蛋白质分离与纯化技术
蛋白质分离与纯化技术的原理及方法
蛋白质分离与纯化技术的原理及方法蛋白质是生物体内重要的基本分子组成,对于维持正常生命活动和疾病诊断都具有重要的意义。
但是,大多数蛋白质在生物体内含量非常低,而其他非蛋白质物质影响蛋白质的检测和分离,因此需要分离和纯化。
本文将详细介绍蛋白质分离与纯化技术。
一、蛋白质分离技术的原理蛋白质分离技术是指根据生物分子的特异性,将混合的蛋白质样品分离为纯度高的蛋白质样品的一种技术。
蛋白质分离技术主要基于蛋白质之间不同的特异性,如不同蛋白质之间的分子量、等电点、亲和性、化学性质等。
目前,常用的蛋白质分离技术包括血凝素亲和层析,酸碱沉淀,凝胶过滤层析,离子交换层析等。
在这些技术中,用于分离纯化特定蛋白质的介质通常都是指具有某种亲和性的化合物。
例如,离子交换层析的介质是酰胺基结构化支链多孔聚合物,允许基于蛋白质的带电性进行区分和分离。
二、蛋白质纯化技术的原理在蛋白质的分离基础上,蛋白质纯化技术是指将分离出来的蛋白质再次通过特殊的操作方法,使蛋白质纯度相对较高,以获取更精确的蛋白质信息。
纯化方法的选择和分离方法的选择有关。
一般而言,蛋白质分离后,样品中常常含有一定的杂质。
因此,在纯化前应该清洁样品。
清洁样品的方法可以是简单的酸洗化或钠氢硝酸纯化。
为了获得高纯度的蛋白质,需要使用更高效的纯化方法,如离子交换,凝胶过滤,凝胶电泳等。
除此之外,还有一些高端的纯化技术如傅立叶红外显微光谱(FTIR),二维蛋白质凝胶电泳,蛋白质结构分析和序列识别等。
这些纯化技术在制备高纯度蛋白质样品中都有广泛的应用。
三、蛋白质分离和纯化的方法(一)离子交换层析技术离子交换是分离和分析离子化合物的一种方法,其原理是根据样品分子溶液里的离子性质(酸性或碱性)将蛋白质通过介质分离。
离子交换层析主要分为阴离子交换(AEC)和阳离子交换(CEC)两种,每种层析介质都包括两种类型的树脂:强的交换树脂(强酸性或强碱性)和弱的交换树脂。
强交换树脂具有极高的层析能力和选择性,但有时会在操作中造成带电蛋白质的不良堵塞。
蛋白质的分离纯化
蛋白质的分离纯化蛋白质是生命体中最基本的分子之一,它在细胞内发挥着重要的功能。
由于蛋白质的复杂性和多样性,研究人员通常需要从复杂的混合物中分离和纯化蛋白质。
蛋白质的分离纯化是生物化学和生物技术领域中非常重要的一项工作,它为我们深入研究蛋白质的结构和功能提供了必要的条件。
蛋白质的分离纯化可以通过多种不同的方法实现,这些方法包括离心法、凝胶过滤法、电泳法、层析法等。
在选择合适的方法时,研究人员需要考虑到蛋白质的特性以及实验的要求。
离心法是最常用的分离方法之一,在离心过程中,通过调整离心力和离心时间,可以实现不同密度的蛋白质的分层。
这种方法适用于分离大分子量的蛋白质。
凝胶过滤法是利用孔径不同的凝胶将蛋白质分离开来。
通常使用的凝胶有琼脂糖凝胶和聚丙烯酰胺凝胶,这些凝胶具有不同的孔径,可以根据蛋白质的分子量选择合适的凝胶进行分离。
电泳法是基于蛋白质的电荷和分子量差异而进行分离的方法。
最常用的电泳方法是SDS-PAGE电泳,通过使用SDS(十二烷基硫酸钠)对蛋白质进行解性和蛋白质间的形成复合物,使得蛋白质在电泳过程中仅仅受到电场力的影响,从而实现蛋白质的分离。
层析法是一种利用物质在载体上的分配和吸附性质进行分离的方法。
常见的层析方法有凝胶层析、亲和层析、离子交换层析等。
凝胶层析是通过利用载体颗粒的孔径进行分离,亲和层析是将特定配体固定在载体上,与目标蛋白质结合,从而实现分离,而离子交换层析是利用载体表面电荷与目标蛋白质的电荷相互作用进行分离。
在进行蛋白质的分离纯化时,需要注意以下几个关键步骤。
首先是样品制备,通常样品要经过细胞破碎、蛋白质提取等步骤,使得目标蛋白质从复杂的混合物中提取出来。
其次是样品的处理,包括去除杂质、调整蛋白质的溶液环境等。
然后是选择合适的分离方法,根据蛋白质的特性和实验要求来确定最适合的方法。
最后是纯化过程中的监测和分析,通过使用各种蛋白质分析方法,如SDS-PAGE、Western blot等,来确定目标蛋白质的纯化程度和鉴定其存在。
蛋白质分离技术全ppt课件
蛋白质 的分离与纯化
一、 引言
二、 蛋白质(酶)分 离纯化的前处理三、蛋白质(酶来自分离 与纯化四、层析技术
五、电泳技术
六、离心技术
1
一、 引言
• 蛋白质(酶)存在于一切生物体中,是 非常重要的生物大分子。蛋白质是生物 功能的执行者,担负着生物催化、物质 运输、运动、防御、调控及记忆、识别 等多种生理功能。
化膜,暴露出疏水区域,同时又中和了电荷, 破坏了亲水溶胶,蛋白质分子即聚集而形成沉 淀。
26
Salting-in
Salting-out
溶 解 度
盐浓度
27
水化膜
++ + +
碱
+
+
++ +
酸
带正电荷蛋白质 (亲水胶体)
脱水
水化膜 碱
酸
等点电时的蛋白质 (亲水胶体)
脱水
带负电荷蛋白质 (亲水胶体)
脱水
• 盐析法应用最广的还是在蛋白质领域,已有八 十多年的历史,其突出的优点是:
• ①成本低,不需要特别昂贵的设备。 • ②操作简单、安全。 • ③对许多生物活性物质具有稳定作用。
25
⑴ 盐析的基本原理
• 蛋白质溶液为亲水溶胶体系,其稳定因素:水 化膜和电荷。
• 中性盐的亲水性大于蛋白质分子的亲水性。 • 加入大量中性盐后,夺走了水分子,破坏了水
• 3) 酶解法:利用各种水解酶,如溶菌酶、纤维素酶、蜗牛 酶和酯酶等,于37℃,pH8,处理15分钟,可以专一性地将 细胞壁分解。
• 4) 有机溶剂处理法:利用氯仿、甲苯、丙酮等脂溶性溶剂或 SDS(十二烷基硫酸钠)等表面活性剂处理细胞,可将细胞 膜溶解,从而使细胞破裂,此法也可以与研磨法联合使用。
生物制药中的纯化与分离技术
生物制药中的纯化与分离技术生物制药中纯化与分离技术是指从生长在细胞中或微生物中的蛋白质中分离出所需的目标蛋白质的一种技术。
这种技术利用分子大小、电荷、流动性等特性将蛋白质分离出来,使目标蛋白质纯化到99.9%以上。
本文将讨论生物制药中常见的纯化与分离技术及其在生物制药中的应用。
1. 透析透析是一种将离子和小分子物质从蛋白质中除去的方法。
透析技术主要利用膜选择性地筛选分子。
膜可以是人造的例如Amylose树脂,也可以是天然的如酪蛋白。
利用这种技术可以除去体积较小的污染物,使目标蛋白质的纯度得到提高。
2. 电泳电泳是一种基于蛋白质电荷的分离技术。
在电泳实验中,样品被置于注入获得电流的胶体中。
这个胶体具备可以分离蛋白质的网状结构。
电流会引起蛋白质带电的全体向胶体的某个极移动,取决于蛋白质的电荷。
这样,蛋白质就可以分离出来,根据蛋白质的电荷和分子大小,分别形成不同的带。
在生物制药中,这种分离技术最常用于分离小分子处方药物,以及分析生产了多少蛋白质,并确定是否达到预期的纯度。
3. 柔性析柔性析(Soft Gel)是在微球内置入各种树脂甚至基于酸碱度、水性、亲疏水性等特性。
通过改造单元格的特性,在保留不同特性的前提下同时去除掉多余杂质。
柔性析适用于各种具有变异性和特异性的多克隆抗体的准备,也适用于分离和净化由培养基中分泌的多克隆抗体。
4. 亲和层析亲和层析(Affinity Chromatography)被认为是生物制药中最严格的纯化技术之一。
亲和层析是利用可选择地结合目标蛋白质的静态结构将其纯化的,因此是一种高选择性的技术。
技术是通过将特异性结合的化合物连接到某些树脂顺序,然后将这些树脂用于分离目标蛋白质。
根据目标蛋白质和其它污染物分子之间的差异,目标蛋白质可以非常高效地结合到树脂上,而杂质则被过滤掉。
这种技术广泛应用于生产高度纯化的生物制药产品,从而确保符合FDA和EMA的标准。
5. 氨基酸层析氨基酸层析是一种基于不同的氨基酸序列进行分离的技术。
蛋白质的分离和纯化技术
蛋白质的分离和纯化技术蛋白质是生命活动的重要组成部分,广泛存在于个体组织中,参与细胞各方面生理过程。
蛋白质的研究对于生命科学领域的发展有着极为重要的作用。
然而,对于蛋白质的分离与纯化技术,科学家们远非游刃有余。
因此,本文将深入探究蛋白质的分离与纯化技术。
一、蛋白质的分离技术蛋白质的分离技术是指将蛋白质分离出不同的组成分。
这一技术对于深入理解蛋白质的结构与性质具有至关重要的意义。
在蛋白质的分离技术中,一般采用以下几种方法。
1. 色谱法色谱法是一种常用的蛋白质分离技术。
该技术利用分子在色谱柱内路程的长短及其与固定相的亲疏性不同进行分离。
色谱法的种类繁多,包括离子交换色谱、凝胶过滤色谱、逆相色谱等等。
其中,离子交换色谱是一种常用的技术,其原理是利用带电离子在固定相和流动相之间的移动,实现蛋白质分离。
2. 应用电泳法电泳法是一种通过电场力使带电分子(如蛋白质等)在凝胶或液体中运动的技术。
电泳法分为水平电泳和竖直电泳两种。
其中,竖直电泳依托了载体凝胶或聚丙烯酰胺凝胶,通过蛋白质在其上的移动距离从而进行分离。
而水平电泳利用了专门的电泳分离仪器,将蛋白质定向在凝胶内运动,从而完成分离。
3. 超高速离心法超高速离心法是一种通过在高速旋转离心管内快速离心并重复洗涤,分离出不同种类的蛋白质的技术。
其原理是根据分子量大小、形状及密度的不同,将蛋白质分离开来。
超高速离心法的优点在于适用范围广、精度高。
二、蛋白质纯化技术蛋白质纯化技术是指将带有杂质的蛋白质组分经过一系列处理后,得到较为单一、纯度高的蛋白质的技术。
蛋白质纯化技术对于蛋白质结构及性质的研究极为重要。
在蛋白质的纯化技术中,一般采用以下几种方法。
1. 电吸附法电吸附法是一种利用电动势引起蛋白质在吸附固定相上的吸附性分离方法。
其基本原理是电动势过程将分子有序地排列在吸附剂上,从而实现蛋白质的吸附。
该方法适用于小分子量蛋白,具有纯化速度快,操作简便等特点。
2. 亲和层析亲和层析是官能团彼此配对的分子间吸引力引导下发生的某种物质在吸附剂上选择性吸附的分离方法,分离了同种蛋白彼此间在电性等方面的异质。
蛋白质分离纯化技术
蛋白质分离纯化技术
-
目录
CONTENTS
1
蛋白质鉴定
2
蛋白质分离纯化技术
蛋白质分离纯化技 术是生物化学研究 的重要手段,下面 是蛋白质分离纯化 的一些基本技术和
方法
样品准备
样品准备
1.1 细胞破碎
细胞破碎是蛋白质提取的第一步,常见的细胞破 碎方法有物理法、化学法和生物酶学法
蛋白质分离纯化
2.2 根据电荷分离纯化
2.2.1 电泳 电泳是在电场作用下,带电粒子在介质中移动的现象。根据带电粒子在电场中 的移动速度不同,可以将不同电荷的蛋白质分离开来 2.2.2 等电聚焦电泳
等电聚焦电泳是将pH梯度与电泳相结合的技术,可以分离等电点不同的蛋白质
2.2.3 离子交换色谱 离子交换色谱是一种利用离子交换剂将带电粒子 从溶液中分离出来的技术,根据离子交换剂的电 荷性质不同,可以选择性吸附不同电荷的蛋白质
蛋白质分离纯化
2.4 根据生物学活性分离纯化
2.4.1 免疫吸附纯化
免疫吸附纯化是一种利用抗原-抗体之间的特异性结合进行蛋白质纯化的技术。在 免疫吸附纯化中,将特异性抗体包被在固相载体上,再将待纯化的蛋白质溶液通 过该柱子,抗原-抗体复合物会吸附在柱子上,而其他杂质则会被洗脱下来。最后 通过改变柱子的条件,使抗原-抗体复合物解离下来,得到纯化的蛋白质
蛋白质分离纯化
蛋白质分离纯化
2.1 根据分子量分离纯化
2.1.1 透析 透析是一种将溶液中的小分子物质与大分子物质分离开来的方法,主要用于去 除蛋白质中的小分子杂质 2.1.2 凝胶过滤 凝胶过滤是一种根据蛋白质分子大小不同进行分离的技术,大分子不能进入凝 胶内部的通道,而小分子则可以进入 2.1.3 超滤 超滤是一种膜过滤技术,通过不同孔径的超滤膜 ,将分子量不同的蛋白质分离
蛋白质分离和纯化的方法和技术
蛋白质分离和纯化的方法和技术蛋白质是生命体中极其重要的一种物质,它是细胞的基本组成单位,参与了多种生物学过程。
研究蛋白质在细胞中的功能与结构,需要对蛋白质进行高效、可靠的分离和纯化。
本文将介绍常用的蛋白质分离和纯化的方法和技术。
一、离子交换层析离子交换层析是分离蛋白质最常用、最成熟的方法之一。
其原理是利用蛋白质的电荷性质与离子交换树脂的对应性质,进行蛋白质的分离。
离子交换树脂可分为正离子交换树脂和负离子交换树脂两种类型。
正离子交换树脂的功能基团有负电荷,故可吸附具有正电荷的物质,例如氨基酸、多肽或蛋白质N端等;负离子交换树脂的功能基团有正电荷,故可吸附具有负电荷的物质,例如天冬氨酸、谷氨酸、磷酸基或蛋白质C端等。
根据目标蛋白质的电荷性质,选择合适的离子交换树脂进行分离。
离子交换层析速度较快,可分离多种电荷性质的蛋白质,但对样品的盐浓度要求较高,易受pH和盐浓度的影响,操作时需谨慎。
二、凝胶过滤层析凝胶过滤层析是利用孔径大小对蛋白质进行分离的方法。
凝胶过滤层析常用的凝胶有玻璃纤维、纤维素等。
玻璃纤维凝胶一般有不同的颗粒大小,大的颗粒孔径大,小的颗粒孔径小。
蛋白质分子较小,可通过大孔径的颗粒进入凝胶孔隙,而较大的物质被挡在颗粒外部无法穿过凝胶。
因此,蛋白质经过凝胶时易出现分子量排阻效应,使得小分子在大分子之前流出,从而实现了蛋白质的分离。
凝胶过滤层析操作简单,无需特殊设备或条件,但分离程度相对较低,不适宜纯化目标蛋白质。
三、亲和层析亲和层析是利用蛋白质与亲和柱中特定配体发生特异性结合,从而对蛋白质进行分离的方法。
亲和层析适用于具有特定结构、功能或序列的蛋白质,例如抗体、标签化蛋白、细胞受体等。
常见的亲和柱配体有融合蛋白、金属离子、细胞色素C等。
蛋白质样品在亲和柱上进行结合,待不结合蛋白质被洗脱后对结合蛋白质进行洗脱。
亲和层析具有选择性强、纯化程度高等优点,但亲和柱的制备成本较高,操作上也需注意其特异性。
生物制药中的蛋白质分离与纯化技术研究
生物制药中的蛋白质分离与纯化技术研究蛋白质是生物大分子中,具有重要生物学功能的主要分子之一。
蛋白质分离与纯化技术是生物制药中制备高质量重组蛋白质的关键步骤。
在目前的制药领域中,蛋白质经常被用作治疗,诊断和预防疾病的药物。
蛋白质的制备过程需要经过严谨的分离与纯化操作,以确保最终产物具有较高的纯度,并有利于其进一步的应用。
蛋白质分离的方法有很多种,但纯化高品质蛋白质的方法非常具有挑战性。
其中,手动分离的方法已经被取代,并由高通量方法取而代之。
本文将重点介绍几个常见的高通量分离和纯化蛋白质的技术,包括色谱技术,电泳技术和过滤技术,并简单介绍用于提高蛋白质产量的细胞培养技术。
1.色谱技术色谱技术是蛋白质纯化的主要方法之一。
其原理是利用成分在固定相、移动相和物理化学性质等方面的差异,对混合物进行分离。
这些逐渐被过滤的混合物,经过不同的分离途径(如离子交换、反相和尺寸排除技术)达成纯化输出物的目的。
例如,在一个反相高效液相色谱柱中,柱中的固定相是一种碳氢化合物,这些碳氢化合物中的化合物的极性不同,可以根据化合物吸附水的能力来对混合物进行分离。
利用这种方法进行分离后,可以得到高品质的蛋白质,并进行后续的研究。
2.电泳技术在分子量较小的蛋白质中,电泳技术是蛋白质分离和纯化方法的首选之一。
电泳技术基于被分离的蛋白质的分子量和电荷密度的差异,选择恰当的条件进行分离,常用的有SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)、同位素荧光半制动并热雾化质谱等技术。
使用SDS-PAGE,可以在不破坏蛋白质的情况下,通过分子量分离蛋白质。
此外,SDS-PAGE还可以用于与一些特定抗体反应并进行后续分析。
3.过滤技术固定液体膜过滤技术(TFF)是未分子量大和相对重量大的蛋白质进行分离和纯化的一种技术。
该技术利用特殊设计的(反渗透)膜对溶液进行过滤,而不是使用物理和化学特性,这使其在蛋白质纯化中具有独特的优势。
在这种技术中,溶液会流过一个半透性膜,大分子会被留在膜上,并且小分子会被通过膜拦截,从而得到所需的蛋白质。
蛋白质分离与纯化技术的新进展
蛋白质分离与纯化技术的新进展蛋白质是生物学中至关重要的分子之一,其作用在于构成各种细胞和器官、催化生物化学反应以及调节基因表达等诸多功能。
蛋白质结构和功能的研究需要对其进行纯化和分离,而蛋白质分离和纯化技术也在不断发展,下面将对其中的新进展进行介绍。
一、亲和层析技术的发展亲和层析技术是最常用的蛋白质分离纯化方法之一,其基本原理是利用特定的亲和剂与目标蛋白质结合,然后用一个适当的缓冲溶液冲走非结合的杂质,最后再用一种优化的洗脱缓冲剂将结合的蛋白质洗脱下来。
目前,亲和层析技术在实验室中得到广泛应用,其优点在于筛选速度快、选择性强和操作简单。
近年来,亲和层析技术的发展主要集中在以下两个方面:1.新型亲和配体的发现:传统的亲和层析技术都是基于已知的亲和配体设计的,新型的亲和配体的发现可以实现更高的精准度和选择性。
例如,针对分离困难的蛋白质,可以通过“化学漫游”技术筛选出既简单又有效的亲合性配体。
同时,出现了一些具有强大结合能力的配体,如亲和标签、抗体、金属螯合剂等,使得亲和层析技术具有了更加广泛的应用。
2.新型亲和基质的设计:传统的亲和层析基质主要为一般的聚合物基质,其表面容易产生非特异性结合,限制了其应用范围。
近年来,新型亲和基质的设计采用了多种材料,如纤维膜、微米、纳米颗粒等,使其具有更强的选择性和更大的表面积,从而更好地满足了蛋白质的纯化需求。
二、色谱技术的进化色谱技术是蛋白质分离和纯化的主要手段之一。
现代色谱技术主要分为三类:吸附色谱、菜花色谱和离子交换色谱。
其中,离子交换色谱是最常用的技术,其基本原理是通过电荷互作用来分离和纯化蛋白质。
近年来,色谱技术的进化主要表现在以下两个方面:1.纳米和微米柱固相萃取技术:传统的色谱技术需要通过单位时间内蛋白质与固相介质的接触面积来达到分离目的,这限制了分离技术的速度和分辨率。
现在,纳米或微米柱固相萃取技术可以通过自组装等生物技术来制备具有很高选择性的高比表面积柱。
蛋白质分离纯化设计
蛋白质分离纯化设计1. 简介蛋白质分离纯化是一项重要的实验技术,在生物医药、食品科学、农业等领域有着广泛的应用。
通过对蛋白质进行分离纯化,可以获得单一纯度的蛋白质用于后续研究及应用。
本文将详细介绍蛋白质分离纯化的设计方法和常用技术,包括样品准备、分离方法选择、纯化步骤设计等。
同时,我们还将讨论常见的挑战和解决方案,以及如何评估分离纯化效果。
2. 样品准备在进行蛋白质分离纯化前,首先需要准备好样品。
样品的选择和准备对于后续分离纯化过程非常重要。
2.1 选择合适的样品样品可以来自细胞、组织、体液、培养基等。
在选择样品时,需要考虑到蛋白质的种类、表达水平、目标纯化程度以及后续实验需要。
2.2 样品预处理样品在分离纯化前需要进行预处理,以去除可能干扰纯化过程的杂质。
常用的预处理方法包括细胞破碎、离心、除去非蛋白质成分等。
预处理方法的选择应根据样品类型和后续纯化方法进行优化。
3. 分离方法选择根据蛋白质分离的原理和样品特性,我们可以选择合适的分离方法。
常见的分离方法包括离子交换层析、凝胶过滤、透析、亲和层析等。
3.1 离子交换层析离子交换层析是一种基于蛋白质带电性质的分离方法。
可以根据蛋白质的以阴离子或阳离子带电来选择合适的离子交换树脂,实现不同蛋白质的分离纯化。
3.2 凝胶过滤凝胶过滤是一种基于蛋白质大小的分离方法。
通过选择适当的孔径大小的凝胶,可以分离不同分子大小的蛋白质。
3.3 透析透析是一种基于蛋白质分子量和溶液成分的分离方法。
通过选择适当的膜材料和透析缓冲溶液,可以实现蛋白质与小分子化合物的分离。
3.4 亲和层析亲和层析是一种基于蛋白质与配体之间的特异性结合来分离纯化的方法。
选择合适的亲和配体,可以选择性地结合目标蛋白质,从而实现其分离纯化。
4. 纯化步骤设计在选择合适的分离方法后,需要设计纯化步骤来实现目标蛋白质的分离和纯化。
纯化步骤的设计应根据分离方法的特点和目标蛋白质的性质进行优化。
4.1 样品加载将预处理的样品通过适当的装载方式加载到分离纯化柱中,如使用注射器将样品缓慢注入。
蛋白质分离纯化的技术
蛋白质分离纯化的技术前言蛋白质是生物体内非常重要的大分子有机物质,具有各种生物学功能,如结构支持、催化反应、传递信息、运输物质及免疫防御。
而蛋白质的研究和应用,早已成为生命科学的热门领域。
然而,大多数生物体中的蛋白质都混杂着众多的其他大分子物质,为了研究或应用某种特定蛋白质,就需要将它从其它物质中分离纯化出来。
今天我们就要来讲一讲蛋白质分离纯化的技术。
一、蛋白质分离的基本原理蛋白质分离的基本原理是利用不同的性质来分离具有不同特性的蛋白质。
蛋白质的各种性质包括分子大小、分子形状、电荷、亲疏水性、氨基酸序列等。
根据这些不同的性质,分别选择不同的分离纯化方法,可以实现不同程度的分离纯化效果。
二、蛋白质分离纯化技术的分类根据分离方式的不同,蛋白质分离纯化技术可以分为以下几类:1. 分子筛层析:分子筛层析是根据蛋白质的分子大小、形状来进行分离,其原理是在一定的缓冲液中,将特定孔径大小的陶瓷或聚合物微球填充进层析柱,根据蛋白质的分子大小,从层析柱中流出不同的蛋白质。
这种方法可以使蛋白质得到较好的分离纯化,但需要考虑蛋白质的保护。
2. 表面等电聚焦(IEF):表面等电聚焦是根据蛋白质的等电点来进行分离,其原理是在聚丙烯酰胺凝胶电泳板上加上一组垂直于电泳方向的电场,在酸性一端放置一种酸性缓冲液,碱性一端放置一种碱性缓冲液,中间分别加入样品,蛋白质会在等电点处停留,使得不同等电点的蛋白质得到了分离和收获。
这种方法可以进行多品种、高分辨率的蛋白质分离。
3. 亲和层析:亲和层析是根据蛋白质与其他化合物的特异性相互作用进行分离,其原理是特定的化合物置于层析柱中,当特定的蛋白质与化合物结合时,蛋白质就可以纯化出来。
如在层析柱中放入钙离子,就可以纯化出骨钙蛋白,并且可以通过控制钙离子浓度来实现蛋白质的分离。
4. 透析:透析是将样品分子分离于透析膜之内或之外的方法。
通常将混合物放置于透析袋内,在培养基、缓冲液等适当环境中,透析袋内的小分子会从透析膜渗透出去,而较大的蛋白质则被留在透析袋内。
蛋白质的提取与分离纯化——生化实验设计讲解课件讲解学习
值得注意的是,在洗脱时,会有少许配基与蛋白 质一同被洗脱下来,因此常在其后加一凝胶层析 以除去小分子的配基。
凝胶层析法属最常用的蛋白质分离方法。系混合
物随流动相流经装有凝胶作为固定相的层析柱时, 混合物中各物质因分子大小不同而被分离的技术。 在洗柱过程中,分子量最大的物质不能进入凝胶 网孔而沿凝胶颗粒间的空隙最先流出柱外。分子 量最小的物质因能进入凝胶网孔而受阻滞,流速 缓慢,致使最后流出柱外。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
当分子量在15KD到200KD之间时,蛋白质的迁 移率和分子量的对数呈线性关系,符合下式: logMW=K-bX,
式中:MW为分子量,X为迁移率,k、b均为常 数若将已知分子量的标准蛋白质的迁移率对分子 量对数作图,可获得一条标准曲线,未知蛋白质 在相同条件下进行电泳,根据它的电泳迁移率即 可在标准曲线上求得分子量。
玻璃匀浆机
b、细胞器的分离
细胞器的分离一般采用差速离心法。细 胞经过破碎后,在适当介质中进行差速 离心。
三、蛋白质粗提取
从破碎材料或细胞器提出的蛋白质是不纯的, 需进一步纯化。纯化包括将蛋白质与非蛋白质 分开,将各种不同的蛋白质分开。选择提取条 件时,就要考虑尽量除去非蛋白质。一般总是 有其它物质伴随混入提取液中。但有些杂质 (如脂肪)以事先除去为宜。先除去便于以后 操作。常用有机溶剂提取除去。
二、a 细胞的破碎
⑴机械方法 主要通过机械切力的作用使组织细胞破 坏。常用器械有: ①玻璃匀浆器(用两个磨砂面相 互摩擦,将细胞磨碎) ②高速组织捣碎机(转速可 达10000rpm,具高速转动的锋利的刀片),宜用于 动物内脏组织的破碎 ⑵物理方法 主要通过各种物理因素的作用,使组织 细胞破碎的方法。 Ⅰ反复冻融法 Ⅱ冷热变替法 Ⅲ超 声波法 ⑶化学及生物化学方法
蛋白质分离和纯化技术的研究和应用
蛋白质分离和纯化技术的研究和应用蛋白质是生物体内最基本的分子,其担负着细胞结构与功能、物质转运、信号传递等重要生理功能。
由于生物样品中蛋白质种类众多、含量差异较大,为了深入揭示蛋白质的生物学功能和结构特性,必须对蛋白质进行精确分离和纯化。
本文将介绍蛋白质分离和纯化技术的研究和应用。
一、蛋白质分离技术蛋白质分离是指将复杂的蛋白质混合物进行分离,得到不同种类的纯化蛋白质的过程。
在蛋白质分离的基础上,再进行进一步纯化,能够更好地揭示蛋白质的生物学特性。
(一)凝胶电泳凝胶电泳是当前最常用的蛋白质分离技术之一。
它基于蛋白质的电荷、大小、形状和亲疏水性等性质,利用电场将蛋白质分子沿着凝胶移动,实现分子大小的分离。
凝胶电泳具有分离效果好、操作简单易行、样品消耗量小以及可视化等优点。
(二)液相色谱液相色谱(Liquid chromatography)是一种通过化学亲和性、分子大小、极性与非极性等属性分离物质的分离技术。
常用的液相色谱有透析液相色谱、醚基、硅烷基、反相、离子交换、凝胶过滤等类型。
其中反相色谱在蛋白质分离中尤为重要,它基于不同蛋白质在疏水性基质表面的分配系数不同,以蛋白质的亲水性为基础进行分离。
二、蛋白质纯化技术蛋白质纯化是指在获得蛋白质的基础上,通过不同的纯化技术去除其中的杂质,得到纯度高的蛋白质分子。
蛋白质的纯化技术主要分为两类:非特异性纯化和特异性纯化。
(一)非特异性纯化非特异性纯化是指利用物理化学性质对样品进行分步纯化,将目标分子与混杂物质逐步分离开来的方法。
常用的非特异性纯化技术有盐析、凝胶过滤和透析等。
其中,盐析技术是常用的一种非特异性纯化技术,它利用富集目标蛋白质对盐的结合能力高于混杂蛋白质的特性,将混杂蛋白质和目标蛋白质分离。
(二)特异性纯化特异性纯化是指通过蛋白质与配体、抗体等生物学活性团之间的特异作用进行分离纯化的方法。
常用的特异性纯化技术包括亲和层析、免疫亲和层析等。
其中,亲和层析是一种重要的特异性纯化技术,它通过识别目标蛋白质与固定于固相材料上的亲和基团之间的特异性互作来分离纯化蛋白质。
植物生物学中蛋白质的分离和纯化技术研究
植物生物学中蛋白质的分离和纯化技术研究植物蛋白是植物体内最重要的生物分子之一,具有重要的生物学功能。
因此,对植物蛋白的研究具有非常重要的意义。
植物蛋白的分离和纯化技术研究是植物生物学领域的重要研究方向之一。
本文将探讨植物蛋白的分离和纯化技术研究的最新进展。
一、蛋白质分离和纯化的基本原理蛋白质分离和纯化是指将混合的蛋白质在不破坏其生物活性的前提下,将其分离并提纯至一定纯度。
蛋白质分离和纯化的基本原理是利用不同蛋白质的特性差异,采用不同的分离和纯化方法来实现。
目前常用的蛋白质分离和纯化方法包括离子交换层析、凝胶渗透层析、亲和层析、毒素吸附等。
其中,离子交换层析是将蛋白质通过阴阳离子交换静电吸附放出来的技术,通常可以获得较高的纯度;凝胶渗透层析是利用凝胶体的孔径大小来将不同大小的蛋白质分离的扩散技术;亲和层析是利用特异性结合的蛋白质和(或)低分子化合物将需要分离的蛋白质分离出来的技术;毒素吸附则利用毒素对蛋白质的亲和性的吸附,将蛋白质分离出来。
二、植物蛋白质分离和纯化技术研究中的挑战植物体内的蛋白质种类繁多,存在着不同种类蛋白质的组合,并且其在不同组织、不同时期会发生变化。
这些因素会影响到植物蛋白质的分离和纯化效果。
另外,植物蛋白质的量通常很少,且大多具有极为复杂的结构和生物学特性,加之植物蛋白质本身具有水解、缩合等特殊的化学性质,这也使得其分离和纯化过程中会遇到更大的难度。
另外,传统的蛋白质分离和纯化技术通常需要大量的手工操作,而且会产生大量的污染物和垃圾,因此社会对这种技术的使用提出了更高的安全环保要求。
因此,如何开发一种高效、快捷、低成本、环保的植物蛋白分离和纯化技术是需要解决的问题。
三、最新研究成果和发展趋势随着科技不断发展,越来越多的新技术被用于植物蛋白质分离和纯化研究。
以下是一些最新研究成果和发展趋势:1. 基于蛋白质修饰的纯化技术:蛋白质在翻译过程中已经具备了能够被特定修饰拓扑结构抑制的机制,利用这一原因选择性地对这些修饰进行利用便可以提高目标蛋白的质量。
植物蛋白质的分离与纯化技术的研究
植物蛋白质的分离与纯化技术的研究随着人们对健康意识的不断提高,植物蛋白质越来越受到人们的关注,越来越成为了人们日常膳食的重要来源。
而对于植物蛋白质的分离与纯化技术的研究,则是植物蛋白质的生产与应用领域的重要一环。
植物蛋白质的来源植物蛋白质来源广泛,常见的有大豆、花生、黄豆、绿豆、麦芽、麻仁、薏米、玉米、香蕉、南瓜籽等。
其中以大豆和黄豆的蛋白质含量最高,达到40%-50%左右,是植物中蛋白质含量最高的。
植物蛋白质的分离技术植物蛋白质的分离技术就是将混合物中的植物蛋白质与其它物质分离开来的过程。
常用的分离技术有:1.酸碱沉淀法酸碱沉淀法是最早应用于分离植物蛋白质的方法之一。
其原理是通过改变植物蛋白质分子表面电荷,使蛋白质分子发生电荷交互作用而发生沉淀。
这种方法简单易行,但不适合分离提纯众多种植物蛋白质。
2.离子交换法离子交换法是利用离子交换树脂对植物蛋白质的分离。
树脂表面活性基与待分离物质进行离子交换,从而达到有效分离的目的。
3.凝胶层析法凝胶层析法是将柱子内填充凝胶物质,利用分子尺度的分子筛效应,按照蛋白质分子质量大小对待分离物进行层析。
这种方法能同时分离多个蛋白质,但对柱子填充材料的筛选和封装要求较高。
4.尿素溶液电泳法尿素溶液电泳法是利用电力场,将待分离物按照蛋白质分子重量大小进行的分离技术。
在开发初期实验条件比较苛刻,但目前已经被广泛应用于植物蛋白质的分离和纯化。
植物蛋白质的纯化技术植物蛋白质的纯化技术是在植物蛋白质分离的基础上,采用不同的技术手段,进一步提高待分离蛋白质的纯度。
常用的纯化技术有:1.逆流层析法逆流层析法是基于分子互作原理,让电荷相同的蛋白质在酸性或碱性介质中相互作用而成复合物,并进一步进行的分离纯化技术,适用于高水平的纯化要求。
2.氨基酸分析法氨基酸分析法是将待分离物质进行酸水解,分离得到分解后的氨基酸,并通过氨基酸组成的分析,进行分离纯化的技术。
3.种子赋形法种子赋形法,是指将蛋白质进行特殊结构处理,以实现蛋白质的纯化技术。
蛋白质分离与纯化技术的研究进展
蛋白质分离与纯化技术的研究进展蛋白质是生命体中最重要的一类有机物质,具有复杂的结构和多种生物学功能,如酶催化、结构支撑、转运等。
因此,对蛋白质分离与纯化技术的研究一直是生物学、生物技术、医学等领域的热点之一,其应用范围也越来越广泛。
本文将对蛋白质分离与纯化技术的研究进展进行综述。
一、离子交换色谱(IEX)离子交换色谱(IEX)是一种常见的蛋白质分离与纯化技术。
IEX利用基质表面固定的阴离子或阳离子来吸附带有相反电荷的物质。
目前已经有许多改进的离子交换材料出现,其中较为突出的是微球型丙烯酰胺基质(POROS)。
POROS表面均一,多孔、巨分子亲和性分子可在其表面嵌合,提高其分离性能。
同时,随着越来越多的纯化工艺改进,高通量的IEX层析柱也开始得到广泛应用,因此IEX技术的生产效率和纯化效果都得到了很大的提高。
二、亲和层析(AC)亲和层析(AC)是蛋白质分离与纯化中得到广泛应用的一种技术。
它是利用蛋白质与固定在基质上的亲和剂之间的特异性结合,基于蛋白质的独特性质进行分离和纯化的技术。
以硫酸硫铁为例,它可以固定在基质表面形成硫酸硫铁亲和柱,而这种硫酸硫铁的柱就可以选择性地捕获带有His标签的蛋白。
虽然亲和层析技术在分离富含His标签的蛋白时非常有效,但通常情况下其选择性会受到很大的限制,因此在实际应用中需要严格选择适当的亲和剂并控制物理化学条件。
三、凝胶过滤层析(GFC)凝胶过滤层析(GFC)是一种常用的分离大分子蛋白质的技术。
GFC可以根据溶质分子的大小和形状,利用固定在基质表面的交联凝胶纤维网的孔径和排列来实现分离。
由于凝胶纤维网的尺寸、孔径、孔隙度和空隙率的变化可以制定各种粘度的凝胶模板,因此GFC是非常灵活的一种技术。
同时,由于GFC在几乎无酶消化、热变性等极端条件下也可以进行,因此也成为纯化活性蛋白的主要技术之一。
四、逆相层析(RP)逆相层析(RP)是利用疏水作用原理实现蛋白质分离与纯化的一种技术。
蛋白质分离和纯化是蛋白质组学研究中必需的技术
蛋白质分离和纯化是蛋白质组学研究中必需的技术蛋白质组学是研究生物体内蛋白质种类、结构、功能及其相互作用的学科,是在基因组学研究的基础上,通过高通量技术对蛋白质实现全面分析的一门学科。
而蛋白质分离和纯化则是蛋白质组学研究中最常用的技术手段。
一、蛋白质分离技术蛋白质组学研究中最重要的技术之一就是蛋白质分离技术,这是将复杂的蛋白质混合物分离成单一蛋白质易于研究的过程。
蛋白质分离技术可以根据蛋白质的物理化学性质和结构特征来进行分离。
目前常用的蛋白质分离技术有以下几种:1.凝胶电泳技术凝胶电泳是一种以电泳为基础的分离技术,是实验室中最常用的蛋白质分离技术。
凝胶电泳有许多种类型,包括聚丙烯酰胺凝胶电泳、SDS-PAGE、二维凝胶电泳等,其中SDS-PAGE技术最为常用。
SDS-PAGE技术能将分子量相近的蛋白质分离出来,便于后续的鉴定和纯化。
2.色层分离技术色层分离技术以蛋白质的同种电性、不同待测的酶活性(或它的纯化协因子)进行分离。
常见的色层分离技术有离子交换色谱、亲和色谱、凝胶过滤色谱、逆向水相色谱和氢氧化铝柱等。
3.分子筛分离技术分子筛分离技术是一种利用分子质量大小差异进行分离的方法,分子筛通常是指分子筛柱,目前广泛采用的是分子排斥色谱柱,一般以戊二醛或者聚山梨醇等为填料,能有效地分离小分子杂质和行动质量与待纯化蛋白质分子量大致相同的杂质。
二、蛋白质纯化技术蛋白质分离并不能直接得到纯净的蛋白质,还需要进行蛋白质纯化。
通常是利用某些特异性技术或单一的物理和化学性质将蛋白质分离出来。
目前常用的蛋白质纯化技术有以下几种:1.亲和层析技术亲和层析是指通过一种化合物(即配体)固定在搭载材料上,然后靶汔蛋白通过目标亲和化合物和固定在搭载材料上的配体之间相互作用,以此达到纯化目的。
2.透析技术透析是将有机化合物从高浓度的介质中移到低浓度的介质中的方法,以此去除杂质并使蛋白质获得更好的空间构象。
3.分子排除色谱技术分子排除色谱以分子量为依据,通过选择性分离小分子与大分子之间的区别来达到去除杂质和获得纯化的蛋白质。
蛋白质的分离纯化技术
蛋白质的分离纯化技术1、根据蛋白质带电性质不同的分离技术1.1离子交换层析以离子交换剂作为柱填充物,在中性条件下,根据由于蛋白质和多肽的带电性不同而引起的离子交换亲和力的不同而得到分离。
其可分为阳离子柱和阴离子柱两大类, 还有一些新型树脂,如大孔型树脂、均孔型树脂、离子交换纤维素、葡聚糖凝胶琼脂糖凝胶树脂等。
离子交换剂有阳离子交换剂和阴离子交换剂。
当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂可交换基团相同电荷的蛋白质被吸附在离子交换剂上,带同种净电荷越多,吸附力越强。
随后用改变pH或离子强度的办法将吸附的蛋白质按吸附能力从小到大的顺序先后洗脱下来。
1.2电泳法电泳为带电粒子在电场中向与其自身所带电荷相反的电极方向移动的现象。
蛋白质混合样品经过电泳后,被分离的各蛋白质组分的电泳迁移率互不相同,由各蛋白质组分所带的静电荷以及分子大小和形状的不同而达到分离。
现在常用的聚丙烯酰胺凝胶电泳(PAGE),可以因不同蛋白质所带电荷的差异和大小差异高分辨率地分离或分析蛋白质。
在PAGE系统中加入十二烷基磺酸钠(SDS),可以消除蛋白质所带电荷的差异,构成的SDS-PAGE系统是测定蛋白质的相对分子质量最常用的方法。
2、根据蛋白质溶解度不同的分离技术2.1蛋白质的盐析蛋白质在低盐浓度下的溶解度随着盐溶液浓度升高而增加,此称盐溶;当盐浓度不断上升时,蛋白质的溶解度又以不同程度下降并先后析出,此称盐析,从而达到分离纯化的效果。
2.2有机溶剂沉淀法有机溶剂能降低溶液的介电常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度的降低;另有机溶剂与水的作用,能破坏蛋白质的水化膜,故蛋白质在一定浓度的有机溶剂中便沉淀析出。
近年来的研究认为,有机溶剂可能破坏某种键如氢键,使空间结构发生变化,致使一些原来包在内部的疏水集团暴露于表面并与有机溶剂的疏水基团结合形成疏水层,从而使蛋白质沉淀。
利用不同蛋白质在不同浓度的有机溶剂中的溶解度差异而分离的方法即为有机溶剂沉淀法。
蛋白质分离与纯化的方法
蛋白质分离与纯化的方法一、蛋白质的粗分离破碎细胞后,所得的蛋白质混合液中除含有目的蛋白质外,还含有其他蛋白质、脂类、多糖及核酸等成分,利用简易、快速的方法除去这些杂质即为蛋白质的粗分离。
(一)盐析法蛋白质在低盐浓度下其溶解度随盐浓度的增加而增加,此现象为盐溶。
但随着盐浓度的继续升高,蛋白质的溶解度又会以不同程度下降,并先后析出,此现象为盐析。
此现象是由于当水中加入少量盐类时,盐离子与水分子对蛋白质分子上的极性基团产生影响,使其溶解度增大。
但当盐浓度增加到一定程度时,蛋白质所带的电荷被大量中和,水化膜被破坏,分子间相互聚集,而发生沉淀析出。
因此,可根据不同蛋白质在一定浓度的盐溶液中溶解度降低的程度不同,而将各种蛋白质彼此分离。
常用的中性盐有硫酸铵、硫酸钠、氯化钠等。
(二)有机溶剂分段沉淀法通过有机溶剂降低溶液的介电常数,破坏蛋白质的水化膜,导致溶解度的降低而发生沉淀析出,利用不同蛋白质在不同浓度的有机溶剂中的溶解度存在差异而分离的方法,称为有机溶剂分段沉淀法。
常用的有机溶剂有乙醇、丙酮、甲醇等。
(三)超速离心法超速离心法是利用物质的沉降系数、质量浮力等方面的差异,用强离心力使其分离的技术。
蛋白质在高达5000kg的重力作用下,在溶液中逐渐沉淀,直至其浮力与离心所产生的力相等,才停止沉降。
不同蛋白质其密度与形态各不相同,故应用离心的方法可将它们分开。
二、蛋白质的细分离待提纯的样品经过破碎及粗分离后,还难以达到纯品的要求时,则需进一步对其进行纯化处理。
(一)透析法利用蛋白质不能通过半透膜这一性质将大分子量蛋白质与小分子量化合物分开。
用具有超小微孔的膜制成透析袋,微孔可允许分子量为10000以下的化合物通过。
将蛋白质混合物装入袋中,再置于水中,则小分子物质如矿物质(无机盐)、单糖等可透过薄膜,不断更换袋外的水,可把袋内小分子物质全部去尽。
如在袋外放吸水剂,同时还可将袋内的水分去尽。
(二)层析法1.凝胶过滤层析凝胶过滤层析又称分子筛层析,是利用分子量的差异使物质彼此分离的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工学院生物工程一班胡冠南 3010207234
蛋白质分离与纯化技术
蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。
因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。
机体中的每一个细胞和所有重要组成部分都有蛋白质参与。
所以研究蛋白质的结构与功能是研究生物科学的基础。
蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。
由于深入研究蛋白质的结构与功能需要用到高纯度的蛋白质,因此蛋白质分离与纯化技术是生物产业中的核心技术。
然而该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。
所以对该项技术的改良与创新在实际应用中具有重要意义。
一.蛋白质分离的准备
从正常生物基质中提取各种蛋白质均需要有特定的条件。
如果不能满足这一条件,蛋白将很快失去生物学活性,其生物半衰期也将迅速降低。
因此,在蛋白质的特性研究中,确定提取条件是一个关键问题。
在不同的实验中所通到的困难各不相同,有的困难是如何抵抗外源性蛋白酶的作用而维持蛋白质的稳定,在有些实验中的困难是如何维持酶的活性。
在不同的实验中要针对不同的情况来解决不同的问题。
然而对蛋白质研究而言却有着一些共同的参数。
缓冲液可以抗衡蛋白质溶液中pH值的改变,选择合适的缓冲液对于维持—定pH 值下蛋白质的稳定及保证实验的重复性十分重要。
pH和pKa是描述缓冲液的两个重要概念。
pH值是指溶液中氢离子浓度的负对数,pH=-log(H+)。
pKa值是溶液中酸解离常数的负对数值。
溶液的pH值与pKa值越接近表明溶液的缓冲能力越强,离pKa值越远则缓冲能力越弱。
表1 常用缓冲液的pKa值
a:三羟甲基氨基甲烷;b:N-2-羟乙基哌嗪-N’-2-乙磷酸;c:3-(N-吗啉代)丙磺酸;d:N,N’-双(2-乙磺酸)哌嗪;e:2-(N-吗啉代)乙磺酸。
※一般原则
1)有条件时,应对pKa相近的一些缓冲液进行试验,以避免有的缓冲液与所研究的蛋白质之间发生不良的相互作用。
2)当选定一种缓冲液之后,一般使用其最低的浓度以避免非特异性的离子强度的影响,通常以50mmol/L的缓冲液浓度作为试验起始浓度。
3)当缓冲液pKa值的变化超过1个pH单位时其有效的缓冲能力明显降低。
而许多酶在极限pH值时往住发生不可逆的变性。
4)大多数动物细胞在37℃的生理状况下的PH值为7.0~7.5,而在温度下降至接近0℃时可达8.0。
5)要根据所选用的分离方法选用缓冲液:凝胶过滤方法大多数缓冲液均可适用。
阴离子交换层折,阳离子缓冲液首选Tris缓冲掖。
阳离子交换和羟基磷灰石层析,阴离子缓冲液首选磷酸盐缓冲液。
6)混合缓冲液在一定的离子强度下往往具有更宽的缓冲范围。
7)所采用的化学试剂应达到试剂级或更高纯度。
二.蛋白质的分离、提纯一般程序
分离精制蛋白质开始时选择适当的原料,蛋白质的来源无非是天然的材料(动物组织、植物组织和微生物)和基因工程表达产物(大肠杆菌以及其他微生物和动植物细胞)。
选择原料的原则是蛋白质含量较高,原料易得。
应当注意的是蛋白质含量在种属间有意想不到的差别。
当然,基因工程表达产品的原料是限定的,一般来讲,目的蛋白含量都比较高。
大多数蛋白质存在于细胞内,结合于细胞器上,所以必须先将细胞破碎,要根据不同情况采用不同的破碎方法。
对动物组织可采用磨碎法、超声波破碎法和酶解法。
对植物组织可用石英砂等适当的设备及酶解法即能达到目的。
生物材料中的蛋白质有些以可溶性的形式存在于体液中,可以不必经过抽提直接进行分离。
一般的蛋白质需要在细胞破碎后用适当溶剂(如水、稀盐溶液、缓冲液等)将蛋白质溶解出来,再用离心法除去不溶物得到含有目的物的粗抽提液。
从总体上来讲,分离纯化蛋白
质在对材料进行与处理后需要用沉淀法进行初步分离,之后再以层析或电泳法得到所需的蛋白质产物。
在蛋白质纯化过程中,从细胞破碎一步开始蛋白质就脱离了天然的环境,受到各种不同试剂的干扰,其结构和功能会受到不同程度的可逆或不可逆的损害。
因此,在蛋白质纯化的各步骤都要小心地控制所采用的提纯条件,以避免蛋白质变性。
在提纯蛋白质过程中需要在每一步检测蛋白质(酶)的存在及提纯的情况,即建立蛋白质定量检测方法。
三.蛋白质分离提纯的具体方法
沉淀法
沉淀法也称溶解度法。
其纯化生命大分子物质的基本原理是根据各种物质的结构差异性来改变溶液的某些性质,进而导致有效成分的溶解度发生变化。
1、盐析法
盐析法的根据是蛋白质在稀盐溶液中,溶解度会随盐浓度的增高而上升,但当盐浓度增高到一定数值时,使水活度降低,进而导致蛋白质分子表面电荷逐渐被中和,水化膜逐渐被破坏,最终引起蛋白质分子间互相凝聚并从溶液中析出。
2、有机溶剂沉淀法
有机溶剂能降低蛋白质溶解度的原因有二:其一、与盐溶液一样具有脱水作用;其
二、有机溶剂的介电常数比水小,导致溶剂的极性减小。
3、蛋白质沉淀剂
蛋白质沉淀剂仅对一类或一种蛋白质沉淀起作用,常见的有碱性蛋白质、凝集素和重金属等。
4、聚乙二醇沉淀作用
聚乙二醇和右旋糖酐硫酸钠等水溶性非离子型聚合物可使蛋白质发生沉淀作用。
5、选择性沉淀法
根据各种蛋白质在不同物理化学因子作用下稳定性不同的特点,用适当的选择性沉淀法,即可使杂蛋白变性沉淀,而欲分离的有效成分则存在于溶液中,从而达到纯化有效成分的目的。
吸附层析
1、吸附柱层析
吸附柱层析是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种层析方法。
2、薄层层析
薄层层析是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种层析方法。
这种层析方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸层析操作进行展层。
3、聚酰胺薄膜层析
聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。
这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。
层析时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。
因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。
离子交换层析
离子交换层析是在以离子交换剂为固定相,液体为流动相的系统中进行的。
离子交换剂是由基质、电荷基团和反离子构成的。
离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。
凝胶过滤
凝胶过滤又叫分子筛层析,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。
当一混合溶液通过凝胶过滤层析柱时,溶液中的物质就按不同分子量筛分开了。
参考文献——
周慧.简明生物化学与分子生物学[M].北京:高等教育出版社,2006 6~7
汪家政、范明.蛋白质技术手册[M].北京:科学出版社,2000 1~4
张丽萍、魏民.蛋白质分离纯化[EB/OL].2008.
百度百科.蛋白质的分离纯化[EB/OL].2011.。