第三章时域分析法
合集下载
时域分析法
§ 3.2 一阶系统的时间响应
一、一阶系统的数学模型 数学模型
其中时间常数T=1 / K
二、一阶系统的单位阶跃响应
对于单位阶跃输入
xi
(t )
1(t ),
Xi
(s)
1 s
故系统单位阶跃响应象函数为
1
1 s
s
T
1
A s
s
B 1
1 s
s
1
1
T
T
T
取拉氏反变换得系统单位阶跃响应为
1t
xo (t) 1 e T
,为闭环极点的实部; ,为闭环极点的虚部;
欠阻尼二阶系统的单位阶跃响应的象函数为
。
将上式进行拉氏反变换,单位阶跃响应为
(3.33)
x0 (t) 1
e n t
1 2
(n
1 2 n
cosdt sin dt)
1
ent
1 2
(sin
c osd t
cos
sin d t )
1
e nt
1
2
sin(
则
Xo
s
Xo Xi
s s
X
i
s
1 1 Ts 1
1
T
s
1 T
进行拉氏反变换
x0
(t
)
1 T
t
eT
四、响应之间的关系 对线性定常系统,输入之间存在微积分关系,其响
应间也存在相应微积分关系。
作用:在测试系统时,可由一种信号推断几种信号的相应响应。
§ 3.3 二阶系统的时间响应
一、典型二阶系统的数学模型
决定。
在稳态下,输出 x0 (t) 和输入 xi (t) 之间不存在误差,即系统
瞬态响应及误差分析(时域分析法)
10K O 10K O K OG ( S ) 10K O 1 10K H ( s) 0.2s 1 0.2 1 K H G ( s) 1 10K H 0.2s 1 10K H s 1 0.2s 1 1 10K H 10K O 1 10K K * 10 K O 10 0.2 H T * 0.02 K H 0.9 1 10K H
12
3. 选取试验输入信号的原则:
选取的输入信号应反映系统工作的大部分实际情况; 形式简单,便于用数学式表达及分析处理,实际中可 以实现或近似实现; 应选取那些能够使系统工作在最不利的情形下的输入 信号作为典型试验信号;
•如控制系统的输入量是突变的,采用阶跃信号。如室温 调节系统 。 •如控制系统的输入量是随时间等速变化,采用斜坡信号 作为实验信号 •如控制系统的输入量是随时间等加速变化,采用抛物线 信号; 宇宙飞船控制系统 •如控制系统为冲击输入量,则采用脉冲信号
特征点: 1 A点 : xo (T ) 0.368 xo (0) ) 2)零时刻点: xo (t )
1 T
2e
t T t 0
1 2 ; x o ( 0) T T
24
1
一阶系统单位脉冲响应的特点: 1. 瞬态响应:(1/T )e –t/T;稳态响应0; 2. 瞬态响应的特性反映系统本身的特性,时间常数大的 系统,其响应速度慢于时间常数小的系统。 3. 输入试验信号仅是为了识别系统特性,系统特性只取 决于组成系统的参数,不取决于外作用的形式。 4. xo(0)=1/T,随时间的推移,xo(t)指数衰减。 5.
量从初始状态到稳定状态的响应过程。
稳态响应:当某一输入信号的作用下,系统的响应
线性系统的时域分析法
三、动态性Leabharlann 和稳态性能动态性能:通常在阶跃函数作用下,测定或计算系统的动
态性能。一般认为阶跃输入对系统来说是最严峻的工作状态。
描述稳定的系统在阶跃函数作用下,动态过程随时间的
变化状况的指标称为动态性能指标。通常包括:
延迟时间 td :指响应曲线第一次到达稳态值一半所需的时间。
上升时间 tr :指响应第一次 h(t) % 误差带
洛比特法则
lim lim
(s pi )N (s)
(s pi )N (s) N (s) N ( pi )
s pi
D(s)
s pi
D(s)
D( pi )
f (t) L1
F (s)
L1
n i1
Ai s pi
n i 1
Aie pi t
② 具有多重极点的有理函数的反变换
F (s)
误差平方积分(ISE,Integral of Square Error)
ISE e2 (t)dt 0
( e(t)是输入输出之间存在的误差)
时间乘误差平方积分(ITSE,Integral of Timed Square Error)
ITSE te2 (t)dt 0
误差绝对值积分(IAE,Integral of Absoluted Error)
(s a
j)F (s) sa j
N (s) D(s)
sa j
k1
e j
思考:为何 k1,k2 必为共轭复数?
f
(t)
L1 F (s)
L1
s
A1 p1
k1 sa
j
k2 sa
j
A1e p1t
k1e(a j)t
自动控制原理-第3章-时域分析法
系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
控制系统时域分析法
(四)脉冲信号 单位脉冲信号旳体现式为: (3.4) 其图形如图3-4所示。是一宽度为e ,高度为1/e 旳矩形脉冲,当e 趋于零时就得理想旳单位脉冲信号(亦称d(t) 函数)。 (3.5)
3. 上升时间tr——它有几种定义: (1) 响应曲线从稳态值旳10%到90%所需时间; (2) 响应曲线从稳态值旳5%到95%所需时间; (3) 响应曲线从零开始至第一次到达稳态值所需旳时间。 一般对有振荡旳系统常用“(3)”,对无振荡旳系统常用“(1)”。4. 峰值时间tp——响应曲线到达第一种峰值所需旳时间,定义为峰值时间。 5. 调整时间ts——响应曲线从零开始到进入稳态值旳95%~105%(或98%~102%)误差带时所需要旳时间,定义为调整时间。
由式(3.9),很轻易找到系统输出值与时间常数T旳相应关系:从中能够看出,响应曲线在经过3T(5%误差)或4T(2%误差)旳时间后进入稳态。
t = T, c(1T) = 0.632 c(∞)t = 2T, c(2T) = 0.865c(∞)t = 3T, c(3T) = 0.950c(∞)t = 4T, c(4T) = 0.982c(∞)
下面分别对二阶系统在0< z <1,z =1,和z >1三种情况下旳阶跃响应进行讨论。 1. 0<z <1,称为欠阻尼情况 按式(3.14),系统传递函数可写为 GB(s)= (3.17) 它有一对共轭复数根 (3.18) 式中 称为有阻尼振荡频率。
假如系统响应曲线以初始速率继续增长,如图3-9中 旳c1(t)所示,T还可定义为c1(t)曲线到达稳态值所需要 旳时间。
(3.13)
所以
当t= T时,c1(t)曲线到达稳态值,即
所以
(二)二阶系统旳阶跃响应 在工程实际中,三阶或三阶以以上旳系统,常能够近似或降阶为二阶系统处理。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
第3章 时域分析法
6.稳态误差 在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的稳态误差可以用ess来表 示,通常用ess反映系统跟踪输入时的稳态精度。
稳态误差ess:对单位负反馈系统,当t→∞时,系统单位阶跃响应的实际稳态 值与给定值之差,即
ess1= 1 − c(∞) 如果c(∞)为1, 则系统的稳态误差为零。
函数的图形如图3-5所示。
t 0
图3-5 正弦函数图形
3.2 阶跃响应的性能指标
(1)动态过程。动态过程也称过渡过程或瞬态过程,指系统在典型输入信 号作用下,其输出量从初始状态到最终状态的过程。根据系统结构和参数 选择的情况,动态过程表现为衰减、发散和等幅振荡几种形式。显然,一 个可以正常运行的控制系统,其动态过程必须是衰减的,即系统必须是稳 定的,动态过程除提供系统稳定的信息外,还可以提供其响应速度和阻尼 情况等信息,这些信息是用系统动态性能描述的 。
(2)稳态过程。稳态过程也称系统的稳态响应,指系统在典型输入信号 作用下,当t→∞时,其输出量的表现形式。稳态过程表征系统输出量最终复 现输入量的程度,提供系统稳态误差的信息,用系统的稳态性能描述。在分 析系统性能时,认为当系统的输出对其输入的复现进入允许的误差范围以后, 系统进入稳态。
由此可见,控制系统在典型输入信号作用下的性能指标由动态性能指标和稳 态性能指标两部分组成,一般认为阶跃输入对系统来说是最为严峻的工作状 态,如果系统在阶跃函数作用下的动态性能满足要求,那么在其他输入形式 作用下的动态性能也能满足要求。
时间ts。稳态值称为误差带,可以是5%或2%,前者称为5%误差带, 后者称为2%误差带。
5.峰值时间
在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的峰值时间可以用tp来 表示,通常用tp评价系统的响应速度,也反映系统的局部快速性。
时域分析法
动,试分析系统在x扰动下的特性。
解:
系统闭环传递函数:
r+ -
K
x
+
1
y
+
s(1+Ts)
Y(s)
1
G( s ) X ( s ) Ts2 s K
K
1
T
K s2 1 s K
TT
1 K
s2
n2 2ns n2
其中 2
1 KT
n
K T
y( t )
1
1
K
1 1 2
e n t
sin( d t
,m
n
写成零极点形式: m
kg (s zi )
(s) n1
i 1 n2
, n1 2n2 n, m n
(s p j ) (s2 2 l nl s nl 2 )
j 1
l 1
其单位阶跃响应函数为:
C(s)
(s) 1 s
a0 s
n1 j1
aj s pj
n2 l 1
l (s lnl ) lnl 1 l 2 s2 2 l nl s nl 2
第三章 时域分析法
主要内容: 1. 控制系统的时间响应 2. 误差分析和计算 3. 稳定性分析(劳斯判据)
系统分析:对控制系统的稳定性、误差和动态 特性等方面的指标进行分析,即分析系统的稳 定性、准确性和快速性。
dny
d n1 y
dy
dmx
d m1 x
dx
an dt n an1 dt n1 L a1 dt a0 y bm dt m bm1 dt m1 L b1 dt b0 x
——相角
极点的虚部决定系统的震荡频率:
解:
系统闭环传递函数:
r+ -
K
x
+
1
y
+
s(1+Ts)
Y(s)
1
G( s ) X ( s ) Ts2 s K
K
1
T
K s2 1 s K
TT
1 K
s2
n2 2ns n2
其中 2
1 KT
n
K T
y( t )
1
1
K
1 1 2
e n t
sin( d t
,m
n
写成零极点形式: m
kg (s zi )
(s) n1
i 1 n2
, n1 2n2 n, m n
(s p j ) (s2 2 l nl s nl 2 )
j 1
l 1
其单位阶跃响应函数为:
C(s)
(s) 1 s
a0 s
n1 j1
aj s pj
n2 l 1
l (s lnl ) lnl 1 l 2 s2 2 l nl s nl 2
第三章 时域分析法
主要内容: 1. 控制系统的时间响应 2. 误差分析和计算 3. 稳定性分析(劳斯判据)
系统分析:对控制系统的稳定性、误差和动态 特性等方面的指标进行分析,即分析系统的稳 定性、准确性和快速性。
dny
d n1 y
dy
dmx
d m1 x
dx
an dt n an1 dt n1 L a1 dt a0 y bm dt m bm1 dt m1 L b1 dt b0 x
——相角
极点的虚部决定系统的震荡频率:
自动控制原理 第三章时域分析方法
位脉冲响应,由此可以求得系统的传递函数。
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数
第三章 时域分析法
1 h()
0.9 h()
td
0.5 h()
td
0.1 h()
0 tr tp
ts
单位阶跃响应曲线
响延应迟曲时线间第t一d :次
达到稳态值的一 半所需的时间。
0.02或 0.05上升时间 tr :
响应曲线从稳态值 的 10%上升到 9t 0%,所需的时间。
峰值时间 t p :响应曲
线达到超调量的第一个 峰值所需要的时间。
s2 = -n - n 2 -1 = -1/ T2
R(s)
22 nn
ss((ss 22nn))
C(s)
29
二阶系统的传递函数
开环传递函数:
G(s) =
n2
s(s 2n )
闭环传递函数:
C(s) R(s)
=
s2
n2 2ns
n2
30
二阶系统的特征方程为
s2 2ns n2 = 0
解方程求得特征根:
s1,2 = -ns n 2 -1
s1,s2完全取决于 ,n两个参数。
h(tp)于终值之差的 百分比,即
单位阶跃响应曲线
tr 或t p 评价系统的响应速度;
% = h(tp ) - h() 100%
h()
t s 同时反映响应速度和阻尼程度的综合性指标。
% 评价系统的阻尼程度或振荡最大峰值。
17
注意事项:
%, ts及ess三项指标是针对阶跃响应
而言的,对于非阶跃输入,则只有
=
t
- T(1-
-1t
eT
)
=
t
-
T
-1t
Te T
因为
-1t
e(t) = r(t) - c(t) = T (1- e T )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理
第三章 时域分析法
3.1 典型输入信号及性能指标
一个系统的时间响应,不仅取决于系统本 身的结构与参数,而且还同系统的初始状 态以及加在系统上的外作用信号有关。
为了分析和比较控制系统的优劣,通常 对初始状态和外作用信号做一些典型化 处理。
初始状态:零状态 外作用:
自动控制原理
第三章 时域分析法
练习:
根据定义,求一阶系统的动态性能指标:
td= ? tr= ?
自动控制原理
第三章 时域分析法
3.3 二阶系统分析 由二阶微分方程描述的系统,称为二阶系统。
一、二阶系统的数学模型
位置随动系统原理图
自动控制原理
第三章 时域分析法
前向通道的传递函数
G(s)
Kp KACm / i
s Las Ra Js f Cm Kb
自动控制原理
第三章 时域分析法
第三章 时域分析法
控制系统的数学模型,是分析、研究、 设计控制系统的基础。一旦建立起合理的、 便于分析的控制系统数学模型,就可以运 用适当的方法对系统的控制性能进行全面 的分析和计算。对于线性定常系统,常用 的工程方法有时域分析法、根轨迹法和频 率法。后两种方法都是以时域分析法为基 础,并且应用了时域分析法中的许多结论。
自动控制原理
第三章 时域分析法
①没有超调
量;
初
②调节时间
ts=3T(5%) ts=4T(2%)
③没有稳态 误差,即
一阶系统的阶跃响应
ess 1 h() 1 1 0
自动控制原理
第三章 时域分析法
例 一阶系统如图 R(s)
100
C(s)
所示,试求系统单 位阶跃响应的调
s
-
节时间ts。如果要
一、典型输入信号
1.阶跃函数
其表达式为
a t ≥ 0 r(t) 0 t 0
当a=1时,称为单位阶跃函数,记作1(t),
则有
1 t ≥ 0 1(t) 0 t 0
单位阶跃函数的拉氏变换为
R(s) L [1(t)] 1 s
自动控制原理
第三章 时域分析法
2.速度函数(斜坡函数)
其表达式为
at t ≥ 0,a为常量 r(t) 0 t 0
取C(s)的拉氏变换,可得一阶系统的单位 阶跃响应
h(t) L
1ห้องสมุดไป่ตู้
1 Ts
1
1 s
L
1
1 s
1 s 1
T
自动控制原理
第三章 时域分析法
则
h(
t
)
1
e
t T
,(
t
≥
0)
或写成
h(t ) css ctt
css=1 代表稳态分量
1t
ctt e T
代表动态分量
一阶系统中的单位阶跃响应曲线是一条由 零开始,按指数规律上升并最终趋于1的曲 线。响应曲线具有非振荡特征,故又称为 非周期响应。
设反馈系数为Kh,则系统闭环传递函数
(s) 100 / s 1/Kh
1
100 s
K
h
0.01 s 1 Kh
故
T = 0.01
Kh
自动控制原理
调节时间
0.03 ts =3T = Kh
要求ts=0.1 s,代入上式得
0.03 0.1=
Kh
所以
Kh =0.3
第三章 时域分析法
自动控制原理
第三章 时域分析法
折算转动惯量和粘性摩擦系数
J
Ja
1 i2
过渡过程是指系统从初始状态到接近最终 状态的响应过程。
稳态过程是指时间趋于无穷时系统的输出 状态。
自动控制原理
第三章 时域分析法
自动控制原理
第三章 时域分析法
控制系统的典型单位阶跃响应
①延迟时间td
②上升时间tr ③峰值时间tp
④超调量%
%
0.9
⑤调节时间ts
0.5 td
⑥振荡次数N
tp
⑦稳态误差ess 0.1
一阶系统的微分方程为
T dc(t) c(t) r(t) dt
其闭环传递函数为
(s) C(s) R(s)
1
1 1 s 1 Ts 1
K
惯性环节
自动控制原理
第三章 时域分析法
二、一阶系统的单位阶跃响应 单位阶跃输入的拉氏变换为 R(s) 1
s
C(s) (s) R(s) 1 1 Ts 1 s
当a=1时,r(t)=t,称为单位速度函数,其拉 氏变换为
R(s) L
[t 1(t)]
1 s2
自动控制原理
第三章 时域分析法
3.加速度函数(抛物线函数) 其表达式为
at2 t ≥ 0,a为常量 r(t) 0 t 0
当 a=1/2 时 , 称 为 单 位 加 速 度 函 数 , 其 拉 氏变换为
0.1
求ts=0.1 s,试问系统的反馈系数应调整为
何值?
解: (1) 由结构图写出闭环传递函数
(s)
C(s) R(s)
1
100 / s 100 0.1
10 0.1s
1
s
自动控制原理
第三章 时域分析法
从(s)的分母多项式看出时间常数T=0.1 s, 故调节时间
ts 3T 3 0.1 s 0.3 s (2) 计算ts=0.1 s的反馈系数值
R(s) L
[1 t 2 1(t)] 2
1 s3
自动控制原理
第三章 时域分析法
4.脉冲函数 其表达式为
r(t
)
1 0
t
0t 0,t
单位脉冲函数δ(t),其数学描述为
(t
)
t 0t
0 0
且
(t)dt 1
单位脉冲函数的拉氏变换为
R(s) L [ (t)] 1
自动控制原理
第三章 时域分析法
自动控制原理
第三章 时域分析法
时域分析法是根据系统的微分方程,以拉 普拉斯变换作为数学工具,直接解出控制 系统的时间响应。然后,依据响应的表达 式及其描述曲线来分析系统的控制性能, 如稳定性、快速性、稳态精度等,并找出 系统结构、参数与这些性能之间的关系。
时域分析法是一种直接分析法,还是一种 比较准确的方法,可以提供系统时间响应 的全部信息。
tr
误差带
% h(tp ) h() 100% h()
ess=1-h()
ts
自动控制原理
延迟时间 上升时间 峰值时间 调节时间
超调量 振荡次数
稳态误差
第三章 时域分析法
快速性
平稳性 最终(稳态)精度
自动控制原理
第三章 时域分析法
3.2 一阶系统分析
由一阶微分方程描述的系统,称为一阶系统。
一、一阶系统的数学模型
5.正弦函数 r(t)
其表达式为
a sintt ≥ 0 o
t
r(t) 0 t 0
其拉氏变换为
R(s) L
[a sint 1(t)]
a s2 2
自动控制原理
第三章 时域分析法
二、阶跃响应的性能指标
分析时假定控制系统是单位反馈的、初始 条件为零、给定输入为单位阶跃函数。
控制系统的时间响应,从时间顺序上,可 以划分为过渡过程和稳态过程。