事业单位考试数量关系:容斥问题

合集下载

数量关系答题技巧:容斥问题解题思路

数量关系答题技巧:容斥问题解题思路

数量关系答题技巧:容斥问题解题思路数量关系技巧包含了数学运算技巧和数字推理技巧两大部分,公务员考试数学运算是最为考生所头疼,其所占分值高并且难度也高。

今天中公教育为考生整理了数量关系答题技巧中的容斥问题解题思路,希望对考生有所帮助!
中公教育专家告诉考生,解答容斥问题需要把握以下公式:
(1)两个集合的容斥关系公式:A+B=A∪B+A∩B
(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
【例题1】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。

A.22
B.18
C.28
D.26
【中公教育解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)。

显然,A+B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22,故答案为A。

【例题2】外语学校有英语、法语、日语教师共27人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4人,三种都能教的有2人,则只能教法语的有多少人( )。

A.4人
B.5人
C.6人
D.7人
【中公教育解析】“由里到外”进行数据标记,进行简单加减运算,因为外语学校有英语、法语、日语教师共27人,27-(8+2+2+1+3+5)=6。

故答案为C。

本文由中公事业单位考试网提供。

2021国家公务员考试行测数量关系:容斥“最值”知多少?

2021国家公务员考试行测数量关系:容斥“最值”知多少?

2021国家公务员考试行测数量关系:容斥“最值”知多少?近年来,行测对于知识点的考察绝对不再仅仅局限于表面上的公式的基本运用,在当今的国家公务员考试中更多的测查考生的一个理解与灵活运用能力,而对于国考行测中经常出现的一类问题-容斥问题,我们现如今的考点也已经从基本公式向着更多的变形考点去延伸,呈贡中公教育专家给大家带来的是关于利用方程思想解决容斥“最值”问题的基本方法。

一、容斥问题基本公式二者容斥:I=A+B-A∩B+m三者容斥:I=A+B+C-A∩B-A∩C-B∩C+A∩B∩C+m二、容斥“最值”问题的题型特征:1. 区域出现重叠;2. 出现“最多”、“最少”、“至多”、“至少”等字眼。

三、经典例题例1. 有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。

那么至少有()人参加了不止一个项目的比赛。

A.7B.10C.15D.20【答案】B。

中公解析:设参加两项的有x人,参加三项的有y 人,则参加不止一项的为x+y人。

根据容斥原理可得:50+40+30-x-2y=100,则x+2y=20。

题目要求是x+y尽可能小,根据x+2y=(x+y)+y,要想保证x+y尽可能小,那么y要尽可能大,又因为x+2y等于定值,所以要想y尽可能大,则x尽可能小,x最小为0,此时y最大为10,此时x+y取得最小值为0+10=10,所以答案为B。

例2. 同学们参加周末兴趣小组,每个小组各有50人参加,已知音乐和美术都参加的有20人,体育和美术都参加的有12人,音乐和体育都参加的有15人,问只参加一个兴趣小组的最少有多少人?A.3B.56C.92D.103【答案】B。

中公解析:设参加三个兴趣小组的人为x人,只参加一个兴趣小组的有y人,有y=(50-20-12+x)+(50-12-15+x)+(50-20-15+x),y=56+3x,要想y最小,即让x最小,x最小为0,此时y取得最小值为56。

考公数量容斥问题

考公数量容斥问题

考公数量容斥问题容斥问题在公务员考试中是一种常见的数学问题,它涉及到集合和计数原理的应用。

在数量关系和资料分析中,容斥问题通常涉及到两个或多个集合,以及它们的交集和并集。

解决容斥问题时,首先需要明确各个集合的元素和范围,然后根据题目要求选择适当的集合运算方法。

常见的集合运算包括并集、交集、差集等。

下面是一个简单的容斥问题示例:一个班里有30个学生,其中10个是数学爱好者,8个是物理爱好者,5个是化学爱好者。

有些学生同时喜欢数学和物理,有些学生同时喜欢数学和化学,有些学生同时喜欢物理和化学。

请问这个班里有多少学生同时喜欢数学、物理和化学?首先,我们可以使用集合的概念来描述这个问题。

设A表示数学爱好者的集合,B表示物理爱好者的集合,C表示化学爱好者的集合。

根据题目,我们有以下信息:A = 10(数学爱好者的人数)B = 8(物理爱好者的人数)C = 5(化学爱好者的人数)A ∩ B(同时喜欢数学和物理的人数)A ∩ C(同时喜欢数学和化学的人数)B ∩ C(同时喜欢物理和化学的人数)我们需要求解的是同时喜欢数学、物理和化学的学生人数,即A ∩ B ∩ C。

根据容斥原理,我们有:A ∩B ∩C = A + B + C - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C将已知数值代入公式中,我们得到:A ∩B ∩C = 10 + 8 + 5 - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C由于题目没有给出同时喜欢数学、物理和化学的学生人数,我们需要使用其他方法来求解。

常用的方法是使用韦恩图来直观地表示集合之间的关系,从而得出结果。

事业单位考试:行测容斥问题

事业单位考试:行测容斥问题

在行测数学运算中,计数问题是一个常考考点,而这类问题也常出现困扰我们很多考生的难题。

容斥问题看起来复杂多变,且题目中的等量关系常常也不是很容易找出来,所以,常常使得我们的考生朋友们在见到这类题目的时候会不知题目所云。

中公教育针对容斥问题进行讲解。

容斥问题是解决集合与集合的交集问题的一类题目。

而容斥问题的解题思路如它的名称所言——先容后斥。

也就是在计算容斥问题时,先把满足于某条件各个集合包含的对象的数目先以加和的形式计算出来,也就是“先容”的过程,然后再把计算时计重了的对象数目以减的形式排斥出去,这就是所谓的“后斥”。

我们在计数时必须要想办法保证全面而无重复,这也就是容斥原理的核心思想。

观察近几年的国家公务员考试行测真题,我们发现容斥问题题目条件比较容易出现错综复杂的情况,所以在解决容斥问题我们推荐考生朋友们学会借助图形去解决,即文氏图。

文氏图是用封闭曲线内部的区域来表示集合及其集合之间关系的图形。

例如:某个班有学生100人,在一次考试中,语文考试达到90分的有70人,数学考试达到90分的有75人。

(1)若该班每名学生在语文、数学两科目中至少有一科达到90分以上,求两科都达到90分以上的有多少人?(2)若不知该班各个个体考得如何,求两科达到90分以上的最多有多少人?最少有多少人?如上图1,图中A表示语文考试达到90分的人的集合,图中B表示数学考试达到90分的人组成的集合.解疑释惑:若题目条件如(1)所言,那么上图1中的A、B、C(黄、绿、红三块)则分别表示仅语文达90分以上的集合,仅数学达90分以上的集合和两科都达90分以上的集合,因为“该班每名学生在语文、数学两科目中至少有一科达到90分以上”,所以这三个集合的总数加起来就是全班总人数100。

而根据前文所述的容斥原理解题思路“先容后斥”,咱们在计算这题的过程中就可以得到等量关系:100=70+75-C所以C=70+75-100=45。

该题如第一问则是相对简单的情况,给出两个量,和他们的并集,要求两者交集的情况就用并集减去总量即可。

公务员考试行测数量关系:容斥原理和抽屉原理练习题及答案

公务员考试行测数量关系:容斥原理和抽屉原理练习题及答案

公务员考试行测数量关系:容斥原理和抽屉原理练习题及答案1.某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。

如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?A.148B.248C.350D.5002.36名女生结伴购物,21人买了长裙,24人买了短裙,24人买了超短裙;14人买了长裙和短裙,15人买了短裙和超短裙,13人买了长裙和超短裙;只有一位羞涩的小姑娘一条裙子都没买。

请问,共有几名女生购买了三种裙子?A.1B.5C.8D.93.100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。

那么,参加人数第四多的活动最多有几人参加?A.22B.21C.24D.234.如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。

它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。

且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。

问阴影部分的面积是多少?A.15B.16C.14D.185.三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。

如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是()。

A.A等和B等共6幅B.B等和C等共7幅C.A等最多有5幅D.A等比C等少5幅6.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?A.2B.3C.7D.无法确定7.从1,2,3,…,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?A.23B.24C.25D.268.10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?A.3B.4C.6D.59.某学校1999名学生去游故宫、景山和北海三地,规定每人至少去一处,至多去两地游览,那么至少有多少人游的地方相同?A.35B.186C.247D.10.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?A.2B.3C.7D.无法确定参考答案及解析1.【答案】A。

事业单位考试数量关系:容斥问题

事业单位考试数量关系:容斥问题

容斥问题是考试中比较偏向技巧性和公式性的问题, 大部分同学对容斥问题是比较熟悉的。

但是其中容斥中的极值问题, 确实考试中一个难点和出题的方向。

何为容斥极值问题, 简而言之就是将容斥问题和极值问题结合起来进行考察的题目。

主要包含以下两种:一、公式法求解容斥极值问题, 如果我们求解的是几个集合公共部分的最小值问题, 下面给出了相应的公式, 我们只需要讲数据代入即可。

其中, 公式中的A.B.C.D分别集合,I代表的是全集。

例1、某班30人, 数学22人优秀, 语文25人优秀, 英语20人优秀, 这三科全部优秀的学生至少有多少人?A.7B.6C.5D.4【答案】A。

解析: 根据题意可得全集为30;将数学、语文以及英语分别看成是A.B.C三个集合, 每个集合的数据也已知;最后题目求三科全部优秀的学生至少有多少人, 即求三个集合相交的最小值, 直接用三集合相交的最小值。

三集合相交的最小值=A+B+C-2*I=22+25+20-2*30=7二、极限思想在容斥极值问题中, 若并非求得是几个集合公共部分的最小值问题, 那就不能直接使用上面的公式解决, 要结合具体题目运用极限思想分析, 下面通过一道例题进行说明:例2参加某部门招聘考试的共有120人, 考试内容共有6道题。

1至6道题分别有86人, 88人, 92人, 76人, 72人和70人答对, 如果答对3道题或3道以上的人员能通过考试, 那么至少有多少人能通过考试?A .72B .61 C.58 D .44【答案】D。

解析: 要使通过的人最少, 那么就是对1道, 2道的人最多, 并且应该是对2道的人最多(这样消耗的总题目数最多), 假设都只对了2道, 那120人总共对了240道, 而现在对了86+88+92+76+72+70=484, 比240多了244道, 每个人还可以多4道(这样总人数最少),244/4=61。

3.一次考试共有五道试题, 做对第1.2、3、4、5题的分别占考试人数的81%、91%、85%、79%、74%, 如果做对三道或三道以上为及格, 那么这次考试的及格率至少是多少?(参考第二题的思想, 一个类型)100-81,91,85,79,74=19+9+15+21+26=90 90/3=30, 100-30=70。

2019漳州事业单位数量关系:三者容斥那些事儿

2019漳州事业单位数量关系:三者容斥那些事儿

2019漳州事业单位数量关系:三者容斥那些事儿【导读】中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来数量关系解题技巧:三者容斥那些事儿。

事业单位考试中,容斥问题是一类常考的题型,尤其是三者容斥问题。

此类题目,看起来很复杂,很难解,但实际上是有章可循的,尤其在事业单位考试中,考查的题目一般多数都是利用基本公式就能快速解题的。

因此,只要把基础公式熟烂于心,内化为自己的知识,一定能取得质的突破。

一、基本公式:1.I=A∪B∪C+x=A+B+C-A∩B-A∩C-B∩C+A∩B∩C+x2.I=A+B+C-只包含于两个集合的元素-2×包含于3个集合的元素+x注:x为A、B、C集合之外的部分。

二、例题展示:例题1.对39种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有17种,含乙的有18种,含丙的有15种,含甲、乙的有7种,含甲、丙的有6种,含乙、丙的有9种,三种维生素都不含的有7种,则三种维生素都含的有多少种?A.4B.6C.7D.9中公解析:【答案】A。

解析:首先判断出是容斥问题中的三者容斥问题,设三种维生素都含的食物有m种,根据公式,15+18+17-7-6-9+m+7=39,解得m=4。

所以答案为A。

例题2.某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。

其中,两项同时不合格的5种,三项同时不合格的2种。

问三项全部合格的食品有多少种?A.14B.21C.23D.32中公解析:【答案】C。

解析:首先判断出是容斥问题中的三者容斥问题,则根据公式不合格的食品共有7+9+6-5-2×2=13种,则三项全部合格的食品有36-13=23种。

所以答案为C。

例题3.如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。

它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。

且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。

国家公务员考试行测:数量关系容斥问题

国家公务员考试行测:数量关系容斥问题

国家公务员行测考试中会考察到容斥问题,容斥问题的实质就是数数,在数数的时候能准确将题目中所涉及的量明确分类,而且分类的时候不能重复,也不能遗漏。

下面专家为大家讲解容斥问题的几种题型及解题方法,希望能对考生有所帮助。

一、两者容斥问题如上图所示,一个班级的总人数为I人,其中喜欢语文的有A人,喜欢数学的有B人,两者都不喜欢的有Y人,问两者都喜欢的至少有多少人?解析:这个例题很经典,当我们用一般方法去思考时很容易把自己绕进去,所以在这里专家给大家一个很好用的公式,只要把这个模板套进去,式子自然就列出来了,对于这道题,显然题目让求得量是X,那么根据图可得I = A + B - X + Y,在这里要减去X就是因为,A 和B里边都含有X,相加完之后X重复了一次,所以要把多余的这一次减掉,此时,对应着题目所给的量代入,即可求出X的值。

强化练习:电视台向100个人调查昨天收看电视情况,有62人看过一频道,有34人看过六频道,有11个人两个频道都看过,问:两个频道都没有看过的有多少人?A 4B 15C 17D 25解析:这道题和上面讲述的例题一样,只要明白这道题让求得量是Y就可以了,所以直接套公式I = A + B - X + Y,I、A、B、X分别对应100、62、34、11,代入就能求出Y为15,所以答案选B。

二、三者容斥问题如上图所示,这个模型表示的含义是:一个班一共有学生I人,喜欢语文的有A人,喜欢数学的有B人,喜欢英语的有C人,只喜欢语文和数学的有e人,只喜欢语文和英语的有f人,只喜欢数学和英语的有g人,三科都喜欢的有X人,三科都不喜欢的有Y人,对于这个模型可以表示为I = A + B + C - ( e + f + g ) -2X + Y,对于这个式子一定要明白每一个量表示的是什么意思,这样做题的时候就容易知道让我们求得量是谁,到时候直接套公式就行了。

强化练习:某调查公司对甲、乙、丙三部电影的收看情况向125人进行调查,其中有89人看过甲片,47人看过乙片,63人看过丙片,24人三部电影全看过,20人一部也没看过,则只看过其中两部电影的人数是( )A 69人B 65人 C57人 D 46人解析:这道题的文法跟例题有一点点出入,但变化不大,在公式I = A + B + C - ( e + f + g ) -2X + Y中, e + f + g作为一个整体来看,表示的量就是只看过两部电影的人数,也就是要求的量,所以直接把题目所给出的量代入即可,所求答案为46人,选D。

公考行测数量关系-容斥原理

公考行测数量关系-容斥原理

1、某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。

其中,两项同时不合格的5种,三项同时不合格的2种。

问三项全部合格的食品有多少种:答:本题注意按照不合格得到三个类,进行容斥原理分析,分别设三项全部合格、仅一项不合格的产品有、种,根据题意可得:,,联立解得,,因此三项全部合格的食品有23种。

2、某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。

如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个:答:设三种上网方式都使用的客户有x人,根据三集合容斥原理非标准公式:A+B+C-只满足两个条件的个数-2×满足三个条件的个数=总数-三个条件都不满足的个数,可得方程1258+1852+932-(352-x)-2x=3542,解得x=148.3、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。

那么,50位游客中有多少位恰好去了两个景点:答:方法一:设去A、C景点的游客有人,根据容斥原理标准公式可得:,可得;因此恰好去了两个景点的有人(可根据尾数法选择)。

方法二:设有名游客恰好去了两个景点,根据容斥原理非标准公式可得:(可根据尾数法选择),可得人。

4、工厂组织工人参加技能培训,参加车工培训的有17人,参加钳工培训的有16人,参加铸工培训的有14人,参加两项及以上培训的人占参加培训总人数的2/3,三项培训都参加的有2人,问总共有多少人参加了培训?答:设参加培训的总人数为n。

根据三集合容斥原理非标准公式:A+B+C-只满足两个条件的个数-2×满足三个条件的个数=总数-三个条件都不满足的个数,可得方程17+16+14-(n-2)-2×2=n,解得n=27。

2020年广东肇庆事业单位考试行测:何为“容斥问题”

2020年广东肇庆事业单位考试行测:何为“容斥问题”

2020年广东肇庆事业单位考试行测:何为“容斥问题”在国考和事考当中我们提到数量关系总会望而却步,对于数量关系题目虽然考试数量不多,但是很多小伙伴反应比较难会浪费时间,进而导致答题的时候基本上不给数量关系留“活路”,最终导致分数差强人意。

其实在数量关系当中有这么一类题,不仅运用基本公式求解简单,还可以用画图的方式解决问题,下面就和我一起来了解一下容斥问题当中的一些高频考点和例题。

一、基本概念集合和集合之间相互包容和排斥的关系。

二、容斥问题的解题方法最为常用的解题方法一般为公式法和图解法。

三、容斥问题的常见考点1、两者容斥:例1:某班有60人,参加物理竞赛的有30人,参加数学竞赛的有32人,两科都没有参加的有20人。

同时参加物理、数学两科竞赛的有多少人?A.28B.26C.24D.22【答案】D。

解析:设同时参加物理、数学两科竞赛的有x人,由两者容斥公式(全集=集合A+集合B-集合A、B交集+补集)可得,30+32-x+20=60,解得x=22。

例2:接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?A.25B.15C.5D.3【答案】D。

解析:如图所示,88人有手机,15人有手机没电脑,则88-15=73人既有手机又有电脑,已知76人有电脑,所以有电脑没手机有76-73=3人。

2、三者容斥:例1:某专业有若干学生,现开设有甲、乙、丙三门选修课。

有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,三门课程均未选的有2人。

该专业共有学生多少人?A.48B.50C.52D.54【答案】B。

解析:由三者容斥公式(全集=集合A+集合B+集合C-集合A、B的交集-集合B、C的交集-集合A、C的交集+集合A、B、C的交集+补集)可得,该专业共有学生40+36+30-28-26-24+20+2=50人。

数量关系之三集合容斥问题

数量关系之三集合容斥问题

数量关系之三集合容斥问题在最近几年的公务员考试中,考察了相关的三集合容斥问题,对于这样的一个问题,华图教研中心提醒你,在复习三集合容斥问题时一定不能停留在表面,一定要从实质上理解它,因为现在在考察容斥问题时,考的比较细致。

但是题目难度并不是很大,只要能够掌握它的实质,熟练运用我们的解题方法,那么这种问题肯定能够轻松应对。

一浅识三集合容斥问题对于三集合容斥问题,一定要弄清楚它题目的关键词语及问法。

A+B+C-AB-AC-BC-ABC=总数-三个条件都不满足的情形A+B+C-满足两个条件-2满足三个条件=总数-三个条件都不满足的情形二真题回放1.某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【华图解析】根据题意,“按规定每人至多可投考两个职位”则表明这次招聘中不存在有人报考三个职位的情形,共有42人报名,也表明不存在一个人是三个职位都不报考的情形。

故可以直接代入三集合的标准形公式即可。

22+16+25-8-6-x=42 x=7,故选择A选项。

2.某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。

如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?( )A. 148B. 248C. 350D. 500【华图解析】设三种上网方式都使用的客户有x个,则使用两种上网方式的就有352-x,根据三集合容斥问题的公式,可以得到1258+1852+932-(352-x)—2x=3542 解得x=148 故答案选择A3. 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。

考公容斥问题公式

考公容斥问题公式

考公容斥问题公式考公中的容斥问题公式,那可是个有趣又有点小复杂的家伙!咱先来说说啥是容斥问题。

简单来讲,就是在一个集合里面,有各种子集合,然后要算它们之间的重叠部分或者不重叠部分的数量。

比如说,一个班级里,喜欢数学的有多少人,喜欢语文的有多少人,既喜欢数学又喜欢语文的有多少人,那通过容斥问题的公式就能算出只喜欢数学的、只喜欢语文的,还有都不喜欢的分别有多少人。

容斥问题的公式主要有两个常见的:一是两集合容斥公式:A∪B = A + B - A∩B 。

比如说一个班有 50 个人,参加数学竞赛的有 20 人,参加语文竞赛的有 30 人,其中 10 人两个竞赛都参加了,那参加竞赛的总人数就是 20 + 30 - 10 = 40 人。

二是三集合容斥公式:A∪B∪C = A + B + C - A∩B - B∩C - C∩A + A∩B∩C 。

就像一个公司搞活动,喜欢唱歌的有 30 人,喜欢跳舞的有25 人,喜欢表演小品的有 20 人,既喜欢唱歌又喜欢跳舞的有 10 人,既喜欢跳舞又喜欢表演小品的有 8 人,既喜欢唱歌又喜欢表演小品的有 5 人,三种都喜欢的有 3 人。

那参加活动的总人数就是 30 + 25 + 20 - 10 - 8 - 5 + 3 = 50 人。

我记得之前给学生们讲容斥问题的时候,有个学生一直搞不明白,愁得小脸都皱起来了。

我就给他举了个特别生活化的例子。

咱就说去超市买水果,苹果区有一堆人,香蕉区有一堆人,还有既买了苹果又买了香蕉的人。

让他自己去想想怎么算一共多少人买了水果。

这孩子后来恍然大悟,那种突然开窍的表情,真让人觉得特有成就感。

容斥问题在考公里可重要啦,好多题目都跟它有关。

像那种给出各种条件,让你算人数或者数量的题目,要是不会容斥问题公式,那可就抓瞎啦。

比如说一个单位,会英语的有多少,会日语的有多少,两种都会的有多少,然后问你至少会一种语言的有多少人。

这时候,容斥问题公式就能派上大用场。

2017青海事业单位备考指导:数量关系之容斥问题

2017青海事业单位备考指导:数量关系之容斥问题

青海事业单位备考指导:数量关系之容斥问题2017年青海省上半年事业单位统考预计5月中下旬进行,招考公告将于3月下旬发布。

海事业单位统考信息汇总。

【导读】中公事业单位为帮助各位考生顺利通过事业单位招聘考试!今天为大家带来事业单位行政职业能力测试题。

容斥问题涉及到的相关知识是我们初高中学习的集合的概念,对于容斥问题的考查主要涉及到两者容斥、三者容斥以及容斥极值问题。

事业单位的考试中曾经多次考查,故而,对于容斥问题,大家一定要认真学习,学习两者容斥的相关公式、三者容斥的相关公式以及容斥极值的相关公式。

今天就带领大家一起来学习容斥极值的相关内容。

一、容斥极值的题型特征1、给出全集2、给出各个部分(也即各个集合)3、关注提问:一般求多集合相交的最小值二、容斥极值的公式多集合相交的最小值=所有集合的数据和-(集合个数-1)*全集比如,两集合相交最小值=A+B-I三集合相交最小值=A+B+C-2*I四集合相交最小值=A+B+C+D-3*I其中,A、B、C、D表示集合,I表示全集三、例题精讲例1、某中学在高考前夕进行了4次数学摸底考试,成绩一次比一次好;第一次得80分以上的比例是70%;第二次得80分以上的比例是75%;第三次是85%;第四次是90%;请问在四次考试中都得80分以上的学生的百分比至少是多少?A 40%B 30%C 20%D 10%【答案】C【中公解析】根据常识可以判断全集为100%;将每次考试看成是一个集合的话,第一次考试80分以上是A集合;第二次考试80分以上是B集合;第三次80分以上是C集合;第四次80分以上是D集合,那么这道题目求的就是四集合相交的最小值,直接用四集合相交的公式就可以。

四集合相交最小值=A+B+C+D-3*I=70%+75%+85%+90%-3*100%=20%例2、某班30人,数学22人优秀,语文25人优秀,英语20人优秀,这三科全部优秀的学生至少有多少人?A 7B 6C 5D 4【答案】A【中公解析】根据题意可得全集为30;将数学、语文以及英语分别看成是A、B、C三个集合,每个集合的数据也已知;最后题目求三科全部优秀的学生至少有多少人,即求三个集合相交的最小值,直接用三集合相交的最小值。

行测数量关系考点:容斥问题知识点储备

行测数量关系考点:容斥问题知识点储备

行测数量关系考点:容斥问题知识点储备一、考情分析容斥问题在最近几年的国家公务员考试中出现的频率逐渐增大,尤其是最近两年都有出现。

难度也逐渐增大,不再拘泥于最常规的两个集合和三个集合的考查方式。

在各省市的公务员考试中,容斥问题仍然出现活跃。

因此,这一题型还是需要重点关注。

二、基本概念涉及多个相互关联的集合,要求根据集合间的相互关系计算集合中元素个数的问题称为“容斥原理”问题。

三、技巧方法(一)公式法解两个集合容斥问题两个集合的容斥问题公式:A∪B=A+B-A∩B三个集合的容斥问题公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C(二)文氏图法解两个集合容斥问题四、例题精讲例题1:某班有56人,每人至少参加一个兴趣小组,参加生物组的有46人,参加科技组的有28人,两组都参加的有多少人?A.10B.18C.24D.30解析:集合A={参加生物组的人}、集合B={参加科技组的人},由A∪B=A+B-A∩B知两组都参加的有A∩B=46+28-56=18人。

例题2:某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人。

A.57B.73C.130D.69解析:我们来用集合Ⅰ表示所有的青年员工,A表示会骑自行车的人,B表示会游泳的人,则A∩B表示既会骑车又会游泳的人,现在设A∩B=x,把题中的数据一一填到表格里面,可以得到:直接计算可以知道,68-x+x+62-x+12=85,因此x=57。

例题3:某专业有学生50人,现开设有甲、乙、丙三门选修课。

有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?A.1人B.2人C.3人D.4人解析:三个集合的容斥原理问题。

至少选了一门课的有40+36+30-28-26-24+20=48人,所以三门都没选的有50-48=2人。

数量关系交集和人数

数量关系交集和人数

数量关系交集和人数
事业单位考试中数量关系题型中的容斥问题是比较常考的的类型题,但是这类题目比较简单,基本上大家学习过理论之后都可以做对,容斥问题在事业单位考试中主要考察两类题型,分别是二者容斥和三者容斥问题,下面分别介绍下这两类题型。

首先二者容斥指的是两个集合的相交问题,如果一个集合记为A,另一个集合为B,两者交集为A∩B,补集为M,A集合和B集合中包含的所有对象记为A∪B,所有对象的集合记全集I,则几者之间的关系一是I=A∪B+M,二是A∪B=A+B-A∩B。

在题目中的如何去应用这两个公式我们可以看下下面的这道题目,例如全班同学接受调查,发现班级中喜欢学习语文的有20人,喜欢学习数学的有30人,两者都喜欢的有10人,两者都不喜欢的有5人,求全班一共多少人?首先这个题目是在求全集,所以可以先把A∪B出来,即
20+30-10=40人,其次全班人数即等于40+5=45人。

这就是一个简单的二者容斥的题目,当然还有一些变形,需要同学多做练习,熟练应用公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

容斥问题是考试中比较偏向技巧性和公式性的问题,大部分同学对容斥问题是比较熟悉的。

但是其中容斥中的极值问题,确实考试中一个难点和出题的方向。

何为容斥极值问题,简而言之就是将容斥问题和极值问题结合起来进行考察的题目。

主要包含以下两种:
一、公式法求解
容斥极值问题,如果我们求解的是几个集合公共部分的最小值问题,下面给出了相应的公式,我们只需要讲数据代入即可。

其中,公式中的A、B、C、D分别集合,I代表的是全集。

例1、某班30人,数学22人优秀,语文25人优秀,英语20人优秀,这三科全部优秀的学生至少有多少人?
A.7
B.6
C.5
D.4
【答案】A。

解析:根据题意可得全集为30;将数学、语文以及英语分别看成是A、B、C三个集合,每个集合的数据也已知;最后题目求三科全部优秀的学生至少有多少人,即求三个集合相交的最小值,直接用三集合相交的最小值。

三集合相交的最小值=A+B+C-2*I=22+25+20-2*30=7
二、极限思想
在容斥极值问题中,若并非求得是几个集合公共部分的最小值问题,那就不能直接使用上面的公式解决,要结合具体题目运用极限思想分析,下面通过一道例题进行说明:
例2参加某部门招聘考试的共有120人,考试内容共有6道题。

1至6道题分别有86人,88人,92人,76人,72人和70人答对,如果答对3道题或3道以上的人员能通过考试,那么至少有多少人能通过考试?
A .72
B .61 C. 58 D .44
【答案】D。

解析:要使通过的人最少,那么就是对1道,2道的人最多,并且应该是对2道的人最多(这样消耗的总题目数最多),假设都只对了2道,那120人总共对了240道,而现在对了86+88+92+76+72+70=484,比240多了244道,每个人还可以多4道(这样总人数最少),244/4=61。

3.一次考试共有五道试题,做对第1、2、3、4、5题的分别占考试人数的81%、91%、85%、79%、74%,如果做对三道或三道以上为及格,那么这次考试的及格率至少是多少?
(参考第二题的思想,一个类型)100-81,91,85,79,74=19+9+15+21+26=90
90/3=30,100-30=70。

因为30>26(错的最多的题次),所以直接除以3。

相关文档
最新文档