北邮电磁波实验一

合集下载

北邮电磁场实验报告

北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是现代科学中非常重要的一个概念,它对于理解和应用电磁现象具有重要意义。

本次实验旨在通过测量电磁场的强度和方向,探究电磁场的基本特性,并验证电磁场的作用规律。

实验仪器和原理:本次实验使用的仪器包括电磁场强度测量仪、磁力计和直流电源。

电磁场强度测量仪是一种用于测量电磁场强度的仪器,它利用霍尔效应原理测量磁场的大小。

磁力计则是用于测量磁场方向的仪器,它利用磁力对物体的作用原理进行测量。

实验过程和结果:首先,我们将电磁场强度测量仪放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的强度。

然后,通过调节直流电源的电流大小,我们可以改变电磁场的强度。

在不同电流下,我们分别测量了电磁场的强度,并记录下来。

接下来,我们使用磁力计来测量电磁场的方向。

将磁力计放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的方向。

然后,通过改变直流电源的电流方向,我们可以改变电磁场的方向。

在不同电流方向下,我们分别测量了电磁场的方向,并记录下来。

通过实验测量,我们得到了一系列关于电磁场强度和方向的数据。

根据这些数据,我们可以绘制出电磁场的强度和方向分布图。

从分布图中,我们可以看出电磁场的强度随着距离的增加而减小,同时电磁场的方向沿着电流方向形成环状分布。

讨论和分析:通过实验数据的分析,我们可以得出以下结论:电磁场的强度与电流大小成正比,即电流越大,电磁场强度越大;电磁场的方向与电流方向一致,即电流方向决定了电磁场的方向。

这一结论与安培定律相吻合,即安培定律指出电流元产生的磁场与电流元的方向垂直,并且随着距离的增加而减小。

而我们的实验结果也验证了这一规律。

此外,我们还发现电磁场的强度和方向与测量位置和角度有关。

在实验中,我们调整了测量仪器的位置和角度,使其能够准确测量电磁场的强度和方向。

这说明在实际应用中,我们需要合理选择测量位置和角度,以获得准确的测量结果。

结论:通过本次实验,我们深入了解了电磁场的基本特性,并验证了安培定律。

北邮电磁场与电磁波实验一

北邮电磁场与电磁波实验一

实验一:电磁波反射折射实验一、实验目的1、熟悉S426型分光仪的使用方法2、掌握分光仪验证电磁波反射定律的方法3、掌握分光仪验证电磁波折射定律的方法二、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

电磁波斜入射到两种不同媒介分界面上时会发生发射和折射现象,同时,分界面对电磁波的反射和折射现象与入射波的极化方向有关。

将分界面的法线与入射波构成的平面定义为入射面,入射波与界面法线的夹角定义为入射角,反射波与界面法线的夹角定义为反射角,折射波与界面的法线的夹角定义为折射角。

电场E垂直于入射面的电磁波为垂直极化波。

垂直极化波的反射系数和折射系数:R⫠=η2cosθ−η1cosθ‘’η2cosθ+η1cosθ‘’T⫠=2η2cosθη2cosθ+η1cosθ‘’式中:η1=√μ1ε1η2=√μ2ε2三、实验内容与步骤1.熟悉分光仪的结构和调整方法2.连接仪器,调整系统如图1所示,仪器连接时,两喇叭口面应互相正对,它们各自的轴线应在一条直线上。

指示两喇叭位置的指针分别指于工作平台的900刻度处,将支座放在工作平台上,并利用Figure 1反射实验仪器的布置平台上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四个压紧螺钉旋转一个角度后放下,即可压紧支座。

3.测量入射角和反射角反射全属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。

而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应900刻度的一对刻线一致。

这时小平台上的00刻度就与金属板的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度读数就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。

北邮电磁场实验报告

北邮电磁场实验报告

北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是物理学中非常重要的一个概念,它涉及到电荷、电流和磁性物质之间的相互作用。

为了更好地理解电磁场的特性和行为,我们进行了一系列的实验。

本报告将详细介绍我们在北邮进行的电磁场实验及其结果。

实验一:静电场与电势分布在这个实验中,我们使用了一对带电的金属板,通过改变金属板的电荷量和距离,观察了电势分布的变化。

实验结果显示,电势随距离的增加而逐渐降低,符合电势随距离平方反比的规律。

此外,我们还观察到电势在金属板附近的区域呈现出均匀分布的特点。

实验二:磁场与磁力线在这个实验中,我们使用了一根通电导线和一块磁铁,通过改变电流的方向和大小,观察了磁场的行为。

实验结果显示,磁铁产生的磁场呈现出环形磁力线的分布。

当通电导线与磁铁相互作用时,导线会受到磁力的作用,其受力方向与电流方向、磁场方向之间存在一定的关系。

实验三:电磁感应与法拉第电磁感应定律在这个实验中,我们使用了一根通电导线和一个线圈,通过改变导线中的电流和线圈的位置,观察了电磁感应现象。

实验结果显示,当导线中的电流改变时,线圈中会产生感应电流。

根据法拉第电磁感应定律,感应电流的大小与导线中电流变化的速率成正比。

此外,我们还观察到线圈中感应电流的方向与导线中电流变化的方向存在一定的关系。

实验四:电磁波的传播在这个实验中,我们使用了一个发射器和一个接收器,通过改变发射器的频率和接收器的位置,观察了电磁波的传播行为。

实验结果显示,电磁波以波动的形式传播,其传播速度与真空中的光速相同。

此外,我们还观察到电磁波的频率与波长之间存在一定的关系,即频率越高,波长越短。

结论:通过以上实验,我们对电磁场的特性和行为有了更深入的了解。

我们发现电磁场的行为符合一系列的规律和定律,如电势随距离平方反比、磁力线的环形分布、法拉第电磁感应定律等。

这些规律和定律为我们理解电磁场的本质和应用提供了重要的指导。

同时,我们也意识到电磁场在日常生活中的广泛应用,如电磁感应用于发电机、电磁波用于通信等。

北邮_电磁场电磁波_实验一微波测量系统的使用

北邮_电磁场电磁波_实验一微波测量系统的使用

北京邮电大学电磁场与微波测量实验报告学院:电子工程学院班级:组员:实验一微波测量系统的使用和信号源波长功率的测量一、实验目的:(1)学习微波的基本知识;(2)了解微波在波导中传播的特点,掌握微波基本测量技术;(3)学习用微波作为观测手段来研究物理现象。

二、实验原理:本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。

该系统由以下九个部分组成:1.波导测量线装置2.晶体检波器微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流I来读数的。

3.波导管本实验所使用的波导管型号为BJ-100。

4.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

5.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

6.谐振式频率计(波长表)电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

7.匹配负载波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。

8.环形器它是使微波能量按一定顺序传输的铁氧体器件。

主要结构为波导Y型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外面有“U”形永磁铁,它提供恒定磁场H0。

9.单螺调配器插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到匹配状态。

北邮电磁场与微波技术实验天线部分实验一2014最新

北邮电磁场与微波技术实验天线部分实验一2014最新

信息与通信工程学院电磁场与微波实验报告实验题目:网络分析仪测量振子天线输入阻抗班级:2011211106姓名:吴淳学号:2011210180日期:2014年3月实验一网络分析仪测量阵子天线输入阻抗一、实验目的1. 掌握网络分析仪校正方法;2. 学习网络分析仪测量振子天线输入阻抗的方法;3. 研究振子天线输入阻抗随阵子电径变化的情况。

注:重点观察谐振点与天线电径的关系。

二、实验原理当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。

实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。

这时可以采用镜像法来分析。

天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。

图1 实验原理图由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。

当h<<λ时,可认为R≈40 。

由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。

三、实验步骤:1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪;2. 设置参数并加载被测天线,开始测量输入阻抗;3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据;4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗变化情况;5. 设置参数如下:BF=600MHz,△F=25MHz,EF=2600MHz,n=81.6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。

记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。

四、实验数据:1. 直径=1mm时:第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。

北邮-电磁场与电磁波实验报告-无线信号场强特性研究

北邮-电磁场与电磁波实验报告-无线信号场强特性研究

电磁场与电磁波实验报告目录一、实验目的 (2)二、实验原理 (2)三、实验内容 (4)四、实验步骤 (5)(1)测量(数据采集) (5)(2)数据录入 (5)(3)数据处理 (5)五、实验数据整理及分析 (6)(1)阴影衰落的分布规律 (6)a)概率分布柱状图 (6)b)累积分布曲线 (9)c)具体分布参数 (12)(2)场强地理分布与拟合残差图 (13)(3)不同频率衰落的对比 (17)六、实验总结 (18)(1)分工安排 (18)(2)心得体会 (18)实验五校园内无线信号场强特性的研究一、实验目的1、 掌握在移动环境下阴影衰落的概念以及正确测试方法;2、 研究校园内各种不同环境下阴影衰落的分布规律;3、 掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗的概念;4、 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、 研究建筑物穿透损耗与建筑材料的关系。

二、实验原理无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接收者,只有处在发射信号覆盖的区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。

因此,基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区大小的因素主要有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同播、同频干扰。

(1) 大尺度路径衰落在移动通信系统中,路径损耗是影响通信质量的一个重要因素。

大尺度平均路径损耗:用于测量发射机和接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB )差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。

对任意的传播距离,大尺度平均路径损耗表示为:()[]()()010log /0PL d dB PL d n d d =+即平均接收功率为: 0000()[][]()10log(/)()[]10log(/)r t r P d dBm P dBm PL d n d d P d dBm n d d =--=-其中,n 为路径损耗指数,表明路径损耗随距离增长的速度;d0为近地参考距离;d 为发射机与接收机(T-R)之间的距离。

最新北邮电磁场与电磁波演示实验

最新北邮电磁场与电磁波演示实验

频谱特性测量演示实验1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz2.ESPI 测试接收机的RF输入端口最大射频信号: +30dbm,最大直流:50v3.是否直观的观测到电磁波的存在?(回答是/否)否4.演示实验可以测到的空间信号有哪些,频段分别为:广播:531K~1602KHzGSM900:上行:890~915 MHz 下行:935~960 MHzGSM1800:上行:1710~1755 MHz 下行:1805~1850 MHzWCDMA:上行:1920~1980MHz 下行:2110~2170MHzCDMA2000:上行:1920~1980MHz 下行:2110~2170MHzTD-SCDMA:2010~2025MHz5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视?模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。

模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。

数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。

6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:GSM900上行:GSM900下行:CDMA下行:3G下行:7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率)可以该频谱仪能检测的频谱范围为9KHz—3GHz所以,能够观察到:WIFI:2.4G电磁炉:20KHz—30KHz蓝牙:2.4G网络参量测量演示实验1矢量网络分析仪所测频段:300KHz—3GHz2端口最大射频信号: 10DBM3矢量网络分析仪为何要校准:首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。

北邮电磁场与电磁波演示实验讲解学习

北邮电磁场与电磁波演示实验讲解学习

北邮电磁场与电磁波演示实验频谱特性测量演示实验1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz2.ESPI 测试接收机的RF输入端口最大射频信号: +30dbm,最大直流:50v3.是否直观的观测到电磁波的存在?(回答是/否)否4.演示实验可以测到的空间信号有哪些,频段分别为:广播:531K~1602KHzGSM900:上行:890~915 MHz 下行:935~960 MHzGSM1800:上行:1710~1755 MHz 下行:1805~1850 MHzWCDMA:上行:1920~1980MHz 下行:2110~2170MHzCDMA2000:上行:1920~1980MHz 下行:2110~2170MHzTD-SCDMA:2010~2025MHz5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视?模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。

模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。

数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。

6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:GSM900上行:GSM900下行:CDMA下行:3G下行:7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率)可以该频谱仪能检测的频谱范围为9KHz—3GHz所以,能够观察到:WIFI:2.4G电磁炉:20KHz—30KHz蓝牙:2.4G网络参量测量演示实验1矢量网络分析仪所测频段:300KHz—3GHz2端口最大射频信号: 10DBM3矢量网络分析仪为何要校准:首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。

北邮电磁场与电磁波测量实验报告信号源 波导波长

北邮电磁场与电磁波测量实验报告信号源 波导波长

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

在教学方式下,可实时显示体效应管的工作电压和电流的关系。

仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。

由开槽波导、不调谐探头和滑架组成。

在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。

线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

北邮-电磁场与电磁波实验报告--用谐振腔微扰法测量介电常数、天线的特性和测量

电磁场与微波测量实验班级:xxx成员:xxxxxxxxx撰写人:xxx实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。

微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。

一、实验目的1.了解谐振腔的基本知识。

2.学习用谐振腔法测量介质特性的原理和方法二、实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。

反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

谐振腔的有载品质因数QL由下式确定:式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。

谐振腔的Q值越高,谐振曲线越窄,因此Q值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。

如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tanδ可由下列关系式表示:其中:ε’和ε’’分别表示ε的实部和虚部。

选择TE10n,(n为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x=α/2,z=l/2处,且样品棒的轴向与y轴平行,如图2所示。

假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d/h<1/10),y方向的退磁场可以忽略。

2.介质棒样品体积Vs远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。

这样根据谐振腔的微扰理论可得下列关系式:式中:f0,fs分别为谐振腔放人样品前后的谐振频率,Δ(1/QL)为样品放人前后谐振腔的有载品质因数的倒数的变化,即QL0,QLS分别为放人样品前后的谐振腔有载品质因数。

北邮电磁场与电磁波实验天线部分实验报告一

北邮电磁场与电磁波实验天线部分实验报告一

电磁场与微波实验天线部分实验报告班级:2011211104姓名:序号:学号:指导老师:陈文成实验二网络分析仪测试八木天线方向图一.实验目的1. 掌握网络分析仪辅助测试方法;2. 学习测量八木天线方向图方法;3. 研究在不同频率下的八木天线方向图特性。

注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等;二.实验原理:实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可)引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。

此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。

反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。

发射状态作用过程亦然。

三.实验步骤:1. 调整分析仪到轨迹(方向图)模式;2. 调整云台起点位置270°;3. 寻找归一化点(最大值点);4. 旋转云台一周并读取图形参数;5. 坐标变换、变换频率(f=600Mhz、900MHz、1200MHz),分析八木天线方向图特性;四.实验测量及数据1.频率为600MHz:(1)测量图(百分比):(2)测量数据:网络分析仪测得最大值:36.8最大值点:最大值对称:方位幅度方位(Max) 幅度(Max) 宽度(3db)279度 1 274度 1 95度方位幅度方位(Max) 幅度(Max) 宽度(3db)99度 1 274度 1 95度半功率点(1):半功率点(2):零点(1):零点(2):2.频率为900MHz: (1)测量图(百分比):方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 36度 0.497274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 176度 0.499274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 38度 0.405274度195度方位幅度 方位(Max) 幅度(Max) 宽度(3db ) 183度 0.407274度195度(2)测量数据:网络分析仪测得最大值:100.2最大值点:最大值对称:半功率点(1):半功率点(2):零点(1):零点(2):2.频率为1200MHz: (1)测量图(百分比):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 75度0.99319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 255度0.27319度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 2度0.49019度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 133度0.49919度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 327度0.16119度1117度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 162度0.01619度1117度(2)测量数据:网络分析仪测得最大值:37.8最大值点:最大值对称:半功率点(1):半功率点(2):方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 295度1270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 115度0.706270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 14度0.448270度198度方位 幅度 方位(Max) 幅度(Max) 宽度(3db ) 198度0.510270度198度零点(1):零点(2):五.实验结果分析:实验数据对比:由以上实验数据及对比可以看出:900MHz 时的天线主瓣宽度较大,侧瓣和后瓣均很小,而600MHz 和1200MHz 时的天线的方向性很不明显,后瓣和侧瓣很大。

北邮电磁场与电磁波实验一二

北邮电磁场与电磁波实验一二

实验一频谱分析仪的使用1.实验目的1)了解频谱分析仪的工作原理,熟悉它的使用方法;2)了解微波信号发生器的使用方法。

2.实验设备1)频谱分析仪2)微波信号发生器3.实验原理频谱分析仪是研究电信号频谱结构的仪器,主要的功能是在频域里显示输入信号的频谱特性。

输入信号经衰减器直接外加到混波器,可调变的本地振荡经与CRT同步的扫描产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系。

较低的RBW固然有助于不同频率信号的分辨与测量,低的RBW将滤出较高的频率的信号成分,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助于宽频带信号的侦测,将增加杂讯底层值,降低量测灵敏度,对于侦测低强度的信号易于产生障碍,因此适应的RBW宽度是正确使用频谱分析仪重要的概念。

4.实验内容4.1.单载波信号的频谱测量4.1.1. 实验操作步骤 1. 按照下图连接测试2. 设置微波信号发生器输出指定频率和功率的单载波信号(900MHz ,-10dBm )。

3. 设置频谱分析仪的中心频率为微波信号发生器的输出频率,设置合适的扫描宽带,适合调整参考电平使频谱图显示在合适的位置。

4. 用峰值搜索功能测量信号的频率和电平,测试数据记录在表4.1中。

5. 用差值光标功能测量信号和噪声的相对电平(信噪比),同时记录频率分析仪的分辨率和带宽设置。

4.1.2. 实验数据记录4.2.带载波信号的杂散测量4.2.1.实验操作步骤1.设置微波信号发生器输出指定频率和功率的正弦波(850MHz,-20dBm);2.设置频谱分析仪的中心频率为微波信号发生率的输出频率,设置合适的扫描带宽,适当调整参考电平使频谱图显示在合适的位置;3.用频谱分析仪测量输出信号的频率和电平,测量数据记录到表4.2中;4.增加频谱分析仪的扫描带宽,用手动设置功能适当减小频谱分析仪的分辨率带宽,观察频谱图的变化,直到观测到杂散信号为止。

北邮电磁场与电磁波实验报告

北邮电磁场与电磁波实验报告

信息与通信工程学院电磁场与电磁波实验报告题目:校园无线信号场强特性的研究指导老师:日期:一、实验目的 (1)二、实验原理 (1)1、电磁波的传播方式 (1)2、尺度路径损耗 (1)3、阴影衰落 (2)4 、建筑物的穿透损耗的定义 (3)三、实验容 (3)四、实验步骤 (4)1、实验对象的选择 (4)2、数据采集 (4)3、数据录入 (5)4 、数据处理 (6)五、实验结果与分析 (6)1 、磁场强度地理分布 (6)2 、磁场强度统计分布 (8)3、建筑物的穿透损耗 (10)六、问题分析与解决 (10)1、测量误差分析 (10)2、场强分布的研究 (10)七、分工安排 (11)八、心得体会 (11)九、附录:数据处理过程 (13)、实验目的1. 掌握在移动环境下阴影衰落的概念以及正确的测试方法;2. 研究校园各种不同环境下阴影衰落的分布规律;3. 掌握在室环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系;5. 研究建筑物穿透损耗与建筑材料的关系。

二、实验原理1、电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。

对于接受者,只有处在发射信号的覆盖区,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。

因此基站的覆盖区的大小,是无线工程师所关心的。

决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。

当电磁波传播遇到比波长大很多的物体时,发生反射。

当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。

当电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。

散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。

北京邮电大学电磁场与电磁波实验报告

北京邮电大学电磁场与电磁波实验报告

电磁场与电磁波实验报告无线信号场强特性的研究2013/5/13一、实验目的:1、掌握在移动环境下阴影衰落的概念以及正确的测试方法;2、研究国家体育馆——鸟巢周围各种不同环境下阴影衰落的分布规律;3、掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4、通过实地测量,分析建筑物穿透损耗随频率的变化关系;5、研究建筑物穿透损耗与建筑材料的关系。

二、实验内容:利用DS1131场强仪,实地测量信号场强(单位:dBmW)。

1、研究具体现实环境下阴影衰落分布规律,以及具体的分布参数如何。

2、研究在国家体育馆鸟巢周围电波传播规律与现有模型的吻合程度,测试值与模型预测值的预测误差如何。

三、实验步骤:1、实验内容与研究对象的选择:我们想要研究学校外的建筑物的衰落现象,经过讨论,我们选择了国家体育馆鸟巢作为实验场所。

测量时,我们按照地图上逆时针方向沿着鸟巢边缘测量,具体路线见以下分布图:2、在选频方面,由于中央三套信号比较强,所以我们决定采用之,其图像信号的频率为487.25MHz,伴音信号的频率为493.75MHz,此时的波长约为0.616m,于是我们大约1m(也即2步左右)读取一个数据。

3、将测量得到的数据录入Excel表格,得到12个表格文件:即以每个入口之间测量段的字母来分类,如上图所示,共有:A、B、C、D、E、F、G、H、J、K、L、M等12个测量段。

文件截图如下:4、D文件里的数据截图:5、 数据处理过程:采集到的数据有512多组,需要对数据进行细致的处理以便得到明确的结论。

下图所示为数据处理的流程图。

四、 实验结果:1、 空间场强大小分析:图1是用Matlab 画的所有数据的大小起伏,虽然有大有小,但是难以确定空间场强的大小分布,所以再使用Mathematica 进行改进绘图,如图3、4:图1以下是图3是场强大小的图像分量空间分布图,扇形区域的半径表示大小。

图4是伴音信号大小的分布图,测量数据是按照六块区域划分的,具体划分图可以见图2;图2、所有数据研究区域划分图注:图中数字表示区域名,字母表示入口,命名方式如:AB入口,BC入口……图3、图像信号强弱的空间分布表3、图像信号强弱的空间分布根据上述结果,可以发现6区的图像信号最强,均值为-29dBmW,而3区最弱,为-40dBmW;我们组分析了原因,认为原因如下:1)6区附近比较开阔,所以信号受到的阻挡更小,衰减小,而2、3区附近面临闹市,所以受到干扰大;2)信号源在6区的方向,因为6区朝向信号源,所以6、1区的信号最强,而其他区域,由于信号要穿过鸟巢建筑有穿透损耗,因此衰减比较大。

北邮电磁场与微波技术实验天线部分实验一2014最新

北邮电磁场与微波技术实验天线部分实验一2014最新

信息与通信工程学院电磁场与微波实验报告实验题目:网络分析仪测量振子天线输入阻抗班级:2011211106姓名:吴淳学号:2011210180日期:2014年3月实验一网络分析仪测量阵子天线输入阻抗一、实验目的1. 掌握网络分析仪校正方法;2. 学习网络分析仪测量振子天线输入阻抗的方法;3. 研究振子天线输入阻抗随阵子电径变化的情况。

注:重点观察谐振点与天线电径的关系。

二、实验原理当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。

实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。

这时可以采用镜像法来分析。

天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。

图1 实验原理图由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。

当h<<λ时,可认为R≈40 。

由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。

三、实验步骤:1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪;2. 设置参数并加载被测天线,开始测量输入阻抗;3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据;4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗变化情况;5. 设置参数如下:BF=600MHz,△F=25MHz,EF=2600MHz,n=81.6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。

记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。

四、实验数据:1. 直径=1mm时:第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁波与微波测量实验
实验一——微波测量系统的使用
班级:2009211207
姓名:乔伟(报告)马戈姜然
序号:10 11 12
一、实验目的
(1)学习微波的基本知识;
(2)了解微波在波导中传播的特点,掌握微波基本测量技术;
(3)学习用微波作为观测手段来研究物理现象。

二、实验仪器
它主要由微波信号源、波导同轴转换器、E-H面阻抗双路调配器、测量线和选频放大器主要部分组成。

下面分别叙述各部分的功能和工作原理,其它一些微波元器件我们将在以后的实验中一一介绍。

1.微波信号源
1.1基本功能
1.1.1提供频率在8.6~9.6GHz范围连续可调的微波信号。

1.1.2该信号源可提供“等幅”的微波信号,也可工作在“脉冲”调制状态。

本系统实验中指示器为选频放大器时,信号源工作在1KHz “”方波调制输出方式。

1.2.1熟悉选频放大器的使用
1.2.2熟悉谐振腔波长计的使用方法
本实验采用了吸收式波长计测量信号频率,为了确定谐振频率,用波长计测出微波信号源的频率。

具体方法是:旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。

反映在检波指示器上的指示是一跌落点,此时,读出波长表测微头的读书,再从波长表频率与刻度曲线上查出对应的频率。

2.波导同轴转换器
2.1基本功能
提供从同轴输入到波导输出的转换。

2.2工作原理
波导同轴转换器是将信号由同轴转换成波导传输。

耦合元件是一插入波导内的探针,等效于一电偶极子。

由于它的辐射在波导中建立起微波能量。

探针是由波导宽边中线伸入,激励是对称的。

选择探针与短路面的位置,使短路面的反射与探针的反射相互抵消,达到较佳的匹配。

3.微波测量线 3.1基本功能
微波测量线是用来测量微波传输线中合成电场(沿轴线)分布状态(含最大值、最小值和其相对应的位置)的设备。

利用微波测量线(系统)可以测得微波传输中合成波波腹(节)点的位置和对应的场幅、波导波长(相波长)和驻波比等参数。

微波测量线有同轴测量线和波导测量线。

本实验采用波导测量线。

4.2结构和工作原理
当测量线接入测试系统时,在它的波导中就建立起驻波电磁场。

众所周知,驻波电场在波导宽边正中央最大,沿轴向成周期函数分布。

在矩形波导的宽边中央于它轴的方向开一条狭槽,并且伸入一根金属探针2,则探针与传输波导1电力线平行耦合的结果,必然得到感应电压,它的大小正比于该处的场强,交流电流在同轴腔3组成的探针电路内,由微波二极管4检波后把信号加到外接指示器,回到同轴腔外导体成一闭合回路。

因此指示器的读数可以间接表示场强的大小。

图二 波导测量线工作原理示意图
当探针沿槽移动时,指示器就会出现电场强度E max 和E min 。

从而求得: min
max E E S =
由标尺指出探针位置可以测出极小点至不连续面的距离dmin ,从而可以测量阻抗。

调谐活塞5在检波头中使晶体处于驻波的腹点以得到最大指示。

检波滑座6用来支持检波头,并可沿轴向移动。

在移动时保证探针与波导的相对位置不变。

4.选频放大器
1、传输波导
2、探针
3、同轴腔
4、微波二极管
5、调谐活塞
6、检波滑座
本实验采用选频放大器(一种检测微弱信号的精密测量放大器)对微波二极管的检波电流进行(线性)放大。

4.1基本功能
本选频放大器由四级低噪声运算放大器组成的高增益音频放大和选频网络组成。

可使放大电路在“窄带内”对微弱音频信号进行放大,以减小噪声和微波信号源中寄生调频的影响,保证测量的精度。

4.2结构和工作原理
在信号源内用1KHz的方波对微波信号(如10GHz)进行调幅后输出。

此调幅波在测量线内仍保持其微波特征。

测量线输出端所接负载的特性决定其分布状态。

由小探针检测经微波二极管检波所得的1KHz方波包络表征其微波性能指标。

选频放大器则对此1KHz方波进行有效放大。

YM3892选频放大器是一个增益60dB,可调带宽40Hz,中心频率1KHz的放大器,满足不同输入幅度的可调。

表头指示弧线2条,第一条上标值为线性指示,下为相应的对数(dB)指示。

第二条为驻波比指示,上为驻波比1~3,下为3.2~10。

当驻波比读数大于 3.2时,分贝开关可顺时针方向旋转一档,在驻波比刻度
3.2~10上读出驻波比。

三、实验原理
测量微波传输系统中电磁场分布情况,测量驻波比、阻抗、调匹配等,是微波测量的重要工作,该实验系统主要的工作原理如图1所示:
图1 实验原理框图
四、实验内容和实验步骤
1.微波测量系统的使用
(1)观察测量系统的微波仪器连接装置,衰减器,波长计,波导测量线的结
构形式;
(2)熟悉信号源的使用
将信号源的工作方式选择为:等幅位置,将衰减至于较大位置,输出端
接相应指示器,观察输出;
将信号源的工作方式选择为:方波位置,将衰减至于较大位置,输出端
接相应指示器,观察输出;
(3)熟悉选频放大器的使用;
(4)熟悉谐振腔波长计的使用方法
微波的频率测量是微波测量的基本内容之一。

其测量方法有两种:①谐
振腔法;②频率比较法。

本实验采用谐振腔法。

由于波长和频率直接满
足关系,所以频率和波长的测量是等效的。

吸收式波长计的谐振腔,其
只有一个输入端和能量传输线路相连,调谐过程可以从能量传输线路接
收端指示器读数的降低可以判断出来。

本实验采用了吸收式波长计测量信号源频率,为了确定谐振频率,用波
长表测出微波信号源的频率。

具体做法是:旋转波长表的测微头,当波
长表与被测频率谐振时,将出现吸收峰。

反映在检波指示器上的指示是
一跌落点,此时,读出波长表测微头的读数,再从波长表频率与刻度曲
线上查出对应的频率。

(5)按图1所示的框图连接微波实验系统。

2.信号源波长的测量
(1)微调单螺调配器,使腔偏离匹配状态,检波电流计上一定有示数;
(2)调节波长计是检波电流计再次出现最小值的时刻,读出此处波长计的刻
度值;
(3)按照波长计的刻度值去查找“波长计-频率刻度对照表”,就可以得到相
应的信号源频率值;
(4)改变信号频率,从8.6G开始测到9.6G,0.1G测一次,记录在数据表格
中。

五、实验结果
信号源平均误差为:0.030(GHz)。

通过实验数据,可以发现信号源频率误差还是相对较小的。

六、心得体会
本实验采用了吸收式波长计测量信号频率,为了确定谐振频率,用波长计测出微波信号源的频率。

通过实验数据得知通过该方法测量得到的数据与查表得到的数据误差比较下。

由于只有在谐振点时信号功率才会被全部吸收,放大选频器的指针才会有大的偏转,这就需要在调节波长计的时候一定要谨慎细微,一定要戒骄戒躁。

由于开始时候对实验原理不是很明白而不知道如何上手,在听过老师的耐心讲解之后对实验原理有了一定的了解,之后的实验过程就很顺利。

在同组队员的齐心努力下,很好的完成了实验内容,也对微波的理论知识理解更加深刻,获益匪浅。

相关文档
最新文档