电源拓扑结构.pdf

合集下载

开关电源拓扑结构对比(全)

开关电源拓扑结构对比(全)

开关电源拓扑结构概述(降压,升压,反激、正激)开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck拓扑型开关电源就是属于串联式的开关电源/blog/100019740上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。

如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。

如果电感连接到输出端,就构成了降压变换器。

基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。

2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。

SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。

Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。

但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。

通过这样串联和演进,产生了新的三个电源拓扑。

同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。

4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。

可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。

将两个正激变换器进行并联,可以形成推挽拓扑。

正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。

开关电源的基本拓扑结构

开关电源的基本拓扑结构
感谢您的观看
总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。

电源基本拓扑结构

电源基本拓扑结构

1、基本名词常见的基本拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥■SEPIC■C’uk基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。

基本的脉冲宽度调制波形定义如下:2、Buck降压特点■把输入降至一个较低的电压。

■可能是最简单的电路。

■电感/电容滤波器滤平开关后的方波。

■输出总是小于或等于输入。

■输入电流不连续 (斩波)。

■输出电流平滑。

3、Boost升压特点■把输入升至一个较高的电压。

■与降压一样,但重新安排了电感、开关和二极管。

■输出总是比大于或等于输入(忽略二极管的正向压降)。

■输入电流平滑。

■输出电流不连续 (斩波)。

4、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。

■结合了降压和升压电路的缺点。

■输入电流不连续 (斩波)。

■输出电流也不连续 (斩波)。

■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。

■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

5、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。

■输出可以为正或为负,由线圈和二极管的极性决定。

■输出电压可以大于或小于输入电压,由变压器的匝数比决定。

■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。

6、Forward正激特点■降压电路的变压器耦合形式。

■不连续的输入电流,平滑的输出电流。

■因为采用变压器,输出可以大于或小于输入,可以是任何极性。

■增加次级绕组和电路可以获得多个输出。

■在每个开关周期中必须对变压器磁芯去磁。

常用的做法是增加一个与初级绕组匝数相同的绕组。

■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

电源拓扑结构

电源拓扑结构

Power Supply Topologiesreliable operation follow recommendations indatasheets and application notes.**Go to: and place literature number in the “Key Word”box.For SEM topics,go to:/seminarsThe Floating bar is a trademark of Texas Instruments.©2008Texas Instruments Incorporated.Printed in the U.S.A.Printed on recycled paper.SLUW001D Application Notes:**Understanding Buck Power Stages in Switchmode Power Supplies (SLVA057)Controllers/Converters:TPS40020/21TPS40180TPS40007/09TPS40192/3TPS40040/41TPS40200TPS40075TPS5410/20/30/50TPS40077TPS54350/550TPS40140TPS62110Application Notes:**Understanding Boost Power Stages in Switchmode Power Supplies (SLVA061)High Voltage Power Supply Using aHighly Integrated DC/DC Converter (SLVA137)Controllers/Converters:TPS40210/11UCC28070TPS61080UCC28220/21TPS61030UCC38C42TPS61100UCC3800TPS61200UCC38050/51(PFC)UCC28060(PFC)UCC3817A/18A (PFC)UCC28061UCC3809-1Application Notes:**Understanding Buck-Boost Power Stages in Switchmode Power Supplies (SLVA059A)Controllers/Converters:TPS40200UC3572TPS40061UCC3801/01/02/03/04/05TPS40057UCC3807TPS5410/20/30/50UCC3810(Dual)TPS54350/54550UCC3813TPS63700UCC38C40/41/42/43/45Application Notes:**Versatile Low Power SEPIC ConverterAccepts Wide Input Voltage Range (SLUA158)High Power Factor Preregulator Using the SEPIC Converter (SEM900)Controllers/Converters:TPS43000UCC3807TPS61130UCC3810(Dual)UCC38C40/41/42/43/44/45UCC3800/01/02/03/04/05/3813Application Notes:**Design of Flyback Transformers and Inductors (SEM400)Discontinuous Current Flyback Converter Design (SEM300)Controllers:TPS23750/70(PoE)UCC35705/706UC3807UCC3800/01/02/03/04/05/3813UCC28220/21UCC3809UCC28600(Green Mode)UCC3810(Dual)UCC3570UCC38C40/41/42/43/44/45UCC35701/702Application Notes:**25-W Forward Converter Design Review (SLUA276)Multiple Output Forward Converter Design (SEM1200)Controllers:UCC28220/21UCC3807UCC3570UCC3809UCC35701/702UCC3810(Dual)UCC35705/706UCC38C40/41/42/43/44/45UCC3800/01/02/03/04/05/3813Application Notes:**150-W Off-Line Forward Converter Design Review (SEM400)Practical Considerations in Current Mode Power Supplies (SLUA110)Controllers:UCC27200/01(MOSFET Driver)UCC28220/21UCC3807UCC3570UCC3809UCC35701/702UCC3810(Dual)UCC35705/706UCC38C41/44/45UCC3801/04/05/13Application Notes:**Active Clamp and Reset Technique Enhances Forward Converter Performance (SEM1000)Design Considerations for Active Clamp and Reset Technique (SEM1100)Controllers:UCC2891,2,3,4,7UCC3580-1UC3824Application Notes:**Practical Considerations in Current Mode Power Supplies (SLUA110)Zero Voltage Switching Resonant Power Conversion (SLUA159)Controllers:UC28025UCC3806UC3825A,B UCC3808A UCC27200/01(MOSFET Driver)UCC28089(2x 50%)UCC38083/84/85/86\Application Notes:**1.5MHz Current Mode IC Controlled 50-Watt Power Supply (SLUA053)The UC3823A,B and UC3825A,B Enhanced Generation of PWM Controllers (SLUA125)Controllers:UC28025UCC3806UC3825A,B UCC3808A UCC28089(2x 50%)UCC38083/84/85/86Application Notes:**The UC3823A,B and UC3825A,B Enhanced Generation of PWM Controllers (SLUA125)Practical Considerations in Current Mode Power Supplies (SLUA110)Controllers:UC28025UCC3808A UCC27200/01(MOSFET Driver)UCC28089(2x 50%)UCC38083/84/85/86UCC3806UC3825A,BApplication Notes:**Designing a Phase Shifted Zero Voltage Transition Power Converter (SEM900)Design Review:500-W,40-W/in3Phase Shifted ZVT Power Converter (SEM900)Controllers:UC3875UC3879UCC3895电源拓扑结构ZHCT071。

开关电源基本拓扑结构

开关电源基本拓扑结构

I LfG
V in D y 2L f fs
I oG
(1 D y ) D y 2L f fs
V in
Fig 1.4 Vin=const
开关电源基本拓扑
25
Vout = constant (输出电压恒定) From eq. (2.14), then the eq.(2.16) and eq.(2.15) can be reformed as:
i Lf I Lf
max

V in Lf
T on
V in Lf
Ts D y
(3.9)
i Lf I Lf
max

Vo Lf T off
'
Ts D (1 D y )
(3.10)
where
Vo V in
D
Dy D
Ts

(3.11)
I in I Lf
I o D

2
(1 D y )V o 8L f C f fs
2
Vo
Q C
f
(1.8)
开关电源基本拓扑
8
电流断续时的工作模式 (DCM)
电流断续时的工作模式的典型情况:
Mode 1
输入电压Vin不变,输出电压Vo变化;譬如用作电机速度控制、充电
器对蓄电池恒流充电。 输入电压Vin变化,输出电压Vo不变,如普通开关电源。
I oG (1 D y ) 2L f fs V out
Fig 1.5 Vout=const
开关电源基本拓扑
13
湘潭电机股份有限公司150t工矿电机车IGBT直流斩波 1500V电压等级主要由IGBT功率组件、微机控制盒及 PLC控制单元构成。IGBT功率组件采用3 300V、 800A 斩波型IGBT模块作为主功率元件,主元件散 热器采用新型风冷热管散热器,一个IGBT功率组 件单独驱动一台牵引电机。 微机控制盒是装置的核心,配备16位单片机 80C196KC

开关电源(SMPS)的拓扑结构(第一部分)

开关电源(SMPS)的拓扑结构(第一部分)
MOSFET 能够以任一方向进行导通;这意味着如果电 感中的电流由于负载较轻到零时,同步 MOSFET 应被 立即关断。否则,因为输出 LC 谐振的原因,电感电流 的方向将反向 (在达到零后 )。在这一场景下,同步 MOSFET 作为输出电容的负载并因其导通电阻 RDSON 而耗能,从而导致断续运行 (在一个开关周期内电感电
前馈控制
在降压转换器中,输入电压变化在电压输出端产生的影 响通常可通过输入电压前馈控制降到最低。与模拟控制 方式相比,使用具有输入电压检测功能的数字信号控制 器能轻易实现前馈控制。在前馈控制方法中,数字信号 控制器一旦检测到输入电压的变化,在输入变化对输出 参数造成实际影响之前就将开始采取自适应措施进行相 应的处理。
AN1114
开关电源 (SMPS)的拓扑结构 (第一部分)
作者: Mohammad Kamil Microchip Technology Inc.
简介
工业驱动向更小、更轻和更高效的电子设备的发展趋势 促 进 了 开 关 电 源 (Switch Mode Power Supply, SMPS)的发展。通常可采用几种不同的拓扑结构实现 SMPS。
DS01114A_CN 第 2 页
2008 Microchip Technology Inc.
图 2:
(A)
降压转换器 IIN
Q1 VIN
D1
L
+ IL -
IOUT VOUT
AN1114
(B) Q1GATE
t
(C)
VL
VIN - VOUT
t
-VOUT
(VIN - VOUT)/L
(D)
IIN
t
-VOUT/L IL2
输入和输出电容的设计取决于每一个转换器的开关频率 乘以并联转换器的个数。从输出电容的角度来看纹波电 流减少 “n”倍。与图 2 (D)中所示的单一转换器相 比,多相同步降压转换器汲取的输入电流是连续的且纹 波较少,如图 3 (E)所示。因此,对于多相同步降压 转换器来说,较小的输入电容能满足设计要求。

种经典开关电源拓扑结构课件

种经典开关电源拓扑结构课件

升压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,将输入 电压转换成高于输入电压的输出电压。
详细描述
在升压型开关电源中,当开关管开通时,输 入电压同时加在负载和储能元件上,产生较 大的电流,储能元件充电;当开关管关断时, 电流减小,储能元件释放之前存储的能量。 由于储能元件的充放电作用,输出电压高于 输入电压。通过控制开关管的占空比,可以 调节输出电压的大小。
转换效率
01 02
转换效率
指开关电源将输入的电能转换为输出电能的能力,通常以百分比表示。 转换效率越高,说明开关电源的能源利用率越高,能够减少能源浪费和 发热量。
最大功率转换效率
指在一定的输入电压和输出电压条件下,开关电源能够达到的最大转换 效率。它是衡量开关电源性能的重要指标之一,要求尽可能高。
详细描述
极性反转型开关电源通过控制开关管开通和关断的时间比率,将输入电压的极性 反转并输出。在开关管开通时,输入电压与电感器共同对电容充电,当开关管关 断时,电感器通过输出二极管和负载释放能量。
升降压型(Buck-Boost)开关电源
总结词
升降压型开关电源是一种能够根据需要调整输出电压极性和大小的电源转换器。
详细描述
升压型开关电源通过控制开关管开通和关断的时间比率,将输入电压提升到所 需的输出电压。在开关管开通时,输入电压与电感器共同对电容充电,当开关 管关断时,电感器通过输出二极管和负载释放能量。
极性反转型(Inverting)开关电源
总结词
极性反转型开关电源是一种能够将输入电压极性反转的电源转换器。
03
开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调 节输出电压的大小。

开关电源基本拓扑结构

开关电源基本拓扑结构

返回
5.半桥电路
工作过程:
S1 与 S2 交替导通,使变压器一次侧形成幅值为 Ui/2 的交流电压。改变开关的占空比,就可以改变二次 侧整流电压ud的平均值,也就改变了输出电压Uo。 S1 导通时,二极管 VD1 处于通态,S2 导通时,二极 管VD2处于通态, 当两个开关都关断时,变压器绕组N1中的电流为零, VD1和VD2都处于通态,各分担一半的电流。 S1 或 S2 导通时电感 L 的电流逐渐上升,两个开关都 关断时,电感 L 的电流逐渐下降。 S1 和 S2 断态时承 受的峰值电压均为Ui。
返回
5.半桥电路
由于电容的隔直作用,半桥电路对由于两个开关导通 时间不对称而造成的变压器一次侧电压的直流分量有 自动平衡作用,因此不容易发生变压器的偏磁和直流 磁饱和。 Uo N 2 ton 输出电压: Ui N1 T 当滤波电感L的电流连续时: (4) 如果输出电感电流不连续,输出电压 U0 将高于式 ( 4 )的计算值,并随负载减小而升高,在负载为 零的极限情况下, U o N 2 U i N1 2 。
N2 VD + W2
Uo
t
t
反激电路中的变压器起着储能元件的作用,可以看作 是一对相互耦合的电感。 工作过程:
S开通后, VD 处于断态, N1 绕组的电流线性增长,电感储能 增加; S关断后,N1绕组的电流被切断,变压器中的磁场能量通过N2 绕组和VD向输出端释放。S关断后的电压为:u U N1 U
(1)开关电源以其采用的变换器拓扑结构可以分为降压(Buck)、升压 (Boost)、升降压(Buck-Boost)、正激(Forward)、反激 (Flyback)、推挽(Push-Pull)、半桥(Half-Bridge)和全桥(FullBridge)型等各种模式。 (2)在这些拓扑结构的变换器中,又可以分为工作于PWM硬开关方式还是 工作于软开关方式两大类。 a. PWM硬开关变换器的开关管按外加脉冲控制通断时刻,与开关管的电 流及电压无关。因此它通常在高电压或大电流下被迫开通或强迫关断, 有较大的dv/dt和di/dt,且开关过程中,开关损耗较大,此种方式称为硬 开关工作模式。

开关电源常用拓扑结构图文解释

开关电源常用拓扑结构图文解释

开关电源常用拓扑结构图文解释第一篇:开关电源常用拓扑结构图文解释开关电源常用拓扑结构开关变换器的拓扑结构是指能用于转换、控制和调节输入电压的功率开关器件和储能器件的不同配置。

开关变换器的拓扑结构可以分为两种基本类型:非隔离型和隔离型。

变换器拓扑结构是根据系统造价、性能指标和输入/输出负载特性等因素选定。

1、非隔离型开关变换器一,Buck变换器,也称降压变换器,其输入和输出电压极性相同,输出电压总小于输入电压,数量关系为:其中Uo为输出电压,Ui为输入电压,ton为开关管一周期内的导通时间,T为开关管的导通周期。

降压变换器的电路模式如图2所示。

工作原理是:在开关管VT导通时,输入电源通过L平波和C滤波后向负载端提供电流;当VT关断后,L通过二极管续流,保持负载电流连续。

二,Boost变换器,也称升压变换器,其输入和输出电压极性相同,输出电压总大于输入电压,数量关系为:。

升压变换器的电路模式如图3所示。

工作原理是:在VT导通时,电流通过L平波,输入电源对L充电。

当VT关断时,电感L及电源向负载放电,输出电压将是输入电压加上输入电源电压,因而有升压作用。

三,Buck-Boost变换器,也称升降压变换器,其输入输出电压极性相反,既可升压又可降压,数量关系为:。

升降压变换器的电路模式如图4所示。

工作原理是:在开关管VT导通时,电流流过电感L,L储存能量。

在VT关断时,电感向负载放电,同时向电容充电。

四,Cuk变换器,也称串联变换器,其输入输出电压极性相反,既可升压又可降压,数量关系为:。

Cuk变换器的电路模式如图5所示。

工作原理是:在开关管VT 导通时,二极管VD反偏截止,这时电感L1储能;C1的放电电流使L2储能,并向负载供电。

在VT关断时,VD正偏导通,这时输入电源和L1向C1充电;同时L2的释能电流将维持负载电流。

2、隔离型开关电源变换器一,推挽型变换器,其变换电路模型如图6所示。

工作过程为:VT1和VT2轮流导通,这样将在二次侧产生交变的脉动电流,经过VD1和VD2全波整流转换为直流信号,再经L、C滤波,送给负载。

开关电源拓扑结构-9页文档资料

开关电源拓扑结构-9页文档资料

开关电源拓扑结构回顾Lloyd H·Dixon Jr前言本文回顾了在开关电源中常用的三种基本电路系列即降压变换电路、升压变换电路和反激(或升降压)电路的特性,这三种电路均可以工作于电感断流或续流模式下。

工作方式的选择对整体电路特性有很大的影响。

所使用的控制方式也能有助于减少与拓扑和工作模式相关的问题。

三种以恒频率工作的控制方法包括:直接占空比控制、电压前馈、和电流模式(双环)控制。

本文还论述了三个基本电路的一些扩展,以及每种拓扑、工作模式、组合控制方法的相对优点。

一、三种基本拓扑结构:三种基本的拓扑结构降压式,升压式,反激式如图1所示。

串联式变换器(CUK)是反激式拓扑的倒置(不宜翻译为逆变,因其意思为DC-AC 的变换),不作论述。

这三种不同的开关电路使用了三种相同的元件:电感,晶体管(晶体管包括三极管及MOSFET)和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。

理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。

有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。

三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个确定的关系。

例如:降压调整器的功能是使输出电压V小于输入电压Vin ,并和它Vin有相同的极性。

升压电路的作用是使V大于Vin,并且有相同的极性。

反激拓扑电路的作用是使V0既可大于也可小于Vin,但是两者极性相反。

二、断流工作模式:在电感电流断续方式下,或者说“断流模式”下,降压、升压和反激电路的动作方式是相似的,电感电流在每个开关周期的最后部分期间为零(因此不连续)。

在每个周期的开始部分,感应电流从零增加,从输入端得到储存能量。

在周期的第二部分,所有储存的能量通过负载泄放,从输入端汲取能量到输出端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源各种拓扑集锦
Jankywolf 2006-4-11
1、先给出六种基本DC/DC变换器拓扑
依次为buck,boost,buck-boost,cuk,zeta,sepic变换器
以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。

buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。

boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost 变换器也有推挽,双电感,全桥等电路。

buck-boost是反激变换器的原型,属于升降压变换器。

后面三种电路不是很常用,都是升降压变换器。

从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。

也就是buck最佳占空比为1,boost 为0,buck-boost为0.5。

2、正激变换器:
A、绕组复位正激变换器
B、LCD复位正激变换器
C、RCD复位正激变换器
D、有源钳位正激变换器
E、双管正激
F、无损吸收双正激:
G、有源钳位双正激
H、原边钳位双正激、
I、软开关双正激
评论:正激变换器是常用变换器之一,特别在中小功率场合。

正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。

但是开关管电压应力较大。

双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。

但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。

如果能不加入辅助管而实现软开关,一定超有前途。

正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。

3、推挽变换器
A、推挽变换器
B、无损吸收推挽变换器
C、推挽正激
推挽变换器:推挽变换器是双端变换器。

其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。

但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。

而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。

如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。

其管子电压应力下降为输入电压。

其他等同。

推挽正激是最近出现的一种新拓扑,通过一个电容来解决变换器漏感尖峰,偏磁等问题。

在VRM中有应用。

4、半桥变换器
1、半桥变换器1:
半桥变换器也是双端变换器,以上是两种拓扑。

半桥开关管电压应力为输入电压。

而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力。

但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题。

要需要其他方法来解决。

半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D。

就是所谓的不对称半桥,通常采用下面一种拓扑。

对于不对称半桥可以采用峰值电流控制。

2、半桥变换器2
5、全桥变换器
全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS 这里不多罗嗦了~具体可以参考阮新波的书。

接下去,会收集一些三电平变换器贴出来,在以后就给出boost族的隔离变换器....反激变换器.....正反激变换器......APFC.....PPFC....
单级PFC.....谐振变换器等.....
6、三电平变换器(three level converter)
选了看起来比较舒服的两个拓扑,这些三电平是半桥演化而来,同样可以演化出多电平变换器,合适高压输入场合。

而且可以通过全桥的移相控制方式实现软开关。

7、五种隔离三电平DC/DC变换器
(a)Forward三电平DC/DC变换器
(b)Flyback三电平DC/DC变换器
(c)Push-Pull三电平DC/DC变换器
(d)半桥三电平DC/DC变换器
(e)全桥三电平DC/DC变换器
8、boost族隔离变换器:
A、双电感boost
B、全桥boost。

相关文档
最新文档