历年自主招生考试数学试题大全2019年上海复旦大学自主招生数学试题Word版
2006年复旦大学自主招生数学试题(精校word版,无答案)-历年自主招生考试数学试题大全
2006年复旦大学自主招生考试数学试题选择题(共150分,每题5分,答对得5分,答错倒扣2分,不答得0分)1.在(x2−1x)10的展开式中系数最大的项是_____.A.第4、6项B.第5、6项C.第5、7项D.第6、7项2.设函数y=ƒ (x)对一切实数x均满足ƒ (5+x)=ƒ(5−x),且方程ƒ (x)=0恰好有6个不同的实根,则这6个实根的和为____.学科网A.10 B.12 C.18 D.303.若非空集合X={x|a+1≤x≤3a−5},Y={x|1≤x≤16},则使得X⊆X∪Y成立的所有a的集合是_____.A.{a|0≤a≤7}B.{a|3≤a≤7}C.{a|a≤7}D.空集4.设z为复数,E={z|(z−1)2=|z−1|2},则下列_ __是正确的A.E={纯虚数} B.E={实数}C.{实数}⊆E⊆{复数} D.E={复数}5.把圆x2+(y−1)2=1与椭圆x2+2(1)9y+=1的公共点,用线段连接起来所得到的图形为_____.A.线段B.等边三角形C.不等边三角形D.四边形6.在正三棱柱ABC—A1B1C1中,若AB=2BB1,则AB1与C1B所成的角的大小是___.A.60°B.75°C.90°D.105°7.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量、可获利润以及托运所受限制如下表所示:货物体积每箱(米3)重量每箱(吨)利润每箱(百元)甲20 10 8乙10 20 10托运限制110 100在最合理的安排下,获得的最大利润是______百元.A.58 B.60 C.62 D.648.若向量a+3b垂直于向量7a−5b,并且向量a−4b垂直于向量7a−2b,则向量a与b的夹角为___ .A .2π; B .3π; C .4π; D .6π. 9.复旦大学外语系某年级举行一次英语口语演讲比赛,共有十人参赛,其中一班有三位,二班有两位,其它班有五位.若采用抽签的方式确定他们的演讲顺序,则一班的三位同学恰好演讲序号相连.问二班的两位同学的演讲序号不相连的概率是____.A .120 B .140 C .160 D .19010.已知sin α,cos α是关于x 的方程x 2−αx +α=0的两个根,这里α∈R .则3sin α+3cos α=___. A .−1−2; B .1+2; C .−2+2 D .2−2 11.设z 1,z 2为一对共轭复数,如果|z 1−z 2|=6且122z z 为实数,那么|z 1|=|z 2|=____. A .2 B .2 C .3 D .612.若四面体的一条棱长是x ,其余棱长都是1,体积是V (x ),则函数V (x )在其定义域上为____. A .增函数但无最大值 B .增函数且有最大值 C .不是增函数且无最大值 D .不是增函数但有最大值 13.下列正确的不等式是____. A .16<12011k k =∑<17; B .18<12011k k =∑<19; C .20<12011k k =∑<21; D .22<12011k k =∑<23. 14.设{αn }是正数列,其前n 项和为S n ,满足:对一切n ∈Z +,αn 和2的等差中项等于S n 和2的等比中项,则limnx n→∞α=______.A .0B .4C .12D .10015.已知x 1,x 2是方程x 2−(α−2)x +(α2+3α+5)=0(α为实数)的两个实根,则x 12+x 22的最大值为______. A .18 B .19 C .20 D .不存在 16.条件甲:1sin θ+=α.条件乙:sin2θ+cos 2θ=α.则下列________是正确的. A .甲是乙的充分必要条件 B .甲是乙的必要条件C .甲是乙的充分条件D .甲不是乙的必要条件,也不是充分条件 17.已知函数ƒ(x )的定义域为(0,1),则函数g (x )= ƒ(x +c )+ƒ(x −c )在0<c<12时的定义域为____.A.(−c,1+c); B.(1−c,c); C.(1+c,−c); D.(c,1−c);18.函数y=2x+12x-的最值为____.A.y min=54-,y ma x=54;B.无最小值,y ma x=54;C.y min=54-,无最大值D.既无最小值也无最大值19.等差数列{αn}中,α5<0,α6>0且α6>|α5|,S n是前n项之和,则下列___是正确的.A.S1,S2,S3均小于0,而S4,S5,…均大于0B.S1,S2,…,S5均小于0,而S6,S7,…均大于0C.S1,S2,…,S9均小于0,而S10,S11,…均大于0D.S1,S2,…,S10均小于0,而S11,S12,…均大于020.已知角θ的顶点在原点,始边为x轴正半轴,而终边经过点Q(3-,y),(y≠0),则角θ的终边所在的象限为___.A.第一象限或第二象限B.第二象限或第三象限C.第三象限或第四象限D.第四象限或第一象限21.在平面直角坐标系中,三角形△ABC的顶点坐标分别为A(3,4),B(6,0),C(−5,−2),则∠A的平分线所在直线的方程为_____.A.7x−y−17=0; B.2x+y+3=0; C.5x+y−6=0; D.x−6y=0.22.对所有满足1≤n≤m≤5的m,n,极坐标方程11cosnmCθρ=-表示的不同双曲线条数为_____.A.6 B.9 C.12 D.1523.设有三个函数,第一个是y=ƒ(x),它的反函数就是第二个函数,而第三个函数的图像与第二个函数的图像关于直线x+y=0对称,则第三个函数是______.A.y=−ƒ(x);B.y=−ƒ(−x);C.y=−ƒ−1(x);D.y=−ƒ−1(−x);24.设ƒ(x)是定义在实数集上的周期为2的周期函数,且是偶函数.已知当x∈[2,3]时,ƒ(x)=x,则当x∈[−2,0]时,ƒ(x)的解析式为_____.A.x+4; B.2−x; C.3−|x+1|; D.2+|x+1|.25.已知α,b为实数,满足(α+b)59=−1,(α−b)60=1,则α59+α60+b59+b60=_____.A .−2B .−1C .0D .126.设αn 是(2−x )n的展开式中x 项的系数(n=2,3,4,…),则极限2323222lim()nx n→∞+++ααα…=________.A .15B .6C .17D .827.设x 1,x 2∈(0,2π),且x 1≠x 2,不等式成立的有 (1)12(tan x 1+tan x 2)>tan 122x x +; (2) 12(tan x 1+tan x 2)<tan 122x x +;(3)12(sin x 1+sin x 2)>sin 122x x +; (4) 12(sin x 1+sin x 2)>sin 122x x +A .(1),(3)B .(1),(4)C .(2),(3)D .(2),(4)28.方程ƒ(x )=213222123333235x x x x x x x x x ---------=0的实根的个数为_______.A .1个B .2个C .3个D .无实根29.如图所示,半径为r 的四分之一的圆ABC 上,分别以AB 和AC 为直径作两个半圆,分别标有α的阴影部分面积和标有b 的阴影部分面积,则这两部分面积α和b 有_____.CBAbaA .α>bB .α<bC .α=bD .无法确定30.设a ,b 是不共线的两个向量.已知PQ =2a +k b ,QR =a +b ,RS =2a −3b .若P ,Q ,S 三点共线,则k 的值为_____.A .−1;B .−3;C .43-; D .35-;历年自主招生考试数学试题大全专题下载链接:/a760682.html链接打开方法:1、按住ctrl键单击链接即可打开专题链接2、复制链接到网页。
2019年上海中学自主招生数学试卷
2019年上海中学自主招生数学试卷
一、填空题(共11小题,每小题0分,满分0分)
1.已知a≠0,求++=.
2.因式分解:x3﹣3x+2=.#MUSTA
3.已知两二次方程ax2+ax+b=0与ax2+bx+b=0各取一根,这两根乘积为1,求这两根的平方和为.
4.求三边为整数,且最大边小于16的三角形个数为个.
5.已知点C(3,5),D(0,1),A、B两点在x轴上且AB=2.已知点A在x轴右侧,求
C ABCCD的最小值为.
6.如图,正方形ABCD边长为2,点E、F分别为边AB、BC中点,AF分别交线段DE、DB于点M、N,则S△DMN=.
7.已知a>1,解方程:=x.#MUSTA
8.已知:|x i|<1(i=1,2,3,…,n),且|x1|+|x2|+…+|x n|=1000+|x1+x2+…+x n|,则n的最小值为()
A.999B.1000C.1001D.1002
9.已知,在△ABC中,AB=8,AC=6,点D、E分别在边AC、AB上,且AD=2.当△ADE∽△ACB时,AE=.
10.如图,在△ABC中,AB=AC,过点B在∠ABC内部作任一射线,作AH⊥射线于点H,在图上取一点P,使得HP∥BC,且HP=BC.联结AP、CP,求证:AP⊥CP.
11.一个正方形上每条边上有三个四等分点,由这些四等分点,最多可组成多少个三角形?。
2019年高校自主招生考试数学真题分类Word版含解析精心整理(打包9套真题)
2019《名校自主招生》——高校自主招生考试数学真题专题试卷分类解析精心整理打包9套下载含详细答案目录2019年《高校自主招生考试》数学真题分类解析之1、不等式2019年《高校自主招生考试》数学真题分类解析之2、复数、平面向量2019年《高校自主招生考试》数学真题分类解析之3、三角函数2019年《高校自主招生考试》数学真题分类解析之4、创新与综合题2019年《高校自主招生考试》数学真题分类解析之5、概率2019年《高校自主招生考试》数学真题分类解析之6、数列与极限2019年《高校自主招生考试》数学真题分类解析之7、解析几何2019年《高校自主招生考试》数学真题分类解析之8、平面几何2019年《高校自主招生考试》数学真题分类解析之9、排列、组合与二项式定理2019年《高校自主招生考试》数学真题分类解析之专题之1、不等式一、选择题。
1.(2017年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-错误!未找到引用源。
,错误!未找到引用源。
)D.不能确定2.(2018年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-错误!未找到引用源。
B.-错误!未找到引用源。
C.-错误!未找到引用源。
D.-错误!未找到引用源。
3.(2018年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=错误!未找到引用源。
称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( )A.k≥1B.k≤2C.k=2D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+错误!未找到引用源。
2019届复旦附中初升高自招数学试卷
2019年复旦附中自招数学试卷(一)1. 两个非零实数a 、b 满足ab a b =-,求a b ab b a +-的值.2. 已知|211||3||8|m m m -=-+-,求m 的取值范围.3. 若关于x 的不等式020192018ax ≤+≤的整数解为1、2、3、…、2018,求a 的范围.4. 已知ABC 、A BC ''边长均为2,点D 在线段BC '上,求AD CD +的最小值.5. 已知x 、y 为实数,求2254824x y xy x +-++的最小值.6. 在ABC 中,2B C ∠=∠,AD 为A ∠的角平分线,若2AB BD BD AB-=,求tan C ∠的值.(二)1. 等腰梯形ABCD 中,13AB CD ==,6AD =,16BC =,CE ⊥AB .(1)求CE 的长;(2)求BCE 内切圆的半径.2. 定义当0x x =时,0y x =,则称00(,)x x 为不动点.(1)若5x a y x b +=+有两个不动点(6,6)、(6,6)--,求a 、b 的值; (2)若5x a y x b+=+有关于原点对称的不动点,求a 、b 满足的条件.3. 已知()S n 为n 的各位数字之和,例(2019)201912S =+++=.(1)当19502019n ≤≤时,找出所有满足[()]4S S n =的n ;(2)当n 为正整数时,找出所有满足()[()]2019n S n S S n ++=的n .(三)1. 平行四边形两条邻边为7和8,两条对角线为m 、n ,求22m n +的值.2. 已知正整数x 、y 满足2127xy x y ++=,求x y +的值.3. 斐波那契数列为{1,1,2,3,5,8,}n a =⋅⋅⋅,记数列n b 为n a 中每一项除以4的余数,问{}n b 中第2019次出现1时的序数(即第几个数).参考答案(一) 1. 222()22a b a b a b ab ab b a a b a b a b+-+-=-==--- 2. 结合绝对值意义或者图像,3m ≤或8m ≥3. 由101a <-≤,201920182019a ≤-<可得,201912018a -≤<- 4. 4AD CD AD A D AA ''+=+≥=,即最小值为45. 配方,224()(1)33x y x -+++≥,即最小值为36.求出1AB BD=,由正弦定理,sin()sin 223sin sin()22C AB ADB C BD BAD ππ-∠==∠-,结合诱导公式、三倍角公式、化切,可求得tan 12C =,由二倍角公式可求tan 1C = (二) 1.(1)锐角三角比,19213;(2)在13、12、5的三角形中求得内切圆半径2r '=,结合相 似比,213321613r r =⇒=,即所求内切圆半径为3213 2.(1)36a =,5b =;(2)0a ≥且25a ≠,5b =3.(1)找规律,()22S n =或()4S n =,符合的有1957、1966、1975、1984、1993、2002、2011;(2)先确定范围,()28S n ≤,[()]10S S n ≤,∴1981n ≥,再分析讨论,符合的有1987、1990、1993、2005、2008、2011(三)1. 由余弦定理,22226m n +=2. 127121x y x -=≥+,可得42x ≤,结合正整数的条件,分析可得,有(1,42)、(2,25)、(7,8)这些解(x 、y 可换),∴x y +的值为43、27、153. 分析可得,{}n b 周期为6,且前六项为1、1、2、3、1、0,每个周期出现3次“1”,20193673÷=,即第2019次出现1时,在第673个周期内最后一个“1”,即序数为672654037⨯+=。
历年自主招生考试数学试题大全2018年上海复旦大学自主招生数学试题Word版
2018年复旦大学自主招生考试数学试题选择题(每题5分,共150分,答对得5分,答错扣2分,不答得0分) 1.三边均为整数,且最大边长为11的三角形,共有 个. A .20B .26C .30D .362.若a>1,b>1且lg (a+b )=lga+lgb ,则lg (a −1)+lg (b −1)= . A .lg2B .1C .不是与a 、b 无关的常数D .03.已知z ∈C ,若∣z ∣=2-4i ,则z1的值是 . A .3+4i B .i 5453+ C .i 154153+ D .i 254253-4.已知函数f (x )=cos (x k 2316++π)+cos (x k 2316--)=23sin (x 23+π),其中x 为实数且k 为整数.则f (x )的最小正周期为 .A .3πB .2π C .πD .2π5.已知A ={(x ,y )∣y ≥x 2},B={(x ,y )∣x 2+(y −a )2≤1}.则使A∩B=B 成立的充分必要条件为 .A .a=45B .a≥45 C .0<a<1 D .a≥16.已知平面上三角形ABC 为等边三角形且每边边长为a ,在AB 和BC 上分别取D ,E 两点使得AD =BE =3a,连接A ,E 两点以及C ,D 两点.则AE 和CD 之间的最小夹角为 . A .9πa B .3πa C .3π D .以上均不对7.已知数列{a n }满足3a n+1+a n =4,(n≥1),且a 1=9, 其前n 项之和为S n ,则满足不等式∣S n −n −6∣<1251的最小整数是45. A .6B .7C .8D .98.将一个四棱锥的每个顶点染上一种颜色,并使用一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法的总数为 .A .120B .260C .340D .4209.设甲乙两个袋子中装有若干个均匀白球和红球,且甲乙两个袋子中的球数比为1∶3.已知从甲袋中摸到红球的概率为31,而将甲乙两个袋子中的球装在一起后,从中摸到红球的概率为32.则从乙袋中摸到红球率为 . A .97 B . 4519C .3013D .4522 10.方程f (x )=543423322212321---------x x x x x x x x x =0 的实根的个数是 .A .1个B . 2个C .3个D .无实根11.已知a ,b 为实数,满足(a+b )59=−1,(a −b )60=1,则∑=-601)(n n nb a= .A .0121B .−49C .0D .2312.a=21是“直线(a+2)x +3a y +1=0与直线(a −2)x +(a+2)y −3=0相互垂直”的 . A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件13.设函数y =f (x )对一切实数x 均满足f (2+x )=f (2−x ),且方程f (x )=0恰好有7个不同的实根,则这7个不同实根的和为 .A .0B .10C .12D .1414.已知α,β,γ分别为某三角形中的三个内角且满足tan 2βα+=sinγ,则下列四个表达式:(1)tanαtanβ=1 (2)0<sinα+sinβ≤2 (3)sin 2α+sin 2β=1 (4)cos 2α+cos 2β=sin 2γ中,恒成立的是 .A .(1)(3)B .(10(4)C .(2)(3)D .(2)(4)15.设S n =1+2+…+n,n ∈N .则∞→n lim1)32(2++n nS n nS = .A .2B .321C .161 D .6416.复数z =iia 212+-(a ∈R ,i=1-)在复平面上对应的点不可能位于 . A .第一象限B .第二象限C .第三象限D .第四象限17.已知f (x )=asin x +b 3x +4(a ,b 为实数)且f [lg (lg 310)]=5,则f [lg (lg3)]= .A .−5B .−3C .3D .随a ,b 取不同值而取不同值18.已知四棱锥P -ABCD ,底面ABCD 是菱形,∠DAB =3π,PD ⊥平面ABCD ,线段PD =AD ,点E 是AB 的中点,点F 是PD 的中点,则二面角P -AB -F 的平面角的余弦值= .A .21 B .552 C .1475D .1473 19.在(32-)50的展开式中有 项为有理数.A .10B .11C .12D .1320.棱长为a 的正方体内有两球互相外切,且两球各与正方体的三个面相切.则两球半径之和为为 .A .无法确定B .aC .a 233-D .a 255- 21.在集合{1,2,…11}中任选两个作为椭圆方程12222=+by a x 中的a 和b ,则能组成落在矩形区域{(x ,y )||x |<11,|y |<9}内的椭圆个数是 .A .70B .72C .80D .8822.设a ,b ,c 为非负实数,且满足方程02562684495495=+⨯-++++cb a cb a ,则a+b+c的最大值和最小值 .A .互为倒数B .其和为13C .其乘积为4D .均不存在23.给定正整数n 和正常数a ,对于满足不等式a 12+a n+12≤a 的所有等差数列a 1,a 2,a 3,…,和式∑++=1211n n i a的最大值= .A .)1(210+n aB .n a210 C .)1(25+n aD .n a 2524.设z 0(z 0≠0)为复平面上一定点,z 1为复平面上的动点,其轨迹方程为|z 1−z 0|=|z 1|,z 为复平面上另一个动点满足z 1z =−1.则z 在复平面上的轨迹形状是 .A .一条直线B .以01z -为圆心,01z 为半径的圆 C .焦距为012z 的双曲线 D .以上均不对25.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为 .A .3123a π B .343a π C .3242a π D .3243a π 26.已知函数f (x )的定义域为(0,2),则函数g (x )=f (x +c )+f (x −c ) 在 0<21时的定义域为 .A .(1−c ,2+c )B .(c ,2−c )C .(1−c ,2−c )D .(c ,2+c ) 27.设函数f (x )=sin (2x +ϕ),(−π<ϕ<0),y =f (x )图象的一条直线x =8π.则ϕ的值为 .A .4πB .43πC .-43πD .2π28.设f (x )是定义在实数集上的周期为2的周期函数,且是偶函数.已知当x ∈[2,3]时,f (x )=−x ,则当x ∈[-2,0]时,f (x )的表达式为 .A .−3+|x +1|B .2−|x +1|C .3−|x +1|D .2+|x +1|29.当a 和b 取遍所有实数时,则函数f (a ,b )=(a+5−3|cosb|)2+(a −2)|sinb|)2所能达到的最小值为 .A .1B .2C .3D .430.对任意实数x ,y ,定义运算x ºy 为x ºy =a x +b y +c xy ,其中a ,b ,c 为常数,且等式右端中的运算为通常的实数加法、乘法运算.已知1º2=3,2º3=4且有一个非零实数d ,使得对于任意实数x 均有x ºd=x ,则d= .A .-4B .-2C .1D .4历年自主招生考试数学试题大全专题下载链接:/a760682.html链接打开方法:1、按住ctrl键单击链接即可打开专题链接2、复制链接到网页。
历年自主招生考试数学试题大全-2010年上海复旦大学自主招生数学试题
A. 13π /12
B. 11π /12
C. - π /4
D. - 7π/12
答案: A
11、设复数 z cos i sin , w sin i cos 满足 z w = 3 /2 ,则 sin (β - α )
=______.
A.± 3 /2
B. 3 /2 , - 1/2
C.± 1/2
D. 1/2 ,
A. 9 个;
B. 15 个;
C.18 个;
D. 30 个
答案: C 9、对函数 f:[0 ,1] →[0 , 1] ,定义 f 1(x)=f (x),……, f n(x) =f (f n-1(x)), n=1,
2,3,…….满足 f(n x)=x 的点 x∈ [0 ,1] 称为 f 的一个 n- 周期点.现设 f (x)
A. 32 个;
B. 30 个;
C.28 个;
D. 26 个
答案: B
7、给定平面向量( 1,1),那么,平面向量( 1 3 , 1 3 )是将向量( 1,1)经过
2
2
________.
A.顺时针旋转 60°所得;
B.顺时针旋转 120°所得;
C.逆时针旋转 60°所得;
D.逆时针旋转 120°所得;
2010 年复旦大学自主招生考试数学试题 1、设函数 y=f( x)=ex+1,则反函数 x= f -1( y)在 xOy 坐标系中的大致图像是 _________.
y
y y
O
O
x
x
O
x
y
O
x
A
B
C
D
答案: A
2、设 f ( x)是区间 [ a,b] 上的函数,如果对任意满足 a≤x< y≤ b 的 x, y 都有 f ( x)
复旦大学自主招生考试数学试题及答案
1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。
A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。
A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。
2019年《高校自主招生考试》数学真题分类解析之6、数列与极限
高考数学精品复习资料2019.5专题之6、数列与极限一、选择题。
1.(复旦大学)设数列{a n},{b n}满足b n=a n−a n−1,n=1,2,3,…,如果a0=0,a1=1,且{b n}是公比为2的等比数列,又设S n=a1+a2+…+a n,A.0B.C.1D.22.(复旦大学)已知x2−(tan θ+cot θ)x+1=0(0<θ<π),且满足x+x3+…+x2n−1+…3.(复旦大学)设实数a,b,c都不为0,则下列不等式一定成立的是4.(复旦大学)设有4个数的数列为a1,a2,a3,a4,前3个数构成一个等比数列,其和为k,后3个数构成一个等差数列,其和为9,且公差非零.对于任意固定的k,若满足条件的数列的个数大于1,则k应满足A.12k>27B.12k<27C.12k=27D.其他条件5.(复旦大学)设n为一个正整数,记则P(n)是n的一个多项式.下面结论中正确的是6.(复旦大学)A.0<a+b≤10B.0<a+b<10C.a+b>0D.a+b≥107.(复旦大学)A.数列{x n}是单调增数列B.数列{x n}是单调减数列C.数列{x n}或是单调增数列,或是单调减数列D.数列{x n}既非单调增数列,也非单调减数列8.(20xx复旦大学)二、填空题。
9.(华中科技大学) .10.(清华大学等七校联考).三、解答题。
11.(华南理工大学)已知a2+a−1=0,b2+b−1=0,a<b,设a1=1,a2=b,a n+1+a n−a n−1=0(n≥2),b n=a n+1−a·a n.(1)证明数列{b n}是等比数列;(2)求数列{a n}的通项;(3)设c1=c2=1,c n+2=c n+1+c n,证明:当n≥3时,(−1)n(c n−2a+c n b)=b n−1.12.(华中科技大学)已知数列{a n}是公差为d(d≠0)的等差数列,在平面直角坐标系xOy中,直线x=a n与x轴和函数f(x)=2x的图象分别交于点A n(a n,0)和B n(a n,b n).(Ⅰ)记直角梯形A n A n+1B n+1B n的面积为S n,求证数列{S n}是等比数列;(Ⅱ)判断△B n B n+1B n+2的形状(锐角三角形、直角三角形、钝角三角形),并予以证明;(Ⅲ)对于给定的正整数n,是否存在这样的实数d,使得以b n,b n+1,b n+2为边长能构成一个三角形?如果存在,求出d的取值范围;如果不存在,请说明理由.13.(中国科技大学)已知A={x|x=n!+n,n∈N*},B是A在N*上的补集.(1)求证:无法从B中取出无限个数组成等差数列;(2)能否从B中取出无限个数组成等比数列?试说明理由.15.(浙江大学)16.(同济大学等九校联考)设数列{a n}满足a1=a,a2=b,2a n+2=a n+1+a n.(1)设b n=a n+1−a n,证明:若a≠b,则{b n}是等比数列;(2)若(a1+a2+…+a n)=4,求a,b的值.17.(清华大学)证明:正整数数列a1,a2,…,a2n+1是常数列的充分必要条件是其满足性质P:对数列中任意2n项,存在一种方法将这2n项分为两类(每类n个数),使得两类之和相等.18.(清华大学)已知数列{a n},且S n=na+n(n−1).19.(清华大学)请写出所有三个数均为质数,且公差为8的等差数列,并证明你的结论.22.(北京大学)已知由整数组成的无穷等差数列中有三项:13,25,41.求证:2 009为其中一项.23.(北京大学等十三校联考)等差数列a1,a2,…满足a3=−13,a7=3.这个数列的前n项和为S n,数列S1,S2,…中哪一项最小?并求出这个最小值.24.1.D【解析】通过叠加的方法求出数列{a n}的通项,再求出其前n项和,根据极限的运算法则进行计算.根据b1=1,b n=2n−1,得a n−a n−1=2n−1,令n=1,2,…,n,得n个等式,叠加得a n=1+2+…+2n−1=2n−1,从而S n=2n+1−2−n..选D.4.A【解析】根据后3个数成等差数列,前3个数成等比数列设出这四个数,再根据前3个数的和为k,进行分析求解.因为后3个数成等差数列且和为9,故可依次设为:3−d,3,3+d,又因为前3个数成等比数列,则第1个数为:,即+3−d+3=k,化简得:d2−9d+27−3k=0,因为满足条件的数列的个数大于1,需要Δ>0,所以12k>27,选A.5.D【解析】首先要对式子P(n)=k4进行化简,得到一个有确定项数的表达式,再去分析各项的系数特点.6.B【解析】由于a,b是不相等的正数,且a,b的大小对数列的极限值有影响,所以可对a,b的大小9.−ln 2【解析】10.lg 3【解析】a n=lg=lg(n2+3n+2)−lg[n(n+3)]=[lg(n+1)−lg n]−[lg(n+3)−lg(n+2)],所以S n=a1+a2+…+a n=[lg(n+1)−lgn]+[lgn−lg(n−1)]+…+(lg2−lg1)−{[lg(n+3)−lg(n+2)]+[lg(n+2)−lg(n+1)]+…+( lg 4−lg 3)}=[lg(n+1)−lg 1]−[lg(n+3)−lg 3]=lg+lg 3,所以S n=lg 3+lg=lg 3.11.12.13.(1)若能从B中取出无限个数组成等差数列{a m},并设公差为d.则a m=a1+(m−1)d,而n>d时,n!+n,(n+1)!+(n+1),(n+2)!+(n+2),…被d除,其余数分别与n,n+1,n+2,…被d除的余数相同,而这些余数应该是逐一递增的,取得d−1后,又以周期性的形式出现,所以存在n0,使n0!+n0被d除与a m被d除的余数相同.这就说明:n0!+n0是等差数列{a m}中的项,而n0!+n0∈A,故n0!+n0∉B.于是,矛盾就产生了,故假设不成立,即要证明的结论成立.(2)能从B中取出无限个数组成等比数列.例如b m=5m(m∈N*).由于n!+n=n[(n−1)!+1],并且当n>5时,5不能整除(n−1)!+1,故5m∉A,因此,5m∈B.故数列{b m}是从B中取出无限个数组成的等比数列.14.(1)当n=1时,a1=1∈[1,2].假设当n=k(k∈N*) 时,1≤a k≤2成立.则当n=k+1时,a k+1=1+,而1≤a k≤2,故≤≤1.a k+1=1+∈[,2]⊆[1,2],即当n=k+1时,1≤a k+1≤2.综上,1≤a n≤2(n∈N*).(2),而由a n=1+(n≥2)及1≤a n≤2(n∈N*)知,a n·a n−1=a n−1+1∈[2,3],故∈[,](n≥2,n∈N*),所以原式得证.15.如图所示,16.(1)由2a n+2=a n+1+a n得2(a n+2−a n+1)=−(a n+1−a n).b n=a n+1−a n,则b n+1=−b n,∴{b n}是首项为b−a,公比为−的等比数列.(2)由(1)知,b n=(−)n−1·b1,即a n+1−a n=(−)n−1(b−a),∴a2−a1=(−)1−1(b−a),a3−a2=(−)2−1(b−a),…a n+1−a n=(−)n−1(b−a),以上各式相加得:a n+1−a1=(b−a)·,a n+1=a+(b−a)[1−(−)n],即a n=a+(b−a)[1−(−)n−1],∴a1+a2+…+a n=na+(b−a)[n−]=na+(b−a)n−(b−a)+(b−a)(−)n.∵(a1+a2+…+a n)=4,∴,解得.17.这里必要性是显然的,下面证明充分性,即满足性质P的2n+1个正整数构成常数列.可用反证法证明:若a1,a2,…,a2n+1不全相等,并且它们从小到大的排列为:a'1≤a'2≤…≤a'2n≤a'2n+1,而且在a'i+1−a'i>0中,最小者为a−a.设S=a1+a2+…+a2n+1,若S为奇数,则由性质P知,每一个a i均为奇数;若S为偶数,则每一个a i 又均为偶数.①当a i均为奇数时,a1−1,a2−1,a3−1,…,a2n+1−1也具有性质P;②当a i均为偶数时,,,,…,也具有性质P.从而可知,a−a一定是偶数.当最小者a−a=2时,我们有:是n个奇偶性相同的正整数之和,也是n个奇偶性相同的正整数之和,所以它们的差:=是偶数,而另一方面,由于a−a=2,故=1,从而产生了矛盾.故正整数数列a1,a2,…,a2n+1为常数列.而当最小者a−a=2k(k>1,k∈N)时,我们对数列{a'i}应用①与②的变换,有限次后,就能得到数列{b'i}(b'i为正整数),而这个数列满足性质P,并且b−b=2.这样{b'i}为常数列,从而正整数数列a1,a2,…,a2n+1亦为常数列.18.19.三个质数组成的公差为8的等差数列只有一个,即:3,11,19.证明如下:当第一个质数为2时,则等差数列为2,10,18,不符合题意;当第一个质数大于或等于3时,设第一个质数分别为:m=3k, n=3k+1, p=3k+2,且k∈N*.则分别有:①3k,3k+8,3k+16;②3k+1,3k+9,3k+17;③3k+2,3k+10,3k+18.对于①,由于3k为质数,故k=1.此时,这三个数为3,11,19;对于②,由于3k+9=3(k+3)不是质数,此种情况不会出现;对于③,由于3k+18=3(k+6)不是质数,此种情况不会出现. 因此,所求的等差数列仅有:3,11,19.20.21.22.41−25=16,25−13=12,16和12的最大公因子是4,此等差数列的公差一定是4的因子,设公差为d,则nd=4,n为正整数,而2 009=41+1 968=41+4×492=41+492×nd,故2 009为其中一项. 23.24.。
2019年《高校自主招生考试》数学真题分类解析之4、创新与综合题
高考数学精品复习资料2019.5专题之4、创新与综合题一、选择题。
1.(复旦大学)设正整数n可以等于4个不同的正整数的倒数之和,则这样的n的个数是A.1B.2C.3D.42.(同济大学等九校联考)设σ是坐标平面按顺时针方向绕原点做角度为错误!未找到引用源。
的旋转,τ表示坐标平面关于y轴的镜面反射,用τσ表示变换的复合,先做τ,再做σ,用σk 表示连续做k次σ的变换,则στσ2τσ3τσ4是A.σ4B.σ5C.σ2τD.τσ2二、解答题。
3.(南京大学)求所有满足tan A+tan B+tan C≤[tan A]+[tan B]+[tan C]的非直角三角形.4.(浙江大学)如图,一条公路两边有六个村庄,要建一个车站,要求到六个村庄的距离之和最小,应该建在哪里最合适?如果再在边上增加一个村庄呢?5.(清华大学)A、B两人玩一个游戏,A选择n枚硬币,B根据自己的策略将这些硬币全部摆放在位点上,之后A选取一个至少有2枚硬币的位点,取走一枚硬币,再将另一枚硬币移动到相邻位点,A若在有限步内根据规则在指定点P处放上一个硬币则获胜.问在一条有5个位点的线段和7个位点的圆环上,A分别至少选择多少枚硬币时,无论点P的位置如何均可保证获胜?6.(清华大学)有64匹马,每匹马的速度保持不变且各不相同,现通过比赛来完成排名,若每场比赛最多只能有8匹马参赛,问理想状态下能否在50场比赛内完成排名?7.(清华大学)有100个集装箱,每个集装箱装有两件货物.在取出来的过程中货物的顺序被打乱了,现在按一定的规则将货物依次放入集装箱中.集装箱的体积都是1,且每个集装箱最多放两件货物,若装了一件货物后装不下第二件货物,那么就将这个集装箱密封,把第二件货物装到下一个集装箱中.问在最坏情况下需要多少个集装箱?8.(清华大学)请写出一个整系数多项式f(x),使得错误!未找到引用源。
+错误!未找到引用源。
是其一根.9.(清华大学)将长为n的棒锯开,要求锯成的每段长都是整数,且任意时刻,锯成的所有棒中最长的一根严格小于最短的一根的2倍,如6只能锯一次,6=3+3,而7能锯2次,7=4+3,4又能锯为2+2,问长为30的棒最多能锯成几段?若a,b,c中没有1,则a≥2,b≥2,c≥2,a+b+c=abc化为错误!未找到引用源。
兰生复旦中学2019年自主招生测试题
兰生复旦中学2019届九年级自主招生数学模拟试题3班级 座号 姓名 成绩一、填空、选择题(每题5分共50分)1、从1-,1,2这三个数中,任取两个不同的数作为一次函数y ax b =+的系数,a b ,则一次函数y ax b =+的图象不经过第三象限的概率是 .2、 定义一种运算*“”:当a b ≥时,22a b a b *=+;当a b <时,22a b a b *=-,则方程212x *=的解是3、 方程2(2000)1999200110x x +⨯-=较小的一个根是________.4、 已知:如图,⊙O 是△ABC 的外接圆,AD 是BC 边上的高,BD =8cm ,CD =3cm ,AD =6cm ,则直径AM =________cm .5、科学家研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153 cm ,下肢长为92 cm ,该女士穿的高跟鞋鞋跟的最佳高度约为______________ cm.(精确到0.1 cm)6、使不等式2x x <成立的x 的取值范围是( )A .1x >B .1x <-C .11x -<<D . 10x -<<或01x <<7、按下列图示的程序计算,若开始输入的值为x =3,则最后输出的结果是A .6B .21C .156D .2318、如图,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有 ( )(A )4个 (B )8个 (C )12个 (D )16个9、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为( )A.512B.2C.25D.513 10、 如图,在梯形ABCD 中,AD //BC ,对角线AC ⊥BD ,且AC =12,BD =9,则此梯形的 中位线长是 ( )A .10B .212 C .152 D .12 第9题 第10题A第4题 B CD M · O输入x 计算(1)2x x +的值>100输出结果否 是 P y -5-555.................... A D B二、解答题11、(8分)京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?12、(10分)用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE 外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(4分)(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.(6分)EB AC B A MC D M 图3 图4 图1 图213、如图Rt △ABC 的两条直角边4BC 3AC ==、, 点P 是边BC 上的一动点(P 不与B 重合)以P 为圆心作⊙P 与BA 相切于点M 。
复旦大学自主招生试题
复旦大学自主招生试题(正文)复旦大学自主招生试题自主招生,作为一种独特的选拔方式,给予了高中生更多展示自己的机会,而复旦大学作为一所顶尖的综合性大学,其自主招生试题更是备受考生关注。
本文将通过介绍复旦大学自主招生试题的一些例子,分析其考查内容和要求。
一、数学试题1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求函数f(x)在区间[-2, 3]上的最小值和最大值。
分析:首先,我们需要先求出函数f(x)的导函数f'(x),然后再通过导函数的零点来找出函数f(x)的极值点。
根据极值的定义,我们可以通过求解f'(x) = 0来得到。
2. 某商店商品价格打9折,然后再减去10元,最后的价格是原价的40%。
求该商品的原价。
分析:假设原价为x元,那么根据题意,我们可以得到以下等式:0.9x - 10 = 0.4x。
通过解这个方程,我们可以求出该商品的原价x。
二、英语试题1. 阅读下面短文,并根据短文内容完成后面的题目。
Most people know that exercise is good for their health. Regular physical activity can prevent a multitude of diseases and improve one’s overall well-being. However, it is essential to find an exercise routine that suits your lifestyle and preferences. In this regard, yoga is a great option for many.Yoga combines physical poses, breathing exercises, and meditation to promote a healthy mind and body. The slow and controlled movements help build flexibility, strength, and balance. Additionally, the focus on deep breathing and mindfulness promotes relaxation and stress reduction.Furthermore, yoga can be practiced by people of all ages and fitness levels. From beginner classes to advanced poses, there are variations suitable for everyone. It is a versatile practice that can be adapted to individual needs and goals.Based on the information provided in the passage, answer the following questions:a. What are the benefits of regular exercise?b. What aspects does yoga combine?c. Why is yoga suitable for people of all ages and fitness levels?三、文学试题阅读下面的《Active Learning》一文,根据文章内容回答问题。
2019届复附浦分初升高自招数学试卷
2019年复旦附中浦东分校自招数学试卷1. 已知14a a +=,求441a a +的值2. 已知280x mx ++=与2420x x m ++=有公共实根t ,求t 的值3. 求(0,0)关于直线4y x =+翻折后的坐标4.5. 如图,已知AB 为直径,25DCB ︒∠=,求ABD ∠6. 已知2234y x mx m =+-(0)m >与x 轴交于A 、B ,若1123OB OA -=,求m 的值7. 直线y kx b =+经过两点(,)A t t 、(,5)B m m ,0t >,0m >,当m t 为整数,求整数k8. 已知四位数09x yz xyz =⨯,求这个四位数9. 正方形四个顶点都有人,同时从一个顶点走向另一个顶点(随机选边,概率均为12), 求有人相遇的概率10. ()F x 是关于x 的五次多项式,(2)(1)(0)(1)0F F F F -=-===,(2)24F =,(3)360F =,求(4)F11. 已知227100x ax a ++-=无实根,则下列选项必有实根的是( )A. 22320x ax a ++-=B. 22560x ax a ++-=C. 2210210x ax a ++-=D. 22230x ax a +++=12. 直角三角形ABC 中,90C ︒∠=,sin B n =,当B ∠为最小内角时,则n 的范围( )A. 02n <≤B. 112n -<<C. 102n <≤ D. 122n <≤13. 已知2a b +=,22(1)(1)4a b b a--+=-,则ab 的值为( ) A. 1 B. 1- C. 12- D. 1214. 已知互不相等的整数数列12{,,,}n i i i ⋅⋅⋅,2n ≥,当p q <时,p q i i >,称为“逆序”,若正整数数列126{,,,}a a a ⋅⋅⋅中,“逆序”有2组,则651{,,,}a a a ⋅⋅⋅中“逆序”有( )组A. 34B. 28C. 16D. 1315. 已知[]x 为不超过x 的最大整数,解方程2[]3x x -=16. 如图已知8AO =,AB AC =,4sin 5ABC ∠=,COE ADE S S =(1)求BC 的长;(2)求经过C 、E 、B 的二次函数的解析式17. 已知AB 为直径,C 是AC 中点,DF 为切线,切点为点B(1)求证:AC CD =;(2)若2OB =,E 为OB 中点,求BH参考答案 1. 422411[()2]2194a a a a+=+--= 2. 6m =-,2t =3. (4,4)-4. 10=20-=,2x =,8y =12= 5. 联结AD ,65︒ 6. 3()()22m m y x x =+-,32m OA =,2m OB =,2m = 7. 5m t k m t -=-,设m nt =,n ∈*N ,∴514511n k n n -==+--,n 取2、3、5,k 为9、7、6 8. 由末两位相同可得,5z =,2y =或7,分析可得四位数为2025或60759. 不相遇的情况有都顺时针或都逆时针两种情况,427128-= 10. 5432()286F x x x x x x =+--+,(4)1800F =11. 25a <<,A 选项,4(1)(2)a a ∆=--在25a <<的情况下恒大于零,故选A12. 045B ︒︒<≤,02n <≤,选A 13. 代入整理出方程2210a a --=,1ab =-,选B14. 26213C -=,选D15. 结合取整函数图像,23x <<,[]2x =,∴x =16.(1)12;(2)22(36)27y x =-17.(1)等腰直角三角形,证明略;(2。
2019年上海复旦大学自主招生数学试题Word版
2019年复旦大学自主招生考试数学试题1.若x>y >1,0<a<b<1,则下列各式中一定成立的是________.A.>B.<C.> D.<2.设a>0,a1,函数f(x)=11xx-+在(1,+)上单调递减,则f(x)_________.A.在(−,−1)上单调递减,在(−1,1)上单调递增B.在(−,−1)上单调递增,在(−1,1)上单调递减C.在(−,−1)上单调递增,在(−1,1)上单调递增D.在(−,−1)上单调递减,在(−1,1)上单调递减3.若要求关于x的函数lg的定义域是(),则a,b 的取值范围是________.A.B.a<0 C.−4a<0D.a=b =04.设是有理数集,集合X={X|X=2+,a,b},在下列集合中(1){2x|x};(2){x/};(3){1/x| x } ;(4){x2|x }中和X相同的集合有________个.A.4个B .3个C .2个D.1个5.设x,y,z>0满足xyz+y+z=12,则++的最大值是________.A.3 B.4 C.5 D.66.定义全集X的子集A的特征函数为f A(X)=1,,0,,Xx Ax A∈⎧⎨∈⎩,这里,XA表示在A在X中的补集,那么,对A,B,下列命题中不准确的是_________。
A.A B.(x)=1−,C.(x)=,D.(x)=+,7.如果一个函数f (x )在其定义区间对任意x ,y 都满足()()22x y f x f y f ++⎛⎫≤⎪⎝⎭,则称这个函数是下凹函数,下列函数(1)f (x )=2x(2)f (x )=x3(3)f (x )=(x >0) (4)f (x )=,0,2,0,x x x x <⎧⎨>⎩ 中是下凹函数的有_______.A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4) 8.若实数x 满足对任意正数a >0,均有x 2<1+a ,则x 的取值范围是________. A .(−1,1) B .[−1,1] C .(−) D .不能确定9.设函数y =210x的图像是曲线C ,曲线C 1和C 2关于直线x =1对称,曲线C 2和C 1关于直线y =x 对称,则C 2是下列哪个函数的图像?A .y =1−2lg xB .y =2−2lg xC .y =2lg x +1D .y =2lgx +210.下列曲线中哪一条拿住两端后不打结?________.A .B .C .D .11.用同样大小的一种正多边形平铺整个平面(没有重叠),有几种正多边形可以铺满整个平面而不留缝隙?______.A .2种B .3种C .4种D .5种12.一个菱形边长与其内切圆的直径之比为k:1(k>1),则这个菱形的一个小于2π的内角等于__________.A .arctan (21k k -B .21k -C .arctan (211k k --) D .arctan211k -13.设a ,b 是实常数,则二元一次方程组1,2,ax by x y a b +=⎧⎨-=--⎩无解的充分必要条件是______.A .2a+b =0且aB .2a+b =0且a+b−1C .a =1,b =−2或a =−1,b=2D .2a+b =014.已知关于x 的方程+22cos 2x=a 在区间(0,2π)内有两个不同的根,则常数a 的取值范围是________.A .(−1,3)B .(−1,2)(2,3) C .[−1,3] D .[−1,2)2,3]15.设X ={0,1,2,3,4,5,6,7,8,9},定义X 上的运算符如下:对任意m ,n m n等于m+n 除以10的余数,给定初值n 0X ,记n 1=n 0n 0,n k =n k −1n 0,k=1,2,3……,则使得数列{n k }取遍X 中所有元素的初值n 0的集合是_______.A .B .XC .{1,3,9}D .{1,3,7,9}16.“要使函数f (x )成立,只要x 不在区间[a ,b ]内就可以了”的意思是_________. A .如果f (x ),则x[a ,b ]B .如果x[a ,b ],则f (x )<0C .如果x[a ,b ],则f (x )D .前面三个解释都不准确17.实轴R 中的集合X 如果满足:任意非空开区间都含有X 中的点,则称X 在R 中稠密,那么,“R 中集合X 在R 中不稠密”的充分必要条件是_________.A .任意非空开区间都不含有X 中的点B .存在非空开区间不含有X 中的点C .任意非空开区间都含有X 的补集中的点D .存在非空开区间含有X 的补集的点18.某种细胞如果不能分裂而死亡,并且一个细胞死亡和分裂为两个细胞的概率都为1/2,现在有两个这样的细胞,则两次分裂后还有细胞存活的概率是________.A .3964B .2564C .3164D .296419.设有n +1个不同颜色的球,放入n 个不同的盒子中,要求每个盒子至少有一个球,则不同的放法有_______.A.(n+1)!种B.n(n+1)!种C.12(n+1)!种D.12n(n+1)!种20.设X是含n(n>2)个元素的集合,A,B是X中的两个互不相交的子集,分别含有m,k(m,k)个元素,则X中既不包含A也不包含B的子集个数是_________.A.B.C.D.21.三棱柱ABC−A’B’C’的底是边长为1的正三角形,高AA’=1,在AB上取一点P,设三角形PA’C’与底的二面角为,三角形PB’C’与底的二面角为,则tan()的最小值为_______.A.33B.63C.83D.38-22.半径为R的球的内部装有4个有相同半径r的小球,则小球半径r可能的最大值是________.A323+. B636+C13+RD525+R23.平面上三条直线x−2y+2=0,x−2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是_________.A.只有唯一值B.可取两个不同值C.可取三个不同值D.可取无穷多个值24.设三角形ABC的三边之比AB:BC:CA=3:2:4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是_______.A.715715,666a b a⎛⎫±⎪⎪⎝⎭B.715715,888a b a⎛⎫±⎪⎪⎝⎭C . 715715,6666a b b a ⎛⎫±±⎪ ⎪⎝⎭D . 715715,8888a b b a ⎛⎫±±⎪ ⎪⎝⎭ 25.设实数a ,b ,c 0,,,bc ca aba b c成等差数列,则下列不等式一定成立的是______. A .|b||ac|B .b2|ac| C .a2D .|b|||||2a c +≤26.已知x 2−(tan )x +1=0(0<<π),且满足x +x 3+…+x2n+1+…=32,则的值是______.A .5,66ππB,63ππ C .2,33ππD .25,,,3366ππππ27.设a >0,极坐标方程,0,所表示的曲线大致是______28.设数列{a n },{b n }满足b n = a n −a n −1,n =1,2,3…,如果a 0=0,a 1=1,且{b n }是公比为2的等比数列,又设S n =a 1+a 2+…+a n ,则limnn nS a →∞=__________.A .0B .12C .1D .229.复平面上点z o =1+2i 关于直线l :|z −2−2i|=|z |的对称点的复数表示是_______. A .−IB .1−IC .1+ID .i30.设实数r >1,如果复平面上的动点z 满足|z |=r ,则动点w =z +的轨迹是________. A .焦距为4的椭圆 B .焦距为4r 的椭圆 C .焦距为2的椭圆D .焦距为2r的椭圆31.给定一组向量a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),c =(c 1,c 2,c 3),如果存在不全为0的实数k 1,k 2,k 3,使得k 1a +k 2b +k 3c =0(0表示0向量),则称向量组a ,b ,c 是线性相关的,下面各组向量中,哪一组向量a ,b ,c 是线性相关的?___________.A .a =(1,2,1),b =(−1,3,2),c =(3,1,0)B . a =(1,2,1), b =(−1,3,2), c =(0,1,−1)C . a =(1,2,0), b =(−1,3,2), c =(0,1,−1)D . a =(1,2,1), b =(−1,0,2), c =(0,1,−1) 32.设向量x =(cos cos),y =cos sin 333θψθψθ⎫⎪⎭,其中02πθ≤≤,如果|x |=|y |,则向量x 和y 的最大值是_________. A .2πB .3π C .23π D .6π。
2019年《高校自主招生考试》数学真题分类解析(打包9套真题试卷解析)-5751
《高校自主招生》高考数学真题专题试卷分类解析打包9套下载,含答案!目录2015年《高校自主招生考试》数学真题分类解析之1、不等式2015年《高校自主招生考试》数学真题分类解析之2、复数、平面向量2015年《高校自主招生考试》数学真题分类解析之3、三角函数2015年《高校自主招生考试》数学真题分类解析之4、创新与综合题2015年《高校自主招生考试》数学真题分类解析之5、概率2015年《高校自主招生考试》数学真题分类解析之6、数列与极限2015年《高校自主招生考试》数学真题分类解析之7、解析几何2015年《高校自主招生考试》数学真题分类解析之8、平面几何2015年《高校自主招生考试》数学真题分类解析之9、排列、组合与二项式定理专题之1、不等式一、选择题。
1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-,)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( )A. B. C. D.5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值范围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2二、填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年复旦大学自主招生考试
数学试题
一、填空题(每题5分,共50分)
1.已知集合A =22{|log (1)0,}x x x x R -->∈,B=1{|221,}x x x x R -->∈,则
A R U ðB= .
2.设数x 满足x +1x =−1,则3003001x x
+= . 3.圆ρ=3θ−5cos θ的圆心的极坐标为 ,其中[0,2)θπ∈.
4.设抛物线y =2x 2+2ax +a 2
与直线y =x +1交于A ,B 两点, 当|A B|最大时,a = .
5.计算:22lim(11)n n n n n →∞++--= . 6.化简:l+3+6+…+(1)2
n n += . 7.一个班有20个学生,其中有3个女生,抽4个人去参观展览馆,恰好抽到l 个女生的概率为 .
8.写出31000在十进制中的最后4位 .
9.设定义在R 上的函数f (x )满足f (x )+220021x f x +⎛⎫
⎪-⎝⎭=4015−x (x ≠1), 则f (2004)= .
10.函数y =1sin 2cos x x
++的最大值是 . 二、解答(本大题共70分)
1.在四分之一个椭圆22
221(0,0,,0)x y x y a b a b
+=>>>上取一点P ,使过点P 椭圆的切线与坐标轴所成的三角形的面积最小.
2.在ABC ∆中,已知tan :tan :tan 1:2:3A B C =,求
AC AB
.
3.在单位正方体A BCD −1111A B C D 中, E 、F 、G 分别是A D 、A 1A 、1A 1B 的中点,求: (l )点B 到面EFG 的距离;
(2)二而角G −EF −1D 的平面角θ.
4的实数根.
5
.已知sin cos (0a a αα+=≤≤
,求sin cos n n αα+关于a 的表达式.
6.设直线l 与双曲线xy =l 交于P 、Q 两点,直线l 与x 轴交于点A ,与y 轴交于点B ,求证:|A P|=|BQ|.
7.已知定义在R 上的函数f (x )=442x x +,121n n S f f f n n n -⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭
⎝⎭⎝⎭L ,n=1,2,3⋯,
(1)求S n ;
(2)是否存在常数M>0对,对任意2n ≥,有
231
111n M S S S ++++≤L ?。