为y=k (x-2), 所以y 1=k (x 1-2),y 2=k (x 2-2),所以k 1+k 2=y 1-√2x 1-2+y 2-√2x 2-2=y 1x 1-2+y 2x 2-2−√2(1x 1-2+1x 2-2)=2k-√2·x 1+x 2-4x 1x 2-2(x 1+x 2)+4. ② 将①代入②,得k 1+k 2=2k-√2·8k22k 2+1-48(k 2-1)2k 2+1-16k22k 2+1+4=2k-√2.又k 3=k-√22,所以k 1+k 2=2k 3,故直线PA ,PM ,PB 的斜率成等差数列.5.解(1)(方法1)由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x=-1的距离相等.由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x=-1为准线的抛物线,其中p=2.所以动圆圆心C 的轨迹E 的方程为y 2=4x.(方法2)设动圆圆心C (x ,y ),由题意知√(x -1)2+y 2=|x+1|,化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x. (2)存在.假设存在点N (x 0,0),满足题设条件.由∠QNM+∠PNM=π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0. ①由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x=my-2. 联立{y 2=4x ,x =my -2,得y 2-4my+8=0.由Δ=(-4m )2-4×8>0,得m>√2或m<-√2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8.由①式得k PN +k QN =y 1x 1-x 0+y2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 12-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0),使得∠QNM+∠PNM=π.6.解(1)设P (x ,y ),分析可知动圆的圆心不能在y 轴的左侧,故x ≥0,因为动圆与直线x=-12相切,且与圆C 外切,所以|PC|-(x +12)=12, 所以|PC|=x+1, 所以√(x -1)2+y 2=x+1,化简可得y 2=4x.(2)存在.设A (x 1,y 1),B (x 2,y 2),由题意可知,当直线l 与y 轴垂直时,显然不符合题意,故可设直线l 的方程为x=my+6,联立{x =my +6,y 2=4x消去x ,可得y 2-4my-24=0, 显然Δ=16m 2+96>0, 则{y 1+y 2=4m ,y 1y 2=-24,① 所以x 1+x 2=(my 1+6)+(my 2+6)=4m 2+12, ② 因为x 1x 2=y 124·y 224,所以x 1x 2=36,③ 假设存在N (x 0,y 0),使得NA⃗⃗⃗⃗⃗⃗ ·NB ⃗⃗⃗⃗⃗⃗ =0,由题意可知y 0=y 1+y 22,所以y 0=2m , ④ 由点N 在抛物线上可知x 0=y 024,即x 0=m 2,⑤又NA ⃗⃗⃗⃗⃗⃗ =(x 1-x 0,y 1-y 0),NB ⃗⃗⃗⃗⃗⃗ =(x 2-x 0,y 2-y 0),若NA ⃗⃗⃗⃗⃗⃗ ·NB ⃗⃗⃗⃗⃗⃗ =0,则x 1x 2-x 0(x 1+x 2)+x 02+y 1y 2-y 0(y 1+y 2)+y 02=0,将①②③④⑤代入上式化简可得3m 4+16m 2-12=0,即(m 2+6)(3m 2-2)=0, 所以m 2=23,故m=±√63,所以存在直线3x+√6y-18=0或3x-√6y-18=0,使得NA ⊥NB.。
全国一卷圆锥曲线高考题汇编含答案#(精选.)
![全国一卷圆锥曲线高考题汇编含答案#(精选.)](https://img.taocdn.com/s3/m/fab2b2125627a5e9856a561252d380eb6394237d.png)
高二数学专题学案圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国I卷)(20)(本小题满分12分)设圆x2 + y2 + 2x—15 = 0的圆心为4直线l过点B (1,0)且与x轴不重合,l交圆A于C, D两点,过B作AC的平行线交AD于点E.(I)证明|EA| + |EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于PQ两点,求四边形MPNQ面积的取值范围.x2 y22、(2015全国I卷)(14)一个圆经过椭圆7十一二1的三个顶点,且圆心在乂轴上,则该圆的标准方程16 4为。
3、(2014全国I卷)20.(本小题满分12分)已知点A(0,-2),椭圆E:上+ y2= 1(a > b > 0)的离心率为3,,F是椭圆a2 b2 2的焦点,直线AF的斜率为233,O为坐标原点.(I)求E的方程;(II)设过点A的直线l与E相交于P, Q两点,当A OPQ的面积最大时,求l的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系g中,椭圆C::喙=1(a>b>°)的离心率是浮,抛物线E3x=2'的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点6,记^PFG的面积为S j ^PDM的面积为S2,求S-的最大值及取得最大值2时点P的坐标.八- x 2 Y 2 一,,〜5、(2015山东卷)(20)(本小题满分13分)平面直角坐标系xOy中,已知椭圆C :— + ) =1(a > b > 0)a 2 b2的离心率为*,左、右焦点分别是F , F ,以F 为圆心,以3为半径的圆与以F 为圆心,以1为半径的 2 1212圆相交,交点在椭圆C 上. (I )求椭圆C 的方程;x 2 y 2(H )设椭圆E :江+而二1,P 为椭圆C 上的任意一点,过点P的直线厂"m 交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国I 卷)(5)已知方禾m 2+n--就工=1表示双曲线,且该双曲线两焦点间的距离为4,则n的i )求|OQ | | OP |的值;(ii )求A ABQ 面积最大值.取值范围是(2、(2015全国I 卷)(5)已知M (x 0 丫0)是双曲线C : --W= 1上的一点,F 1、F 2是C 上的两个焦点,若西 • MF 2 <0,则y 0的取值范围是(2J3(D )(一二33、(2014全国I 卷)4.已知F 是双曲线C : x 2 - my 2 = 3m (m > 0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A . <3B .3C . <3mD . 3mx 2 y 24、(2016山东卷)(13)已知双曲线E_,: ---= 1 (a >0, b >0),若矩形ABCD 的四个顶点在E 上, 1a 2b 2AB , CD 的中点为E 的两个焦点,且21AB |=3|BC |,则E 的离心率是.x 2 y 25、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线C : 一--—= 1(a > 0,b > 0)的渐近线与抛物线1a 2 b2C : x 2 = 2py (p > 0)交于点O , A , B ,若A OAB 的垂心为C 的焦点,则C 的离心率为. 2 21x 2 y 2 x 2 y 26、(2014山东卷)(10)已知a > b ,椭圆C 的方程为—+ -- = 1 ,双曲线C 的方程为——^- = 1, C1 a2 b 2 2 a 2 b 2 1与C 的离心率之积为二,则C 的渐近线方程为()222(A ) x 土 <2y = 0 (B ) J2x 土 y = 0 (C ) x 土2y = 0 (D ) 2x 土 y = 0圆锥曲线部分高考试题汇编(抛物线部分)(A )(-1,3)(B )(-1八”)(C )(0,3)(D )(0,\与)2<2 (C )(-—— 32<31、(2016全国I卷)(10)以抛物线C的顶点为圆心的圆交C于A, B两点,交C的准线于D, E两点.已知| AB | = 4";2 , | DEI= 2d5,则C的焦点到准线的距离为()(A)2 (B)4 (C)6 (D)82、(2015全国I卷)(20)(本小题满分12分)x2在直角坐标系xoy中,曲线C:y =—与直线y = kx + a(a >0)交与M,N两点,(I)当k=0时,分别求C在点M和N处的切线方程;(II)y轴上是否存在点R使得当k变动时,总有N OPM =Z OPN ?说明理由。
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题
![高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题](https://img.taocdn.com/s3/m/cae052e577eeaeaad1f34693daef5ef7ba0d1202.png)
高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。
2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。
3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。
4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。
5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。
6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。
7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。
重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。
2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。
3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。
4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。
【高考数学】圆锥曲线经典习题解答题集—双曲线大题合集5
![【高考数学】圆锥曲线经典习题解答题集—双曲线大题合集5](https://img.taocdn.com/s3/m/6d80a867b7360b4c2e3f64e8.png)
【高考数学】圆锥曲线经典习题解答题集—双曲线大题合集5未命名一、解答题1.p :直线()25210m m x y --+=的斜率大于3,q :方程22153x ym m -=-+表示焦点在x 轴上的双曲线.若()p q ⌝∧为真命题,求实数m 的取值范围. 【答案】[)1,5- 【解析】 【分析】由()p q ⌝∧为真命题,可知p ⌝为假命题,q 为真命题.分别求出m 的范围,最后取交集即可. 【详解】解:因为()p q ⌝∧为真命题,所以p 为假命题,q 为真命题.p ⌝:直线()25210m m x y --+=的斜率2532m m k -=≤,得16m -≤≤.①因为方程22153x y m m -=-+表示焦点在x 轴上的双曲线,所以50,30,m m ->⎧⎨+>⎩ 解得,35m -<<.②由①②可得,实数m 的取值范围[)1,5-. 【点睛】本题主要考查利用复合命题的真假求参数的取值问题,要熟练掌握复合命题和简单命题之间的关系.2.与椭圆有公共焦点,且离心率的双曲线的方程______. 【答案】【解析】试题分析:先由椭圆方程确定焦点位置,确定所求双曲线方程形式:, ,再根据两个独立条件求量:一是焦距,二是离心率,解方程组得 , .试题解析:椭圆的焦点坐标为 , , , , 2分设双曲线的方程为, , 3分 则,, 9分解得 , . 所以 双曲线的方程是.12分考点:双曲线方程3.已知命题p :k 2﹣8k ﹣20≤0,命题q :方程2241x y k k+=--1表示焦点在x 轴上的双曲线.(1)命题q 为真命题,求实数k 的取值范围;(2)若命题“p ∨q ”为真,命题“p ∧q ”为假,求实数k 的取值范围. 【答案】(1)()1,4(2)[][]2,14,10-⋃ 【解析】 【分析】(1)命题q 为真命题,由已知得4010k k -⎧⎨-⎩><,可求实数k 的取值范围;(2)根据题意得命题p 、q 有且仅有一个为真命题,分别讨论“p 真q 假”与“p 假q 真”即可得出实数a 的取值范围. 【详解】(1)当命题q 为真时,由已知得4010k k -⎧⎨-⎩><,解得1<k <4∴当命题q 为真命题时,实数k 的取值范围是1<k <4.(2)当命题p 为真时,由k 2﹣8k ﹣20≤0解得﹣2≤k ≤10,由题意得命题p 、q 中有一真命题、有一假命题 ,当命题p 为真、命题q 为假时,则21014k k k -≤≤⎧⎨≤≥⎩或,解得﹣2≤k ≤1或4≤k ≤10. 当命题p 为假、命题q 为真时,则21014k k k -⎧⎨⎩<或><<,k 无解.∴实数k 的取值范围为[][]2,14,10-⋃.【点睛】本题考查了命题真假的判断与应用,属于中档题,解题时注意分类讨论思想的应用. 4.(1)求经过点(2,4)P -的抛物线的标准方程;(2)求以椭圆221259x y +=长轴两个端点为焦点,以该椭圆焦点为顶点的双曲线的标准方程.【答案】(1)28y x =-或2x y =(2)221169x y -=. 【解析】 【分析】(1)由题意设抛物线标准方程为y 2=﹣2px (p >0)或22(0)x py p =>,将点P 代入求解即可.(2)由题意得双曲线焦点在x 轴上,可设出标准方程,通过椭圆长轴两端点分别为(﹣5,0),(5,0),焦点为(﹣4,0),(4,0),转化求解即可. 【详解】(1)由题意得抛物线的焦点在x 轴的负半轴或y 轴的正半轴.若抛物线的焦点在x 轴的负半轴上,设其标准方程为22(0)y px p =->.因为抛物线过点()2,4P -,所以()1622p =-⨯-,4p =,所以28y x =-若抛物线的焦点在y 轴的正半轴上,设其标准方程为22(0)x py p =>.因为抛物线过点()2,4P -,所以424p =⨯,12p =,所以2x y =. 综上,所求抛物线的标准方程为28y x =-或2x y =.(2)由题意得双曲线的焦点在x 轴上,故可设其标准方程为22221x ya b -=(0a >,0b >),半焦距为c ,因为椭圆221259x y+=长轴两端点分别为()5,0-,()5,0,焦点为()4,0-,()4,0,5c ∴=,4a =,2229b c a =-=,故所求双曲线的标准方程为221169x y -=.【点睛】本题考查根据已知条件求抛物线和双曲线的标准方程,考查转化思想以及计算能力. 5.求适合下列条件的双曲线的标准方程:(Ⅰ)焦点在y 轴上,虚轴长为8,离心率为53e =;(Ⅱ)经过点(C ,且与双曲线221816x y -=有共同的渐近线.【答案】(Ⅰ)221916y x -=(Ⅱ)22124x y -=【解析】 【分析】(Ⅰ)由28b =,可得4b =,结合53c a =,222c a b =+,得29a =,从而可得结果;(Ⅱ)由与双曲线221816x y -=有共同的渐近线,可设所求双曲线方程为()220816x y λλ-=≠,将点(C 的坐标代入所设方程,求得λ的值,从而可得结果. 【详解】(Ⅰ)设所求双曲线的标准方程为22221(0,0)y x a b a b-=>>则528,3c b e a ===,从而54,3c b a ==,代入222c a b =+,得29a =,故方程为221916y x -=(Ⅱ)由题意可设所求双曲线方程为()220816x y λλ-=≠,将点(C 的坐标代入,得32816λ-=, 解得14λ=,所以所求双曲线的标准方程为22124x y -=【点睛】本题主要考查双曲线的方程与简单性质,属于中档题.求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.6.已知双曲线C 的一个焦点为(),且过点()Q 2. 如图,12,F F 为双曲线的左、右焦点,动点 ()00,P x y (01y ≥)在 C 的右支上,且12F PF ∠的平分线与 x轴、y 轴分别交于点(),0M m (m 、N ,设过点1,F N 的直线 l 与C 交于 ,DE 两点.(1)求C 的标准方程; (2)求△2F DE 的面积最大值.【答案】(1)2214x y -=(2)【解析】 【分析】(1)计算双曲线焦点坐标,计算参数a 的则,得到双曲线方程,即可。
2023年高考数学微专题练习专练55高考大题专练五圆锥曲线的综合运用含解析理
![2023年高考数学微专题练习专练55高考大题专练五圆锥曲线的综合运用含解析理](https://img.taocdn.com/s3/m/1ee9c8f080c758f5f61fb7360b4c2e3f57272506.png)
专练55 高考大题专练(五) 圆锥曲线的综合运用1.[2021·全国乙卷]已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离的最小值为4.(1)求p;(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求△PAB的最大值.2.[2022·全国甲卷(理),20]设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.3.[2022·全国乙卷(理),20]已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT →=TH →.证明:直线HN 过定点.4.[2022·江西省高三联考]已知曲线C 上任意一点到点F (2,0)的距离比它到y 轴的距离大2,过点F (2,0)的直线l 与曲线C 交于A ,B 两点.(1)求曲线C 的方程;(2)若曲线C 在A ,B 处的切线交于点M ,求△MAB 面积的最小值.5.[2022·江西省宜春模拟]已知点T 是圆A :(x -1)2+y 2-8=0上的动点,点B (-1,0),线段BT 的垂直平分线交线段AT 于点S ,记点S 的轨迹为曲线C .(1)求曲线C 的方程;(2)过B (-1,0)作曲线C 的两条弦DE ,MN ,这两条弦的中点分别为P ,Q ,若DE →·MN →=0,求△BPQ 面积的最大值.专练55 高考大题专练(五) 圆锥曲线的综合运用1.解析:(1)由题意知M (0,-4),F ⎝ ⎛⎭⎪⎫0,p 2,圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(技巧点拨:F 与圆M 上点的距离的最小值为|MF |-r ,最大值为|MF |+r )(2)由(1)知,抛物线方程为x 2=4y ,由题意可知直线AB 的斜率存在,设A ⎝ ⎛⎭⎪⎫x 1,x 21 4,B ⎝ ⎛⎭⎪⎫x 2,x 22 4,直线AB 的方程为y =kx +b ,联立得⎩⎪⎨⎪⎧y =kx +b x 2=4y ,消去y 得x 2-4kx -4b =0,则Δ=16k 2+16b >0 (※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x 12,在点A 处的切线方程为y -x 21 4=x 12(x -x 1),即y =x 12x -x 214,(技巧点拔:因为抛物线方程为x 2=4y ,即y =x 24,所以想到利用导数的几何意义求切线方程)同理得抛物线在点B 处的切线方程为y =x 22x -x 224,联立得⎩⎪⎨⎪⎧y =x 12x -x 214y =x22x -x 224,则⎩⎪⎨⎪⎧x =x 1+x22=2k y =x 1x 24=-b ,即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※).(易错警示:由点P 在圆M 上,只得到了4k 2+(4-b )2=1,而忽视k ,b 的取值范围,导致得到错误答案)设点P 到直线AB 的距离为d ,则d =|2k 2+2b |1+k 2, 所以S △PAB =12|AB |·d =4(k 2+b )3.由①得,k 2=1-(4-b )24=-b 2+8b -154,令t =k 2+b ,则t =-b 2+12b -154,且3≤b ≤5.因为t =-b 2+12b -154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△PAB 面积的最大值为20 5.2.解析:(1)(方法一)由题意可知,当x =p 时,y 2=2p 2.设M 点位于第一象限,则点M 的纵坐标为2p ,|MD |=2p ,|FD |=p2.在Rt△MFD 中,|FD |2+|MD |2=|FM |2,即⎝ ⎛⎭⎪⎫p 22+(2p )2=9,解得p =2.所以C 的方程为y 2=4x .(方法二)抛物线的准线方程为x =-p2.当MD 与x 轴垂直时,点M 的横坐标为p . 此时|MF |=p +p2=3,所以p =2.所以抛物线C 的方程为y 2=4x .(2)设直线MN 的斜率为k 1,直线AB 的斜率为k 2,则k 1=tan α,k 2=tan β.由题意可得k 1≠0,k 2≠0.设M (x 1,y 1),N (x 2,y 2),y 1>0,y 2<0,A (x 3,y 3),B (x 4,y 4),y 3<0,y 4>0. 设直线AB 的方程为y =k 2(x -m ),m 为直线AB 与x 轴交点的横坐标,直线MN 的方程为y =k 1(x -1),直线MD 的方程为y =k 3(x -2),直线ND 的方程为y =k 4(x -2).联立得方程组⎩⎪⎨⎪⎧y =k 1(x -1),y 2=4x ,所以k 21 x 2-(2k 21+4)x +k 21 =0,则x 1x 2=1. 联立得方程组⎩⎪⎨⎪⎧y =k 2(x -m ),y 2=4x ,所以k 22 x 2-(2mk 22 +4)x +k 22 m 2=0,则x 3x 4=m 2.联立得方程组⎩⎪⎨⎪⎧y =k 3(x -2),y 2=4x ,所以k 23 x 2-(4k 23 +4)x +4k 23 =0,则x 1x 3=4.联立得方程组⎩⎪⎨⎪⎧y =k 4(x -2),y 2=4x ,所以k 24 x 2-(4k 24 +4)x +4k 24 =0,则x 2x 4=4.所以M (x 1,2x 1),N (1x 1,-2x 1),A (4x 1,-4x 1),B (4x 1,4x 1).所以k 1=2x 1x 1-1,k 2=x 1x 1-1,k 1=2k 2, 所以tan (α-β)=tan α-tan β1+tan αtan β=k 1-k 21+k 1k 2=k 21+2k 22 =11k 2+2k 2. 因为k 1=2k 2,所以k 1与k 2同号,所以α与β同为锐角或钝角.当α-β取最大值时,tan (α-β)取得最大值.所以k 2>0,且当1k 2=2k 2,即k 2=22时,α-β取得最大值.易得x 3x 4=16x 1x 2=m 2,又易知m >0,所以m =4.所以直线AB 的方程为x -2y -4=0.3.解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得⎩⎪⎨⎪⎧4n =1,94m +n =1,解得⎩⎪⎨⎪⎧m =13,n =14.所以椭圆E 的方程为x 23+y 24=1.(2)证明:(方法一)设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组⎩⎪⎨⎪⎧x -1=t (y +2),x 23+y 24=1.消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0, 所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t -84t 2+3. 设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0-32,得x 0=32y 1+3. 设H (x ′,y ′).由MT →=TH →,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2-y ′x 2-x ′=y 2-y 1x 2+x 1-(3y 1+6)=y 2-y 1t (y 1+y 2)-3y 1+4t -4,所以直线HN 的方程为y -y 2=y 2-y 1t (y 1+y 2)-3y 1+4t -4·(x -x 2).令x =0,得y =y 2-y 1t (y 1+y 2)-3y 1+4t -4·(-x 2)+y 2=(y 1-y 2)(ty 2+2t +1)t (y 1+y 2)-3y 1+4t -4+y 2=(2t -3)y 1y 2+(2t -5)(y 1+y 2)+6y 1t (y 1+y 2)-3y 1+4t -4=(2t -3)·16t 2+16t -84t 2+3+(5-2t )·16t 2+8t4t 2+3+6y 1-t (16t 2+8t )4t 2+3-3y 1+4t -4=-2.所以直线NH 过定点(0,-2).(方法二)由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2.a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1. 将直线方程x =1代入x 23+y 24=1,可得N (1,263),M (1,-263).将y =-263代入y =23x -2,可得T (3-6,-263).由MT →=TH →,得H (5-26,-263).此时直线HN 的方程为y =(2+263)(x -1)+263,则直线HN 过定点(0,-2).b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组⎩⎪⎨⎪⎧kx -y -(k +2)=0,x 23+y 24=1.消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以⎩⎪⎨⎪⎧x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则⎩⎪⎨⎪⎧y 1+y 2=-8(2+k )3k 2+4,y 1y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k3k 2+4.①联立得方程组⎩⎪⎨⎪⎧y =y 1,y =23x -2,可得T (3y 12+3,y 1).由MT →=TH →,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2).将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.② 将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立. 综上可得,直线HN 过定点(0,-2).4.解析:(1)设曲线C 上任意一点P 的坐标为(x ,y ),则有:(x -2)2+y 2=|x |+2, 当x ≥0时,有y 2=8x ;当x <0时,有y =0, 所以曲线的方程为y 2=8x (x ≥0)或y =0(x <0).(2)由题意设l 的方程为x =my +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +2,y 2=8x ⇒y 2-8my -16=0,∴Δ>0⇒m ∈R ,y 1+y 2=8m ,y 1y 2=-16, ∴|AB |=1+m2(y 1+y 2)2-4y 1y 2=8(1+m 2),设切线MA 的方程为y -y 1=k (x -x 1)(k ≠0),由⎩⎪⎨⎪⎧y -y 1=k (x -x 1),y 2=8x ⇒y 2-8k y +8y 1k -8x 1=0,∴Δ=0⇒ky 1=4,∴切线MA 的方程为y -y 1=4y 1(x -x 1),化简得yy 1=4(x +x 1)=4x +y 212, ①同理可得切线MB 的方程为yy 2=4(x +x 2)=4x +y 222, ②由①②得点M 的坐标为M (-2,4m ),∴点M 到直线l 的距离d =|-2-4m 2-2|1+m2=41+m 2, ∴S △MAB =12|AB |·d =16(1+m 2)32≥16,当且仅当m =0时等号成立,故△MAB 面积的最小值为16.5.解析:(1)圆A :(x -1)2+y 2=8的圆心A (1,0),半径r =22,依题意,|SB |=|ST |,|SB |+|SA |=|ST |+|SA |=|AT |=22>2=|AB |,即点S 的轨迹是以B ,A 为左右焦点,长轴长为22的椭圆,短半轴长b =(2)2-12=1, 所以曲线C 的方程为x 22+y 2=1.(2)由DE →·MN →=0知,DE ⊥MN ,直线DE ,MN 不垂直坐标轴,否则点P ,Q 之一与点B 重合,不能构成三角形,即直线DE 的斜率存在且不为0,设直线DE 方程为y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 2+2y 2=2消去y 并整理得(2k 2+1)x 2+4k 2x +2k 2-2=0,设D (x 1,y 1),E (x 2,y 2),DE 中点P (x P ,y P ),则有x 1+x 2=-4k 22k 2+1,x P =-2k 22k 2+1,y P =k2k 2+1,因此,|BP |=(1-2k 22k 2+1)2+(k 2k 2+1)2=k 2+12k 2+1,直线MN 的斜率为-1k ,同理可得|BQ |=|k |k 2+1k 2+2,△BPQ 面积S △BPQ =12|BP ||BQ |=12·k 2+12k 2+1·|k |k 2+1k 2+2=|k |+1|k |4(|k |+1|k |)2+2,令t =|k |+1|k |≥2,当且仅当|k |=1时取“=”,则S △BPQ =t 4t 2+2=14t +2t,函数y =4t +2t 在[2,+∞)上单调递增,即当t =2时,(4t +2t)min =9,所以当t =2,即k =±1时,(S △BPQ )max =19,所以△BPQ 面积的最大值是19.。
圆锥曲线练习题(抛物线)
![圆锥曲线练习题(抛物线)](https://img.taocdn.com/s3/m/172541f116fc700aba68fc16.png)
圆锥曲线题型总结一、选择题(1)5.已知F 为抛物线x y 82=的焦点,过F 且斜率为1的直线交抛物线于A 、B 两点,则||FA |-|FB ||的值等于 ( )A .4 2B .8C . 8 2D .166.在22x y =上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)7.设抛物线x y 82=的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |= ( )A .4 3B .8C .8 3D .169.设),(00y x M 为抛物线C :y x 82=上一 点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则0y 的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)10.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC |=2|BF |,且|AF |=4,则△AKF 的面积是( )A .4B .3 3C .4 3D .811.过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3则此抛物线的方程为 ( )A .y 2=32xB .y 2=9xC .y 2=92x D .y 2=3x 选择题(2)6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )A B .3 C D .927.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,, 333()P x y ,在抛物线上,且123,,x x x 成等差数列, 则有( ) A.123FP FP FP += B.222123FP FP FP += C.2132FP FP FP =+ D.2213FP FP FP =· 8.过点(2,4)M 作与抛物线28y x =只有一个公共点的直线l 有 ( )A .0条B .1条C .2条D .3条9.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且AK ,则AFK ∆的面积为( )A .4B .8C .16D .32 10.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称, 且2121-=⋅x x ,则m 等于( ) A 23 B 2 C 25 D 3 11.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则q p 11+等于( ) A .2a B . a 21 C .4a D . a4 二、填空题1.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.2.已知抛物线的顶点在原点,对称轴为y 轴,抛物线上一点Q (-3,m )到焦点的距离是5,则抛物线的方程为________.3.已知抛物线y 2=4x 与直线2x +y -4=0相交于A 、B 两点,抛物线的焦点为F ,那么| FA | +| FB | =________.4.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2, y 2)两点,若x 1+x 2=6,那么 |AB |等于________5.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = .6.过抛物线22(0)x py p =>的焦点F 作倾角为30的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AF FB = . 7.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 . 8 对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是 。
新高考2024版高考数学一轮复习:高考大题专练五圆锥曲线的综合运用
![新高考2024版高考数学一轮复习:高考大题专练五圆锥曲线的综合运用](https://img.taocdn.com/s3/m/2283940f66ec102de2bd960590c69ec3d4bbdb4b.png)
专练48高考大题专练(五)圆锥曲线的综合运用1.[2023·新课标Ⅰ卷]在直角坐标系xOy中,点P到x轴的距离等于点P距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3 3.2.[2023·新课标Ⅱ卷]已知双曲线C的中心为坐标原点,左焦点为(-25,0),离心率为 5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.3.[2023·全国乙卷(理)]已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为53,点A(-2,0)在C上.(1)求C的方程;(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.4.[2022·全国甲卷(理),20]设抛物线C :y 2=2px (p >0)的焦点为F ,点D (p ,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3.(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为α,β.当α-β取得最大值时,求直线AB 的方程.5.[2023·全国甲卷(理)]已知直线x -2y +1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,|AB |=415.(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且FM →·FN →=0,求△MFN 面积的最小值.6.[2022·新高考Ⅱ卷,21]已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (2,0),渐近线方程为y =±3x .(1)求C 的方程.(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.7.[2022·全国乙卷(理),20]已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT →=TH →.证明:直线HN 过定点.8.[2022·新高考Ⅰ卷,21]已知点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan ∠PAQ =22,求△PAQ 的面积.专练48高考大题专练(五)圆锥曲线的综合运用1.解析:(1)设点P 的坐标为(x ,y ),依题意得|y |=x 2+(y -12)2,化简得x 2=y -14,所以W 的方程为x 2=y -14.(2)设矩形ABCD 的三个顶点A ,B ,C 在W 上,则AB ⊥BC ,矩形ABCD 的周长为2(|AB |+|BC |).设B (t ,t 2+14),依题意知直线AB 不与两坐标轴平行,故可设直线AB 的方程为y -(t 2+14)=k (x -t ),不妨设k >0,与x 2=y -14联立,得x 2-kx +kt -t 2=0,则Δ=k 2-4(kt -t 2)=(k -2t )2>0,所以k ≠2t .设A (x 1,y 1),所以t +x 1=k ,所以x 1=k -t ,所以|AB |=1+k 2|x 1-t |=1+k 2|k -2t |=1+k 2|2t -k |,|BC |=1+(1-1k )2|-1k -2t |=1+k 2k |1k +2t |=1+k 2k 2|2kt +1|,且2kt +1≠0,所以2(|AB |+|BC |)=21+k 2k2(|2k 2t -k 3|+|2kt +1|).因为|2k 2t -k 3|+|2kt +1|k 2-2k )t +k 3-1,t ≤-12kk -2k 2)t +k 3+1,-12k <t ≤k 2k 2+2k )t -k 3+1,t >k 2,当2k -2k 2≤0,即k ≥1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k2]上单调递减或是常函数(当k =1时是常函数),函数y=(2k 2+2k )t -k 3+1在(k2,+∞)上单调递增,所以当t =k2时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 2+1,又k ≠2t ,所以2(|AB |+|BC |)>21+k 2k 2(k 2+1)=2(1+k 2)32k 2.令f (k )=2(1+k 2)32k 2,k ≥1,则f ′(k )=2(1+k 2)12(k +2)(k -2)k3,当1≤k <2时,f ′(k )<0,当k >2时,f ′(k )>0,所以函数f (k )在[1,2)上单调递减,在(2,+∞)上单调递增,所以f (k )≥f (2)=33,所以2(|AB |+|BC |)>2(1+k 2)32k 2≥3 3.当2k -2k 2>0,即0<k <1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k 2]上单调递增,函数y =(2k 2+2k )t -k 3+1在(k2,+∞)上单调递增,所以当t =-12k时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 3+k =k (1+k 2),又2kt +1≠0,所以2(|AB |+|BC |)>21+k 2k 2k (k 2+1)=2(1+k 2)32k .令g (k )=2(1+k 2)32k ,0<k <1,则g ′(k )=2(1+k 2)12(2k 2-1)k2,当0<k <22时,g ′(k )<0,当22<k <1时,g ′(k )>0,所以函数g (k )在(0,22)上单调递减,在(22,1)上单调递增,所以g (k )≥g (22)=33,所以2(|AB |+|BC |)>2(1+k 2)32k≥3 3.综上,矩形ABCD 的周长大于3 3.2.解析:(1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0),c 为双曲线C 的半焦距,=25=5=a 2+b 2=25=2=4.所以双曲线C 的方程为x 24-y 216=1.(2)方法一设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,则x 1=my 1-4,x 2=my 2-4.my -4-y 216=1,得(4m 2-1)y 2-32my +48=0.因为直线MN 与双曲线C 的左支交于M ,N 两点,所以4m 2-1≠0,且Δ>0.1+y 2=32m4m 2-11y 2=484m 2-1,所以y 1+y 2=2m3y 1y 2.因为A 1,A 2分别为双曲线C 的左、右顶点,所以A 1(-2,0),A 2(2,0).直线MA 1的方程为y 1x 1+2=y x +2,直线NA 2的方程为y 2x 2-2=yx -2,所以y 1x 1+2y 2x 2-2=yx +2y x -2,得(x 2-2)y 1(x 1+2)y 2=x -2x +2,(my 2-6)y 1(my 1-2)y 2=my 1y 2-6y 1my 1y 2-2y 2=x -2x +2.因为my 1y 2-6y 1my 1y 2-2y 2=my 1y 2-6(y 1+y 2)+6y 2my 1y 2-2y 2=my 1y 2-6·2m3y 1y 2+6y 2my 1y 2-2y 2=-3my 1y 2+6y 2my 1y 2-2y 2=-3,所以x -2x +2=-3,解得x =-1,所以点P 在定直线x =-1上.方法二由题意得A 1(-2,0),A 2(2,0).设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,则x 214-y 21164x 21-y 21=16.如图,连接MA 2,kMA 1·kMA 2=y 1x 1+2·y 1x 1-2=y 21x 21-4=4x 21-16x 21-4=4①.由x 24-y 216=1,得4x 2-y 2=16,4[(x -2)+2]2-y 2=16,4(x -2)2+16(x -2)+16-y 2=16,4(x -2)2+16(x -2)-y 2=0.由x =my -4,得x -2=my -6,my -(x -2)=6,16[my -(x -2)]=1.4(x -2)2+16(x -2)·16[my -(x -2)]-y 2=0,4(x -2)2+83(x -2)my -83(x -2)2-y 2=0,两边同时除以(x -2)2,得43+8m 3·yx -2-=0,-8m 3·y x -2-43=0.kMA 2=y 1x 1-2,kNA 2=y 2x 2-2,由根与系数的关系得kMA 2·kNA 2=-43②.由①②可得kMA 1=-3kNA 2.:y =kMA 1(x +2)=-3kNA 2(x +2),lNA 2:y =kNA 2(x -2).=-3kNA 2(x +2)=kNA 2(x -2),解得x =-1.所以点P 在定直线x =-1上.3.解析:(1)因为点A (-2,0)在C 上,所以4b2=1,得b 2=4.因为椭圆的离心率e =c a =53,所以c 2=59a 2,又a 2=b 2+c 2=4+59a 2,所以a 2=9,c 2=5,故椭圆C 的方程为y 29+x 24=1.(2)由题意知,直线PQ 的斜率存在且不为0,设l PQ :y -3=k (x +2),P (x 1,y 1),Q (x 2,y 2),k (x +2),+x 24=1,得(4k 2+9)x 2+(16k 2+24k )x +16k 2+48k =0,则Δ=(16k 2+24k )2-4(4k 2+9)(16k 2+48k )=-36×48k >0,故x 1+x 2=-16k 2+24k 4k 2+9,x 1x 2=16k 2+48k4k 2+9.直线AP :y =y 1x 1+2(x +2),令x =0,解得y M =2y 1x 1+2,同理得y N =2y 2x 2+2,则y M +y N =2y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=2(kx 1+2k +3)(x 2+2)+(kx 2+2k +3)(x 1+2)(x 1+2)(x 2+2)=22kx 1x 2+(4k +3)(x 1+x 2)+8k +12x 1x 2+2(x 1+x 2)+4=22k (16k 2+48k )+(4k +3)(-16k 2-24k )+(8k +12)(4k 2+9)16k 2+48k +2(-16k 2-24k )+4(4k 2+9)=2×10836=6.所以MN 的中点的纵坐标为y M +y N2=3,所以MN 的中点为定点(0,3).4.解析:(1)方法一由题意可知,当x =p 时,y 2=2p 2.设M 点位于第一象限,则点M 的纵坐标为2p ,|MD |=2p ,|FD |=p2.在Rt△MFD 中,|FD |2+|MD |2=|FM |2+(2p )2=9,解得p =2.所以C 的方程为y 2=4x .方法二抛物线的准线方程为x =-p2.当MD 与x 轴垂直时,点M 的横坐标为p .此时|MF |=p +p2=3,所以p =2.所以抛物线C 的方程为y 2=4x .(2)设直线MN 的斜率为k 1,直线AB 的斜率为k 2,则k 1=tan α,k 2=tan β.由题意可得k 1≠0,k 2≠0.设M (x 1,y 1),N (x 2,y 2),y 1>0,y 2<0,A (x 3,y 3),B (x 4,y 4),y 3<0,y 4>0.设直线AB 的方程为y =k 2(x -m ),m 为直线AB 与x 轴交点的横坐标,直线MN 的方程为y =k 1(xMD 的方程为y =k 3(x -2),直线ND 的方程为y =k 4(x -2).=k 1(x -1),2=4x ,所以k 21x 2-(2k 21+4)x +k 21=0,则x 1x 2=1.=k2(x-m),2=4x,所以k22x2-(2mk22+4)x+k22m2=0,则x3x4=m2.=k3(x-2),2=4x,所以k23x2-(42+4)x+4k23=0,则x1x3=4.=k4(x-2),2=4x,所以k24x2-(4k24+4)x+4k24=0,则x2x4=4.所以M(x1,2x1),N(1x1,-2x1),A(4x1,-4x1),B(4x1,4x1).所以k1=2x1x1-1,k2=x1x1-1,k1=2k2,所以tan(α-β)=tanα-tanβ1+tanαtanβ=k1-k21+k1k2=k21+2k22=11k2+2k2.因为k1=2k2,所以k1与k2同号,所以α与β同为锐角或钝角.当α-β取最大值时,tan(α-β)取得最大值.所以k2>0,且当1k2=2k2,即k2=22时,α-β取得最大值.易得x3x4=16x1x2=m2,又易知m>0,所以m=4.所以直线AB的方程为x-2y-4=0.5.解析:(1)设A(x1,y1),B(x2,y2),把x=2y-1代入y2=2px,得y2-4py+2p=0,由Δ1=16p2-8p>0,得p>12.y1+y2=4p,y1y2=2p,所以|AB·(y1+y2)2-4y1y2=5·16p2-8p=415,解得p=2或p=-32(舍去),故p=2.(2)设M(x3,y3),N(x4,y4),由(1)知抛物线C:y2=4x,则点F(1,0).因为FM→·FN→=0,所以∠MFN=90°,则S△MFN=12|MF||NF|=12(x3+1)(x4+1)=12(x3x4+x3+x4+1)(*).当直线MN的斜率不存在时,点M与点N关于x轴对称,因为∠MFN=90°,所以直线MF与直线NF的斜率一个是1,另一个是-1.MF的斜率为1,则MF:y=x-1,=x-1,2=4x,得x2-6x+1=0,3=3-22,4=3-223=3+22,4=3+22.代入(*)式计算易得,当x3=x4=3-22时,△MFN的面积取得最小值,为4(3-22).当直线MN的斜率存在时,设直线MN的方程为y=kx+m.=kx +m ,2=4x ,得k 2x 2-(4-2km )x +m 2=0,Δ2=(4-2km )2-4m 2k 2>0,3+x 4=4-2kmk 2,3x 4=m 2k2,y 3y 4=(kx 3+m )(kx 4+m )=k 2x 3x 4+mk (x 3+x 4)+m 2=4mk.又FM →·FN →=(x 3-1,y 3)·(x 4-1,y 4)=x 3x 4-(x 3+x 4)+1+y 3y 4=0,所以m 2k 2-4-2km k 2+1+4m k=0,化简得m 2+k 2+6km =4.所以S △MFN =12(x 3x 4+x 3+x 4+1)=m 2+k 2-2km +42k 2=m 2+k 2+2kmk 2=令t =mk,则S △MFN =t 2+2t +1,2k 2=4,+1=4k2>0,即t 2+6t +1>0,得t >-3+22或t <-3-22,从而得S △MFN =t 2+2t +1>12-82=4(3-2 2.故△MFN 面积的最小值为4(3-22).=1,=3.所以C 的方程为x 2-y 23=1.(2)当直线PQ 斜率不存在时,x 1=x 2x 1>x 2>0,所以直线PQ 斜率存在,所以设直线PQ 的方程为y =kx +h (k =kx +h ,2-y 23=1.消去y 并整理,得(3-k 2)x 2-2khx -h 2-3=0.则x 1+x 2=2kh 3-k 2,x 1x 2=h 2+3k 2-3,x 1-x 2=(x 1+x 2)2-4x 1x 2=23(h 2+3-k 2)|3-k 2|.因为x 1>x 2>0,所以x 1x 2=h 2+3k 2-3>0,即k 2>3.所以x 1-x 2=23(h 2+3-k 2)k 2-3.设点M 的坐标为(x M ,y M ),则y M -y 2=3(x M -x 2),y M -y 1=-3(x M -x 1),两式相减,得y 1-y 2=23x M -3(x 1+x 2).因为y 1-y 2=(kx 1+h )-(kx 2h )=k (x 1-x 2),所以23x M =k (x 1-x 2)+3(x 1+x 2),解得x M=k h2+3-k2-khk2-3.两式相加,得2y M-(y1+y2)=3(x1-x2).因为y1+y2=(kx1+h)+(kx2+h)=k(x1+x2)+2h,所以2y M=k(x1+x2)+3(x1-x2)+2h,解得y M=3h2+3-k2-3hk2-3=3kx M.所以点M的轨迹为直线y=3kx,其中k为直线PQ的斜率.选择①②.因为PQ∥AB,所以k AB=k.设直线AB的方程为y=k(x-2),并设点A的坐标为(x A,y A),点B的坐标为(x B,y B),A=k(x A-2),A=3x A,解得x A=2kk-3,y A=23kk-3.同理可得x B=2kk+3,y B=-23kk+3.此时x A+x B=4k2k2-3,y A+y B=12kk2-3.因为点M在AB上,且其轨迹为直线y=3kx,M=k(x M-2),M=3kx M.解得x M=2k2k2-3=x A+x B2,y M=6kk2-3=y A+y B2,所以点M为AB的中点,即|MA|=|MB|.选择①③.当直线AB的斜率不存在时,点M即为点F(2,0),此时点M不在直线y=3kx上,与题设矛盾,故直线AB的斜率存在.当直线AB y=m(x-2)(m≠0),并设点A的坐标为(x A,y A),点B的坐标为(x B,y B-2),解得x A=2mm-3,y A同理可得x B=2mm+3,.此时x M=x A+x B2=2mm2-3,y M=y A+y B2=6mm2-3.由于点M同时在直线y=3k上,故6m=3k·2m2,解得k=m,因此PQ∥AB.选择②③.因为PQ∥AB,所以k AB=k.AB的方程为y=k(x-2),并设点A的坐标为(x A,y A),点B的坐标为(x B,y B),A=k(x A-2),A=3x A,解得x A=2kk-3,y A=23kk-3.同理可得x B =2kk +3,y B =-23kk +3.设AB 的中点为C (x C ,y C ),则x C =x A +x B 2=2k 2k 2-3,y C =y A +y B 2=6kk 2-3.因为|MA |=|MB |,所以点M 在AB 的垂直平分线上,即点M 在直线y -y C =-1k (x -x C )上.将该直线方程与y =3k x 联立,解得x M =2k 2k 2-3=x C ,y M =6kk 2-3=y C ,即点M 恰为AB 的中点,所以点M 在直线AB 上.7.解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ).将点A (0,-2),B (32,-1)的坐标代入,得=1,+n =1,=13,=14.所以椭圆E 的方程为x 23+y24=1.(2)证明:(方法一)设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).t (y +2),+y 24=1.消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t -84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0-32,得x 0=32y 1+3.设H (x ′,y ′).由MT →=TH →,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1,所以直线HN 的斜率k =y 2-y ′x 2-x ′=y 2-y 1x 2+x 1-(3y 1+6)=y 2-y 1t (y 1+y 2)-3y 1+4t -4,所以直线HN 的方程为y -y 2=y 2-y 1t (y 1+y 2)-3y 1+4t -4·(x -x 2).令x =0,得y =y 2-y 1t (y 1+y 2)-3y 1+4t -4·(-x 2)+y 2=(y 1-y 2)(ty 2+2t +1)t (y 1+y 2)-3y 1+4t -4+y 2=(2t -3)y 1y 2+(2t -5)(y 1+y 2)+6y 1t (y 1+y 2)-3y 1+4t -4=(2t -3)·16t 2+16t -84t 2+3+(5-2t )·16t 2+8t4t 2+3+6y 1-t (16t 2+8t )4t 2+3-3y 1+4t -4=-2.所以直线NH 过定点(0,-2).(方法二)由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2.a.若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,263),M (1,-263).将y =-263代入y =23x -2,可得T (3-6,-263).由MT →=TH →,得H (5-26,-263).此时直线HN 的方程为y =(2+263)(x -1)+263,则直线HN 过定点(0,-2).b.若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).-y -(k +2)=0,+y 24=1.消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0.1+x 2=6k (2+k )3k 2+4,1x 2=3k (4+k )3k 2+4,1+y 2=-8(2+k )3k 2+4,1y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k3k 2+4.①=y 1,=23x -2,可得T (3y 12+3,y 1).由MT →=TH →,得H (3y 1+6-x 1,y 1).则直线HN 的方程为y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2).将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).8.解析:(1)∵点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a >1)上,∴4a 2-1a 2-1=1,解得a 2=2.∴双曲线C 的方程为x 22-y 2=1.显然直线l 的斜率存在,可设其方程为y =kx +m .kx +m ,y 2=1.消去y 并整理,得(1-2k 2)x 2-4kmx -2m 2-2=0.Δ=16k 2m 2+4(1-2k 2)(2m 2+2)=8m 2+8-16k 2>0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4km 1-2k 2,x 1x 2=-2m 2-21-2k 2.由k AP +k AQ =0,得y 1-1x 1-2+y 2-1x 2-2=0,即(x 2-2)(kx 1+m -1)+(x 1-2)(kx 2+m -1)=0.整理,得2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0,即2k ·-2m 2-21-2k 2+(m -1-2k )·4km1-2k 2-4(m -1)=0,即(k +1)(m +2k -1)=0.∵直线l 不过点A ,∴k =-1.(2)设∠PAQ =2α,0<α<π2,则tan 2α=22,∴2tan α1-tan 2α=22,解得tan α=22(负值已舍去).由(1)得k =-1,则x 1x 2=2m 2+2>0,∴P ,Q 只能同在双曲线左支或同在右支.当P ,Q 同在左支时,tan α即为直线AP 或AQ 的斜率.设k AP =22.∵22为双曲线一条渐近线的斜率,∴直线AP 与双曲线只有一个交点,不成立.当P ,Q 同在右支时,tan (π2-α)=1tan α即为直线AP 或AQ 的斜率.设k AP =122=2,则k AQ =-2,∴直线AP 的方程为y -1=2(x -2),即y =2x -22+1.=2x -22+1,y 2=1.消去y 并整理,得3x 2-(16-42)x +20-82=0,则x P ·2=20-823,解得x P =10-423.∴|x A -x P |=|2-10-423|=4(2-1)3.同理可得|x A -x Q |=4(2+1)3.∵tan 2α=22,0<2α<π,∴sin 2α=223,∴S △PAQ =12|AP |·|AQ |·sin 2α=12×3×|x A -x P |×3×|x A -x Q |×sin 2α=12×3×169×223=1629.。
圆锥曲线-抛物线(原卷版)【挑战满分】2022年高考数学解答题专项训练(新高考地区专用)
![圆锥曲线-抛物线(原卷版)【挑战满分】2022年高考数学解答题专项训练(新高考地区专用)](https://img.taocdn.com/s3/m/64293bebf605cc1755270722192e453611665b5d.png)
专题2.10 圆锥曲线-抛物线1.求轨迹方程的常用方法(1)直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了.(2)定义法:若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程.(3)相关点法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程. 2.解决直线与曲线的弦长时,往往设直线与曲线的交点坐标为A (x 1,y 1),B (x 2,y 2), 则()()2121222121221(1)(1)44AB k x x x x y y y y k ⎡⎤⎡⎤=+=+⎣⎦-⋅+-⋅⎣+⎦(k 为直线斜率).3.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.1.已知抛物线2:2(0)C y px p =>,过焦点F 作x 轴的垂线与抛物线C 相交于M 、N 两点,2MON S =△.(1)求抛物线C 的标准方程;(2)若A 、B 两点在抛物线C 上,且10AF BF +=,求证:直线AB 的垂直平分线l 恒过定点.2.已知抛物线C :22y px =(0p >)的焦点为F ,M (4,0y )是抛物线C 上的点,O 为坐标原点,3cos 5OFM ∠=-.(1)求抛物线C 的方程;(2)P (a ,b )(0a ≠)为抛物线C 上一点,过点P 的直线l 与圆()2231x y -+=相切,这样的直线l 有两条,它们分别交该抛物线C 于A ,B (异于点P )两点.若直线l 的方程为x ty tb a =-+,当|P A |=|PB |时,求实数a 的值.3.已知抛物线2:2(0)E x py p =>的焦点为F ,点11,4T ⎛⎫⎪⎝⎭在E 上.(1)求TF ;(2)O 为坐标原点,E 上两点A 、B 处的切线交于点P ,P 在直线2y =-上,P A 、PB 分别交x 轴于M 、N 两点,记OAB 和PMN 的面积分别为1S 和2S .试探究:12S S 是否为定值?若是定值,求出该定值;若不是定值,说明理由.4.已知过点()2,0P 的动直线与抛物线2:2(0)C y px p =>交于点,A B ,抛物线C 的焦点为F ,当点A 横坐标为32时,2AF =. (1)求抛物线C 的方程;(2)当直线AB 变动时,x 轴上是否存在点Q ,使得点P 到直线,AQ BQ 的距离相等,若存在,求出点Q 坐标;若不存在,说明理由.5.已知抛物线C 的顶点在原点,焦点在x 轴上,抛物线C 上一点(4,)M m 到其焦点的距离为6.(1)求抛物线C 的标准方程;(2)不过原点的直线:l y x m =+与抛物线C 交于不同两点P ,Q ,若OP OQ ⊥,求m 的值.6.已知F 为抛物线2:2(0)C x py p =>的焦点,直线:21l y x =+与C 交于,A B 两点.且20AF BF +=. (1)求C 的方程;(2)设动直线m 平行于直线l ,且与C 交于M ,N 两点,直线AM 与BN 相交于点T ,证明:点T 在一条定直线上.7.在平面直角坐标系xOy 中,已知点M (0,18),点P 到点M 的距离比点P 到x 轴的距离大18,记P 的轨迹为C .(1)求C 的方程;(2)过点P (0x ,0y )(其中00x ≠)的两条直线分别交C 于E ,F 两点,直线PE ,PF 分别交y 轴于A ,B 两点,且满足PA PB =.记1k 为直线EF 的斜率,2k 为C 在点P 处的切线斜率,判断12k k +是否为定值?若是,求出该定值;若不是,说明理由.8.动圆P 与直线1x =-相切,点(1,0)F 在动圆上. (1)求圆心P 的轨迹Q 的方程;(2)过点F 作曲线O 的两条互相垂直的弦AB ,CD ,设AB ,CD 的中点分别为M ,N ,求证:直线MN 必过定点.9.如图,已知抛物线()2:20C y px p =>的焦点为F ,过点F 的直线l 交抛物线C 于A ,B两点,动点P 满足P AB 的垂心为原点O .当直线l 的倾斜角为30°时,16AB =.(1)求抛物线C 的标准方程; (2)求证:点P 在定直线上.10.已知椭圆方程为221259y x +=,若抛物线22(0)x py p =>的焦点是椭圆的一个焦点.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于A ,B 两点,分别在点A ,B 处作抛物线的切线,两条切线交于P 点,则PAB △的面积是否存在最小值?若存在,求出这个最小值及此时对应的直线l 的方程;若不存在,请说明理由.11.已知抛物线2:2(0)C y px p =>的焦点为F ,点()04,P y 是抛物线C 上一点,点Q 是PF 的中点,且Q 到抛物线C 的准线的距离为72. (1)求抛物线C 的方程;(2)已知圆22:(2)4M x y -+=,圆M 的一条切线l 与抛物线C 交于A ,B 两点,O 为坐标原点,求证:OA ,OB 的斜率之差的绝对值为定值.12.如图,已知抛物线2:2(0)C y px p =>上的点R 的横坐标为1,焦点为F ,且||2RF =,过点(4,0)P -作抛物线C 的两条切线,切点分别为A 、B ,D 为线段P A 上的动点,过D 作抛物线的切线,切点为E (异于点A ,B ),且直线DE 交线段PB 于点H .(1)求抛物线C 的方程; (2)求证:||||AD BH +为定值;13.已知抛物线2:2(0)C y px p =>的准线经过点(1,H -,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点,A B ,点()1,(P m 其中0)m >在抛物线C 上,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 斜率的取值范围;(2)设O 为原点,若,QM QO QN QO λμ==,求证:11λμ+为定值.14.在直角坐标系xOy 中,抛物线()2:20C y px p =>与直线:4l x =交于P ,Q 两点,且OP OQ ⊥.抛物线C 的准线与x 轴点交于点M ,G 是以M 为圆心,OM 为半径的圆上的一点(非原点),过点G 作抛物线C 的两条切线,切点分别为A ,B . (1)求抛物线C 的方程; (2)求ABG 面积的取值范围.15.已知面积为的等边ABO (O 是坐标原点)的三个顶点都在抛物线()2:20E y px p =>上,过点(),2P p -作抛物线E 的两条切线分别交y 轴于M ,N 两点. (1)求p 的值;(2)求PMN 的外接圆的方程.16.已知抛物线C :22y px =(0p >),过焦点F 作x 轴的垂线与抛物线C 相交于M 、N 两点,S △MON =2.(1)求抛物线C 的标准方程;(2)点A 是抛物线C 上异于点O 的一点,连接AO 交抛物线的准线于点D ,过点D 作x 轴的平行线交抛物线于点B ,求证:直线AB 恒过定点.17.已知抛物线2:2C x py =的焦点为F ,抛物线上一点()(),20A m m >到F 的距离为3, (1)求抛物线C 的方程和点A 的坐标;(2)设直线l 与抛物线C 交于D ,E两点,抛物线C 在点D ,E 处的切线分别为12,l l ,若直线1l 与2l 的交点恰好在直线2y =-上,证明:直线l 恒过定点.18.焦点为F 的抛物线2:2(0)C y px p =>上点0(2)P x 到原点O 的距离等于它到抛物线的准线的距离.(1)求抛物线C 的标准方程;(2)抛物线C 上A 、B 两点,以AB 为直径的圆经过焦点F ,若AFB △的面积为4,且直线AB 的斜率存在,求直线AB 的方程.19.已知点F 为抛物线E :22y px =(0p >)的焦点,点P (−3,2),25PF =点P 作直线与抛物线E 顺次交于A ,B 两点,过点A 作斜率为1的直线与抛物线的另一个交点为点C .(1)求抛物线E 的标准方程; (2)求证:直线BC 过定点;(3)若直线BC 所过定点为点Q QAB ,△PBC 的面积分别为S 1,S 2,求12S S 的取值范围20.已知抛物线2:2(0)C x py p =>的焦点为F ,(4,)()P m m p ->是抛物线C 上一点,且||5PF =.(1)求抛物线C 的方程;(2)设直线AB 与抛物线C 交于A ,B 两点,且直线P A ,PB 关于直线4y =对称,当||20AB =时,求直线AB 的方程.21.已知动点P 到点()0,1F 和直线l :1y =-的距离相等. (1)求动点P 的轨迹方程;(2)设点P 的轨迹为曲线C ,点Q 在直线l 上,过Q 的两条直线QA ,QB 与曲线C 相切,切点分别为A ,B ,以AB 为直径作圆M ,判断直线l 和圆M 的位置关系,并证明你的结论.22.已知抛物线E :22y px =(02p <<)上一点Q (),2Q x 到其焦点的距离为52. (1)求抛物线E 的方程,(2)设点P ()00,x y 在抛物线E 上,且204y ≠,过P 作圆C :()2244x y -+=的两条切线,分别与抛物线E 交于点M ,N (M ,N 两点均异于P ).证明:直线MN 经过R ()06,y -.23.已知抛物线2:2C y px =的焦点为F A ,为C 上异于原点的任意一点,过A 作直线1x =-的垂线,垂足为H B ,为x 轴上点.AF FB =且四边形AHFB 为平行四边形.直线AF AB ,与抛物线C 的另一个交点分别为.D E ,(1)求抛物线C 的方程;(2)求三角形ADE 面积的最小值.24.如图,设抛物线()2:20C y px p =>的焦点为F ,圆()22:14E x y ++=与y 轴的正半轴的交点为A ,AEF 为等边三角形.(1)求抛物线C 的方程;(2)设抛物线C 上的点()001,04P y y ⎛⎫⎪⎭>⎝处的切线与圆E 交于M ,N 两点,问在圆E 上是否存在点Q ,使得直线QM ,QN 均为抛物线C 的切线,若存在,求Q 点坐标;若不存在,请说明理由.25.已知动点Q 到直线2x =-的距离比到定点(1,0)的距离大1.(1)写出动点Q 的轨迹C 的方程;(2)设1x my =+为过(1,0)作曲线C 的任一条弦AB 所在直线方程,弦AB 的中点为D ,过D 点作直线DP 与直线1x =-交于点P ,与x 轴交于点M ,且使得||||PA PB =,||||PD AB =,求PMF ∠的正弦值(其中F 为定点(1,0)).。
圆锥曲线之----抛物线专题(附答案)
![圆锥曲线之----抛物线专题(附答案)](https://img.taocdn.com/s3/m/45be236b856a561253d36f1e.png)
圆锥曲线之---抛物线专题1. 设抛物线y 2=2x 的焦点为F ,过点M(√3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF|=2,则△BCF 与△ACF 的面积之比S △BCFS△ACF=( )A. 45B. 23C. 47D. 12【答案】A【解析】解:如图过B 作准线l :x =−12的垂线,垂足分别为A 1,B 1, ∵S △BCF S △ACF=|BC||AC|,又∵△B 1BC∽△A 1AC 、 ∴|BC||AC|=|BB 1|AA 1,由拋物线定义|BB 1||AA 1|=|BF||AF|=2|AF|.由|BF|=|BB 1|=2知x B =32,y B =−√3, ∴AB :y −0=√3√3−32(x −√3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF|=|AA 1|=52. 故S △BCFS △ACF=|BF||AF|=252=45.故选:A . 根据S △BCFS△ACF=|BC||AC|,进而根据两三角形相似,推断出|BC||AC|=|BB 1|AA 1,根据抛物线的定义求得|BB 1|AA 1=|BF||AF|,根据|BF|的值求得B 的坐标,进而利用两点式求得直线的方程,把x =y 22代入,即可求得A 的坐标,进而求得|BF||AF|的值,则三角形的面积之比可得.本题主要考查了抛物线的应用,抛物线的简单性质.考查了学生基础知识的综合运用和综合分析问题的能力.2. 已知过抛物线y 2=2px(p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为12√3,则准线l 的方程为( ) A. x =−√2 B. x =−2√2 C. x =−2 D. x =−1 【答案】A【解析】解:设|BF|=m ,|AF|=3m ,则|AB|=4m ,p =32m ,∠BAA 1=60°, ∵四边形AA 1CF 的面积为12√3,∴(32m+3m)×3msin60°2=12√3,∴m =43√2,∴p 2=√2,∴准线l 的方程为x =−√2, 故选:A .设|BF|=m ,|AF|=3m ,则|AB|=4m ,p =32m ,∠BAA 1=60°,利用四边形AA 1CF 的面积为12√3,建立方程,求出m ,即可求出准线l 的方程. 本题考查抛物线的方程与性质,考查四边形面积的计算,正确运用抛物线的定义是关键.3. 已知点P 在抛物线y =x 2上,点Q 在圆(x −4)2+(y +12)2=1上,则|PQ|的最小值为( )A. 3√52−1B. 3√32−1 C. 2√3−1 D. √10−1【答案】A【解析】【分析】设P(t,t 2),求出|PC|2=t 4+2t 2−8t +16+14,构造函数,利用函数的导数求解函数的最小值,由此能求出|PQ|的最小值.本题考查的知识要点:两点间的距离公式的应用,函数的导数的应用,考查圆的方程和抛物线方程的应用,及相关的运算问题. 【解答】解:∵点P 在抛物线y =x 2上,∴设P(t,t 2),∵圆(x −4)2+(y +12)2=1的圆心C(4,−12),半径r =1, ∴|PC|2=(4−t)2+(−12−t 2)2=t 4+2t 2−8t +16+14,令y =|PC|2=t 4+2t 2−8t +16+14,y′=4t 3+4t −8=0,可得t 3+t −2=0,解得t =1,当t <1时,y′<0,当t >1,y′>0,可知函数在t =1时取得最小值,|PC|min 2=454|PQ|的最小值=|PC |min −r =3√52−1.故选:A .4. 已知抛物线C :y 2=4x 的焦点是F ,过点F 的直线与抛物线C 相交于P 、Q 两点,且点Q 在第一象限,若3PF ⃗⃗⃗⃗⃗ =FQ ⃗⃗⃗⃗⃗ ,则直线PQ 的斜率是( )A. √33B. 1C. √2D. √3【答案】D【解析】解:过点P ,Q 分别作抛物线的准线l :x =−1的垂线,垂足分别是P 1、Q 1, 由抛物线的定义可知,|Q 1Q|=|QF|,|P 1P|=|FP|,设|PF|=k(k >0),3PF⃗⃗⃗⃗⃗ =FQ ⃗⃗⃗⃗⃗ ,则|FQ|=3k ,又过点P 作PR ⊥Q 1Q 于点R , 则在直角△PRQ 中,|RQ|=2k ,|PQ|=4k ,所以∠PQR =π3,所以直线QP 的倾斜角为π3,所以直线PQ 的斜率是√3, 故选:D .过点P ,Q 分别作抛物线的准线l :x =−1的垂线,垂足分别是P 1、Q 1,由抛物线的定义可知,|Q 1Q|=|QF|,|P 1P|=|FP|,设|PF|=k(k >0),则|FQ|=3k ,在直角△PRQ 中求解直线PQ 的倾斜角然后求解斜率.本题考查抛物线的简单性质的应用,考查转化思想以及计算能力.5. 抛物线y 2=2px(p >0)的焦点为F ,其准线与x 轴的交点为N ,过点F 作直线与此抛物线交于A 、B 两点,若NB⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,且|AF ⃗⃗⃗⃗⃗ |−|BF ⃗⃗⃗⃗⃗ |=4,则p 的值为( ) A. 2 B. 3 C. 4 D. 5 【答案】A【解析】【分析】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.假设k 存在,设AB 方程为:y =k(x −p2),代入椭圆方程,可得根与系数的关系,由∠NBA =90°,可得|AF|−|BF|=(x 2+p2)−(x 1+p2)=2p ,再利用焦点弦长公式即可求得p 的值. 【解答】解:抛物线y 2=2px(p >0)的焦点为F(p 2,0), 设两交点为A(x 2,y 2),B(x 1,y 1),当直线AB 的斜率不存在时,NF ⊥AB ,不符合题意; 当直线AB 的斜率存在时,设AB 方程为:y =k(x −p2), {y =k(x −p2)y 2=2px,整理得k 2x 2−(k 2+2)px +k 2p 24=0, ∵NB⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =0,则∠NBA =90°,∴NB ⃗⃗⃗⃗⃗⃗ ·FB ⃗⃗⃗⃗⃗ =0. ∴(x 1−p2)(x 1+p 2)+y 12=0,∴x 12+y 12=p 24,∴x 12+2px 1−p 24=0(x 1>0), ∴x 1=√5−22p ,x 2=2+√52p ,∴|AF|−|BF|=(x 2+p2)−(x 1+p2)=2p , 即2p =4,则p =2, 故选A .6.抛物线y2=8x的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,若x1+x2+4=2√33|AB|,则∠AFB的最大值为()A. π3B. 3π4C. 5π6D. 2π3【答案】D【解析】【分析】本题考查抛物线的定义,考查余弦定理、基本不等式的运用,属于中档题.利用余弦定理,结合基本不等式,即可求出∠AFB的最大值.【解答】解:因为x1+x2+4=2√33|AB|,|AF|+|BF|=x1+x2+4,所以|AF|+|BF|=2√33|AB|.在△AFB中,由余弦定理得:cos∠AFB=|AF|2+|BF|2−|AB|2 2|AF|⋅|BF|=(|AF|+|BF|)2−2|AF|⋅|BF|−|AB|22|AF|⋅|BF|=43|AB|2−|AB|22|AF|⋅|BF|−1=13|AB|22|AF|⋅|BF|−1.又|AF|+|BF|=2√33|AB|≥2√|AF|⋅|BF|⇒|AF|⋅|BF|≤13|AB|2.所以cos∠AFB≥13|AB|22×13|AB|2−1=−12,∴∠AFB的最大值为2π3,故选D.7.过抛物线C:y2=2px(p>0)焦点F的直线l与C相交于A,B两点,与C的准线交于点D,若|AB|=|BD|,则直线l的斜率k=()A. ±13B. ±3 C. ±2√23D. ±2√2【答案】D【解析】【分析】本题主要考查了直线与抛物线的位置关系,抛物线的简单性质,特别是焦点弦问题,解题时要善于运用抛物线的定义解决问题,属于中档题.如图,设A,B两点在抛物线的准线上的射影分别为A′,B′,过B作AA′的垂线BH,在三角形ABH中,∠BAH等于直线AB的倾斜角,其正切值即为k值,利用在直角三角形ABH中,tan∠BAH=丨BH丨丨AH丨,从而得出直线AB的斜率.【解答】解:如图,设A,B两点在抛物线的准线上的射影分别为A′,B′,过B 作AA′的垂线BH ,在三角形ABH 中,∠BAH 等于直线AB 的倾斜角,其正切值即为k 值, 设|BF|=n ,B 为AD 中点, 根据抛物线的定义可知:|AF|=|AA′|,|BF|=|BB′|,2|BB′|=|AA′|, 可得2|BF|=|AA′|,即|AF|=2|BF|, ∴|AF|=2n ,|AA′|=2n ,|BF|=n , ∴|AH|=n ,在直角三角形ABH 中,tan∠BAH =丨BH 丨丨AH 丨=√9n 2−n 2n=2√2,则直线l 的斜率k =2√2;同理求得:直线l 的斜率k =−2√2; 故选D .8. 过抛物线y 2=4x 的焦点F 作一倾斜角为π3的直线交抛物线于A ,B 两点(A 点在x 轴上方),则|AF||BF|=( )A. √3B. √2C. 3D. 2【答案】C【解析】解:设A(x 1,y 1),B(x 2,y 2),则抛物线y 2=4x 中p =2.|AB|=x 1+x 2+p =2p sim 2θ=8p3∴x 1+x 2=103,又x 1x 2=p 24=1,可得x 1=3,x 2=13, 则|AF||BF|=3+113+1=3,故选:C .设出A 、B 坐标,利用抛物线焦半径公式求出|AB|,结合抛物线的性质,求出A 、B 的坐标,然后求比值|AF||BF|即可.本题主要考察了直线与抛物线的位置关系,抛物线的简单性质,特别是焦点弦问题,解题时要善于运用抛物线的定义解决问题.9.已知P是抛物线y2=4x上的一个动点,Q是圆(x−3)2+(y−1)2=1上的一个动点,N(1,0)是一个定点,则|PQ|+|PN|的最小值为()A. 3B. 4C. 5D. 6【答案】A【解析】【分析】本题主要考查抛物线的性质,以及圆锥曲线中的最值.【解答】解:根据题意得,N(1,0)为抛物线的焦点,如图所示:过点P做PA垂直准线于点A,根据抛物线的定义,可知PA=PN,所以PN+PQ=PA+PQ,当P运动到点P1处时,即圆心C,P1,B在同一条直线上,且垂直准线时,有最小值,最小值为(PN+PQ)min=CB−r=3+1−1=3;故选A.10.已知抛物线C:y2=2px(p>0)的焦点为F,过F的直线交抛物线C于A,B两点,以,3),且ΔAOB的面积为3,则p=线段AB为直径的圆与抛物线C的准线切于M(−p2A. √3B. 2√3C. 1D. 2【答案】A【解析】【分析】本题考查了抛物线的标准方程以及点差法的使用,属于基础题.【解答】解:令A(x 1,y 1),B(x 2,y 2),由已知以线段AB 为直径的圆与抛物线C 的准线切于M(−p2,3),可得y 1+y 2=6,将A 、B 两点坐标带入,作差k 可得k AB =p3, 令AB 的方程为y =p3(x −p2),与抛物线联立可得: y 2−6y −p 2=0,∴y 1y 2=−p 2, ∵△AOB 的面积6. 故12×p2×√36+4p 2=12, 解得p =√3. 故选A .11. 如图,已知抛物线y 2=4x 的焦点为F ,过点F 且斜率为1的直线依次交抛物线及圆(x −1)2+y 2=14于点A ,B 、C 、D 四点,则|AB|+|CD|的值是( ) A. 6 B. 7 C. 8 D. 9【答案】B【解析】解:∵y 2=4x ,焦点F(1,0),准线l 0:x =−1 由定义得:|AF|=x A +1,又∵|AF|=|AB|+12,∴|AB|=x A +12; 同理:|CD|=x D +12,直线l :y =x −1,代入抛物线方程,得:x 2−6x +1=0, ∴x A x D =1,x A +x D =6, ∴|AB|+|CD|=6+1=7.综上所述4|AB|+|CD|的最小值为7. 故选:B .求出||AB|=x A +12,|CD|=x D +12,l :y =x −1,代入抛物线方程,利用韦达定理,化简|AB|+|CD|即可得到结果.本题考查圆与抛物线的综合,考查基本不等式的运用,考查学生的计算能力,属于中档题.12. 已知抛物线C :x 2=2py(p >0)的焦点为F ,点A(1,0),直线FA 与抛物线C 交于点(P 在第一象限内),与其准线交于点Q ,若PQ ⃗⃗⃗⃗⃗ =√2FP⃗⃗⃗⃗⃗ ,则点P 到y 轴距离为( ) A. 2√2−1B. 2√2−2C. 3√2−1D. 3√2−2【答案】B【解析】解:抛物线C :x 2=2py(p >0)的焦点为F(0,P2),其准线方程为y =−p2, ∵A(1,0),∴直线AF 的方程为y =−p2(x −1), 由{y =−p2(x −1)y =−p 2,解得x =2,y =−p2,则Q(2,−p 2), ∵PQ ⃗⃗⃗⃗⃗ =√2FP⃗⃗⃗⃗⃗ , ∴(2−x P ,−p2−y p )=√2(x P ,y p −1),∴2−x P =√2x P , ∴x P =2√2−2.故点P 到y 轴距离为2√2−2. 故选:B .先求出直线AF 的方程,再求出点Q 的坐标,根据若PQ ⃗⃗⃗⃗⃗ =√2FP⃗⃗⃗⃗⃗ ,即可求出答案. 本题考查了抛物线的性质,直线方程,向量的运算,属于基础题13. 过抛物线C :x 2=2py(p >0)的焦点F 的直线交该抛物线于A 、B 两点,若4|AF|=|BF|,O 为坐标原点,则|AF||OF|=( )A. 54B. 34C. 4D. 5【答案】A【解析】解:过A 作AE ⊥准线,过B 作BG ⊥准线,过A 作AD ⊥BG 交BG 于点D ,交y 轴于点C设|AF|=x ,则|BF|=4x ,F(0,p2),准线:y =−p2,根据抛物线性质得:|AE|=|AF|=x ,|BG|=|BF|=4x ,|AB|=x +4x =5x ,|BD|=4x −x =3x ,|FC|=p −x , 由图可知:AFAB=FCBD ,即x5x =p−x 3x,解得x =58p ,则|AF||OF|=58p 12p =54.故选:A .根据条件画出示意图,设|AF|=x ,则|BF|=4x ,利用AFAB =FCBD ,求出x =58p ,进而求出比值.本题考查抛物线中两线段比值的求法,考查抛物线、直线方程等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14. 已知直线l :4x −3y +6=0和抛物线C :y 2=4x ,P 为C 上的一点,且P 到直线l 的距离与P 到C 的焦点距离相等,那么这样的点P 有( ) A. 0个 B. 1个 C. 2个 D. 无数个 【答案】C【解析】解:抛物线C :y 2=4x 的焦点坐标(1,0),(1,0)到直线4x −3y +6=0的距离为:√42+32=2,与抛物线的焦点坐标到准线的距离相等,所以由题意可知:如图:直线PF 与抛物线一定有两个交点. 故选:C .求出抛物线的焦点坐标,求出焦点到直线4x −3y +6=0的距离,利用数形结合判断求解即可.本题求抛物线上的动点到两条定直线的距离之和的最小值.着重考查了点到直线的距离公式、抛物线的简单几何性质等知识,属于中档题15. 已知直线l 过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,点B 关于x轴的对称点为B 1,直线AB 1与x 轴相交于C 点,若直线AC 的斜率为√32,则△ABC 的面积为( )A. 8√33B. 4√33C. 4√3D. 5√33【答案】A【解析】【分析】本题考查抛物线的性质,熟知抛物线的准线方程与交点坐标是解题的关键,设直线AB 的方程为x =ky +1,A(x 1,y 1),B(x 2,y 2),根据题意则B 2(x 2,−y 2),再结合直线AC 的斜率为√32,求出y 1−y 2=8√33,代入面积公式计算即可. 【解答】解:设抛物线的准线与x 轴的交点为C ,过点A 、B 分别作准线的垂线,垂足分别为M 、N ,∵AM //FC 1 //BN , ∴MC 1NC 1=AF BF =AM BN.又∵∠AMC 1=∠BNC 1=90∘, ∴△AMC 1∽△BNC 1, ∴∠AC 1F =∠BC 1F .∵点B 关于x 轴的对称点为B 1, ∴点C 1与C 重合.设直线AB 的方程为x =ky +1,A(x 1,y 1),B(x 2,y 2),则B 2(x 2,−y 2). 联立方程{y 2=4xx =ky +1.得y 2−4ky −4=0.∴y 1+y 2=4k ,y 1y 2=−4. 又∵直线AC 的斜率为√32,∴y 1+y 2x 1−x 2=y 1+y 2k (y 1−y 2)=√32, 即y 1−y 2=8√33, ∴△ABC 的面积为12×|CF |×|y 1−y 2|=12×2×8√33=8√33. 故选A .16. 已知抛物线y 2=x ,点A ,B 在该抛物线上且位于x 轴的两侧,OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗⃗ =2(其中O 为坐标原点),则△ABO 与△AFO 的面积之和的最小值是( )A. 2B. 3C. 17√28D. √10【答案】B【解析】【分析】本题主要考查了抛物线的性质以及基本不等式.可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理消元,最后将面积之和表示出来,探求最值问题. 【解答】解:设直线AB 的方程为:x =ty +m ,点A(x 1,y 1),B(x 2,y 2),直线AB 与x 轴的交点为M(m,0), 由{x =ty +my 2=x ⇒y 2−ty −m =0,根据韦达定理有y 1⋅y 2=−m , ∵OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =2,∴x 1⋅x 2+y 1⋅y 2=2, 结合y 12=x 1及y 22=x 2,得(y 1⋅y 2)2+y 1⋅y 2−2=0, ∵点A ,B 位于x 轴的两侧,∴y 1⋅y 2=−2,故m =2. 不妨令点A 在x 轴上方,则y 1>0,又F(14,0),∴S △ABO +S △AFO =12×2×(y 1−y 2)+12×14×y 1=12×2×(y 1−y 2)+12×14y 1,=98y 1+2y 1≥2√98y 1⋅2y 1=3.当且仅当98y 1=2y 1,即y 1=43时,取“=”号,∴△ABO 与△AFO 面积之和的最小值是3, 故选B .17. 抛物线C :y 2=2px 的准线交x 轴于点M ,过点M 的直线交抛物线于N ,Q 两点,F 为抛物线的焦点,若∠NFQ =90°,则直线NQ 的斜率k(k >0)为( )A. 2B. √2C. 12D. √22【答案】D【解析】解:如图,M(−p2,0),NQ :y =k(x +p2),联立{y 2=2pxy =k(x +p 2),得k 2x 2−p(2−k 2)x +14p 2k 2=0.△=p 2(2−k 2)2−p 2k 4.设N(x 1,y 1),Q(x 2,y 2), 则x 1+x 2=p(2−k 2)k 2,x 1x 2=p 24.又F(p2,0),∴FN⃗⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =(x 1−p 2,y 1)⋅(x 2−p2,y 2) =x 1x 2−p 2(x 1+x 2)+p 24+y 1y 2=x 1x 2−p 2(x 1+x 2)+p 24+k 2(x 1+p 2)(x 2+p2)=(k 2+1)x 1x 2−p2(1−k 2)(x 1+x 2)+(1+k 2)p 24=2k 2−1k 2p 2.∵∠NFQ =90°,∴FN ⃗⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =0,∴FN ⃗⃗⃗⃗⃗⃗ ⋅FQ ⃗⃗⃗⃗⃗ =2k 2−1k 2p 2=0,∵p ≠0,k >0,解得k =√22,当k =√22时,△=p 2(2−k 2)2−p 2k 4=2p 2>0,满足题意.∴直线NQ 的斜率k(k >0)为√22.故选:D .求出NQ :y =k(x +p2),与抛物线方程联立,利用根与系数的关系及∠NFQ =90°列式求得k 值.本题考查抛物线方程的求法,考查直线与抛物线位置关系的应用,考查计算能力,是中档题.18. 己知抛物线C :x 2=4y 的焦点为F ,直线l 与抛物线C 交于A ,B 两点,延长AF交抛物线C 于点D ,若AB 的中点纵坐标为|AB|−1,则当∠AFB 最大时,|AD|=( ) A. 4 B. 8 C. 16D. 163【答案】C【解析】解:设A(x 1,y 1),B(x 2,y 2),D(x 3,y 3), 由抛物线定义得:y 1+y 2+2=|AF|+|BF|, ∵y 1+y 22=|AB|−1,∴|AF|+|BF|=2|AB|,∴cos∠AFB =|AF|2+|BF|2−|AB|22|AF|⋅|BF|=3(|AF|2+|BF|2)−2|AF|⋅|BF|8|AF|⋅|BF|≥6|AF|⋅|BF|−2|AF|⋅|BF|8|AF|⋅|BF|=12,当且仅当|AF|=|BF|时取等号.∴当∠AFB 最大时,△AFB 为等边三角形,联立{y =√3x +1x 2=4y,消去y 得,x 2−4√3x −4=0. ∴y 1+y 3=√3(x 1+x 3)+2=14. ∴|AD|=16. 故选:C .设出A ,B ,D 的坐标,利用抛物线定义可得|AF|+|BF|=2|AB|,再由余弦定理写出cos∠AFB ,利用基本不等式求最值,可得当∠AFB 最大时,△AEB 为等边三角形,得到AF 所在直线方程,再与抛物线方程联立,结合根与系数的关系及抛物线定义求得|AD|. 本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,训练了利用基本不等式求最值,是中档题.19. 过抛物线C :y 2=x 的焦点F 分別作两条互相垂直的直线l 1,l 2,使l 1交C 于A ,B两点,l 2交C 于M ,N 两点,则|AB|⋅|MN|的最小值为( ) A. 4 B. 6 C. 8 D. 10 【答案】A【解析】【分析】本题考查了抛物线的简单性质,考查过焦点的弦、诱导公式、二倍角公式以及三角函数的最值,能熟练掌握相关的结论,解决问题事半功倍,属于中档题.设直线l 1的倾斜角为θ,则l 2的倾斜角为π2+θ,利用焦点弦的弦长公式分别表示出|AB|,|MN|,整理求得答案. 【解答】解:设直线l 1的倾斜角为θ,则l 2的倾斜角为π2+θ, 根据焦点弦长公式可得|AB|=2p sin 2θ=1sin 2θ, |MN|=2psin 2(π2−θ)=2p cos 2θ=1cos 2θ, ∴|AB|×|MN|=1sin 2θ×1cos 2θ=1sin 2θcos 2θ=4sin 22θ,∵0<sin 22θ≤1,∴当θ=45°时,|AB||MN|的最小值为4. 故选A .20. 已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ ⃗⃗⃗⃗⃗ =−4FP⃗⃗⃗⃗⃗ ,则|QF|=( ) A. 35B. 52C. 20D. 3【答案】C【解析】解:抛物线C :y 2=8x 的焦点为F(2,0),设P(−2,t),Q(x,y). ∵FQ⃗⃗⃗⃗⃗ =−4FP ⃗⃗⃗⃗⃗ ,可得(−4)⋅(−4,t)=(x −2,y), 解得{x =18y =−4t由抛物线的定义知|QF|=x +p2=18+2=20故选:C抛物线C :y 2=8x 的焦点为F(2,0),设P(−2,t),Q(x,y).利用FQ⃗⃗⃗⃗⃗ =−4FP ⃗⃗⃗⃗⃗ ,可得(−4)(−4,t)=4(x −2,y),解得(x,y),代入y 2=8x 可得t 2=128,再利用两点之间的距离公式即可得出.本题考查抛物线的定义和性质,考查向量知识的运用,考查学生的计算能力,属于中档题.21. 已知抛物线x 2=4y 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C的一个交点,用PQ⃗⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗⃗ ,则|FQ ⃗⃗⃗⃗⃗ |=( ) A. 3或4B. 85或83C. 4或83D. 83【答案】D【解析】【分析】本题主要考查抛物线的性质及几何意义,难度较易,属于中档题.由抛物线的焦点坐标和准线方程,设出P ,Q 的坐标,得到向量PF ,FQ 的坐标,由向量共线的坐标关系,以及抛物线的定义,即可求得. 【解答】抛物线x 2=4y 的焦点为F(0,1),准线为l:y =−1,设P(a,−1),Q(m,m 24),则PQ ⃗⃗⃗⃗⃗ =(m −a,m24+1),FQ ⃗⃗⃗⃗⃗ =(m,m 24−1), ∵PQ⃗⃗⃗⃗⃗ =4FQ ⃗⃗⃗⃗⃗ , ∴a =−3m,3m 2=20,解得m 2=203,由抛物线的定义可得|FQ⃗⃗⃗⃗⃗ |=m 24+1=83, 故选D .22. 已知抛物线C :y 2=2px(p >0)的焦点为F ,不过F 的直线与C 的交点为A ,B ,与C 的准线的交点为D.若|BF|=2,△BDF 与△ADF 的面积之比为45,则|AF|=A. √52B. 52C. √32D. √3【答案】B【解析】【分析】本题考查了抛物线的定义,直线与抛物线的关系,考查学生平面几何知识,属于中档题. 利用抛物线定义得AN =AF,BM =BF =2,由三角形面积之比得到12×BD×ℎ12×AB×ℎ=BDAB=45,利用相似三角形得到BF AF =45,计算答案. 【解答】解:由题意可得准线方程为x =−p 2,F (p2,0);过点A 作直线AN 垂直与准线与N ,过点B 作直线BM 垂直与准线与M , 所以由抛物线的定义得AN =AF,BM =BF =2, 因为△BDF 与△ADF 的面积之比为45,所以12×BD×ℎ12×AB×ℎ=BD AB =45,所以BD =4AB ,因为△DBM ∽△DAN ,所以BMAN =DBAD =45,即BFAF =45, 所以AF =52; 故选B .。
圆锥曲线(椭圆、双曲线、抛物线)(解析版)-2024届新高考数学大题精选30题
![圆锥曲线(椭圆、双曲线、抛物线)(解析版)-2024届新高考数学大题精选30题](https://img.taocdn.com/s3/m/cd6ba2750622192e453610661ed9ad51f01d549f.png)
圆锥曲线(椭圆、双曲线、抛物线)(精选30题)1(2024·山东·二模)已知椭圆的焦点分别是F 13,0 ,F 2-3,0 ,点M 在椭圆上,且MF 1 +MF 2 =4.(1)求椭圆的标准方程;(2)若直线y =kx +2与椭圆交于A ,B 两点,且OA ⊥OB ,求实数k 的值.【答案】(1)x 24+y 2=1;(2)62或-62.【分析】(1)根据所给条件求出a ,b ,即可得出椭圆标准方程;(2)联立直线与椭圆方程,根据根与系数的关系及OA ⊥OB ,列出方程求k 即可.【详解】(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由题意可知c =32a =4a 2=b 2+c 2,解得a =2,b =1,c =3,所以椭圆的标准方程为x 24+y 2=1.(2)设A x 1,y 1 ,B x 2,y 2 ,如图,联立方程y =kx +2x 24+y 2=1,消去y ,得1+4k 2 x 2+82kx +4=0,则x 1+x 2=-82k 1+4k 2,x 1x 2=41+4k2,从而y 1y 2=kx 1+2 kx 2+2 =k 2x 1x 2+2k x 1+x 2 +2=2-4k 21+4k 2,因为OA ⊥OB ,OA ⋅OB=0,即x 1x 2+y 1y 2=0,所以41+4k 2+2-4k 21+4k 2=6-4k 21+4k 2=0,解得k =62或-62,经验证知Δ>0,所以k 的值为62或-62.2(2024·江苏南通·模拟预测)在平面直角坐标系xOy 中,设椭圆C :x 2a 2+y2b2=1a >b >0 的离心率为32,F 1,F 2分别是椭圆的左、右焦点,过F 2作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,且△AF 1F 2的周长是4+23.(1)求椭圆C 的方程;(2)当AB =32DE 时,求△ODE 的面积.【答案】(1)x 24+y 2=1(2)223【分析】(1)由椭圆离心率和焦点三角形的周长,列方程组求出a ,b ,得椭圆C 的方程;(2)设直线l 1,l 2的方程,与椭圆联立,利用韦达定理和AB =32DE 求出DE 和l 2的方程,再求出O 到直线l 2的距离,可求△ODE 的面积.【详解】(1)由题意知,2a +2c =4+23c a =32b 2=a 2-c 2 ,解得a =2,b =1,c=3,所以椭圆C 的方程为x 24+y 2=1;(2)若直线l 1的斜率不存在,则直线l 2的斜率为0,不满足AB =32DE ,直线l 1的的斜率为0,则A ,F 1,F 2三点共线,不合题意,所以直线l 1的斜率存在且不为0,设直线l 1的方程为x =my +3,由x =my +3x24+y 2=1,消去x 得m 24+1 y 2+3m 2y -14=0,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-3m2m 24+1,y 1y 2=-14m 24+1,∴AB =1+m 2y 1+y 2 2-4y 1y 2=1+m 2⋅4m 2+1m 2+4=4m 2+1 m 2+4.同理可得DE =41m2+11m 2+4=4m 2+1 1+4m 2.,由AB =32DE ,得4m 2+1 m 2+4=32⋅4m 2+1 1+4m 2,解得m 2=2,则DE =43,∴直线l 2的方程为y =±2x -3 ,∴坐标原点O 到直线l 2的距离为d =63=2,S △ODE =12×43×2=223.即△ODE 的面积的面积为223.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3(2024·河北邯郸·二模)已知椭圆C 的中心为坐标原点,对称轴为x 轴、y 轴,且过M 2,0 ,N 1,-32 两点.(1)求C 的方程.(2)A ,B 是C 上两个动点,D 为C 的上顶点,是否存在以D 为顶点,AB 为底边的等腰直角三角形?若存在,求出满足条件的三角形的个数;若不存在,请说明理由.【答案】(1)x24+y2=1(2)存在,3个【分析】(1)设椭圆C的方程为mx2+ny2=1(m>0,n>0,m≠n),根据条件得到4m=1m+34n=1,即可求出结果;(2)设直线DA为y=kx+1,直线DB为y=-1kx+1,当k=1时,由椭圆的对称性知满足题意;当k2≠1时,联立直线与椭圆方程,求出A,B的坐标,进而求出AB中垂线方程,根据条件中垂线直经过点D(0,1),从而将问题转化成方程k4-7k2+1=0解的个数,即可解决问题.【详解】(1)由题设椭圆C的方程为mx2+ny2=1(m>0,n>0,m≠n),因为椭圆过M2,0,N1,-3 2两点,所以4m=1m+34n=1,得到m=14,n=1,所以椭圆C的方程为x24+y2=1.(2)由(1)知D(0,1),易知直线DA,DB的斜率均存在且不为0,不妨设k DA=k(k>0),k DB=-1k,直线DA为y=kx+1,直线DB为y=-1kx+1,由椭圆的对称性知,当k=1时,显然有DA=DB,满足题意,当k2≠1时,由y=kx+1x24+y2=1,消y得到14+k2x2+2kx=0,所以x A=-8k1+4k2,y A=-8k21+4k2+1=1-4k21+4k2,即A-8k1+4k2,1-4k21+4k2,同理可得B8kk2+4,k2-4k2+4,所以k AB=k2-4k2+4-1-4k21+4k28kk2+4+8k1+4k2=(k2-4)1+4k2-(k2+4)(1-4k2)8k(1+4k2+k2+4)=k2-15k,设AB中点坐标为(x0,y0),则x0=-8k1+4k2+8kk2+42=12k(k2-1)(k2+4)(1+4k2),y0=1-4k21+4k2+k2-4k2+42=-15k2(k2+4)(1+4k2),所以AB中垂线方程为y+15k2(k2+4)(1+4k2)=-5kk2-1x-12k(k2-1)(k2+4)(1+4k2),要使△ADB为AB为底边的等腰直角三角形,则直AB中垂线方程过点(0,1),所以1+15k2(k2+4)(1+4k2)=-5kk2-10-12k(k2-1)(k2+4)(1+4k2),整理得到k4-7k2+1=0,令t=k2,则t2-7t+1=0,Δ=49-4>0,所以t有两根t1,t2,且t1+t2=7>0,t1t2=1>0,即t2-7t+1=0有两个正根,故有2个不同的k2值,满足k4-7k2+1=0,所以由椭圆的对称性知,当k2≠1时,还存在2个符合题意的三角形,综上所述,存在以D为顶点,AB为底边的等腰直角三角形,满足条件的三角形的个数有3个.【点睛】关键点点晴:本题的关键在于第(2)问,通过设出直线DA 为y =kx +1,直线DB 为y =-1kx +1,联立椭圆方程求出A ,B 坐标,进而求出直线AB 的中垂线方程,将问题转化成直线AB 的中垂线经过点D (0,1),再转化成关于k 的方程的解的问题.4(2024·广东广州·模拟预测)已知椭圆C :x 28+y 2b2=1(0<b <22),右顶点为E ,上、下顶点分别为B 1,B 2,G 是EB 1的中点,且EB 1 ⋅GB 2=1.(1)求椭圆C 的方程;(2)设过点D -4,0 的直线l 交椭圆C 于点M ,N ,点A -2,-1 ,直线MA ,NA 分别交直线x =-4于点P ,Q ,求证:线段PQ 的中点为定点.【答案】(1)x 28+y 22=1(2)证明见解析【分析】(1)通过椭圆的性质和中点的坐标,然后根据向量的数量积得到等量关系即可求出椭圆的标准方程;(2)设出直线l 的方程并与椭圆方程联立,化简写出根与系数的关系,求得点P ,Q 的坐标,进而证得线段PQ 的中点为定点.【详解】(1)由题可得a 2=8,∵E a ,0 ,B 10,b ,B 20,-b ,∴EB 1的中点为G a 2,b2,∵EB 1 ⋅GB 2 =(-a ,b )⋅-a 2,-3b 2 =a 22-3b 22=1,∴b 2=2,故椭圆C 的方程为x 28+y 22=1;(2)依题意可知直线l 的斜率存在,设直线l 的方程为y =k x +4 ,由y =k x +4x 28+y 22=1消去y 并化简得1+4k 2 x 2+32k 2x +64k 2-8=0,由Δ=1024k 4-41+4k 2 64k 2-8 >0,得k 2<14,-12<k <12.设M x M ,y M ,N x N ,y N ,则x M +x N =-32k 21+4k 2,x M x N =64k 2-81+4k 2,依题意可知直线MA ,NA 的斜率存在,直线MA 的方程为y +1=y M +1x M +2x +2 ,令x =-4,得y P =-2y M -x M -4x M +2=-2k x M +4 -x M -4x M +2=-2k -1 x M -8k -4x M +2=-2k -1 x M +2 -4k -2x M +2=-2k -1-4k +2x M +2,同理可求得y Q =-2k -1-4k +2x N +2,∴y P +y Q =-4k -2-4k +2x M +2-4k +2x N +2=-4k -2-4k +2 1x M +2+1x N +2=-4k -2-4k +2 ⋅x M +x N +4x M x N +2x M +x N +4=-4k -2-4k +2 ⋅-32k 21+4k 2+464k 2-81+4k 2+2-32k 21+4k2+4=-4k -2+(4k +2)=0,∴线段PQ 的中点为定点-4,0 .【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般将直线和圆锥曲线联立,利用韦达定理带入计算求解.5(2024·辽宁·二模)平面直角坐标系xOy 中,面积为9的正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上滑动,且OP =23OA +33OB,记动点P 的轨迹为曲线Γ.(1)求Γ的方程;(2)过点E 4,1 的动直线l 与曲线Γ交于不同的两点M ,N 时,在线段MN 上取点Q ,满足|EM |⋅|QN|=|QM |⋅|EN|.试探究点Q 是否在某条定直线上?若是,求出定直线方程;若不是,说明理由.【答案】(1)x 24+y 23=1(2)点Q 在定直线上,定直线方程为3x +y -3=0【分析】(1)设点P ,A ,B 的坐标,利用平面向量的坐标表示消参得x 0=32x y 0=3y,结合正方形面积得Γ的方程;(2)设l :y =kx +1-4k ,Q ,M ,N 的坐标,与椭圆联立并根据韦达定理得M ,N 横坐标关系,再根据线段乘积关系化为比值关系得x 0-x 1x 2-x 0=4-x 14-x 2,化简得x 0=2+4k3+k,代入直线方程即可y 0,从而求出定直线方程.【详解】(1)设P x ,y ,A x 0,0 ,B 0,y 0 ,由OP =23OA +33OB =23(x 0,0)+33(0,y 0)=23x 0,33y 0 ,得x =23x 0y =33y 0,所以x 0=32x y 0=3y,因为正方形ABCD 的面积为AB 2=9,即x 20+y 20=9,所以32x 2+(3y )2=9,整理可得x 24+y 23=1,因此C 的轨迹方程为x 24+y 23=1.(2)依题意,直线l 存在斜率,设l :y -1=k (x -4),即y =kx +1-4k ,设点Q x 0,y 0 ,M x 1,y 1 ,N x 2,y 2 x 1<x 0<x 2 ,由y =kx +1-4k3x 2+4y 2=12,消y 得3x 2+4(kx +1-4k )2=12,即(3+4k 2)x 2+8k (1-4k )x +4(1-4k )2-12=0,由Δ=64k 21-4k 2-163+4k 2 1-4k 2-3=161-4k 24k 2-3+4k 2 +483+4k 2 =483+4k 2 -1-4k 2 =48-12k 2+8k +2 =96-6k 2+4k +1 >0,可以得到2-106<k <2+106,所以k ≠-3,可得x 1+x 2=-8k (1-4k )3+4k 2,x 1x 2=4(1-4k )2-123+4k 2,由|EM |⋅|QN |=|QM |⋅|EN |,得|QM ||QN |=|EM||EN |,所以x 0-x 1x 2-x 0=4-x 14-x 2,可得x 0=4(x 1+x 2)-2x 1x 28-(x 1+x 2)=4-8k (1-4k )3+4k 2 -24(1-4k )2-123+4k 28--8k (1-4k )3+4k 2=-32k 1-4k -81-4k 2+2424+32k 2+8k -24k 2=-32k +128k 2-128k 2+64k -8+2424+8k =16+32k 24+8k =2+4k 3+k,所以y 0=kx 0+1-4k =2k +4k 23+k +1-4k 3+k 3+k =3-9k3+k,因为3x 0+y 0=6+12k 3+k +3-9k3+k=3,所以点Q 在定直线上,定直线方程为3x +y -3=0.6(2024·福建厦门·三模)在直角坐标系xOy 中,已知抛物线C :y 2=2px (p >0)的焦点为F ,过F 的直线l 与C 交于M ,N 两点,且当l 的斜率为1时,MN =8.(1)求C 的方程;(2)设l 与C 的准线交于点P ,直线PO 与C 交于点Q (异于原点),线段MN 的中点为R ,若QR ≤3,求△MNQ 面积的取值范围.【答案】(1)y 2=4x ;(2)2,63 .【分析】(1)先设l 的方程为x =my +p2,M x 1,y 1 ,N x 2,y 2 ,联立直线与抛物线方程,结合韦达定理及抛物线定义即可求解;(2)先设出R 2m 2+1,2m ,进而可求P ,Q 的坐标,可得直线QR ⎳x 轴,求出QR 的范围,再由三角形面积公式即可求解.【详解】(1)不妨先设l 的方程为x =my +p2,M x 1,y 1 ,N x 2,y 2 ,代入y 2=2px ,可得y 2-2mpy -p 2=0,所以y 1+y 2=2mp ,y 1y 2=-p 2,则MN =x 1+x 2+p =m y 1+y 2 +2p =2m 2p +2p ,由题意可知当斜率为1时,m =1,又MN =8,即2p +2p =8,解得p =2,所以C 的方程为y 2=4x ;(2)由(1)知p =2,直线l 的方程为x =my +1,抛物线方程y 2=4x ,y 1+y 2=4m ,y 1y 2=-4所以R 的纵坐标y R =y 1+y 22=2m ,将R 的纵坐标2m 代入x =my +1,得x =2m 2+1,所以R 的坐标2m 2+1,2m ,易知抛物线的准线为x =-1,又因为l 与C 的准线交于点P ,所以P 的坐标-1,-2m ,则直线OP 的方程为x =m2y ,把x =m2y 代入y 2=4x ,得y 2=2my ,即y =2m 或y =0,因为点Q 异于原点,从而Q 的纵坐标为2m ,把y =2m 代入x =m 2y ,得x =m2y =m 2,所以Q m 2,2m ,因为R 的坐标2m 2+1,2m ,所以R ,Q 的纵坐标相同,所以直线QR ⎳x 轴,且QR =2m 2+1-m 2 =m 2+1 ,所以△MNQ 面积S △MNQ =S △MRQ +S △NRQ =12QR y 1-y 2 ,因为y 1-y 2 2=y 1+y 2 2-4y 1y 2=16m 2+16,所以y 1-y 2 =16m 2+16=4m 2+1,所以S △MNQ =12m 2+1 ×4m 2+1=2m 2+1 32=2QR 32,因为点Q 异于原点,所以m ≠0,所以m 2+1 >0,因为QR ≤3,所以1<QR ≤3,所以2<2QR 32≤63,即△MNQ 面积的取值范围为2,63 .7(2024·浙江丽水·二模)已知抛物线E :y 2=4x ,点A ,B ,C 在抛物线E 上,且A 在x 轴上方,B 和C 在x 轴下方(B 在C 左侧),A ,C 关于x 轴对称,直线AB 交x 轴于点M ,延长线段CB 交x 轴于点Q ,连接QA .(1)证明:OM OQ为定值(O 为坐标原点);(2)若点Q 的横坐标为-1,且MB ⋅MC =89,求△AQB 的内切圆的方程.【答案】(1)1(2)x -19 2+y 2=49【分析】(1)根据已知条件作出图形,设出直线AB 的方程,与抛物线联立,利用韦达定理及直线的点斜式方程即可求解;(2)根据(1)的结论及向量的数量积的坐标表示,进而得出直线AB 的方程,利用直线的斜率公式及直线的点斜式方程,结合角平分线的性质及圆的标准方程即可求解.【详解】(1)设直线AB 的方程为x =my +t m >0 ,A x 1,y 1 ,B x 2,y 2 ,则C x 1,-y 1 ,M t ,0 ,由x =my +ty 2=4x,消去x ,得y 2-4my -4t =0,Δ=16m 2+t >0⇒m 2+t >0,所以y 1+y 2=4m ,y 1y 2=-4t ,直线BC 的方程为y +y 1=y 2+y 1x 2-x 1x -x 1 ,化简得y =4xy 2-y 1-y 1y 2y 2-y 1,令y =0,得x Q =y 1y 24=-t ,所以Q -t ,0因此OM OQ =t-t =1.(2)因为点Q 的横坐标为-1,由(1)可知,Q -1,0 ,M 1,0 ,设QA 交抛物线于D ,A x 1,y 1 ,B x 2,y 2 ,C x 1,-y 1 ,D x 4,y 4 ,如图所示又由(1)知,y 1y 2=-4,同理可得y 1y 4=4,得y 4=-y 2,又x 1+x 2=my 1+1+my 2+1=m y 1+y 2 +2=4m 2+2,x 1x 2=y 214⋅y 224=y 1y 2 216=1,又MB =x 2-1,y 2 ,MC=x 1-1,-y 1 ,则MB ⋅MC=x 2-1 x 1-1 -y 1y 2=x 1x 2-x 1+x 2 +1+4=4-4m 2,故4-4m 2=89,结合m >0,得m =73.所以直线AB 的方程为3x -7y -3=0,又y 1-y 2=y 1+y 2 2-4y 1y 2=16m 2+16=163,则k AD =y 1-y 4x 1-x 4=y 1-y 4x 1-x 4=y 1-y 4y 214-y 224=4y 1+y 4=4y 1-y 2=34,所以直线AD 的方程为3x -4y +3=0,设圆心T (s ,0)(-1<s <1),因为QM 为∠AQB 的平分线,故点T 到直线AB 和直线AD 的距离相等,所以3s +3 5=3s -3 4,因为-1<s <1,解得s =19,故圆T 的半径r =3s +35=23,因此圆T 的方程为x -19 2+y 2=49.8(2024·江苏苏州·模拟预测)已知点A (1,0),B (0,1),C (1,1)和动点P (x ,y )满足y 2是PA ⋅PB ,PA⋅PC的等差中项.(1)求P 点的轨迹方程;(2)设P 点的轨迹为曲线C 1按向量a =-34,116平移后得到曲线C 2,曲线C 2上不同的两点M ,N 的连线交y 轴于点Q (0,b ),如果∠MON (O 为坐标原点)为锐角,求实数b 的取值范围;(3)在(2)的条件下,如果b =2时,曲线C 2在点M 和N 处的切线的交点为R ,求证:R 在一条定直线上.【答案】(1)y =x 2-32x +12;(2)b <0或b >1;(3)证明见解析.【分析】(1)根据题意,由平面向量的坐标运算,结合等差中项的定义代入计算,即可得到结果;(2)根据题意,由平移公式可得曲线C 2的方程,然后与直线MN 的方程联立,由平面向量的夹角公式,代入计算,即可得到结果;(3)根据题意,求导可得在点M ,N 处的切线方程,联立两条切线方程,代入计算,即可得到结果.【详解】(1)由题意可得PA =(1-x ,-y ),PB =(-x ,1-y ),PC=(1-x ,1-y ),则PA ⋅PB=(1-x )⋅(-x )+(-y )⋅(1-y )=x 2+y 2-x -y ,PA ⋅PC=(1-x )⋅(1-x )+(-y )⋅(1-y )=x 2+y 2-2x -y +1,又∵y 2是PA ⋅PB ,PA ⋅PC 的等差中项,∴x 2+y 2-x -y +x 2+y 2-2x -y +1 =2y 2,整理得点P (x ,y )的轨迹方程为y =x 2-32x +12.(2)由(1)知C 1:y =x 2-32x +12,又∵a =-34,116 ,∴平移公式为x =x -34y =y +116 即x =x +34y =y -116,代入曲线C 1的方程得到曲线C 2的方程为:y -116=x +342-32x +34 +12,即y =x 2.曲线C 2的方程为y =x 2.如图由题意可设M ,N 所在的直线方程为y =kx +b ,由y =x 2y =kx +b消去y 得x 2-kx -b =0,令M x 1,y 1 ,N x 2,y 2 x 1≠x 2 ,则x 1+x 2=kx 1x 2=-b ,∴OM =x 1,y 1 =x 1,x 21 ,ON =x 2,y 2 =x 2,x 22 ,又∵∠MON 为锐角,∴cos ∠MON =OM ⋅ON |OM |⋅|ON |>0,即x 1x 2+x 21x 22|OM |⋅|ON |>0,∴x 1x 2+x 21x 22>0,又x 1x 2=-b ,∴-b +(-b )2>0,得b <0或b >1.(3)当b =2时,由(2)可得x 1+x 2=kx 1x 2=-b =-2,对y =x 2求导可得y =2x ,∴抛物线C 2在点,∴M =x 1,x 21 ,N x 2,x 22 处的切线的斜率分别为k M =2x 1,k N =2x 2,∴在点M ,N 处的切线方程分别为l M :y -x 21=2x 1x -x 1 ,l N :y -x 22=2x 2x -x 2 ,由y -x 21=2x 1x -x 1y -x 22=2x 2x -x 2x 1≠x 2,解得交点R 的坐标(x ,y ).满足x =x 1+x 22y =x 1⋅x2即x =k2y =-2,∴R 点在定直线y =-2上.【点睛】关键点点睛:本题主要考查了曲线的轨迹方程问题以及切线问题,难度较大,解答本题的关键在于联立方程结合韦达定理计算以及转化为坐标运算.9(2024·江苏南通·二模)已知双曲线E 的渐近线为y =±33x ,左顶点为A -3,0 .(1)求双曲线E 的方程;(2)直线l :x =t 交x 轴于点D ,过D 点的直线交双曲线E 于B ,C ,直线AB ,AC 分别交l 于G ,H ,若O ,A ,G ,H 均在圆P 上,①求D 的横坐标;②求圆P 面积的取值范围.【答案】(1)x 23-y 2=1(2)①34,0 ;②S >27π16且S ≠7π4【分析】(1)根据渐近线方程及顶点求出a ,b 得双曲线方程;(2)①设D t ,0 ,由四点共圆可得k AG ⋅k OH =1,根据斜率公式转化为B ,C 点坐标表示形式,由直线与双曲线联立得出根与系数的关系,据此化简即可求出t ;②求出G 点坐标得出OG ,利用正弦定理求出外接圆的半径,根据均值不等式求出半径的最值,即可得出圆面积的最值.【详解】(1)因为双曲线的渐近线关于坐标轴及原点对称,又顶点在x 轴上,可设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),从而渐近线方程为:y =±b a x ,由题条件知:b a =33.因为双曲线的左顶点为A -3,0 ,所以a =3,b =1,所以双曲线的方程为:x 23-y 2=1.(2)如图,①D t ,0 ,设直线BC 的方程为:my =x -t ,将x =my +t 代入方程:x 2-3y 2-3=0,得m 2-3 y 2+2mty +t 2-3=0,当m 2-3≠0且Δ=12t 2+m 2-3 >0时,设B x 1,y 1 ,C x 2,y 2 ,则y 1+y 2=-2mt m 2-3,y 1y 2=t 2-3m 2-3.设直线AG 的倾斜角为α,不妨设0<α<π2,则∠AGH =π2-α,由于O ,A ,G ,H 四点共圆知:∠HOD =∠AGH ,所以直线OH 的倾斜角为π2-α,k AG ⋅k OH =tan α⋅tan π2-α =sin αcos α×sin π2-α cos π2-α=1.直线AC 的方程为:y =y 2x 2+3x +3 ,令x =t ,则y =y 2t +3 x 2+3,从而H t ,y 2t +3x 2+3,所以k OH =y 2t +3 t x 2+3 ,又k AG =k AB =y 1x 1+3,得:y 1x 1+3×y 2t +3 t x 2+3=1⇒t +3 y 1y 2=t x 1+3 x 2+3 ,又x 1=my 1+t ,x 2=my 2+t 代入上式得:t +3 y 1y 2=t my 1+t +3 my 2+t +3 ,⇒t +3 y 1y 2=t m 2y 1y 2+m t +3 y 1+y 2 +t +3 2 ,⇒t +3 ⋅t 2-3m 2-3=t m 2⋅t 2-3m 2-3+m t +3 ⋅-2mt m 2-3+t +3 2,化简得:4t 2+33t -3=0,解得:t =-3(舍)或t =34.故点D 的坐标为34,0.②直线AG 的方程为y =tan α⋅x +3 ,由①知:t =34,所以G 34,534tan α .直线OH 方程;y =1tan αx ,所以H 34,34tan α,若G ,H 在x 轴上方时,G 在H 的上方,即tan α>0时,534tan α>34tan α;若G ,H 在x 轴下方时,即tan α<0时,534tan α<34tan α,所以tan α>55或tan α<-55.又直线AG 与渐近线不平行,所以tan α≠±33.所以0<α<π,tan α>55或tan α<55且tan α≠±33.因为OG =34 2+53tan α4 2=1431+25tan 2α ,设圆P 的半径为R ,面积为S ,则2R =OG sin α=1431+25tan 2α sin α,所以R 2=364×1+25⋅tan 2α sin 2α=164×1+25tan 2α sin 2α+cos 2α sin 2α=364×1+25tan 2α 1+tan 2α tan 2α=36425tan 2α+1tan 2α+26≥364225tan 2α⋅1tan 2α+26=2716,当且仅当25tan 2α=1tan 2α即tan α=±55时,上述不等式取等号,tan α>55或tan α<-55且tan α≠±33.所以R 2>2716且R 2≠74,从而S >27π16且S ≠7π4.【点睛】关键点点睛:本题的关键点在于利用直线的倾斜角与圆的内接四边形的角的关系,得出k AG ⋅k OH =tan α⋅tan π2-α =sin αcos α×sin π2-α cos π2-α=1这一关键数量关系,再转化为直线与双曲线相交,利用根与系数的关系化简求参数的常规问题.10(2024·江苏南京·二模)已知抛物线C :y 2=2px (p >0)与双曲线E :x 2a 2-y 2b2=1(a >0,b >0)有公共的焦点F ,且p =4b .过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧).(1)求E 的渐近线方程;(2)若实数λ满足λ1|OP |+1|OQ |=1|AF |-1|BF |,求λ的取值范围.【答案】(1)y =±33x (2)0,12【分析】(1)由两曲线有公共的焦点F ,且p =4b ,得c =2b ,a =3b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出1|OP |+1|OQ |和1|AF |-1|BF |,由λ1OP +1OQ=1AF -1BF求λ的取值范围.【详解】(1)抛物线C :y 2=2px (p >0)与双曲线E :x 2a 2-y 2b2=1(a >0,b >0)有公共的焦点F ,设双曲线E 的焦距为2c ,则有p2=c ,又p =4b ,则c =2b .由a 2+b 2=c 2,得a =3b ,所以E 的渐近线的方程为y =±33x (2)设l :x =my +c ,P x 1,y 1 ,Q x 2,y 2 ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有m 2<3,由x =my +c y =±33x,解得y 1=c 3-m ,y 2=c -3-m,1OP +1OQ =12y 1 +12y 2=3-m +-3-m 2c =3-m --3-m 2c =3c .设A x 3,y 3 ,B x 4,y 4 ,由x =my +cy 2=2px,消去x 得y 2-2pmx -p 2=0,则有y 3+y 4=2pm ,y 3y 4=-p 2,1AF-1BF=11+m 2y 3 -11+m 2y 4=11+m 2⋅y 3 -y 4 y 3 y 4=11+m 2⋅y 3+y 4 y 3y 4 =11+m 2⋅2pm p 2=2p ⋅m 2m 2+1,由λ1OP +1OQ=1AF -1BF,p 2=c ,有λ⋅3c =2p⋅m 2m 2+1,即3λ=m 2m 2+1,由m 2<3,有3λ∈0,32 ,所以λ∈0,12 .【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.11(2024·重庆·三模)已知F2,0,曲线C上任意一点到点F的距离是到直线x=12的距离的两倍.(1)求曲线C的方程;(2)已知曲线C的左顶点为A,直线l过点F且与曲线C在第一、四象限分别交于M,N两点,直线AM、AN分别与直线x=12交于P,H两点,Q为PH的中点.(i)证明:QF⊥MN;(ii)记△PMQ,△HNQ,△MNQ的面积分别为S1,S2,S3,则S1+S2S3是否为定值?若是,求出这个定值;若不是,请说明理由.【答案】(1)x2-y23=1(2)(i)证明见解析;(ii)是,12【分析】(1)设曲线C上任意一点坐标为x,y,利用坐标可得曲线C的方程;(2)(i)设直线MN:x=my+2,M x1,y1,N x2,y2,联立方程组可得y1+y2=-12m3m2-1,y1y2=93m2-1,求得直线AM:y=y1x1+1x+1,求得P,H,进而可得Q的坐标,求得FQ的坐标,直线MN的方向向量的坐标,利用向量法可证结论.(ii)法一:利用(i)可求得MN=61+m21-3m2;QF=31+m22,进而可得S3=12MN⋅QF=91+m2 3 221-3m2 ,进而求得S1+S2=14PH⋅x1+x2-1,代入运算可求得S1+S2=91+m23241-3m2,可求结论.法二:(利用双曲线的第二定义)由(1)知,MF=2x1-1 2,同理NF =2x2-12,计算可得S1+S2=1 8PH⋅MN,又S3=12MN⋅QF,S1+S2S3=14PHQF,进而计算可得结论成立.【详解】(1)设曲线C上任意一点坐标为x,y,则由题意可知:x-22+y2=4x-1 22⇒x2-4x+4+y2=4x2-4x+1⇒x2-y23=1,故曲线C的方程为x2-y23=1.(2)(i )设直线MN :x =my +2,M x 1,y 1 ,N x 2,y 2 ,其中-33<m <33且x 1>1,x 2>1x =my +23x 2-y 2-3=0⇒3m 2-1 y 2+12my +9=0 ,故y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1;直线AM :y =y 1x 1+1x +1 ,当x =12时,y =3y 12x 1+1 ,故P 12,3y 12x 1+1,同理H 12,3y 22x 2+1,Q 为PH 中点,故y Q =12⋅32y 1x 1+1+y 2x 2+1=34⋅y 1x 2+1 +y 2x 1+1x 1+1 x 2+1;x 1+1 x 2+1 =my 1+3 my 2+3 =m2y 1y 2+3m y 1+y 2 +9=9m 2-36m 2+93m 2-13m 2-1=-93m 2-1;(*)y 1x 2+1 +y 2x 1+1 =y 1my 2+3 +y 2my 1+3 =2my 1y 2+3y 1+y 2 =18m -36m 3m 2-1=-18m3m 2-1;故y Q =34⋅18m 9=3m 2,即Q 12,3m 2,则FQ =-32,3m2 ,直线MN 的方向向量a =m ,1 ,a ⋅FQ =-3m 2+3m2=0,故QF ⊥MN .(ii )法一:y 1-y 2 =y 1+y 2 2-4y 1y 2=144m 2-363m 2-1 3m 2-12=61+m 21-3m 2;(**)故MN =1+m 2y 1-y 2 =61+m 2 1-3m 2;QF =2-122+0-3m 2 2=31+m 22,又QF ⊥MN ,故S 3=12MN ⋅QF =91+m 2 3221-3m 2.S 1+S 2=12PQ ⋅x 1-12 +12HQ ⋅x 2-12 =14PH ⋅x 1+x 2-1 ;x 1+x 2-1=m y 1+y 2 +3=-12m 2+9m 2-33m 2-1=31+m 2 1-3m 2;PH =3y 12x 1+1 -3y 22x 2+1 =32y 1x 2+1 -y 2x 1+1x 1+1 x 2+1,=32y 1my 2+3 -y 2my 1+3 x 1+1 x 2+1=92y 1-y 2x 1+1 x 2+1,由(*)知x 1+1 x 2+1 =91-3m 2,由(**)知y 1-y 2 =61+m 21-3m 2,故PH =92⋅61+m 21-3m 2⋅1-3m 29=31+m 2,故S 1+S 2=14⋅31+m 2⋅31+m 21-3m 2=91+m 2 3241-3m 2,则S 1+S 2S 3=12.法二:(利用双曲线的第二定义)由(1)知,MF =2x 1-12 ,同理NF =2x 2-12,故S 1+S 2=14PH x 1+x 2-1 =18PH ⋅MF +NF =18PH ⋅MN ,又S 3=12MN ⋅QF ,故S 1+S 2S 3=14PHQF ,又y P y H =94y 1y 2x 1+1 x 2+1,且由(*)知y P y H =9493m 2-1-93m 2-1=94,记直线PH 与x 轴相交于点K ,由y P y H =94可得PK ⋅HK =FK 2,即PK FK =FK HK,即△PKF ∽△PFH ,故PF ⊥HF ;又Q 为PH 的中点,故QF =12PH ,即S 1+S 2S 3=14PH QF =12.【点睛】方法点睛:直线与双曲线联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可设出直线方程.第二步:联立方程:把所设直线方程与抛物线方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式Δ:计算一元二次方程根的判别式Δ>0(有些题可不考虑).第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.有些运算量大,转化是关徤,运算求解能力也是考查点之一.12(2024·河北·二模)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率e =22.(1)若椭圆E 过点2,2 ,求椭圆E 的标准方程.(2)若直线l 1,l 2均过点P p n ,0 0<p n <a ,n ∈N * 且互相垂直,直线l 1交椭圆E 于A ,B 两点,直线l 2交椭圆E 于C ,D 两点,M ,N 分别为弦AB 和CD 的中点,直线MN 与x 轴交于点Q t n ,0 ,设p n =13n .(ⅰ)求t n ;(ⅱ)记a n =PQ ,求数列1a n的前n 项和S n .【答案】(1)x 28+y 24=1(2)(ⅰ)t n =23n +1;(ⅱ)S n =92(3n -1).【分析】(1)根据椭圆的离心率得到a ,b 之间的关系,再结合椭圆过点2,2 ,求出b 2的值,从而得到椭圆的方程.(2)(ⅰ)利用根与系数的关系及中点坐标公式求得点M ,N 的坐标,再根据M ,N ,Q 三点共线得t n ,p n 之间的关系;(ⅱ)求得a n ,并利用等比数列的前n 项和公式求得S n .【详解】(1)因为e =c a =22,a 2=b 2+c 2,所以a 2=2b 2,所以椭圆E 的方程为x 22b 2+y 2b2=1,因为椭圆E 过点2,2 ,所以42b 2+2b 2=1,解得b 2=4,所以椭圆E 的方程为x28+y 24=1.(2)(ⅰ)当直线l 1,l 2中一条直线的斜率不存在,另一条直线的斜率为0时,直线MN 与x 轴重合,不符合题意.故直线l 1,l 2的斜率均存在且不为0.设直线l 1的方程为y =k (x -p n )(k ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ),N (x N ,y N ),联立方程x 22b 2+y 2b 2=1y =k (x -p n) ,消去y 并整理得(1+2k 2)x 2-4k 2p nx +2k 2p 2n-2b 2=0,因为直线与椭圆相交于两个不同的交点,所以Δ>0,根据韦达定理得,x 1+x 2=4p n k 21+2k 2,x 1x 2=2k 2p 2n -2b21+2k 2,则x M =2p n k 21+2k 2yM=-p n k 1+2k 2,同理可得x N =2p n k 2+2y N=p n k k 2+2,因为M ,N ,Q 三点共线,所以y N (x N -x M )=(y N -y M )(x N -t n ),易知y N -y M ≠0,则t n =x M y N -x N y My N -y M =2p n k 21+2k 2⋅p n k k 2+2-2p n k 2+2⋅-p n k1+2k 2p n k k 2+2--p n k1+2k 2=2p n3,因为p n =13n ,所以t n =23n +1.(ⅱ)结合(ⅰ)可知a n =|PQ |=|p n -t n |=13n -23n +1=13n +1,所以1a n=3n +1,所以数列1a n 是首项为9,公比为3的等比数列,所以数列1a n 的前n 项和S n =9(1-3n )1-3=92(3n-1).【点睛】关键点点睛:本题考查椭圆的几何性质、直线与椭圆相交以及等比数列求和的问题.其中关键点是联立直线与椭圆的方程,根据韦达定理和M ,N ,Q 三点共线,求出点Q 的坐标,从而得到t n .13(2024·辽宁沈阳·二模)以坐标原点为圆心的两个同心圆半径分别为6和3,P 为大圆上一动点,大圆半径OP 与小圆相交于点B ,PP ⊥x 轴于P ,BB ⊥PP 于B ,B 点的轨迹为Ω.(1)求B 点轨迹Ω的方程;(2)点A 2,1 ,若点M 、N 在Ω上,且直线AM 、AN 的斜率乘积为12,线段MN 的中点G ,当直线MN 与y 轴的截距为负数时,求∠AOG 的余弦值.【答案】(1)x 26+y 23=1(2)-31010【分析】(1)设B (x ,y ),∠POP =θ,根据条件得到x =OP cos θ=6cos θy =OB sin θ=3sin θ,消元即可求出结果;(2)法一:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +m ,联立直线MN 与椭圆方程得到1+2k 2 x 2+4kmx +2m 2-6=0,由韦达定理得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,根据题设得到直线MN 的方程为y =-12x +m ,再利用点M x 1,y 1 ,N x 2,y 2 在椭圆上,得到k OG =1,从而有OG 与y 轴负平轴所形成的夹角为α=π4,再求出OA 与x 正半轴所形成的夹角,即可解决问题;法二:设M x 1,y 1 ,N x 2,y 2 ,直线AM 的方程为y =k (x -2)+1,直接求出M ,N ,再根据条件求出k MN =-12,后面同法一;法三:建立新的坐标系,在新的坐标系中,得椭圆的方程为(x -2)26+(y -1)23=1,及直线MN 的方程为mx +ny =1,联立直线与椭圆,再结合条件得到n =2m ,从而有k MN =-12,后面同法一;法四:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +m ,联立椭圆方程得1+2k 2 x 2+4kmx +2m 2-2=0,进而得到1+2k 2 x 2+4kmx +2m 2-2=1+2k 2 x -x 1 x -x 2 ,通过令x =2,得到41+2k 2 +8km +2m 2-2=1+2k 22-x 1 2-x 2 ,令x =1-m k ,得到(m -1)2k21+2k 2+4km 1-m k +2m 2-2=1+2k 2 1-m k -x 1 1-m k -x 2 ,从而有4k 2+2km +m -1=0,下面同方法一.【详解】(1)设B (x ,y ),∠POP =θ,则x =OP cos θ=6cos θy =OB sin θ=3sin θ,消去θ得x 26+y 23=1,所以B点轨迹Ω的方程为x 26+y 23=1.(2)方法一:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +m ,y =kx +mx 26+y 23=1 ,消去y 得1+2k 2 x 2+4kmx +2m 2-6=0,Δ=(4km )2-41+2k 2 2m 2-6 =48k 2-8m 2+24>0,即m 2<6k 2+3由韦达定理知x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,k AM ⋅k AN =y 1-1x 1-2⋅y 2-1x 2-2=kx 1+m -1x 1-2⋅kx 2+m -1x 2-2=k 2x 1x 2+k (m -1)x 1+x 2 +(m -1)2x 1x 2-2x 1+x 2 +4=12,所以(2m 2-6)k 21+2k 2+-4k 2m (m -1)1+2k2+(m -1)22m 2-61+2k 2+8km1+2k 2+4=12,整理得4k 2+2km +m -1=0,即4k 2-1 +m (2k +1)=(2k +1)(2k -1+m )=0,当2k +1=0时,直线MN 的方程为y =-12x +m当2k -1+m =0时,直线MN 的方程为y =k (x -2)+1,恒过A (2,1)点,不合题意设G x G ,y G ,将M x 1,y 1 ,N x 2,y 2 ,将M 、N 两点代入到椭圆得x 216+y 213=1x 226+y 223=1,两式相减得x 21-x 226+y 21-y 223=0,即y 1-y 2 y 1+y 2 x 1-x 2 x 1+x 2 =y 1-y 2 y 1+y 22-0 x 1-x 2 x 1+x 22-0=-36,所以k MN ⋅k OG =-12,故k OG =1,设OG 与y 轴负平轴所形成的夹角为α,因为k OG =1,所以α=π4,设OA 与x 正半轴所形成的夹角为β,因为A (2,1),所以sin β=55,cos β=255,cos ∠AOG =cos π2+α+β =-sin (α+β)=-(sin αcos β+cos αsin β)=-31010.方法二:设M x 1,y 1 ,N x 2,y 2 ,直线AM 的方程为y =k (x -2)+1y =k (x -2)+1x 26+y 23=1消去y 可得:1+2k 2 x 2-8k 2-4k x +8k 2-8k -4=0从而x A ⋅x 1=8k 2-8k -41+2k 2,故x 1=4k 2-4k -21+2k2,将x 1代入直线AM 的方程可得y 1=-4k 2-4k 1+2k 2+1,所以M 4k 2-4k -21+2k 2,-4k 2-4k1+2k 2+1,又k AM ⋅k AN =12,将式点M 中的k 换成12k 得到N 2-4k -4k 21+2k 2,-2-4k1+2k 2+1,k MN =y 2-y 1x 2-x 1=-12,下面同方法一方法三:以A (2,1)为坐标原点建立新的直角坐标系,新坐标系下椭圆方程(x -2)26+(y -1)23=1,在新坐标系下设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为mx +ny =1将椭圆方程变形可得:x 2+4x +2y 2+4y =0将直线MN 的方程与椭圆方程结合,构成其次分式可得x 2+4x (mx +ny )+2y 2+4y (mx +ny )=0,整理得(4n +2)y 2+(4n +4m )xy +(1+4m )x 2=0即:(4n +2)y x 2+(4n +4m )yx +(1+4m )=0,所以k AM ⋅k AN =y 1x 1⋅y 2x 2=1+4m 4n +2=12,故n =2m ,直线MN 的方程为mx +2my =1,k MN =-12,下面同方法一方法四:设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为y =kx +my =kx +mx 26+y 23=1 消去y 可得:1+2k 2 x 2+4kmx +2m 2-2=0因为x 1,x 2是上述一元二次方程的两个根,所以1+2k 2 x 2+4kmx +2m 2-2=1+2k 2x -x 1 x -x 2 ①又k AM ⋅k AN =y 1-1x 1-2⋅y 2-1x 2-2=12整理得:x 1-2 x 2-2 -2y 1-1 y 2-1=x 1-2 x 2-2 -2k 2x 1+m -1k x 2m -1k=0在①式中令x =2得:41+2k 2 +8km +2m 2-2=1+2k 2 2-x 1 2-x 2 ②令x =1-m k 得:(m -1)2k 21+2k 2 +4km 1-m k +2m 2-2=1+2k 2 1-m k -x 1 1-m k -x 2 ③②+③×-2k 2 可得:整理得4k 2+2km +m -1=0,下面同方法一【点睛】关键点点晴,本题的关键在于第(2)问,通过设出直线MN 的方程为y =kx +m ,M x 1,y 1 ,N x 2,y 2 ,联立直线MN 与椭圆方程得到1+2k 2 x 2+4kmx +2m 2-6=0,由韦达定理得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k2,根据题设得到直线MN 的方程为y =-12x +m ,再利用点M x 1,y 1 ,N x 2,y 2 在椭圆上,得到k OG =1,从而将问题转化成cos ∠AOG =cos π2+α+β 解决,其中α为OG 与y 轴负平轴所形成的夹角,β为OA 与x 正半轴所形成的夹角.14(2024·广东佛山·二模)两条动直线y =k 1x 和y =k 2x 分别与抛物线C :y 2=2px p >0 相交于不同于原点的A ,B 两点,当△OAB 的垂心恰是C 的焦点时,AB =45.(1)求p ;(2)若k 1k 2=-4,弦AB 中点为P ,点M -2,0 关于直线AB 的对称点N 在抛物线C 上,求△PMN 的面积.【答案】(1)p =2;(2)62.【分析】(1)利用垂直关系,结合斜率坐标公式,列式计算即得.(2)求出P 的轨迹方程,分k 1=-k 2和k 1≠-k 2两种情况讨论,求出直线AB 过定点F (1,0),再求出N 点坐标,即可求出三角形面积.【详解】(1)由△OAB 的垂心恰是C 的焦点,由抛物线对称性得|OA |=|OB |,AF ⊥OB ,而AB=45,不妨设A 10p ,25 ,B 10p ,-25,而焦点F p 2,0 ,则2510p -p 2⋅-2510p=-1,解得p =2,所以p =2.(2)由(1)知,y 2=4x ,由y =k 1x y 2=4x,解得A 4k 21,4k 1 ,同理B 4k 22,4k 2 ,则P 2k 21+2k 22,2k 1+2k 2,而2k 1+2k 22=4k 21+4k 22+8k 1k 2=22k 21+2k 22-2,因此所以P 的轨迹方程为y 2=2x -2,当k 1=-k 2时,不妨设k 1=2,k 2=-2,此时A (1,2),B (1,-2),直线AB 过点(1,0),当k 1≠-k 2时,直线AB 的斜率为4k 1-4k24k 21-4k 22=k 1k 2k 1+k 2=-4k 1+k 2,AB 的方程为y -4k 1=-4k 1+k 2x -4k 21,整理得y =-4k 1+k 2(x -1),直线AB 过点(1,0),因此直线AB 过定点F (1,0),由|FN |=|FM |可得x N +1=3,解得x N =2,于是N (2,-22)或N (2,22),当N (2,-22)时,MN 的中点为(0,-2),直线MN 的斜率为-22,此时直线AB 的方程为y =2x -2,由y =2x -2y 2=2x -2 解得P (2,2)或P (1,0),当P 1,0 时,直线AB 为x =1,不符合题意,舍去,则P 2,2 ,MN =26,△PMN 边MN 上的高h =23,因此△PMN 的面积S △PMN =62,当N (2,22)时,由对称性,同理可得S △PMN =62,所以△PMN 的面积为6 2.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点x 0,y 0 ,常利用直线的点斜式方程y -y 0=k x -x 0 或截距式y =kx +b 来证明.15(2024·广东深圳·二模)设抛物线C :x 2=2py (p >0),直线l :y =kx +2交C 于A ,B 两点.过原点O 作l 的垂线,交直线y =-2于点M .对任意k ∈R ,直线AM ,AB ,BM 的斜率成等差数列.(1)求C 的方程;(2)若直线l ⎳l ,且l 与C 相切于点N ,证明:△AMN 的面积不小于22.【答案】(1)x 2=4y ;(2)证明见解析.【分析】(1)根据题意,分k =0与k ≠0代入计算,联立直线与抛物线方程,结合韦达定理代入计算,再由等差中项的定义列出方程,即可得到结果;(2)方法一:联立直线l 与抛物线的方程,表示出AB 中点E 的坐标,再由点M ,N ,E 三点共线可得△AMN面积为△ABM 面积的14,结合三角形的面积公式代入计算,即可证明;方法二:联立直线l 与抛物线的方程,再由Δ=0,得n =-k 2,点N 2k ,k 2 ,即可得到直线MN 与x 轴垂直,再由三角形的面积公式代入计算,即可证明.【详解】(1)设点A x 1,y 1 ,B x 2,y 2 ,由题可知,当k =0时,显然有k AM +k BM =0;当k ≠0时,直线OM 的方程为y =-1kx ,点M 2k ,-2 .联立直线AB 与C 的方程得x 2-2pkx -4p =0,Δ=4p 2k 2+16p >0,所以x 1+x 2=2pk ,x 1x 2=-4p ,因为直线AM ,AB ,BM 的斜率成等差数列,所以y 1+2x 1-2k +y 2+2x 2-2k=2k .即kx1+4x1-2k+kx2+4x2-2k=2k,kx1+4x2-2k+kx2+4x1-2kx1-2kx2-2k=2k,化简得2k2+2x1+x2-4k=0.将x1+x2=2pk代入上式得2k2+22pk-4k=0,则p=2,所以曲线C的方程为x2=4y.(2)(法一)设直线l :y=kx+n,联立C的方程,得x2-4kx-4n=0.由Δ=0,得n=-k2,点N2k,k2,设AB的中点为E,因为x1+x22=2k,y1+y22=k x1+x2+42=2k2+2,则点E2k,2k2+2.因为2k2+2-22=k2,所以点M,N,E三点共线,且点N为ME的中点,所以△AMN面积为△ABM面积的1 4.记△AMN的面积为S,点M2k,-2到直线AB:kx-y+2=0的距离d=2k2+4k2+1,所以S=18AB×d=181+k2×x1+x22-4x1x2×2k2+4k2+1=k2+232≥22,当k=0时,等号成立.所以命题得证.(法二)设直线l :y=kx+n,联立C的方程,得x2-4kx-4n=0.由Δ=0,得n=-k2,点N2k,k2.所以直线MN与x轴垂直.记△AMN的面积为S,所以S=12×MN×x1-x22=14×MN ×x1+x22-4x1x2=12×k2+2×4k2-4×-8=k2+2 32≥22.当k=0时,等号成立.所以命题得证.【点睛】关键点点睛:本题第二问的关键采用设线法,联立抛物线方程,根据相切求出N2k,k2,再得出E2k,2k2+2,最后计算出面积表达式求出其最值即可.16(2024·湖南·一模)已知双曲线C:x2a2-y2b2=1(b>a>1)的渐近线方程为y=±2x,C的半焦距。
专题05 圆锥曲线大题拔高练(原卷版)
![专题05 圆锥曲线大题拔高练(原卷版)](https://img.taocdn.com/s3/m/48f7c135e97101f69e3143323968011ca300f7b4.png)
【一专三练】 专题05 圆锥曲线大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023·浙江·校联考模拟预测)已知双曲线2222:1(0,0)x y C a b a b-=>>,且点(2,1)A 在双曲线C 上.(1)求双曲线C 的方程;(2)若点M ,N 在双曲线C 上,且AM AN ⊥,直线MN 不与y 轴平行,证明:直线MN 的斜率k 为定值.2.(2023·广东佛山·统考一模)已知椭圆2222Γ:1x y a b +=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.3.(2023·广东江门·统考一模)已知M 是平面直角坐标系内的一个动点,直线MA 与直线y x =垂直,A 为垂足且位于第一象限,直线MB 与直线y x =-垂直,B 为垂足且位于第四象限,四边形OAMB (O 8,动点M 的轨迹为C .(1)求轨迹C 的方程;(2)已知()5,3T 是轨迹C 上一点,直线l 交轨迹C 于P ,Q 两点,直线TP ,TQ 的斜率之和为1,tan 1PTQ ∠=,求TPQ V 的面积.4.(2023·浙江·永嘉中学校联考模拟预测)已知双曲线E 的顶点为()1,0A -,()10B ,,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且OFG S =△点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP OH ⋅ 为定值.5.(2023·江苏徐州·徐州市第七中学校考一模)已知双曲线2222:1(,0)x y C a b a b-=>的实轴长为4,左、右顶点分别为12,A A ,经过点()4,0B 的直线l 与C 的右支分别交于,M N 两点,其中点M 在x 轴上方.当l x ⊥轴时,MN =(1)设直线12,MA NA 的斜率分别为12,k k ,求21k k 的值;(2)若212BA N BA M ∠∠=,求1A MN V 的面积.6.(2023·江苏泰州·统考一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,过左焦点F 的直线与C 交于,P Q 两点.当PQ x ⊥PAQ △的面积为3.(1)求C 的方程;(2)证明:以PQ 为直径的圆经过定点.7.(2023·辽宁葫芦岛·统考一模)在平面直角坐标系中,已知点(2,0)A -,(2,0)B ,直线PA 与直线PB 的斜率乘积为34-,点P 的轨迹为M .(1)求M 的方程;(2)分别过1(1,0)F -,2(1,0)F 做两条斜率存在的直线分别交M 于C ,D 两点和E ,F 两点,且117||||12CD EF +=,求直线CD 的斜率与直线EF 的斜率之积.8.(2023·江苏南通·统考模拟预测)已知()11,A x y ,()22,B x y ,()33,C x y 三个点在椭圆2212x y +=,椭圆外一点P 满足2OP AO = ,2BP CP = ,(O 为坐标原点).(1)求12122x x y y +的值;(2)证明:直线AC 与OB .9.(2023·河北衡水·衡水市第二中学校考模拟预测)已知抛物线C :()220y px p =>和椭圆E :()22101x y a a a+=>+有共同的焦点F (1)求抛物线C 的方程,并写出它的准线方程(2)过F 作直线l 交抛物线C 于P , Q 两点,交椭圆E 于M , N 两点,证明:当且仅当l x ⊥轴时,PQ MN取得最小值10.(2023·河北石家庄·统考一模)已知点(4,3)P 在双曲线C :22221x y a b-=(0a >,0b >)上,过P 作x 轴的平行线,分别交双曲线C 的两条渐近线于M ,N 两点,||||4PM PN ⋅=.(1)求双曲线C 的方程;(2)若直线l :y kx m =+与双曲线C 交于不同的两点A ,B ,设直线PA ,PB 的斜率分别为1k ,2k ,从下面两个条件中选一个(多选只按先做给分),证明:直线l 过定点.①121k k +=;②121k k =.11.(2023·福建漳州·统考二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,且124F F =.过右焦点2F 的直线l 与C 交于A ,B 两点,1ABF V 的周长为(1)求C 的标准方程;(2)过坐标原点O 作一条与垂直的直线l ',交C 于P ,Q 两点,求||||AB PQ 的取值范围;(3)记点A 关于x 轴的对称点为M (异于B 点),试问直线BM 是否过定点?若是,请求出定点坐标;若不是请说明理由.12.(2023·福建泉州·统考三模)已知椭圆22:143x y C +=的左、右顶点分别为A ,B .直线l 与C 相切,且与圆22:4O x y +=交于M ,N 两点,M 在N 的左侧.(1)若||MN =l 的斜率;(2)记直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值.13.(2023·山东·烟台二中校考模拟预测)已知椭圆22122:1(0)x y C a b a b+=>>过点(4,1)P ,且1C 的焦距是椭圆2222222222:x y a b C a b a b ⎛⎫-+= ⎪+⎝⎭的焦距的3倍.(1)求1C 的标准方程;(2)设M ,N 是1C 上异于点P 的两个动点,且0PM PN ⋅= ,试问直线MN 是否过定点?若过,求出定点坐标;若不过,请说明理由.14.(2023·山东青岛·统考一模)已知O 为坐标原点,椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,A 为椭圆C 的上顶点,12AF F △为等腰直角三角形,其面积为1.(1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于P ,Q 两点,点W 在过原点且与l 平行的直线上,记直线WP ,WQ 的斜率分别为1k ,2k ,WPQ △的面积为S .从下面三个条件①②③中选择两个条件,证明另一个条件成立.①S =②1212k k =-;③W 为原点O .注:若选择不同的组合分别解答,则按第一个解答计分.15.(2023·山东济南·一模)已知抛物线2:2H x py =(p 为常数,0p >).(1)若直线:22l y kx pk p =-+与H 只有一个公共点,求k ;(2)贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:||||||||||||AD EF DB DE FC BF ==.16.(2023·山东聊城·统考一模)已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.17.(2023·湖北·校联考模拟预测)已知椭圆2222:1(0)x y E a b a b +=>>过点A ⎛ ⎝.(1)若椭圆E 的离心率10,2e ⎛⎤∈ ⎥⎝⎦,求b 的取值范围;(2)已知椭圆E 的离心率e =,M ,N 为椭圆E 上不同两点,若经过M ,N 两点的直线与圆222x y b +=相切,求线段MN 的最大值.18.(2023·湖北武汉·统考模拟预测)过坐标原点O 作圆22:(2)3C x y ++=的两条切线,设切点为,P Q ,直线PQ 恰为抛物2:2,(0)E y px p =>的准线.(1)求抛物线E 的标准方程;(2)设点T 是圆C 上的动点,抛物线E 上四点,,,A B M N 满足:2,2TA TM TB TN == ,设AB 中点为D .(i )求直线TD 的斜率;(ii )设TAB △面积为S ,求S 的最大值.19.(2023·江苏·统考一模)已知直线l 与抛物线21:2C y x =交于两点()11,A x y ,()22,B x y ,与抛物线22:4C y x =交于两点()33,C x y ,()44,D x y ,其中A ,C 在第一象限,B ,D 在第四象限.(1)若直线l 过点()1,0M,且11BM AM -=l 的方程;(2)①证明:12341111y y y y +=+;②设AOB V ,COD △的面积分别为1S ,2S ,(O 为坐标原点),若2AC BD =,求12S S .20.(2023·湖北·荆州中学校联考二模)已知点()2,2A 为抛物线2:2Γ=y px 上的点,B ,C 为抛物线Γ上的两个动点,Q 为抛物线Γ的准线与x 轴的交点,F 为抛物线Γ的焦点.(1)若90BOC ∠=︒,求证:直线BC 恒过定点;(2)若直线BC 过点Q ,B ,C 在x 轴下方,点B 在Q ,C 之间,且24tan 7BFC ∠=,求AFC △的面积和BFC △的面积之比.21.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知A ,B 为椭圆22221x y a b+=左右两个顶点,动点D 是椭圆上异于A ,B 的一点,点F 是右焦点.当点D的坐标为()1-时,3DF =.(1)求椭圆的方程.(2)已知点C 的坐标为()4,0,直线CD 与椭圆交于另一点E ,判断直线AD 与直线BE 的交点P 是否在一定直线上,如果是,求出该直线方程;如果不是,请说明理由.22.(2023·湖南邵阳·统考二模)已知双曲线()2222:1010,0x y C a b a b-=<的右顶点为A ,左焦点(),0F c -到其渐近线0bx ay +=的距离为2,斜率为13的直线1l 交双曲线C 于A ,B(1)求双曲线C 的方程;(2)过点()6,0T 的直线2l 与双曲线C 交于P ,Q 两点,直线AP ,AQ 分别与直线6x =相交于M ,N 两点,试问:以线段MN 为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.23.(2023·湖南·模拟预测)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12F F ,,上顶点为1B ,若△112F B F 为等边三角形,且点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)设椭圆E 的左、右顶点分别为12A A ,,不过坐标原点的直线l 与椭圆E 相交于A 、B 两点(异于椭圆E 的顶点),直线12AA BA 、与y 轴的交点分别为M 、N ,若||3||ON OM =,证明:直线过定点,并求该定点的坐标.24.(2023·湖南张家界·统考二模)已知曲线C 的方程:()221045x y x -=>,倾斜角为α的直线l 过点()23,0F ,且与曲线C 相交于A ,B 两点.(1)90α=︒时,求三角形ABO 的面积;(2)在x 轴上是否存在定点M ,使直线l 与曲线C 有两个交点A 、B 的情况下,总有OMA OMB ∠=∠如果存在,求出定点M ;如果不存在,请说明理由.25.(2023·湖南·校联考模拟预测)如图,在平面直角坐标系xOy 中,已知直线y =与椭圆2222:1(0)x y C a b a b+=>>交于,P Q 两点(P 在x 轴上方),且65PQ a =,设点P 在x轴上的射影为点N ,PQN V ,抛物线2:2(0)E y px p =>的焦点与椭圆C 的焦点重合,斜率为k 的直线l 过抛物线E 的焦点与椭圆C 交于,A B 两,点,与抛物线E 交于,C D 两点.(1)求椭圆C 及抛物线E 的标准方程;(2)是否存在常数λ||CD λ为常数?若存在,求λ的值;若不存在,说明理由.26.(2023·湖南常德·统考一模)已知双曲线22221(0,0)x y C a b a b-=>>:的右顶点到渐近线C 的右焦点F 作直线MN (不与x 轴重合)与双曲线C 相交于M ,N 两点,过点M 作直线l :()x t a t a =-<<的垂线ME ,E 为垂足.(1)求双曲线C 的标准方程;(2)是否存在实数t ,使得直线EN 过x 轴上的定点P ,若存在,求t 的值及定点P 的坐标;若不存在,说明理由.27.(2023·广东揭阳·校考模拟预测)椭圆、双曲线、抛物线三种圆锥曲线有许多相似性质.比如三种曲线都可以用如下方式定义(又称圆锥曲线第二定义):到定点的距离与到定直线的距离之比为常数e 的点的轨迹为圆锥曲线.当01e <<为椭圆,当1e =为抛物线,当1e >为双曲线.定点为焦点,定直线为对应的准线,常数e 为圆锥曲线的离心率.依据上述表述解答下列问题.已知点(1,0)F ,直线:4l x =动点E 满足到点F 的距离与到定直线l 的距离之比为12(1)求曲线E 的轨迹方程;(2)在抛物线中有如下性质:如图,在抛物线22(0)y px p =>中,O 为抛物线顶点,过焦点F 的直线交抛物线与A ,B 两点,连接AO ,BO 并延长交准线l 与D ,C ,则以CD 为直径的圆与AB 相切于点F ,以AB 为直径的圆与CD 相切于CD 中点.那么如图在曲线E 中是否具有相同的性质?若有,证明它们成立;若没有,说明理由.28.(2023·广东广州·统考二模)已知直线l 与抛物线2:4C y x =交于A ,B 两点,且与x 轴交于点()(),00M a a >,过点A ,B 分别作直线1:l x a =-的垂线,垂足依次为1A ,1B ,动点N 在1l 上.(1)当1a =,且N 为线段11A B 的中点时,证明:AN BN ⊥;(2)记直线NA ,NB ,NM 的斜率分别为1k ,2k ,3k ,是否存在实数λ,使得123k k k λ+=?若存在,求λ的值;若不存在,请说明理由.29.(2023·广东惠州·统考模拟预测)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点()2,0A -在椭圆上且||3AF =.(1)求椭圆C 的方程;(2)点P Q 、分别在椭圆C 和直线4x =上,OQ AP ∥,M 为AP 的中点,若T 为直线OM 与直线QF 的交点.是否存在一个确定的曲线,使得T 始终在该曲线上?若存在,求出该曲线的轨迹方程;若不存在,请说明理由.30.(2023·江苏南通·海安高级中学校考一模)某城市决定在夹角为30°的两条道路EB、EF之间建造一个半椭圆形状的主题公园,如图所示,2AB=千米,O为AB的中点,OD 为椭圆的长半轴,在半椭圆形区域内再建造一个三角形游乐区域OMN,其中M,N在椭圆上,且MN的倾斜角为45°,交OD于G.(1)若3OE=千米,为了不破坏道路EF,求椭圆长半轴长的最大值;(2),当线段OG长为何值时,游乐区域OMNV的面积最大?。
圆锥曲线之抛物线题库 含详解 高考必备
![圆锥曲线之抛物线题库 含详解 高考必备](https://img.taocdn.com/s3/m/eccab4260722192e4536f6da.png)
5、(安徽省皖南八校2008届高三第一次联考)已知线段AB 过y 轴上一点),0(m P ,斜率为k ,两端点A ,B 到y 轴距离之差为k 4)0(>k ,(1)求以O 为顶点,y 轴为对称轴,且过A ,B 两点的抛物线方程;(2)设Q 为抛物线准线上任意一点,过Q 作抛物线的两条切线,切点分别为M ,N ,求证:直线MN 过一定点; 解:(1)设抛物线方程为)0(22>=p py x ,AB 的方程为m kx y +=, 联立消y 整理,得0222=--pm pkx x ;∴pk x x 221=+, 又依题有pk k x x 24||21==+,∴2=p ,∴抛物线方程为y x 42=;(2)设M )4,(211x x ,N )4,(222x x ,)1,(0-x Q ,∵21x k MQ =,∴MQ 的方程为⇒-=-)(241121x x x x y 042121=+-y x x x ; ∵MQ 过Q ,∴0420121=--x x x ,同理0420222=--x x x∴21,x x 为方程04202=--x x x 的两个根;∴421-=x x ; 又421x x k MN+=,∴MN 的方程为)(4412121x x x x x y -+=-∴1421++=x x x y ,显然直线MN 过点)1,0(已知点R (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上 ,且满足230PM MQ +=,0RP PM ⋅=.(Ⅰ)⑴当点P 在y 轴上移动时,求点M 的轨迹C 的方程;(Ⅱ)设1122(,) (,)A x y B x y 、为轨迹C 上两点,且111, 0x y >>,N(1,0),求实数λ,使AB AN λ=,且163AB ||=. 解:(Ⅰ)设点M(x,y),由230PM MQ += 得P(0,2y -),Q(,03x).由0,RP PM ⋅=得(3,2y -)·(x ,32y )=0,即x y 42= 又点Q 在x 轴的正半轴上,0>∴x 故点M 的轨迹C 的方程是24(0)y x x =>.……6分(Ⅱ)解法一:由题意可知N 为抛物线C:y 2=4x 的焦点,且A 、B 为过焦点N 的直线与抛物线C 的两个交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考数学】圆锥曲线经典习题—抛物线大题合集5未命名一、解答题1.已知点A ,B 是抛物线2:2(0)C y px p =>上关于轴对称的两点,点E 是抛物线C 的准线与x 轴的交点.(1)若EAB 是面积为4的直角三角形,求抛物线C 的方程; (2)若直线BE 与抛物线C 交于另一点D ,证明:直线AD 过定点.2.已知定点()1,0A ,P 是直线l :1x =-上一动点,过P 作l 的垂线与线段PA 的垂直平分线交于点M .M 的轨迹记为C . (1)求C 的方程;(2)直线OP (O 为坐标原点)与C 交于另一点B ,过P 作l 垂线与C 交于D ,直线BD 是否过平面内一定点,若是,求出定点坐标;若不是,说明理由.3.已知点M 到点()3,0F 的距离比它到直线:50l x +=距离小2 (Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)过点()(),00P m m >作互相垂直的两条直线12,l l ,它们与(Ⅰ)中轨迹E 分别交于点,A B 及点,C D ,且,G H 分别是线段,AB CD 的中点,求PGH ∆面积的最小值. 4.已知抛物线C :()220x py p =>,其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线1l ,2l 交于点M (Ⅰ)求抛物线C 的方程(Ⅱ)若12l l ⊥,求三角形MAB △面积的最小值5.已知抛物线 ,其焦点到准线的距离为2,直线 与抛物线 交于 , 两点,过 , 分别作抛物线 的切线 , , 与 交于点 . (Ⅰ)求 的值;(Ⅱ)若 ,求 面积的最小值.6.已知抛物线C :2y 2px(p 0)=>过点(M 4,.-()1求抛物线C 的方程;()2设F 为抛物线C 的焦点,直线l :y 2x 8=-与抛物线C 交于A ,B 两点,求FAB的面积.7.已知抛物线E :24y x =的准线为l ,焦点为F ,O 为坐标原点。
(1)求过点O 、F ,且与l 相切的圆的方程;(2)过F 点的直线交抛物线E 于A B 、两点,点A 关于x 轴的对称点为A ',且点A '与点B 不重合,求证:直线A 'B 过定点.8.已知抛物线E :22x py =的焦点为F ,准线为l ,l 与y 轴的交点为P ,点M 在抛物线E 上,过点M 作MN l ⊥于点N ,如图1.已知3cos 5FMN ∠=,且四边形PFMN 的面积为72.(1)求抛物线E 的方程;(2)若正方形ABCD 的三个顶点A ,B ,C 都在抛物线E 上(如图2),求正方形ABCD 面积的最小值.9.已知F 为抛物线2:2(0)C y px p =>的焦点,过F 垂直于x 轴的直线被C 截得的弦的长度为4.(1)求抛物线C 的方程;(2)过点(,0)m ,且斜率为1的直线被抛物线C 截得的弦为AB ,若点F 在以AB 为直径的圆内,求m 的范围.10.已知抛物线2:(0)C y ax a =>的焦点为F ,直线2x =与x 轴相交于点M ,与曲线C 相交于点N ,且45MN FN = (1)求抛物线C 的方程;(2)过抛物线C 的焦点F 的直线l 交抛物线于,P Q 两点,过,P Q 分别作抛物线的切线,两切线交于点A ,求证点A 的纵坐标为定值.11.已知F 是抛物线2:2(0)C y px p =>的焦点,点(1,)(0)P t t >是抛物线C 上一点,且||2PF =. (1)求t ,p 的值;(2)过点P 作两条互相垂直的直线,与抛物线C 的另一交点分别是A ,B . ①若直线AB 的斜率为25-,求AB 的方程; ②若ABC ∆的面积为12,求AB 的斜率.12.已知抛物线()2:20C y px p =>的焦点与椭圆22162x y +=的右焦点重合.(1)求抛物线C 的方程及焦点到准线的距离; (2)若直线112y x =+与C 交于()11,A x y 、()22,B x y 两点,求12y y 的值. 13.已知抛物线2:2C y px =的焦点为F ,圆22:230T x y x ++-=与y 轴的一个交点为A ,圆T 的圆心为E ,AEF ∆为等边三角形. (1)求抛物线C 的方程(2)设圆T 与抛物线C 交于U 、V 两点,点()00,P x y 为抛物线C 上介于U 、V 两点之间的一点,设抛物线C 在点P 处的切线与圆T 交于M 、N 两点,在圆T 上是否存在点Q ,使得直线QM 、QN 均为抛物线C 的切线,若存在求Q 点坐标(用0x 、0y 表示);若不存在,请说明理由.14.已知抛物线()2:20M y px p =>.(1)设R 为抛物线M 上横坐标为1的定点,S 为圆221():24p x y N -+=的一个动点,若,M N 无公共点,且||RS 的最小值为265128p ,求p 的值; (2)已知,AC BD 分别是抛物线的一条弦,且都不与x 轴垂直,AC 与BD 相交于点(,0)2p,2OA OB p ⋅=-,若四边形ABCD 的四条边都存在斜率且0CD k ≠,求证:12AB CD k k =. 15.抛物线顶点在原点,焦点在x 轴上,且过点(4,4),焦点为F . (1)求抛物线的焦点坐标和标准方程;(2)P 是抛物线上一动点,M 是PF 的中点,求M 的轨迹方程.16.设抛物线2:2(0)C y px p =>的焦点为F ,直线l 与抛物线C 交于不同的两点A ,B ,线段AB 中点M 的横坐标为2,且||||6AF BF +=.(Ⅰ)求抛物线C 的标准方程;(Ⅱ)若真线l (斜率存在)经过焦点F ,求直线l 的方程. 17.已知抛物线22y px =(0)p >焦点为F ,抛物线上横坐标为12的点到抛物线顶点的距离与其到准线的距离相等.(1)求抛物线的方程; (2)设过点的直线l 与抛物线交于A ,B 两点,若以AB 为直径的圆过点F ,求直线l 的方程.18.已知半圆224(0)x y y +=≥,动圆与此半圆相切且与x 轴相切. (1)求动圆圆心的轨迹; (2)是否存在斜率为13的直线l ,它与(1)中所得轨迹的曲线由左到右顺次交于A 、B 、C 、D 四点,且满足2AD BC =,若存在,求出l 的方程;若不存在,说明理由. 19.已知动点P 到直线:2l x =-的距离比到定点(1,0)F 的距离多1. (1)求动点P 的轨迹E 的方程(2)若A 为(1)中曲线E 上一点,过点A 作直线l 的垂线,垂足为C ,过坐标原点O 的直线OC 交曲线E 于另外一点B ,证明直线AB 过定点,并求出定点坐标. 20.已知点P 到直线3y =-的距离比点P 到点()0,1A 的距离多2. (1)求点P 的轨迹方程;(2)经过点()0,2Q 的动直线l 与点P 的轨迹交于M ,N 两点,是否存在定点R 使得MRQ NRQ ∠=∠?若存在,求出点R 的坐标;若不存在,请说明理由.21.已知抛物线,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.22.已知抛物线22(0)y px p =>的准线方程为1x =-. (Ⅰ)求p 的值;(Ⅱ)直线:1l y x =-交抛物线于A 、B 两点,求弦长AB .23.已知动点M 到定点F 1(-2,0)和F 2(2,0)的距离之和为(1)求动点M 的轨迹C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交曲线C 于不同于N 的两点A ,B ,直线NA ,NB 的斜率分别为k 1,k 2,求k 1+k 2的值.24.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点(1,2)P ,11(,)A x y ,22(,)B x y 均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12y y +的值及直线AB 的斜率.25.已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D . (1)若当点A 的横坐标为3,且ADF ∆为等边三角形,求C 的方程;(2)对于(1)中求出的抛物线C ,若点001(,0)()2D x x ≥,记点B 关于x 轴的对称点为E ,AE 交x 轴于点P ,且AP B P ⊥,求证:点P 的坐标为0(,0)x -,并求点P 到直线AB 的距离d 的取值范围.26.已知抛物线:C 22y px =的焦点为F ,圆Γ:22230x y x ++-=与y 轴的一个交点为A ,圆Γ的圆心为E ,AEF ∆为等边三角形.()1求抛物线C 的方程;()2设圆Γ与抛物线C 交于,U V 两点,点()00,P x y 为抛物线C 上介于,U V 两点之间的一点,设抛物线C 在点P 处的切线与圆Γ交于,M N 两点,在圆Γ上是否存在点Q ,使得直线QM AN 、均为抛物线C 的切线,若存在求出Q 点坐标(用00,x y 表示);若不存在,请说明理由.27.已知抛物线E :22y px =上一点()m,2到其准线的距离为2.(1)求抛物线E 的方程;(2)如图A ,B ,C 为抛物线E 上三个点,()8,0D ,若四边形ABCD 为菱形,求四边形ABCD 的面积.28.已知点F 为抛物线C :x 2=2py (p >0) 的焦点,点A(m ,3)在抛物线C 上,且|AF|=5,若点P 是抛物线C 上的一个动点,设点P 到直线260x y --=的距离为1d ,设点P 到直线20y +=的距离为2d . (1)求抛物线C 的方程; (2) 求1d 的最小值; (3)求12d d +的最小值.29.已知椭圆22122:1(0)x y C a b a b +=>>22:2C x py =与椭圆1C 在第一线象限的交点为12A ⎫⎪⎭.(1)求曲线1C 、2C 的方程;(2)在抛物线2C 上任取一点P ,在点P 处作抛物线2C 的切线l ,若椭圆1C 上存在两点关于直线l 对称,求点P 的纵坐标的取值范围.30.在平面直角坐标系xOy 中,已知定点A (1,0),点M 在x 轴上运动,点N 在y 轴上运动,点P 为坐标平面内的动点,且满足0,2PM NA OM ON PO ⋅==+. (1)求动点P 的轨迹C 的方程;(2)点Q 为圆22(2)1x y ++=上一点,由Q 向C 引切线,切点分别为S 、T ,记12,k k 分别为切线QS ,QT 的斜率,当Q 运动时,求1211k k -的取值范围. 31.已知抛物线C :2y =2px (p >0)的准线方程为x =-12,F 为抛物线的焦点 (I )求抛物线C 的方程;(II )若P 是抛物线C 上一点,点A 的坐标为(72,2),求PA PF +的最小值; (III )若过点F 且斜率为1的直线与抛物线C 交于M ,N 两点,求线段MN 的中点坐标。