2020年广西柳州中考数学试卷含答案

合集下载

2020年广西省中考数学试卷(含答案)

2020年广西省中考数学试卷(含答案)

广西省中考数学试卷本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。

注意:答案一律填写在答题卷上,在试题卷上作答无效.........。

考试结束,将本试卷和答题卷一并交回。

第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)请用2B 铅笔在答题卷上将选定的答案标号涂黑。

1.-5的相反数是A .-5B .5C .51D . ±52.我国南海海域面积为38000002km ,用科学记数法表示正确的是A .3.8×1052km B .3.8×1062km C .3.8×1072km D .3.8×1082km3.如图,AB∥CD ,E 在AC 的延长线上,若︒=∠34A ,︒=∠90DEC ,则D ∠的度数为A .︒17B .︒34C .︒56D .o 66 4.在函数31x y x +=-中,自变量x 的取值范围是 A .x ≥-3且1x ≠ B .x >-3且1x ≠ C .x ≥3 D .x >3 5.如图是由4个大小相同的正方体搭成的几何体,其俯视图是6.下列说法中正确的是A .篮球队员在罚球线上投篮一次,未投中是必然事件B .想了解某种饮料中含色素的情况,宜采用普查C .数据5,1,-2,2,3的中位数是-2D .一组数据的波动越大,方差越大7.下列运算正确的是A. 235a a a +=B. 22a a -=C. 632a a a ÷=D. 236()a a =第5题图AB CDCD 第3题图8.不等式组24,241x x x x +⎧⎨+<-⎩≤的正整数解的个数有A.1个B.2个C.3个D.4个9.如图,在平行四边形ABCD 中,E 是CD 的中点,AD 、BE 的延长线交于点F ,3DF =,2DE =,则平行四边形ABCD 的周长为A .5B .12C .14D .1610.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是 A .200米 B. 2003米 C. 2203米 D. 100(31)+米11.如图,在平面直角坐标系中,抛物线y =23ax +与y 轴交于点A ,过点A 与x轴平行的直线交抛物线y =213x 于B 、C 两点,则BC 的长为A .1B .2C .3D .612.如图,AB 是⊙O 的直径,AD 是⊙O 的切线, BC ∥OD 交⊙O 于点C , 若AB =2, OD =3,则BC 的长为A .32B .23C .3D .2第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分;只要求填写最后结果.) 13.分解因式:24x - = .14.小玲在一次班会中参与知识抢答活动,现有语文题6个,第9题图F ED CBA 第10题图第12题图第11题图B OAC y xO CD45°30°BDC ADA数学题5个,综合题9个,她从中随机抽取1个,抽中 数学题的概率是 .15.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为cm 6、cm 8,AE ⊥BC 于点E ,则AE 的长是 cm . 16.如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边OBC ∆,将点C 向左平移,使其 对应点C '恰好落在直线AB 上,则点C '的坐标为 .17.如图,将半径为3的圆形纸片,按下列顺序折叠.若⌒AB 和⌒BC 都经过圆心O ,则阴影部分的面积是 (结果保留π). 18.如图,第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA OB ⊥,cos 3A =,则k 的值为 .三、解答题(本大题共8题,共66分;解答应写出必要的文字说明、演算步骤或推理过程.)19.(本题6分)计算: ()︒-++⎪⎭⎫⎝⎛-+-30tan 35321160120.(本题6分)先化简,再求值:221()111a a a a a -÷+--,其中12+=a .21. (本题8分) 如图,在△ABC 中,AB AC =,点M 在BA 的延长线上. (1)按下列要求作图,并在图中标明相应的字母.①作CAM ∠的平分线AN ;第18题图BO Ayx第17题图BACBAO O O图1图220﹪纪念奖三等奖二等奖一等奖45﹪纪念奖三等奖二等奖600奖项一等奖人数(人)10020030040050063252567②作AC 的中点O ,连接BO ,并延长BO 交AN 于点D ,连接CD . (2)在(1)的条件下,判断四边形ABCD 的形状.并证明你的结论.22. (本题8分)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有 名学生;(2)在图1中,“三等奖”随对应扇形的圆心角度数是 ; (3)将图2补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23. (本题8分)某水果销售点用1000元购进甲、乙两种新出产的水果共140千克,这进价(元/千克) 售价(元/千克)甲种 5 8 乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?A B CM24. (本题8分)某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题: (1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25.(本题10分)如图,︒=∠90C ,⊙O 是Rt △ABC 的内切圆,分别切AB AC BC ,,于点G F E ,,,连接OF OE ,.AO 的延长线交BC 于点D ,2,6==CD AC . (1)求证:四边形OECF 为正方形; (2)求⊙O 的半径; (3)求AB 的长.OGFE DC BA乙甲72015963O y (米)x (天)26.(本题12分) 如图,已知直线121+=x y 与y 轴交于点A ,与x 轴交于点D ,抛物线c bx x y ++=221与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,直接写出点P 的坐标; (3)在抛物线的对称轴上找一点M ,使|MC AM -|的值最大,求出点M 的坐标.21OMN DC BA数学答案评分标准一.选择题BBCA DDDC CDDB 二.填空题13. (2)(2)x x +- 14.1415. 16. (﹣1,2) 17. 3π 18. -4三.解答题19.解:原式=4﹣2+1﹣333⨯4分(对一个知识点给1分) =4﹣2+1﹣1 5分 =2 6分20.解:原式=2(1)(1)(1)(1)(1)(1)(1)(1)a a a a a a a a a a ⎡⎤-+-⋅+-⎢⎥+-+-⎣⎦2分(还有其他做法) =2222(1)(1)(1)(1)a a a aa a a a ---⋅+-+- 3分 =23a a - ……4分 当a =21+时,原式=3223232+--=- ……6分 21.解:(1)作图正确 . ……3分(2)四边形ABCD 是平形四边形,理由如下: ∵AB AC =∴1ABC ∠=∠ 4分 ∵121CAM ABC ∠=∠+∠=∠∴112CAM ∠=∠∵AN 平分CAM ∠∴122CAM ∠=∠ 5分∴12∠=∠∴BC ∥AD ……6分 ∵AC 的中点是O ∴AO CO =又∵AOD COB ∠=∠ ∴AOD COB ∆≅∆∴BC =AD ……7分 ∴四边形ABCD 是平形四边形 ……8分22. 解:(1)1260.……(2分) (2)108°. ……4分(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,图略……6分 (4)抽到获得一等奖的学生的概率为:63÷1260=5%. ……8分23. 解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得:1分5x +9(140﹣x )=1000, ……3分 解得:x =65,∴140﹣x =75(千克), ……5分 答:购进甲种水果65千克,乙种水果75千克; ……6分 (2)3×65+4×75=495,答:利润为495元. ……8分24解:(1)∵720÷(9-3)=120∴乙工程队每天修公路120米. ……1分(2)设y 乙=kx+b ,则309720k b k b +⎧⎨+⎩== ∴120360k b ⎧⎨-⎩== 2分∴y 乙=120x -360 ……3分当x =6时,y 乙=360设y 甲=kx ,则360=6k ,k =60,∴y 甲=60x ……6分 (3)当x =15时,y 甲=900,∴该公路总长为:720+900=1620(米)设需x 天完成,由题意得,(120+60)x =1620 7分 解得x =9 答:需9天完成 ……8分25. (本题满分10分)解:(1)如图,因为⊙O 是Rt △ABC 的内接圆,分别切BC ,AC ,AB 于点E ,F ,G ∴∠CFO=∠OEC=90°∵∠C=90°...........1分 (三个直角少一个,这一分就不得) ∴则四边形OECF 为 矩形,……………………….2分 又∵OE=OF=r ……………………………3分 ∴四边形OECF 为 正方形 (2) 由四边形OECF 为 正方形∴OE//AC ,CE=CF=r∴△OED ∽△ACD ……………………………4分 ∴AC OE DC DE = ∴622r r =- ………………………5分解得:r=23 ……………………………6分(3) ⊙O 是Rt △ABC 的内切圆,由(2)得DE=21,设BD=x,则BE=BG=x+21 ∵AG=AF=29,∴AB=5+x ,由222AB AC BC =+ 得222)5(6)2(+=++x x ………………8分O GFE DCBA(第21解得:x=25 ……………………………9分 ∴AB =215…………………………………10分 (若设BG=x,则方程为222)29(6)23(+=++x x 得x=3) 26. (1)直线121+=x y 与y 轴交于点A 得A (0,1),将A (0,1)、B (1,0)坐标代入y=x 2+bx+c 得,解得,∴抛物线的解折式为y=x 2﹣x+1;……………………3分(2)满足条件的点P 的坐标为(,0)或(1,0)或(3,0)或(,0); (7)分(3)抛物线的对称轴为,……………………8分∵ B 、C 关于x=对称, ∴ MC=MB ,要使|AM ﹣MC|最大,即是使|AM ﹣MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM ﹣MB|的值最大. (9)分易知直线AB 的解折式为y=﹣x+1………………10分∴ 由,得⎪⎪⎩⎪⎪⎨⎧-==2123y x∴M(1.5,-0.5) ………………12分。

2020学年广西柳州市中考数学试题(含答案)

2020学年广西柳州市中考数学试题(含答案)

广西柳州市2020年中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中只有一项是正确的,每小题选对得3分,选错、不选或多选均得0分)1.(3分)某几何体的三视图如图所示,则该几何体是()A.正方体B.长方体C.三棱柱D.三棱锥2.(3分)计算﹣10﹣8所得的结果是()A.﹣2 B.2C.18 D.﹣183.(3分)在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0C.4D.4.(3分)如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变5.(3分)下列计算正确的是()A.3a•2a=5a B.3a•2a=5a2C.3a•2a=6a D.3a•2a=6a26.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)7.(3分)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是()A.35 B.36 C.37 D.388.(3分)下列四个图中,∠x是圆周角的是()A.B.C.D.9.(3分)下列式子是因式分解的是()A.x(x﹣1)=x2﹣1 B.x2﹣x=x(x+1)C.x2+x=x(x+1)D.x2﹣x=x(x+1)(x﹣1)10.(3分)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米11.(3分)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.12.(3分)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD 的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分,请将答案直接填写在答题卡中相应的横线上,在草稿纸上、试题上答题无效)13.(3分)不等式4x>8的解集是x>2.14.(3分)若分式有意义,则x≠2.15.(3分)一个袋中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是,则袋中有7个白球.16.(3分)学校组织“我的中国梦”演讲比赛,每位选手的最后得分为去掉一个最低分、一个最高分后的平均数.7位评委给小红同学的打分是:9.3,9.6,9.4,9.8,9.5,9.1,9.7,则小红同学的最后得分是9.4.17.(3分)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.18.(3分)有下列4个命题:①方程x2﹣(+)x+=0的根是和.②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,则CD=3.③点P(x,y)的坐标x,y满足x2+y2+2x﹣2y+2=0,若点P也在y=的图象上,则k=﹣1.④若实数b、c满足1+b+c>0,1﹣b+c<0,则关于x的方程x2+bx+c=0一定有两个不相等的实数根,且较大的实数根x0满足﹣1<x0<1.上述4个命题中,真命题的序号是①②③④.三、解答题(本大题共8小题,满分66分.解答时应写出必要的文字说明、验算步骤或推理过程.请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后必需使用黑色字迹的签字笔秒黑.在草稿纸、试题上答题无效)19.(6分)计算:(﹣2)2﹣()0.20.(6分)解方程:3(x+4)=x.21.(6分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法或树状图表示出所有可能出现的游戏结果;(2)求韦玲胜出的概率.22.(8分)如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.23.(8分)某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:时间x(分钟)…10 20 30 40 …水量y(m3)…3750 3500 3250 3000 …(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.24.(10分)如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC 沿BC翻折得到△EBC.(1)四边形ABEC一定是什么四边形?(2)证明你在(1)中所得出的结论.25.(10分)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=.(1)求OD、OC的长;(2)求证:△DOC∽△OBC;(3)求证:CD是⊙O切线.26.(12分)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).(1)求该二次函数的解析式;(2)当y>﹣3,写出x的取值范围;(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.一、选择题1-6 CDCAD B 7-12 BCCADA二、填空题13、x>214、215、716、9.417、2018、①②③④三、解答题19、解答:解:原式=4﹣1=3.20、解答:解:去括号得:3x+12=x,移项合并得:2x=﹣12,解得:x=﹣6.21、解答:解:(1)画树状图得:则有9种等可能的结果;(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率为:.22、解答:解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.23、解答:解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得,所以,y=﹣250+4000.24、解答:(1)解:四边形ABEC一定是平行四边形;(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,∴AB=DC,AC=BD,由折叠的性质可得:EC=DC,DB=BE,∴EC=AB,BE=AC,∴四边形ABEC是平行四边形.25、解答:(1)解:∵AD、BC是⊙O的两条切线,∴∠OAD=∠OBC=90°,在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=,根据勾股定理得:OD==,OC==;(2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°,∴四边形ABED为矩形,∴BE=AD=2,DE=AB=6,EC=BC﹣BE=,在Rt△EDC中,根据勾股定理得:DC==,∵===,∴△DOC∽△OBC;(3)证明:过O作OF⊥DC,交DC于点F,∵△DOC∽△OBC,∴∠BCO=∠FCO,∵在△BCO和△FCO中,,∴△BCO≌△FCO(AAS),∴OB=OF,则CD是⊙O切线.26、解答:解:(1)∵点(1,0),(5,0),(3,﹣4)在抛物线上,∴,解得.∴二次函数的解析式为:y=x2﹣6x+5.(2)在y=x2﹣6x+5中,令y=﹣3,即x2﹣6x+5=﹣3,整理得:x2﹣6x+8=0,解得x1=2,x2=4.结合函数图象,可知当y>﹣3时,x的取值范围是:x<2或x>4.(3)设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N,令x=0,得y=﹣6;令y=0,得x=﹣2.∴M(﹣3,0),N(0,﹣6),∴OM=3,ON=6,由勾股定理得:MN=3,∴tan∠MNO==,sin∠MNO==.设点C坐标为(x,y),则y=x2﹣6x+5.过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y.过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F,在Rt△CDF中,DF=CD•tan∠MNO=x,CF====x.∴FN=DN﹣DF=6+y﹣x.在Rt△EFN中,EF=FN•sin∠MNO=(6+y﹣x).∴CE=CF+EF=x+(6+y﹣x),∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得:CE=(x2﹣4x+11)=(x﹣2)2+,∴当x=2时,CE有最小值,最小值为.当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3).△ABC的最小面积为:AB•CE=×2×=.∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为.。

2020年广西柳州中考数学 模拟试卷 一(含答案)

2020年广西柳州中考数学 模拟试卷 一(含答案)

2020年广西柳州中考数学 模拟试卷 一一、选择题1.据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域最高奖.华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨头BAT 三家2014年收入的两倍以上.其中818亿美元可用科学记数法表示为( )美元.A.8.18×109B.8.18×1010C.8.18×1011D.0.818×10112.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )3.下列四个图形中,既是轴对称图形,又是中心对称图形的是( ).A.①②B.①③C.②③D.①②③4.下列计算正确的是( )A.9a 3·2 a 2=18 a 5B.2 x 5·3 x 4=5 x 9C.3 x 3·4 x 3=12 x 3D.3 y 3·5 y 3=15 y 95.已知反比例函数242)2(+--=a a x a y 的图象位于第二、四象限,则a 的值为( )A.1B.3C.﹣1D.﹣36.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,则AB 的长为( )A.2B.4C.6D.87.如图,已知△ABC ≌△ADE ,∠D=55°,∠AED=76°,则∠C 的大小是( )A.50°B.6O°C.76°D.55°8.某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是()A.60,59 B.60,57 C.59,60 D.60,589.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x·30%×80%=312B.x·30%=312×80%C.312×30%×80%=xD.x(1+30%)×80%=31210.点A(x,y1)、B(x2,y2)都在直线y=kx+2(k<0)上,且x1<x2则y1、y2的大小关系是( )1A.y1 =y2B.y1 <y2C.y1 >y2D.y1 ≥y211.已知关于x方程x2﹣4x+m=0,如果从1、2、3、4、5、6中任选一个数作为方程常数项m,那么所得方程有实数根的概率是( )A. B. C. D.12.如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0;②a<﹣;③a=﹣k;④当0<x<1时,ax+b>k.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题13.已知:a-b=-3,c+d=2,则(b+c)-(a-d)= .14.如图,在△ABC中,DE∥BC,EF∥AB,则∠B相等的角有______个。

广西柳州市2020年中考数学试卷A卷

广西柳州市2020年中考数学试卷A卷

广西柳州市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2015七上·海棠期中) 下列正确的是()A . ﹣2的相反数是B . |﹣2|=2C . ﹣2的倒数是D . ﹣2>02. (2分)(2011·徐州) 下列事件中属于随机事件的是()A . 抛出的篮球会落下B . 从装有黑球,白球的袋里摸出红球C . 367人中有2人是同月同日出生D . 买1张彩票,中500万大奖3. (2分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A .B .C .D .4. (2分) (2017八上·乌拉特前旗期末) 下列美丽的图案中,是轴对称图形的是()A .B .C .D .5. (2分)若3 + =5 ,则m的值为()A . 56B . 34C . 28D . 146. (2分)(2016·福田模拟) 景新中学为了了解学生体育中考备考情况,随机抽查了10名学生的引体向上,结果如下表:引体向上(次)181920学生数262则关于这10名学生的引体向上数据,下列说法错误的是()A . 极差是2B . 众数是19C . 平均数是19D . 方差是47. (2分) (2018八上·江干期末) 如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A .B .C .D .8. (2分)对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A . a=3,b=3B . a=﹣3,b=﹣3C . a=3,b=﹣3D . a=﹣3,b=﹣29. (2分)二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是()A . -1<x<3;B . x<-1;C . x>3;D . x<-1或x>3.10. (2分) (2019七下·长春月考) 如图,把一张长方形纸片ABCD沿EF折叠后,点C , D分别落在C , D 的位置上,EC交AD于点G ,已知∠EFG=58°,则∠BEG等于()A . 58°B . 116°C . 64°D . 74°二、填空题 (共6题;共6分)11. (1分) 2013年我市财政收入继续领跑嘉兴县(市)区,达到94.3亿元,这个数可用科学记数法表示为________元.12. (1分) (2018九上·山东期中) 如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;①②GP=GD;③点P是△ACQ的外心,其中结论正确的是________ (只需填写序号).13. (1分) (2016九上·仙游期中) 关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是________.14. (1分)某班45名同学哎学习举行的“爱心涌动校园”募捐活动中捐款情况如下表所示捐款数(元)1020304050捐款人数(人)8171622则该班捐款的平均数为________ 元.15. (1分)(2019·嘉善模拟) 在矩形ABCD中,∠ABC的平分线交边AD于点E,∠BED的平分线交直线CD 于点F.若AB=3,CF=1,则BC=________.16. (1分)若关于x的方程的解为正数,则m的取值范围是________ .三、解答题: (共9题;共90分)17. (5分)先化简代数式÷ ,再选择方程x2+2x﹣3=0的一个根计算该代数式的值.18. (10分) (2015九上·罗湖期末) 如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)(1)试用列表或画树状图的方法,求小明获胜的概率;(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.19. (15分)(2016·河池) 如图,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于A(﹣3,2),B(2,n).(1)求反比例函数y= 的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.20. (5分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.求△ABC的内切圆☉O的半径r.21. (15分) (2019九上·孝南月考) 如图,AB是⊙O的直径,点D在AB的延长线上,点C、E是⊙O上的两点,CE=CB,,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF(3)若BD=1, ,求直径AB的长.22. (10分)为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.(1)求篮球、足球的单价分别为多少元?(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?23. (10分) (2017八上·云南期中) 如图,AB是⊙O的直径,∠BAC=45°,AB=BC.(1)求证:BC是⊙O的切线;(2)设阴影部分的面积为a,b,⊙O的面积为S,请写出S与a,b的关系式.24. (10分)(2017·黄冈模拟) 如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.25. (10分)(2017·道外模拟) 图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题: (共9题;共90分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、。

2020年广西柳州市初中毕业升学考试初中数学

2020年广西柳州市初中毕业升学考试初中数学

2020年广西柳州市初中毕业升学考试初中数学数学试卷〔考试时刻共120分钟,全卷总分值120分〕第一卷〔选择题,共18分〕本卷须知:1.答题前,考生务必先将自己的姓名、准考证号用蓝、黑色墨水笔或圆珠笔填写在试卷左边的密封线内.2.第一卷为第1页至第二页.答题时,请用2B 铅笔把各小题正确答案序号填涂在答题卡对应的题号内.如需改动,须用橡皮擦洁净后,再填涂其它答案.在第Ι卷上答题无效.一、选择题〔本大题共6小题,每题3分,总分值18分.在每个小题给出的四个选项中,只有一项为哪一项正确的,每题选对得3分,选错、不选或多项选择均得零分〕1.在3,0,2-,2四个数中,最小的数是〔 〕A .3B .0C .2-D .22.如以下图所示,图中三角形的个数共有〔 〕A .1个B .2个C .3 个D .4个3.假设b a <,那么以下各式中一定成立的是〔 〕A .11-<-b aB .33b a >C .b a -<-D .bc ac <4.某学习小组7个男同学的身高〔单位:米〕为:1.66、1.65、1.72、1.58、1.64、1.66、1.70,那么这组数据的众数为〔 〕A .1.65B .1.66C .1.67D .1.70 5.分式方程3221+=x x 的解是〔 〕 A .0=xB .1=xC .2=xD .3=x 6.一根笔直的小木棒〔记为线段AB 〕,它的正投影为线段CD ,那么以下各式中一定成立的是〔 〕A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD第二卷〔非选择题,总分值102分〕二、填空题〔本大题共10小题,每题3分,总分值30分. 请将答案直截了当填写在题中横线上的空白处〕7.运算:2)5(0+-= . 8.请写出一个是轴对称图形的图形名称。

答: .9.运算:312-= .10.在如以下图中,直线AB ∥CD ,直线EF 与AB 、CD 分不相交于点E 、F ,假如∠1=46°,那么∠2= °.11.一个物表达在的速度是5米/秒,其速度每秒增加2米/秒,那么再过 秒它的速度为15米/秒.12.因式分解:22x x -= .13.反比例函数 xm y 1+=的图象通过点〔2,1〕,那么m 的值是 . 14.在一个不透亮的口袋中装有假设干个只有颜色不同的球,假如袋中只有4个红球,且摸出红球的概率为31,那么袋中的球共有 个. 15.如以下图,︒=∠30MAB ,P 为AB 上的点,且6=AP ,圆P 与AM 相切,那么圆P 的半径为 .16.矩形内有一点P 到各边的距离分不为1、3、5、7,那么该矩形的最大面积为 平方单位.三、解答题〔本大题10小题,总分值72分.解承诺写出必要的文字讲明、演算步骤或推理过程〕17.〔此题总分值6分〕先化简,再求值:)5()1(3---x x ,其中2=x .18.〔此题总分值6分〕解不等式组⎩⎨⎧>+<+② 392① 31x x ,并把它的解集表示在数轴上.19.〔此题总分值6分〕某学习小组对所在城区初中学生的视力情形进行抽样调查,图1是这些同学依照调查结果画出的条形统计图.请依照图中信息解决以下咨询题:〔1〕本次抽查活动中共抽查了多少名学生?〔2〕请估算该城区视力不低于4.8的学生所占的比例,用扇形统计图在图2中表示出来. 〔3〕假设该城区八年级共有4000名学生,请估量这些学生中视力低于4.8的学生约有多少人?20.〔此题总分值6分〕如以下图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,3 ,6==AB BC ,求四边形ABCD 的周长.21.〔此题总分值6分〕如图,正方形网格中,△ABC 为格点三角形〔顶点差不多上格点〕,将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.〔1〕在正方形网格中,作出11AB C △;〔不要求写作法〕〔2〕设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.〔结果保留π〕22.〔此题总分值6分〕如以下图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?〔结果精确到0.1 m ,参考数据:73.13≈〕23.〔此题总分值8分〕如以下图,直线l 与x 轴、y 轴分不交于点) 0,8 ( M ,点) 6,0 ( N .点P 从点N 动身,以每秒1个单位长度的速度沿N →O 方向运动,点Q从点O 动身,以每秒2个单位长度的速度沿O →M 的方向运动.点QP 、同时动身,当点Q到达点M 时,QP 、两点同时停止运动,设运动时刻为t 秒.〔1〕设四边形...MNPQ 的面积为S ,求S 关于t 的函数关系式,并写出t 的取值范畴. 〔2〕当t 为何值时,QP 与l 平行?24.〔此题总分值8分〕某校积极推进〝阳光体育〞工程,本学期在九年级11个班中开展篮球单循环竞赛〔每个班与其它班分不进行一场竞赛,每班需进行10场竞赛〕.竞赛规那么规定:每场竞赛都要分出胜负,胜一场得3分,负一场得1-分。

2020年广西柳州市中考数学试卷及其答案

2020年广西柳州市中考数学试卷及其答案

2020年广西柳州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的。

)1.(3分)﹣的绝对值是()A.5B.﹣5C.﹣D.2.(3分)如图,这是一个由5个完全相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列四个图案中,是中心对称图形的是()A.B.C.D.4.(3分)2020年是我国全面建成小康社会收官之年,我市将全面完成剩余19700贫困人口脱贫的任务.用科学记数法将数据19700表示为()A.0.197×105B.1.97×104C.19.7×103D.197×1025.(3分)为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14%B.16%C.20%D.50%6.(3分)如图,点A、B、C在⊙O上,若∠BOC=70°,则∠A的度数为()A.35°B.40°C.55°D.70°7.(3分)通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.8.(3分)如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cos B==()A.B.C.D.9.(3分)2ab•a2的计算结果是()A.2ab B.4ab C.2a3b D.4a3b10.(3分)如图是甲、乙两名射击运动员10次射击成绩的折线统计图,根据折线图判断下列说法正确的是()A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定11.(3分)下列多项式中,能用平方差公式进行因式分解的是()A.a2﹣b2B.﹣a2﹣b2C.a2+b2D.a2+2ab+b212.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x个零件,以下所列方程正确的是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)如图,直线l1,l2被直线l3所截,l1∥l2,已知∠1=80°,则∠2=.14.(3分)一元一次方程2x﹣8=0的解是x=.15.(3分)分式中,x的取值范围是.16.(3分)点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为.17.(3分)如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有个菱形.18.(3分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C 恰好落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的H处,有下列结论:①∠EBG=45°;②2S△BFG =5S△FGH;③△DEF∽△ABG;④4CE=5ED.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共60分,解答时应写出必要的文字说明,演算步骤或推理过程)19.(6分)计算:.20.(6分)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC.21.(8分)解不等式组请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式组的解集为.22.(8分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)23.(8分)如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.(1)求△ADO的周长;(2)求证:△ADO是直角三角形.24.(10分)如图,平行于y轴的直尺(部分)与反比例函数(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB =2.设直线AC的解析式为y=kx+b.(1)请结合图象,直接写出:①点A的坐标是;②不等式的解集是;(2)求直线AC的解析式.25.(10分)如图,AB为⊙O的直径,C为⊙O上的一点,连接AC、BC,OD⊥BC于点E,交⊙O于点D,连接CD、AD,AD与BC交于点F,CG与BA的延长线交于点G.(1)求证:△ACD∽△CFD;(2)若∠CDA=∠GCA,求证:CG为⊙O的切线;(3)若sin∠CAD=,求tan∠CDA的值.26.(10分)如图①,在平面直角坐标系xOy中,抛物线y=x2﹣4x+a(a<0)与y轴交于点A,与x 轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x轴、y轴分别交于B、C两点,与直线AM交于点D.(1)求抛物线的对称轴;(2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;(3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG ⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.2020年广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分。

广西柳州市2019-2020学年中考数学试卷(含答案)

广西柳州市2019-2020学年中考数学试卷(含答案)

广西柳州市2019-2020学年中考数学试卷(含答案)一、单选题1.计算:()A. B. 2 C. 0 D.【答案】A【考点】有理数的加法2.下列图形中,是中心对称图形的是()A. B. C. D.【答案】B【考点】中心对称及中心对称图形3.现有四张扑克牌:红桃、黑桃、梅花和方块.将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃的概率为()A. 1B.C.D.【答案】B【考点】简单事件概率的计算4.世界人口约7000000000人,用科学记数法可表示为()A.B.C.D.【答案】C【考点】科学记数法—表示绝对值较大的数5.如图,在中,,,,则()A. B. C. D.【答案】A【考点】勾股定理,锐角三角函数的定义6.如图,,,,是上的四个点,,,则的度数为()A.B.C.D.【答案】 D【考点】圆周角定理7.苹果原价是每斤元,现在按8折出售,假如现在要买一斤,那么需要付费()A. 元B. 元C. 元D. 元【答案】A【考点】列式表示数量关系8.如图是某年参加国际教育评估的15个国家学生的数学平均成绩的扇形统计图,由图可知,学生的数学平均成绩在之间的国家占()A. B. C. D.【答案】 D【考点】利用统计图表分析实际问题9.计算:()A. B. C. D.【答案】B【考点】单项式乘单项式10.已知反比例函数的解析式为,则的取值范围是()A. B. C. D.【答案】C【考点】反比例函数的定义二、填空题11.如图,,若,则________ .【答案】46【考点】平行线的性质12.如图,在平面直角坐标系中,点的坐标是________.【答案】(﹣2,3)【考点】点的坐标13.不等式的解集是________.【答案】x≥﹣1【考点】解一元一次不等式14.一元二次方程的解是________.【答案】x1=3,x2=﹣3【考点】直接开平方法解一元二次方程15.篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为________.【答案】【考点】二元一次方程组的实际应用-鸡兔同笼问题16.如图,在中,,,,,则的长为________.【答案】5【考点】含30度角的直角三角形,勾股定理,相似三角形的判定与性质三、解答题17.计算:2 +3.【答案】解:2 +3=4+3=7.【考点】实数的运算18.如图,和相交于点,,.求证:.【答案】解:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【考点】三角形全等的判定19.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.【答案】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m【考点】平均数及其计算20.解方程:.【答案】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【考点】解分式方程21.如图,四边形是菱形,对角线,相交于点,且.(1)求菱形的周长;(2)若,求的长.【答案】(1)解:∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8(2)解:∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO ,∴BD=2【考点】勾股定理,菱形的性质22.如图,一次函数的图象与反比例函数的图象交于,,两点.(1)求该反比例函数的解析式;(2)求的值及该一次函数的解析式.【答案】(1)解:∵反比例函数y 的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y ;(2)解:把B(,n)代入反比例函数解析式,可得n=3,解得n=﹣6,∴B(,﹣6),把A(3,1),B(,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5【考点】待定系数法求一次函数解析式,待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题23.如图,为的内接三角形,为的直径,过点作的切线交的延长线于点.(1)求证:;(2)过点作的切线交于点,求证:;(3)若点为直径下方半圆的中点,连接交于点,且,,求的长.【答案】(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°.∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°.∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA.∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE AD(3)解:如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD 2,过点G作GH⊥BD于H,∴tan∠ABD 2,∴GH=2BH.∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH.在Rt△ABC中,tan∠ABC 2,∴AC=2BC,根据勾股定理得:AC2+BC2=AB2,∴4BC2+BC2=9,∴BC ,∴3BH ,∴BH ,∴GH=2BH .在Rt△CHG中,∠BCF=45°,∴CG GH .【考点】圆周角定理,切线的性质,相似三角形的判定与性质,解直角三角形的应用,切线长定理24.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)解:由题意A(,0),B(﹣3 ,0),C(0,﹣3),设抛物线的解析式为y=a (x+3 )(x ),把C(0,﹣3)代入得到a ,∴抛物线的解析式为y x2x﹣3 (2)解:在Rt△AOC中,tan∠OAC ,∴∠OAC=60°.∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y x﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).∵FH=PH,∴1 m﹣1﹣(m2m﹣3)解得m 或(舍弃),∴当FH=HP时,m的值为(3)解:如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EO OA=3,∴E(0,3).∵C(0,﹣3),∴HC 2,AH=2FH=4,∴QH CH=1,在HA上取一点K,使得HK ,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQ AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,相似三角形的判定与性质,二次函数与一次函数的综合应用,二次函数的实际应用-动态几何问题。

2020年广西柳州市中考数学试卷(含答案解析)

2020年广西柳州市中考数学试卷(含答案解析)

2020年广西柳州市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.12的绝对值是()A. −12B. 12C. −2D. 22.如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.3.下列几种汽车标志图案是中心对称图形的是()A. B. C. D.4.500米口径球面射电望远镜简称FAST,被誉为“中国天眼”,历时22年建成,占地约25万平方米.其中数据“25万”可用科学记数法表示为()A. 2.5×105B. 2.2×106C. 5×105D. 2.5×1085.为了筹备班级毕业联欢会,班长对全班50名同学喜欢吃哪几种水果进行了民意调查,小明将班长的统计结果绘制成如图所示的条形统计图.下列结论错误的是()A. 一个人可以喜欢吃几种水果B. 喜欢吃葡萄的人数最多C. 喜欢吃苹果的人数是喜欢吃梨人数的3倍D. 喜欢吃香蕉的人数占全班人数的20%6.如图,A,B,C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是()A. 25°B. 50°C. 60°D. 90°AB;AB=2OB;AO+OB=AB中,能7.已知点O在线段A、B上,则在等式AO=OB;OB=12判定点O是线段AB中点的有()A. 1个B. 2个C. 3个D. 4个8.如图,在Rt△ABC中,∠C=90°,AC=2BC,则sin B的值为()A. 2√55B. 12C. √55D. 29.计算:−3x2⋅8xy2=()A. 5x2y2 B. 24x2y2C. 11x3y2 D. −24x3y2 10.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1,S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A. S1<S2B. S1>S2C. S1=S2D. S1≥S211.下列各式中能用平方差公式因式分解的是()A. −x2y2B. x2+y2C. x2−y2D. x−y12.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可以列出方程为()A. 480x =360140−xB. 480140−x=480xC. 480x +360x=140 D. 360x−140=4808x二、填空题(本大题共6小题,共18.0分)13.如图,直线AB,CD被直线AE所截,AB//CD,∠A=110°,则∠1=______度.14.一元一次方程6−8x=0的解是__________.15.(1)若分式2a+3a−1有意义,则a的取值范围是;(2)若分式2x+1无意义,则x的值为.16.已知点M(−1,5)向右平移3个单位长度,又向上平移4个单位长度得到点N的坐标为________.17.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有______个正方形.18.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为______.三、解答题(本大题共8小题,共66.0分)19.计算:(π−4)0+(−1)−2−|√2−2|.20. 已知:如图,点D ,C 在BF 上,且BD =CF ,∠B =∠F ,∠A =∠E .求证:△ABC≌△EFD .21. 解不等式组{x +11≥2x +3①x+72−1>2x −(3x −2)②并把解集在数轴上表示出来.22.有4张卡片,正面分别写上1,2,3,4,它们的背面都相同.现将它们背面朝上,先从中任意摸出一张,卡片不放回,再任意摸出一张.(1)请用树状图或列表法表示出所有可能的结果.(2)求摸出的两张卡片上的数之和大于5的概率.23.如图所示,▱ABCD的对角线AC,BD相交于点O,AE=EB,OE=3,AB=5.求▱ABCD的周长.x+2分别与x,y轴交于点B、A两点,与反比例函数24.如图在平面直角坐标系中,直线y=−12的图象分别交于点C、D两点,CE⊥x轴于点E,点E坐标为(−2,0)。

柳州市2020年中考数学试卷C卷

柳州市2020年中考数学试卷C卷

柳州市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2020·贵州模拟) 下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则 =﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A . 4个B . 5个C . 6个D . 7个2. (2分)(2020·乐清模拟) 下列计算中,正确的是()A .B .C .D .3. (2分) (2020八下·温州期中) 如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF 分别交AD于点E,BC于点F, ,则 ABCD的面积…()A . 24B . 32C . 40D . 484. (2分)二元一次方程组的解的情况是()A . 一个解B . 无数个解C . 有两个解D . 无解5. (2分) (2016七上·昌平期末) 如图所示的圆柱体从正面看得到的图形可能是()A .B .C .D .6. (2分) (2016九上·海原期中) 一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A .B .C .D .7. (2分) (2017九上·乌拉特前旗期末) 将函数y=﹣3x2+1的图象向右平移个单位得到的新图象的函数解析式为()A .B .C . y=﹣3x2+D . y=﹣3x2﹣8. (2分)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A . 1对B . 2对C . 3对D . 4对二、填空题 (共8题;共8分)9. (1分)(2018·哈尔滨模拟) 把多项式因式分解的结果为________.10. (1分)(2020·合肥模拟) 不等式组的解集是________.11. (1分)(2020·瑞安模拟) 某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如友表:则这20户家庭的该月平均用水量为________吨。

【2020年】广西中考数学试卷及答案

【2020年】广西中考数学试卷及答案

2020年广西中考数学试卷一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106 5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°6.(3分)下列运算正确的是()A.(ab 3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+17.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)因式分解:3ax 2﹣3ay2=.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【分析】根据正数与负数的表示方法,可得解;【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.【点评】本题考查正数和负数;能够根据实际问题理解正数与负数的意义和表示方法是解题的关键.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【分析】根据科学记数法的表示方法a×10n(1≤a<9),即可求解;【解答】解:700000=7×105;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法的表示方法是解题的关键.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【分析】利用完全平分公式,幂的乘方与积的乘方,合并同类项的法则进行解题即可;【解答】解:2a+3b不能合并同类项,B错误;5a 2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.【点评】本题考查整式的运算;熟练掌握完全平分公式,幂的乘方与积的乘方,合并同类项的法则是解题的关键.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【分析】k<0,y随x值的增大而增大,(﹣1,y1)在第二象限,(2,y2),(3,y3)在第四象限,即可解题;【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.【点评】本题考查反比函数图象及性质;熟练掌握反比函数的图象及x与y值之间的关系是解题的关键.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.【点评】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O 的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【分析】过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E 为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【分析】延长CB到F使得BC=CF,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,先求得BG,再求BH,进而DH,运用相似三角形得,便可得解.【解答】解:延长CB到F使得BF=BC,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB?BC=OC?BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.【点评】本题是圆的综合题,主要考查了切线长定理,切线的性质,相似三角形的性质与判定,勾股定理,将军饮马问题,问题较复杂,作的辅助线较多,正确作辅助线是解决问题的关键.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【分析】根据被开数x+4≥0即可求解;【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;【点评】本题考查二次根式的意义;熟练掌握二次根式中被开方数是非负数的条件是解题的关键.14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【分析】当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后再利用平方差公式继续进行二次因式分解,分解因式一定要彻底.15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【分析】先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【分析】根据菱形面积=对角线积的一半可求AC,再根据勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.【点评】本题考查了菱形的性质、勾股定理以及菱形面积公式;熟练掌握菱形的性质,由勾股定理求出BC是解题的关键.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为AB2=AC2+BD2.【分析】过点A作AE∥CD,截取AE=CD,连接BE、DE,则四边形ACDE是平行四边形,得出DE=AC,∠ACD=∠AED,证明△ABE为等边三角形得出BE=AB,求得∠BDE =360°﹣(∠AED+∠ABD)﹣∠EAB=90°,由勾股定理得出BE2=DE2+BD2,即可得出结果.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.【点评】本题考查了勾股定理、平行四边形的判定与性质、等边三角形的判定与性质、平行线的性质、四边形内角和等知识,熟练掌握平行四边形的性质、通过作辅助线构建等边三角形与直角三角形是解题的关键.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【分析】分别运算每一项然后再求解即可;【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.【点评】本题考查实数的运算;熟练掌握实数的运算法则是解题的关键.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【分析】分别解两个不等式得到x<3和x≥﹣2,再根据大小小大中间找确定不等式组的解集.然后利用数轴表示其解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:【点评】本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).【点评】此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)由题意知a=4,b=×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.【点评】本题主要考查众数、平均数、中位数,掌握众数、平均数、中位数的定义及其意义是解题的关键.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD,根据平角定义得到∠AEC=55°,根据圆周角定理得到∠ACE=90°,求得∠CAE=35°,得到∠BOD=2∠BAD=70°,根据弧长公式即可得到结论.【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.【点评】本题考查了三角形的外接圆与外心,圆周角定理,弧长的计算,正确的识别图形是解题的关键.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a 袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【分析】(1)设每袋国旗图案贴纸为x元,则有,解得x=15,检验后即可求解;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a;(3)如果没有折扣,W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.【点评】本题考查分式方程,一次函数的应用;能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【分析】(1)先判断出∠GCB+∠CBG=90,再由四边形ABCD是正方形,得出∠CBE =90°=∠A,BC=AB,即可得出结论;(2)设AB=CD=BC=2a,先求出EA=EB=AB=a,进而得出CE=a,再求出BG=a,CG═a,再判断出△CQD≌△BGC(AAS),进而判断出GQ=CQ,即可得出结论;(3)先求出CH=a,再求出DH=a,再判断出△CHD∽△DHM,求出HM=a,再用勾股定理求出GH=a,最后判断出△QGH∽△GCH,得出HN==a,即可得出结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG?CE=CB?EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CQD=∠CGB=90°,∴△CQD≌△BGC(AAS),∴CQ=BG=a,∴GQ=CG﹣CQ=a=CQ,∵DQ=DQ,∠CQD=∠GQD=90°,∴△DGQ≌△CDQ(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=?DQ?CH=CH?DG,∴CH==a,在Rt△CHD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠QGH=∠HCG,∴△QGH∽△GCH,∴,∴HN==a,∴MN=HM﹣HN=a,∴=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出△DGQ≌△CDQ是解本题的关键.26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x 与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN 的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;(3)由y1≤y2,得﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,S1=,设AB交MN于点P,易知P(t,t+1),S2=2﹣,所以S=S1+S2=4t+8,当t=2时,S的最大值为16.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE?k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE?k AE=﹣1,即,解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(),S1=QM?|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN?|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.【点评】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键。

柳州市2020年中考数学试卷(II)卷

柳州市2020年中考数学试卷(II)卷

柳州市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知a、b表示两个非零的有理数,则 + 的值不可能是()A . 2B . ﹣2C . 1D . 02. (2分) (2019七下·镇江月考) 作△ABC的边AB上的高,下列作法中,正确的是()A .B .C .D .3. (2分) (2019七上·松滋期末) 如图是某几何体的表面展开图,则该几何体是()A . 三棱锥B . 三棱柱C . 四棱锥D . 四棱柱4. (2分) (2016七上·岑溪期末) 下列调查适合全面调查的是()A . 对义昌江河水质情况的调查B . 春节临近对市场上饺子质量情况的调查C . 对某班60名同学体重情况的调查D . 对我市某类烟花爆竹燃放安全情况的调查5. (2分) (2019八下·闽侯期中) 下列条件中,能判断四边形是菱形的是()A . 对角线相等的平行四边形B . 对角线互相垂直且相等的四边形C . 对角线互相平分且垂直的四边形D . 对角线互相垂直的四边形6. (2分)已知:数a,b,c在数轴上的对应点如图所示,化简|a+b|-|-3c|-|a+b-c|的值是()A . -2cB . 4cC . 2cD . 2a+2b+2c7. (2分)(2016·温州) 如图,中,为上一点,则的长是()A .B .C .D .8. (2分)(2018·嘉兴模拟) 某兴趣小组有6名男生,4名女生,在该小组成员中选取1名学生作为组长,则选取女生为组长的概率是()A .B .C .D .9. (2分) (2016八上·河源期末) 一次函数y=kx﹣k(k<0)的图象大致是()A .B .C .D .10. (2分)(2017·沭阳模拟) 如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A .B .C .D .二、填空题 (共5题;共10分)11. (5分)有下面一组数据:63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77.(1)其中最大数据为________,最小数据为________,最大数据与最小数据的差为________;(2)如果设定组距为10,那么组数应为________;(3) 79.5~89.5这一组的频数是________.12. (1分)如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y=的图象上,则k的值为________ .13. (1分) (2018九上·成都期中) 如图,在正方形ABCD中,点E是BC边上一动点,连接AE,AC,将沿AE翻折得到,延长交CD边于F,若,则 ________ 用含n的代数式表示.14. (1分) (2016八上·杭州期中) 若关于x的一元一次不等式组无解,则m的取值范围为________.15. (2分)代数式有最________值,最值是________.三、解答题 (共10题;共93分)16. (10分)在盘点北京2008年奥运会成绩单时,有这样的信息:第一次获得奥运奖牌的国家,多哥:布克佩蒂皮划艇激流回旋铜牌;塔吉克斯坦:拉苏尔•博基耶夫柔道铜牌;阿富汗:尼帕伊跆拳道铜牌;毛里求斯:布鲁诺•朱利拳击铜牌;苏丹:艾哈迈德男子800米银牌.(1)请用一张统计表简洁地表示上述信息;(2)你从这些信息中发现了什么?17. (7分)某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为400元/人,同时两旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客七五折优惠;而乙旅行社是免去一位带队老师的费用,其余游客八折优惠.(1)如果设参加旅游的老师共有x(x>10)人,则甲旅行社的费用为________ 元,乙旅行社的费用为________ 元;(用含x的代数式表示)(2)假如某校组织17名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.18. (5分)如图,将矩形ABCD沿CE折叠,点B恰好落在边AD上的点F处,如果求tan∠DCF的值.19. (10分) (2016九上·黄山期中) 在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.20. (6分) (2019八上·孝感月考) 如图,在等边三角形ABC中,,点E是AC边上的一点,过点E 作交BC于点D,过点E作,交BC的延长线于点F.(1)求证:是等腰三角形;(2)点E满足 ________时,点D是线段BC的三等分点;并计算此时的面积.21. (10分) (2016九上·达州期末) 创建文明城市,人人参与,人人共建.我市各校积极参与创建活动,自发组织学生走上街头,开展文明劝导活动.某中学九(一)班为此次活动制作了大小、形状、质地等都相同的“文明劝导员”胸章和“文明监督岗”胸章若干,放入不透明的盒中,此时从盒中随机取出“文明劝导员”胸章的概率为;若班长从盒中取出“文明劝导员”胸章3只、“文明监督岗”胸章7只送给九(二)班后,这时随机取出“文明劝导员”胸章的概率为.(1)请你用所学知识计算:九(一)班制作的“文明劝导员”胸章和“文明监督岗”胸章各有多少只?(2)若小明一次从盒内剩余胸章中任取2只,问恰有“文明劝导员”胸章、“文明监督岗”胸章各1只的概率是多少?(用列表法或树状图计算)22. (10分)(2018·宁波) 已知抛物线经过点(1,0),(0,)。

2020学年广西柳州市中考试题数学及答案解析

2020学年广西柳州市中考试题数学及答案解析

2020年广西柳州市中考试题数学一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.计算:0+(-2)=( )A.-2B.2C.0D.-20解析:直接利用有理数的加减运算法则计算得出答案.0+(-2)=-2.答案:A2.如图,这是一个机械模具,则它的主视图是( )A.B.C.D.解析:根据主视图的画法解答即可.主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面.答案:C3.下列图形中,是中心对称图形的是( )A.B.C.D.解析:根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.答案:B4.现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为( )A.1B.1 4C.1 2D.4解析:∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为1 4.答案:B5.世界人口约7000000000人,用科学记数法可表示为( )A.9×107B.7×1010C.7×109D.0.7×109解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.7000000000=7×109.答案:C6.如图,图中直角三角形共有( )A.1个B.2个C.3个D.4个解析:根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个.答案:C7.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinACBAB==( )A.3 5B.5C.37D.34解析:首先利用勾股定理计算出AB长,再计算sinB即可.∵∠C=90°,BC=4,AC=3,∴AB=5,∴3sin5ACBAB==.答案:A8.如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为( )A.84°B.60°C.36°D.24°解析:直接利用圆周角定理即可得出答案.∵∠B与∠C所对的弧都是AD,∴∠C=∠B=24°.答案:D9.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费( )A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元解析:根据“实际售价=原售价×10折扣”可得答案.根据题意知,买一斤需要付费0.8a元.答案:A10.如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占( )A.6.7%B.13.3%C.26.7%D.53.3%解析:根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.答案:D11.计算:(2a)·(ab)=( )A.2abB.2a2bC.3abD.3a2b解析:直接利用单项式乘以单项式运算法则计算得出答案.(2a)·(ab)=2a2b.答案:B12.已知反比例函数的解析式为2ayx-=,则a的取值范围是( )A.a≠2B.a≠-2C.a≠±2D.a=±2解析:根据反比例函数解析式中k是常数,不能等于0解答即可.由题意可得:|a|-2≠0,解得:a≠±2.答案:C二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共18分)13.如图,a∥b,若∠1=46°,则∠2= °.解析:根据平行线的性质,得到∠1=∠2即可.∵a∥b,∠1=46°,∴∠2=∠1=46°.答案:4614.如图,在平面直角坐标系中,点A的坐标是 .解析:直接利用平面直角坐标系得出点A坐标(-2,3).答案:(-2,3)15.不等式x+1≥0的解集是 .解析:根据一元一次不等式的解法求解不等式.移项得:x≥-1.答案:x≥-116.一元二次方程x2-9=0的解是 .解析:利用直接开平方法解方程得出即可.∵x2-9=0,∴x2=9,解得:x1=3,x2=-3.答案:x1=3,x2=-317.篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为 . 解析:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为8 214 x yx y+=⎧⎨+=⎩.答案:8 214 x yx y+=⎧⎨+=⎩18.如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=3,AD=7,则BC的长为 .解析:过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,3,∴AE=3,CE=32,Rt△AED中,2222733126 ED AD AE⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭=-=-=,∴312653 CD CE DE=+==+,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴11522536 CF CD==⨯=,∴536DF=,∵DF∥AC,∴△BFD∽△BCA,∴DF BFAC BC=,∴536536BFBF=+,∴256BF=,∴255566BC=+=.答案:5三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.计算:24+3.解析:先化简,再计算加法即可求解.答案:24+3=2×2+3=4+3=7.20.如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.解析:依据两角及其夹边分别对应相等的两个三角形全等进行判断. 答案:证明:∵在△ABC 和△EDC 中,A E AC ECACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△EDC(ASA).21.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.解析:平均数是指在一组数据中所有数据之和再除以数据的个数. 答案:该同学这五次投实心球的平均成绩为:10.510.210.310.610.410.45++++=(m).故该同学这五次投实心球的平均成绩为10.4m.22.解方程212x x =-.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.答案:212x x =-,去分母得:2x-4=x , 解得:x=4,经检验x=4是分式方程的解.23.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且AB=2.(1)求菱形ABCD 的周长.解析:(1)由菱形的四边相等即可求出其周长.答案:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8.(2)若AC=2,求BD的长.解析:(2)利用勾股定理可求出BO的长,进而解答即可. 答案:(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴2222213BO AB AO=-=-=,∴BD=2BO=23.24.如图,一次函数y=mx+b的图象与反比例函数kyx=的图象交于A(3,1),B(12-,n)两点.(1)求该反比例函数的解析式.解析:(1)根据反比例函数kyx=的图象经过A(3,1),即可得到反比例函数的解析式为3yx=.答案:(1)∵反比例函数kyx=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为3yx=.(2)求n的值及该一次函数的解析式.解析:(2)把B(12-,n)代入反比例函数解析式,可得n=-6,把A(3,1),B(12-,-6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x-5.答案:(2)把B(12-,n)代入反比例函数解析式,可得12-n=3,解得n=-6,∴B(12-,-6),把A(3,1),B(12-,-6)代入一次函数y=mx+b,可得11236m bm b=+⎧⎪⎨-=-+⎪⎩,解得25mb=⎧⎨=-⎩,∴一次函数的解析式为y=2x-5.25.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA.解析:(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论.答案:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA.(2)过点C作⊙O的切线CE交AD于点E,求证:CE=12AD.解析:(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论.答案:(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=12AD.(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长. 解析:(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.答案:(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD=ADAB=2,过点G作GH⊥BD于H,∴tan∠ABD=GHBH=2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG-∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC=ACBC=2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=35 5,∴3BH=35 5,∴BH=5,∴GH=2BH=25,在Rt△CHG中,∠BCF=45°,∴CG=2GH=210.26.如图,抛物线y=ax2+bx+c与x轴交于A(3,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=3OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式.解析:(1)求出A、B、C的坐标,利用两根式求出抛物线的解析式即可.答案:(1)由题意30),30),C(0,-3),设抛物线的解析式为(333 y a x x=+,把C(0,-3)代入得到a=1 3,∴抛物线的解析式为213333y x x=+-.(2)设点P的横坐标为m,当FH=HP时,求m的值.解析:(2)求出直线AH的解析式,根据方程即可解决问题.答案:(2)在Rt△AOC中,3 tanOCOACOA∠==,∴∠OAC=60°,∵AD 平分∠OAC ,∴∠OAD=30°,∴OD=OA ·tan30°=1,∴D(0,-1),∴直线AD的解析式为31y x =-,由题意P(m,2133y m =+-),H(m,1m -),F(m ,0),∵FH=PH ,∴211333133m m m m ⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪ ⎪⎝-⎭⎝⎭,解得m=(舍弃),∴当FH=HP 时,m的值为.(3)当直线PF 为抛物线的对称轴时,以点H 为圆心,12HC 为半径作⊙H ,点Q 为⊙H 上的一个动点,求14AQ+EQ 的最小值.解析:(3)首先求出⊙H 的半径,在HA 上取一点K ,使得HK=14,此时K(-,32-),由HQ 2=HK ·HA ,可得△QHK ∽△AHQ ,推出14KQ HQ AQ AH ==,可得KQ=14AQ ,推出14AQ+QE=KQ+EQ ,可得当E 、Q 、K 共线时,14AQ+QE 的值最小,由此求出点E 坐标,点K 坐标即可解决问题. 答案:(3)如图所示:∵PF是对称轴,∴F(3-0),H(3,-2),∵AH⊥AE,∴∠EAO=60°,∴3,∴E(0,3),∵C(0,-3),∴()2231+,AH=2FH=4,∴QH=12CH=1,在HA上取一点K,使得HK=14,此时K(32-,32-),∵HQ2=1,HK·HA=1,∴HQ2=HK·HA,可得△QHK∽△AHQ,∴14 KQ HQAQ AH==,∴KQ=14AQ,∴14AQ+QE=KQ+EQ,14AQ+QE=.∴当E、Q、K共线时,。

柳州市2020年(春秋版)中考数学试卷(II)卷

柳州市2020年(春秋版)中考数学试卷(II)卷

柳州市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-2013的倒数是()A . -2013B . 2013C .D .2. (2分)(2017·西湖模拟) 有五个相同的小正方体堆成的物体如图所示,它的主视图是()A .B .C .D .3. (2分)(2019·无锡模拟) 在下列运算中,计算正确的是()A . m2+m2=m4B . (m+1)2=m2+1C . (3mn2)2=6m2n4D . 2m2n÷(﹣mn)=﹣2m4. (2分)如图,直线l1∥l2 ,∠1=55°,∠2=65°,则∠3为()A . 50°B . 55°C . 60°D . 65°5. (2分)某农场开挖一条长480米的渠,开工后每天比原计划多挖20米,结果提前4天完成。

若设原计划每天挖x米则()A . =4B . -=20C . -=4D . -=206. (2分) (2017七下·郾城期末) 下列语句中,是真命题的是()A . 若ab>0,则a>0,b>0B . 若ab=0,则a=0或b=0C . 内错角相等D . 相等的角是对顶角7. (2分)(2018·潮州模拟) 如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为()A . 2,B . 2 ,πC . ,D . 2 ,8. (2分)下列各函数中,y随x增大而增大的是()①y=-x+1;②y=-(x<0);③y=x2+1;④y=2x-3.A . ①②B . ②③C . ②④D . ①③9. (2分)(2019·苏州模拟) 如图,正方形的边长为6,点分别在边上,若是的中点,且,则的长为()A .B .C .D .10. (2分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF ,其中正确的结论有()A . 5个B . 4个C . 3个D . 2个二、填空题 (共6题;共7分)11. (2分)把一个大于10的数表示成________ 的形式(其中a是整数数位只有一位的数,n是正整数),这种记数法叫做________ .12. (1分)(2013·深圳) 分解因式:4x2﹣8x+4=________.13. (1分) (2017·阜宁模拟) 如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴,点C 在y轴的正半轴上,点F再AB上,点B,E在反比例函数y= 的图象上,OA=2,OC=6,则正方形ADEF的边长为________.14. (1分) (2016八上·抚宁期中) 如图所示,∠A=∠E,AC⊥BE,AB=EF,BE=18,CF=8,则AC=________.15. (1分)(2016·海宁模拟) 如图,在平面直角坐标系xOy中,已知点A(﹣1,0),B(﹣1,1),C(1,0),D(1,2),点P是坐标系内一点,给出定义:若存在过点P的直线l与线段AB,CD都有公共点,则称点P是线段AB,CD的“联络点”.现有点P(x,y)在直线y= x上,且它是线段AB,CD的“联络点”,则x的取值范围是________.16. (1分)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG..若AB=8,BC=16,则△AEG 的面积为________.三、解答题 (共9题;共99分)17. (10分) (2016九上·本溪期末)(1)(2) x(x+3)=7(x+3)18. (8分)(2017·泰州模拟) 西安市2016年中考,综合素质测试满分为100分.某校为了调查学生对于综合素质的掌握程度,在九年级学生中随机抽取了部分学生进行模拟测试,并将测试成绩绘制成下面两幅统计图.试根据统计图中提供的数据,回答下面问题:(1)计算样本中,成绩为98分的学生有________分,并补全条形统计图.(2)样本中,测试成绩的中位数是________分,众数是________分.(3)若该校九年级共有2000名学生,根据此次模拟成绩估计该校九年级中考综合速度测试将有多少名学生可以获得满分.19. (10分) (2016八下·滕州期中) 解一元一次不等式(组),并把解集表示在数轴上.(1)(2).20. (11分) (2016八下·周口期中) 解答题(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上________.(2)思维拓展:已知△ABC三边的长分别为 a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.(3)类比创新:若△A BC三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.21. (5分)(2017·贺州) 如图,某武警部队在一次地震抢险救灾行动中,探险队员在相距4米的水平地面A,B两处均探测出建筑物下方C处有生命迹象,已知在A处测得探测线与地面的夹角为30°,在B处测得探测线与地面的夹角为60°,求该生命迹象C处与地面的距离.(结果精确到0.1米,参考数据:≈1.41,≈1.73)22. (10分)(2017·兴化模拟) 为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?23. (10分)如图,AB⊥x轴于点B(8,0),sin∠AOB= ,反比例函数y1= 与OA相交于点C,且点C 为OA的中点(1)求反比例函数函数的解析式(2)一次函数y2=x+4,当y2>y1时,直接写出x的取值范围.24. (20分)(2018·定兴模拟) 已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.25. (15分) (2019九上·宁波月考) 如图,AB是半圆O的直径,半径OC⊥AB,OB=2,D是OB的中点,点E 是弧BC上的动点,连接AE,DE。

广西柳州市2020版中考数学试卷(I)卷

广西柳州市2020版中考数学试卷(I)卷

广西柳州市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分) (2016八上·东莞开学考) 如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A . a+b<0B . a﹣b<0C . ﹣a+b>0D . |b|>|a|2. (2分)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()尺码/cm2222.52323.52424.525销售量/双46610211A . 平均数B . 中位数C . 众数D . 方差3. (2分)下列计算错误的一项是()A .B .C .D .4. (2分) (2018八上·罗湖期末) 小李家去年节余(节余=收入一支出)5 000元,今年可节余9 500元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为X元,支出为Y元,则可列方程组为()A .B .C .D .5. (2分)如图是一个正六棱柱的主视图和左视图,则图中的a=()A .B .C .D .6. (2分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A .B .C .D .7. (2分) (2018七下·合肥期中) 如图,表示的点在数轴上表示时,应在哪两个字母之间()A . C与DB . A与BC . A与CD . B与C8. (2分)如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC 的度数为100°,则∠DOB的度数是()A . 34°B . 36°C . 38°D . 40°9. (2分)(2017·曹县模拟) 如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A . πB . πC . πD . π10. (2分) (2015八上·龙华期末) 下列命题中是真命题的是()A . 算术平方根等于自身的数只有1B . 是最简二次根式C . 有一个角等于60°的三角形是等边三角形D . 两角及其夹边分别相等的两个三角形全等二、填空题: (共6题;共11分)11. (1分)在解方程﹣ =2时,去分母得________.12. (1分)(2017·福建) 两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于________度.13. (1分)某县有80万人口,其中各民族所占比例如上图所示,则该县少数民族人口共有________万人.14. (6分)如图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△________ ≌△________,其判定依据是________,还有△________ ≌△________ ,其判定依据是________.15. (1分) (2018九上·丽水期中) 抛物线y=ax2+bx+c经过点A(-5,4),且对称轴是直线x=-2,则a+b+c=________16. (1分)观察下列等式:解答下面的问题:21+22+23+24+25+26+…+22015的末位数字是________ .三、解答题: (共9题;共97分)17. (10分) (2016九上·靖江期末) 计算题(1)计算:|﹣3|+ ;(2)化简:.18. (10分) (2017八下·钦州期末) 已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外)19. (10分) (2018七下·黑龙江期中) 某超市销售甲、乙两种商品,五月份该超市第一次购进甲商品50件,乙商品30件,用去1400元,第二次购进甲商品40件,乙商品40件,用去1600元.(1)求两种商品进价分别是多少元.(2)由于商品受到市民欢迎,六月份决定再购进甲乙两种商品共80件,且进价不变,甲种商品售价15元,乙种商品售价40元,该超市为使甲、乙两种商品共80件的总利润(利润=售价﹣进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.20. (10分)(2017·双柏模拟) 将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.请用树状图或列表法解答下列问题:(1)从中随机抽取两张卡片,求卡片正面上的数字之积大于4的概率;(2)若先从中随机抽取一张卡片(不放回),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.21. (10分)如图,的半径为5,弦于E,.(1)求证:;(2)若于F,于G,试说明四边形OFEG是正方形.22. (10分)使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.23. (15分)(2017·南山模拟) 如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(﹣2,2)、B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0),为线段CD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S.(1)求一次函数和二次函数的解析式,并求出点B的坐标;(2)当SR=2RP时,计算线段SR的长;(3)若线段BD上有一动点Q且其纵坐标为t+3,问是否存在t的值,使S△BRQ=15?若存在,求t的值;若不存在,说明理由.24. (12分)(2019·广西模拟) 如图所示,△ABC, △ADE 为等腰直角三角形,∠ACB=∠AED=90°(1)如图①,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是________∠EFD 的度数为________;(2)如图②,在图①的基础上,将△ADE绕A点顺时针旋转到如图②的位置,其中D,A,C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF,FC,请你完成图③,并直接写出线段EF与FC的关系(无需证明).25. (10分)(2016·东营) 如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段DH的长.参考答案一、选择题: (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共6题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题: (共9题;共97分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

广西柳州市2020年(春秋版)中考数学试卷D卷

广西柳州市2020年(春秋版)中考数学试卷D卷

广西柳州市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分) 2010年上海世博会共有园区志愿者79965名。

他们敬业的精神和热情的服务“征服”了海内外游客。

79965用科学记数法表示为A . 0.79965×105B . 79.965103C . 7.9965104D . 7.99651052. (2分)下面图形经过折叠可以围成一个棱柱的是()A .B .C .D .3. (2分)(2018·东莞模拟) 使式子有意义的的值是()A . x>0B . x≠9C . x≥0且x≠9D . x>0且x≠94. (2分)(2017·长宁模拟) 已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A . 2<O1O2<4B . 2<O1O2<6C . 4<O1O2<8D . 4<O1O2<105. (2分)已知a、b、2分别为三角形三边,且a、b为方程(3x2-4x-1)(3x2-4x-5)=12的根,则三角形周长只可能为().A . 或B . 或C . 或D . 或6. (2分) (2017九上·青龙期末) 三角形在方格纸中的位置如图所示,则tanα的值是()A .B .C .D .7. (2分)计算(-3x)2的结果正确的是()A . -3x2B . 6x2C . -9x2D . 9x28. (2分)(2017·丹东模拟) 如图,在数轴上表示不等式组的解集,其中正确的是()A .B .C .D .9. (2分)如图,在△ABC中,∠ABC=60°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A . 100°B . 110°C . 115°D . 120°10. (2分)下列计算正确的是()A . a2×a3=a6B . ﹣=C . 8﹣1=﹣8D . (a+b)2=a2+b211. (2分)如图,梯形ABCD中,AD∥BC , E、F分别是AB、CD的中点,EF分别交BD、AC于G、H ,若AD=6,BC=10,则GH的长为()A . 5B . 4C . 3D . 212. (2分)(2016·深圳模拟) 在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC绕点A顺时针旋转90°后,得到△A1B1C1(如图所示),则线段AB所扫过的面积为()A . 5B . πcm2C . πcm2D . 5πcm2二、填空题. (共6题;共8分)13. (3分) (2016七上·港南期中) ﹣4的相反数是________,倒数是________,绝对值是________.14. (1分) (2018八下·宁远期中) 如图,▱ABCD中,∠C=110°,BE平分∠ABC,则∠AEB的度数等于________.15. (1分)(2018·无锡模拟) 因式分解:a2(x﹣y)﹣4b2(x﹣y)=________.16. (1分) (2017八上·陕西期末) 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是________.17. (1分) (2016八上·吴江期中) 已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为________18. (1分)为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________ 条鱼.三、解答题. (共7题;共76分)19. (5分) (2017九上·建湖期末) 计算:﹣tan60°+4sin30°×cos245°.20. (15分)(2014·湖州) 已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.53.64.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7(1)求这组数据的极差;(2)若以0.4kg为组距,对这组数据进行分组,制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(部分空格未填),请在频数分布表的空格中填写相关的量某医院2014年3月份20名新生儿体重的频数分布表组别(kg)划记频数略略3.55﹣3.95正一6略略略合计20(3)经检测,这20名婴儿的血型的扇形统计图如图所示(不完整),求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.21. (10分)(2016·宁夏) 某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?22. (10分)如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.(1)求证:△ACE≌△DCB;(2)求证:△ADF∽△BAD.23. (10分) (2017八下·苏州期中) 某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.24. (11分) (2018八下·扬州期中) 从反思中总结基本活动经验是一个重要的学习方法.例如,我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很自然地联想,借助已有经验,迅速解决问题.(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M 是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标________(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD = MN.如何获得问题的解决,不妨在OD上取一点G,连接MG,设法构造△MDG与△NMB全等,请你按此思路证明:MD = MN.(3)如图3,(2)的条件下请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.25. (15分)(2017·哈尔滨) 如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.参考答案一、选择题. (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题. (共7题;共76分)19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。

柳州专版2020版中考数学夺分复习6套试卷带答案

柳州专版2020版中考数学夺分复习6套试卷带答案

1 2
-1
-(5-π)0-|-
9|-(-1)2019.
20.先化简,再求值:
1-
1 -1
÷
2-4 2-
+4,再选择一个恰当的
x
值代入求值.
21.如图 X2-8,△ABC 三个顶点的坐标分别为 A(1,1),B(4,2),C(3,4). (1)请画出△ABC 向左平移 6 个单位长度后得到的△A1B1C1; (2)请画出△A1B1C1 关于原点对称的△A2B2C2; (3)在 x 轴上求作一点 D,使△DA1B1 的周长最小,请画出△DA1B1,并直接写出 D 的坐标.
A.1 个
B.2 个
图 X2-5 C.3 个
二、填空题(每题 3 分,共 18 分)
13.36 的算术平方根是
.
14.已知 a2-b2=5,a+b=-2,那么代数式 a-b 的值
.
15.二次函数 y=(a-1)x2-x+a2-1 的图象经过原点,则 a 的值为
16.如图 X2-6,AB∥CD,CE 平分∠BCD,∠DCE=18°,则∠B=
∵△DHG 是由△DBC 旋转得到,
∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,
在 Rt△ADE 和 Rt△GDE 中, ∴AED≌△GED,故②正确;
=, =,
∴∠ADE=∠EDG=22.5°,AE=EG,
∴∠AED=∠AFE=67.5°,
∴AE=AF,易得△AEF≌△GEF,可得 EG=GF,
.
15.已知关于 x 的不等式(a+1)x>3a+3 可化为 x<3,则 a 的取值范围是
.
16.方程 3x2=x 的解为

柳州市2020版中考数学试卷C卷

柳州市2020版中考数学试卷C卷

柳州市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)已知a,b两数在数轴上对应的点如图所示,下列结论中正确的是()A . |a|>|b|B . ab<0C . b﹣a>0D . a+b<02. (2分) (2018八上·兰考期中) 在等式am+n÷A=am-2中,A的值应是()A . am+n+2B . an-2C . am+n+3D . an+23. (2分)下列事件中,属于随机事件的是()A . 掷一枚普通正六面体骰子,所得点数不超过6B . 买一张彩票中奖C . 太阳从西边落下D . 口袋中装有10个红球,从中摸出一个是白球4. (2分)(2016·内江) 在函数y= 中,自变量x的取值范围是()A . x>3B . x≥3C . x>4D . x≥3且x≠45. (2分)如图,AB∥CD,AD与BC交于点E,若∠B=35°,∠D=45°,则∠AEC=()A . 35°B . 45°C . 70°D . 80°6. (2分) (2016八上·安陆期中) 我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十二边形至少再钉上()A . 11根B . 10根C . 9根D . 8根7. (2分) (2019八下·麟游期末) 如图,在中,,,,为边上一动点,于点,于点为的中点,则的最小值为()A .B .C .D .8. (2分)(2017·长春模拟) 如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是()A .B .C .D .9. (2分) (2019七下·鹿邑期末) 5月22-23日,在川汇区教育局组织部分学生参加市举办的“唱响红歌”庆祝活动中,分别给每位男、女生佩戴了白、红颜色的太阳帽,当大家坐在一起时,发现一个有趣的现象,每名男生看到白色的帽子比红色的帽子多5个,每名女生看到的红色帽子是白色帽子数量的,设这些学生中男生有x 人,女生有y人,依题意可列方程().A .B .C .D .10. (2分)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A . 34.14米B . 34.1米C . 35.7米D . 35.74米11. (2分)如图,是一个风筝的平面示意图,四边形ABCD是等腰梯形,E、F、G、H分别是各边的中点,假设图中阴影部分所需布料的面积为S1 ,其它部分所需布料的面积之和为S2(边缘外的布料不计),则()A . S1>S2B . S1<S2C . S1=S2D . 不确定12. (2分)下列函数中,其图象与x轴有两个交点的是()A . y=8(x+2009)2+2010B . y=8(x﹣2009)2+2010C . y=﹣8(x﹣2009)2﹣2010D . y=﹣8(x+2009)2+2010二、填空题: (共6题;共8分)13. (1分)分解因式: ________.14. (1分) (2018八上·柯桥期中) 如图,CD是Rt△ABC斜边AB上的高,将△ACD沿CD折叠,A点恰好落在AB的中点E处,则∠B等于________度.15. (1分)(2017·新吴模拟) 无锡阳山,风景如画,粉红的桃花,洁白的梨花,金灿灿的油菜花,引得众多游客流连忘返,据统计今年清明小长假前往阳山踏青赏花游客超过130000人次,把130000用科学记数法表示为________.16. (3分) (2015七上·海南期末) 如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B,C,D可以表示为B(________)、C(________)、D(________).17. (1分)(2017·唐河模拟) 如图,矩形ABCD中,AB=1,AD=2,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对称轴上,则AE的长为________.18. (1分) (2017七上·柯桥期中) 下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数是________.三、解答题 (共7题;共90分)19. (5分)(2017·渠县模拟) 计算:﹣(﹣1)2015×(﹣)﹣2﹣|1﹣ |20. (20分)电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是.21. (15分) (2016九上·通州期中) 已知反比例函数y= 的图象经过点P(﹣1,﹣1).(1)求此函数的表达式;(2)画出此函数在第一象限内的图象.(3)根据函数图象写出此函数的一条性质.22. (10分) (2017九上·东莞开学考) 如图,AB⊥BC,DC⊥BC,垂足分别为B、C,设AB=4,DC=1,BC=4.(1)求线段AD的长.(2)在线段BC上是否存在点P,使△APD是等腰三角形?若存在,求出线段BP的长;若不存在,请说明理由.23. (15分) (2019九上·秀洲期末) 2015年12月16﹣18日,第二届互联网大会在浙江乌镇胜利举行,这说明我国互联网发展走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)24. (15分)(2018·新北模拟) 已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3) a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.25. (10分)(2019·雅安) 如图,已知是圆的直径,是圆的弦,交于,过点作圆的切线交的延长线于点,连接并延长交的延长线于点.(1)求证:是圆的切线;(2)若,,求线段的长.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共90分)19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

广西柳州市2020版中考数学试卷(I)卷

广西柳州市2020版中考数学试卷(I)卷

广西柳州市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2016·福田模拟) ﹣2的倒数是()A . ﹣B . ﹣2C .D . 22. (2分) (2019八下·平昌期末) 下列等式成立的是()A .B .C .D .3. (2分) (2019九上·鄂州期末) 如图,直线与轴、轴分别交于、两点,△绕点顺时针旋转90°后得到△ ,则点的对应点坐标为()A . (3,4)B . (7,4)C . (7,3)D . (3,7)4. (2分)(2018·娄底模拟) 下列结论中错误的是()A . 四边形的内角和等于它的外角和B . 点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为(-3,0)C . 方程x2+x-2=0的两根之积是-2D . 函数y= 的自变量x的取值范围是x>35. (2分)如图是由几个相同的小立方块搭成的几何体的三视图,则这个几何体的小立方块的个数是()A . 4个B . 5个C . 6个D . 7个6. (2分)(2017·玉林) 一组数据:6,3,4,5,7的平均数和中位数分别是()A . 5,5B . 5,6C . 6,5D . 6,67. (2分) (2016九上·姜堰期末) 如果∠α是等边三角形的一个内角,那么cosα的值等于()A .B .C .D . 18. (2分)(2016·襄阳) 一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A .B .C .D .二、填空题 (共8题;共8分)9. (1分)分解因式:x2﹣4=________ .10. (1分) (2018八上·启东开学考) 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角的度数分别________.11. (1分)(2019·叶县模拟) 将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:________12. (1分)如图,等边三角形ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60,则CD的长为________ .13. (1分) (2019八下·温州期中) 我市某服装生产商今年第一季度的销售利润是640万元,由于技术改进,生产效率得到提高,该服装生产商的销售利润逐月上升,第三季度的销售利润达到了1000万元.若该服装生产商第二、三季度的利润平均增长率都相同.则该服装生产商第二、三季度的利润平均增长率为________.14. (1分)(2016·南岗模拟) 不等式组的解集________.15. (1分) (2017九上·满洲里期末) 有一个边长为3的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是________.16. (1分)如图所示,在△ABC中,已知BD=2DC,AM=3MD,过M作直线交AB,AC于P,Q两点.则=________.三、解答题 (共8题;共80分)17. (10分)计算和解分式方程:(1);(2)(﹣1)2016﹣|﹣2|+(﹣π)0× +()﹣1;(3) = ;(4) + = .18. (5分) (2017九下·宜宾期中) 如图,正方形ABCD的对角线AC、BD交于点O,AE=BF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2020年广西柳州市初中学业水平考试数学考试时间:120分钟满分:120分第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的.)1.15-的绝对值是()A.5 B.5-C.15-D.152.如图,这是一个由5个完全相同的小正方体组成的立体图形,它的主视图是()A B C D3.下列四个图案中,是中心对称图形的是()A B C D4.2020年是我国全面建成小康社会收官之年,我市将全面完成剩余19700贫困人口脱贫的任务.用科学记数法将数据19700表示为()A.50.19710⨯B.41.9710⨯C.319.710⨯D.219710⨯5.为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如下统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14%B.16%C.20%D.50%6.如图,点A、B、C在O上,若°BOC70∠=,则A∠的度数为()A.35°B.40°C.55°D.70°7.通过如下尺规作图,能确定点D是BC边中点的是()A B C D8.如图,在Rt ABC△中,°C90∠=,A B4=,AC3=,则BCcosBAB==()-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第1页(共16页)数学试卷第2页(共16页)数学试卷第3页(共16页)数学试卷第4页(共16页)A .35B .45CD .349.22ab a -的计算结果是()A .2abB .4abC .32a bD .34a b10.如图是甲、乙两名射击运动员10次射击成绩的折线统计图,根据折线图判断下列说法正确的是()A .甲的成绩更稳定B .乙的成绩更稳定C .甲、乙的成绩一样稳定D .无法判断谁的成绩更稳定11.下列多项式中,能用平方差公式进行因式分解的是()A .22a b -B .22a b --C .22a b +D .222a ab b ++12.甲、乙二人做某种机械零件,已知每小时甲比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,设乙每小时做x 个零件,以下所列方程正确的是() A .90606x x=- B .90606x x =+ C .90606x x=+ D .90606x x =-第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分.)13.如图,直线12l l 被直线3l 所截,12l l ,已知°180∠=,则2∠=________°.14.一元一次方程280x -=的解是________. 15.分式12x -中,x 的取值范围是________. 16.点A 的坐标是()23-,,将点A 向上平移4个单位长度得到点A ',则点A '的坐标为________.17.如图,每一幅图中有若干个菱形,第1幅图中有1个菱形,第2幅图中有3菱形.第3幅图中有5个菱形,依照此规律,第6幅图中有________个菱形.18.如图,在矩形纸片ABCD 中,AB 6=,BC 10=,点E 在CD 上,将BCE △沿BE 折叠,点C 恰好落在边AD 上的点F 处,点G 在AF 上,将ABG △沿BG 折叠,点A 恰好落在线段BF 上的H 处,有下列结论:①°EBC 45∠=;②FGH 2S 5S =△BFG △;③DEF ABG △∽△;④4CE 5ED =.其中正确的是________.(填写所有正确结论的序号)数学试卷第5页(共16页)数学试卷第6页(共16页)三、解答题(本大题共8小题,共60分,解答时应写出必要的文字说明,演算步骤或推理过程)19.(本题满分6分)计算:11682⨯-+ 20.(本题满分6分)如图,已知OC 平分MON ∠,点A 、B 分别在射线OM ,ON 上,且OA OB =.求证:AOC BOC △≌△. 21.(本题满分8分)解不等式组2112 3.x x +⎧⎨--⎩>,≥①②请结合解题过程,完成本题的解答. (Ⅰ)解不等式①,得________; (Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式的解集为________.22.(本题满分8分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是________;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A 、B 、C 、D 表示)23.(本题满分8分)如图,已知ABCD 的对角线AC 、BD 相交于点O ,12AD =,10BD =,26AC =.(1)求ADO △的周长;(2)求证:ADO △是直角三角形.24.(本题满分10分)如图,平行于y 轴的直尺(部分)与反比例函数()0my x x=>的图象交于A 、C 两点,与x 轴交于B 、D 两点,连接AC ,点A 、B 对应直尺上的刻度分别为5、2,直尺的宽度2BD =,2OB =.设直线AC 的解析式为y kx b =+.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无--------------------效----------------数学试卷第7页(共16页)数学试卷第8页(共16页)(1)请结合图象,直接写出: ①点A 的坐标是________; ②不等式mkx b x+>的解集是________; (2)求直线AC 的解析式. 25.(本题满分10分)如图,AB 为O 的直径,C 为O 上的一点,连接AC 、BC ,OD BC ⊥于点E ,交O 于点D ,连接CD 、AD ,AD 与BC 交于点F ,CG 与BA的延长线交于点G .(1)求证:ACD CFD △∽△; (2)若CDA GCA ∠=∠,求证:CG 为O 的切线;(3)若1sin CAD 3∠=.求tan CDA ∠的值.26.(本题满分10分)如图①,在平面直角坐标系xOy 中,抛物线()240y x x a a =-+<与y 轴交于点A ,与x 轴交于E 、F 两点(点E 在点F 的右侧),顶点为M .直线23y x a =-与x 轴、y 轴分别交于B 、C 两点,与直线AM 交于点D .(1)求抛物线的对称轴;(2)在y 轴右侧的抛物线上存在点P ,使得以P 、A 、C 、D 为顶点的四边形是平行四边形,求a 的值;(3)如图②,过抛物线顶点M 作MN x ⊥轴于N ,连接ME ,点Q 为抛物线上任意一点,过点Q 作QG x ⊥轴于G ,连接QE .当5a =-时,是否存在点Q ,使得以Q 、E 、G 为顶点的三角形与MNE △相似(不含全等)?若存在,求出点Q 的坐标;若不存在,请说明理由.2020年广西柳州市初中学业水平考试数学答案一、1.【答案】D2.【答案】A3.【答案】D4.【答案】B5.【答案】D6.【答案】A7.【答案】B8.【答案】C9.【答案】C10.【答案】B11.【答案】A12.【答案】C二、13.【答案】8014.【答案】4x=15.【答案】2x≠16.【答案】()21,17.【答案】1118.【答案】①②④【解析】结论分析如下①由折叠的性质可知:CBE FBE∠=∠,ABG FBG∠=∠,∵四边形ABCD是矩形,°ABC90∠=∴,°111EBG GBH+EBF=CBF ABF ABC45222∠=∠∠∠+∠=∠=∴.②由折叠的性质可知:BF BC10==,BH AB6==,HF BF BH4=-=∴,BFGFGHS BF105S HF42===△△∴,BFG FGH2S=5S△△∴;③∵四边形ABCD是矩形,°A D90∠=∠=∴,在ABFRt△中,AF8==,设GF x=,即HG AG8x==-,在HGFRt△中,222HG HF GF+=,即()22284x x-+=,解得5x=,AG3=∴,FD2=∴,同理可得8EG3=,AB62AG3==∴,8ED43FD23==,AB EDAG FD≠∴,ABG∴△与DEF△不相似;④CD AB6==∵,数学试卷第9页(共16页)数学试卷第10页(共16页)数学试卷第11页(共16页)数学试卷第12页(共16页)10CE CD ED 3=-=∴, CE 5ED 4=∴, 4CE 5ED =∴,综上所述,正确的结论的序号为①②④.(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(2)树状图,如下图所示:(2)由(1)知13OA =,5OD =,12AD =,222512=13+∵,在AOD △中,222AD DO AO +=,AOD ∴△是直角三角形.是O的直径,是O的半径,是O的切线如图,连接BD,x,OD OB=22BD DE-OBE 中,OEBC842x2数学试卷第13页(共16页)数学试卷第14页(共16页)数学试卷第15页(共16页)数学试卷第16页(共16页)。

相关文档
最新文档