可控硅的工作原理带图
可控硅交流调压器原理图及工作原理
可控硅交流调压器
可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。
这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。
这台调压器的输出功率达100W,一般家用电器都能使用。
1:电路原理:电路图如下
可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。
从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。
当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。
在交流电的正半周时,整流电压通过R4、W1对电容C充电。
当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。
这个脉冲作为控制信号送到可控硅SCR 的控制极,使可控硅导通。
可控硅导通后的管压降很低,一般小于1V,所以张
弛振荡器停止工作。
当交流电通过零点时,可控硅自关断。
当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(Bilateral Triode Thyristor,简称BTT)是一种特殊的可控硅器件,其工作原理和应用领域在电力电子领域具有重要意义。
本文将详细介绍双向可控硅的工作原理,并提供相应的原理图。
一、双向可控硅的工作原理双向可控硅是一种四层PNPN结构的半导体器件。
它由两个PN结组成,每一个PN结都有一个控制极和一个主极。
其工作原理如下:1. 静态工作原理:当双向可控硅两个主极之间的电压为正向时,即正向工作状态,两个PN结之间的结电容会妨碍电流的流动,双向可控硅处于关断状态。
当双向可控硅两个主极之间的电压为反向时,即反向工作状态,两个PN结之间的结电容充电,当电压达到一定的阈值时,双向可控硅会进入导通状态。
2. 动态工作原理:当双向可控硅处于导通状态时,惟独当两个主极之间的电流方向与PN结的导通方向一致时,双向可控硅才干正常导通。
当双向可控硅导通后,惟独当两个主极之间的电流方向与PN结的导通方向相反时,双向可控硅才干正常关断。
二、双向可控硅的原理图下面是一种常见的双向可控硅的原理图,用于说明其电路连接方式和控制方式。
```+----|>|----|>|----+| || || |+----|<|----|<|----+```在上述原理图中,两个箭头表示双向可控硅的两个主极,箭头方向表示电流的流动方向。
两个箭头之间的线段表示PN结。
三、双向可控硅的应用领域双向可控硅由于其双向导通的特性,在电力电子领域有广泛的应用。
以下是一些常见的应用领域:1. 交流电控制:双向可控硅可以用于交流电的控制,例如交流电的调光、机电的调速等。
2. 电力系统:双向可控硅可以用于电力系统中的电压和电流控制,例如电力调度、电力传输等。
3. 电力电子变换器:双向可控硅可以用于电力电子变换器中的电流控制,例如直流-交流变换器、交流-直流变换器等。
4. 光伏发电系统:双向可控硅可以用于光伏发电系统中的电流控制,例如光伏逆变器、光伏充电控制器等。
双向可控硅的工作原理及原理图
双向可控硅得工作原理及原理图双向可控硅得工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2得集电极直接与BG1得基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于就是BG1得集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2得基极,表成正反馈,使ib2不断增大,如此正向馈循环得结果,两个管子得电流剧增,可控硅使饱与导通.由于BG1与BG2所构成得正反馈作用,所以一旦可控硅导通后,即使控制极G得电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断得。
由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定得条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区得空穴时入N2区,N2区得电子进入P2区,形成触发电流IGT。
在可控硅得内部正反馈作用(见图2)得基础上,加上IGT得作用,使可控硅提前导通,导致图3得伏安特性OA 段左移,IGT越大,特性左移越快。
TRIAC得特性ﻫ什么就是双向可控硅:IAC(TRI—ELECTRODEACSWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。
TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大得不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。
因为它就是双向元件,所以不管T1 ,T2得电压极性如何,若闸极有信号加入时,则T1,T2间呈导通状态;反之,加闸极触发信号,则T1,T2间有极高得阻抗。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(Bilateral Switch)是一种常用的电子器件,它具有双向导通的特性,可以在正向和反向的电压条件下控制电流的通断。
在本文中,我们将详细介绍双向可控硅的工作原理及其原理图。
一、工作原理双向可控硅由两个PN结组成,分别称为主PN结和辅助PN结。
主PN结的两个端子分别为主阳极(A1)和主阴极(A2),辅助PN结的两个端子分别为辅助阳极(G1)和辅助阴极(G2)。
当主PN结的A1端施加正向电压,A2端施加负向电压时,主PN结处于导通状态。
此时,主PN结的正向电流从A1流入,经过主PN结和辅助PN结,最终流入G2。
同时,主PN结的负向电流从G2流出,经过辅助PN结和主PN结,最终流出A2。
这样,双向可控硅就完成了正向导通。
当主PN结的A1端施加负向电压,A2端施加正向电压时,主PN结处于反向导通状态。
此时,主PN结的负向电流从A2流入,经过主PN结和辅助PN结,最终流入G1。
同时,主PN结的正向电流从G1流出,经过辅助PN结和主PN结,最终流出A1。
这样,双向可控硅就完成了反向导通。
二、原理图以下是一个双向可控硅的原理图示例:```A1 ───┐│┌┴┐│ │G1 ──┘ ││┌┴┐│ │G2 ──┘ ││A2 ───┘```在原理图中,A1和A2分别表示主阳极和主阴极的连接点,G1和G2分别表示辅助阳极和辅助阴极的连接点。
三、应用领域双向可控硅广泛应用于电力控制领域。
它可以用于交流电的调光、电机的控制、电源的开关等。
由于双向可控硅具有双向导通的特性,可以实现正向和反向电流的控制,因此在电力控制中具有重要的作用。
四、总结双向可控硅是一种常用的电子器件,具有双向导通的特性,可以在正向和反向的电压条件下控制电流的通断。
它由主PN结和辅助PN结组成,通过施加不同的电压,实现正向和反向导通。
双向可控硅在电力控制领域有广泛的应用,如交流电调光、电机控制等。
通过了解双向可控硅的工作原理和原理图,我们可以更好地理解和应用这一电子器件。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(Bidirectional Thyristor)是一种半导体器件,也称为反向可控晶闸管或双向晶闸管。
它可以在电路中控制电流方向,并能够在两个方向上导电。
本文将探讨双向可控硅的工作原理及原理图。
一、工作原理双向可控硅由四个层结构组成,其结构如下:从上图中可以看出,双向可控硅有两个PN结,每个PN结中有一个P层和一个N层。
双向可控硅中的三个引脚分别是Anode、Cathode 和Gate。
Anode 和Cathode 被用于控制电流的方向,而Gate 用于控制电流的大小。
当Gate 电压为0V,双向可控硅处于阻断状态,不允许电流通过。
当Gate 上升到一定电压(通常是0.5V到1.5V)时,由于Gate 与Anode 之间存在一种物理现象,即PN 结反向击穿,Gate 电流开始流动并执行电路中的功能。
此时,双向可控硅的阻抗变得非常小,允许电流从Anode 流向Cathode。
当Gate 电压再次降低到0V时,双向可控硅仍然保持导通状态,直到Anode-Cathode 电压降至其维持电压(通常为5V)以下并持续几个毫秒。
当Anode-Cathode电压降至零时,双向可控硅恢复到阻断状态。
双向可控硅最常用于交流电路中,因为它可以在两个方向上导电。
它允许电流从Anode 流入Cathode 以及从Cathode 流入Anode。
这意味着双向可控硅可以用作交流电控制器。
例如,在灯光控制中,双向可控硅可用于调节灯光的亮度。
二、原理图下面是一个双向可控硅的原理图:在上图中,交流电源连接到电路中的双向可控硅。
一个变压器被用来将AC电源分成两半,每半AC 电压的峰值与其他半波相同但相反。
这就是我们所说的半波电压。
每个半波电压都通过一个双向可控硅,从而在两个方向上控制电流。
Gate 引脚连接到一个变阻器(不显示在图中),它可以用来控制电流的大小。
由于交流电源的极性不是定量的,因此交流电源的一半被连接到电路中的第一个双向可控硅,另一半被连接到电路中的第二个双向可控硅。
可控硅工作原理
可控硅工作原理1. 引言可控硅(Silicon Controlled Rectifier,简称SCR)是一种非常常见且重要的半导体器件,广泛应用于电力控制、电机驱动、电炉加热等领域。
本文将介绍可控硅的工作原理,包括其基本结构、器件特性以及触发控制等方面的内容。
2. 可控硅的基本结构可控硅通常由四层半导体材料构成,其基本结构如图所示:可控硅基本结构可控硅基本结构从图中可看出,可控硅由三个 P-N 接面构成,两个外层为P 型半导体,中间为 N 型半导体。
第二外层 P 型半导体与 N型半导体之间的结部分称为控制极(G),两个外层 P 型半导体分别称为阳极(A)和阴极(K)。
在可控硅的结构中,G极是一个非常重要的部分,它决定了可控硅的触发方式和工作特性。
3. 可控硅的工作原理3.1 静态特性可控硅在正向电压施加时,其工作特性如图所示:可控硅静态特性可控硅静态特性从图中可见,当阳极对可控硅施加正向电压时,只有当阴极 K 极为负电压时,可控硅才能导通。
换句话说,只有当 A 极为正电压,G 极为负电压时,才能使可控硅导通。
这是由于在关闭状态时,G 极没有外界电流流过,能保持该状态的电压称为保持电压 UH。
3.2 动态特性可控硅在触发过程中,其工作特性如图所示:可控硅动态特性可控硅动态特性可控硅的触发是通过在控制极 G 上施加合适的触发信号来实现的。
一旦 G 极接收到触发脉冲,就会使可控硅进入导通状态,称为开通。
在开通状态下,即使去掉控制极上的触发信号,可控硅仍然保持导通状态,因此可控硅被称为双稳态元件。
当阳极 A 对可控硅施加正向电压时,通过给 G 极施加触发信号,可使可控硅导通,即可完成开关动作。
此时,可控硅的两个外层 P 型半导体分别形成了 P-N-P-N 的四层结构,内层 N 型半导体的电流将被大幅增加。
4. 可控硅的触发控制4.1 门电流触发门电流触发是最常见的可控硅触发方式之一,这种触发方式通过控制极 G 上的电流实现。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅的工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。
此时,如果从控制极G 输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与B G1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于就是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱与导通。
由于BG1与BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断的。
由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。
在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。
TRIAC的特性什么就是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。
TRI AC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。
因为它就是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。
可控硅的工作原理(带图)
可控硅的工作原理(带图)可控硅是可控硅整流器的简称。
它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。
图3-29是它的结构、外形和图形符号可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。
当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看岀PN结处于反向,具有类似二极管的反向特性。
当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。
但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。
加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。
此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。
可控硅一旦导通,控制极便失去其控制作用。
就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。
图3-30是可控硅的伏安特性曲线。
图中曲线I为正向阻断特性。
无控制极信号时,可控硅正向导通电压为正向转折电压(U BO);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。
当控制极电流大到一定程度时,就不再出现正向阻断状态了。
曲线H为导通工作特性。
可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。
若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。
曲线山为反向阻断特性。
当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。
只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。
正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。
可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。
可控硅元件的工作原理及基本特性(精)
可控硅元件的工作原理及基本特性三、可控硅元件的工作原理及基本特性1、工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基本伏安特性(1)反向特性当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。
此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。
此时,可控硅会发生永久性反向击穿。
图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压图4 阳极加正向电压由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(bidirectional controlled silicon)是一种常用的电子元件,广泛应用于电力电子领域。
其工作原理基于硅中的PN结,通过控制门极电压和正向或反向的触发脉冲,来控制双向可控硅的导通与断开。
双向可控硅由四个层组成,中间是一个PNPN的结构。
首先是“P”区,它是一个P型的半导体材料,它与“P”区连接的叫做“N”区,是一个N型的半导体材料。
双向可控硅的另一侧有一个N型区域,这个N型区域也被称为门极区,它是由P型材料连接的。
最后,位于门极区域之外的是一个P型的区域,称为辅助区或附加区。
双向可控硅的工作与普通的可控硅相似,但具有双向导通特性。
当双向可控硅的控制电压超过它的触发电压时,它会进入导通状态。
在导通状态下,电流可以从一个端口流入另一个端口。
当控制电压降低到一个较低的水平时,双向可控硅会恢复到关断状态。
这是双向可控硅的一个基本工作原理。
但是,为了更好地理解双向可控硅的原理以及其应用,我们需要详细了解它的电路原理图。
双向可控硅的电路原理图如下所示:``` +---------+ || Anode -----| P2-N1 |------ Cathode || Cathode ----| N2-P1 |------ Anode || Gate -----| P2-N1 | | | Aux------| P2 - N2| | |```将上面的电路原理图分为两个部分,每个部分由一个PNPN结构和一个PN结组成。
左右两个部分在结构和原理上是相同的。
在左侧的部分,当触发脉冲施加在门极上时,N2电极与P1电极之间的PN结会启动导通,电流可以从阳极流入阴极。
而右侧的部分同样适用,只是电流的方向相反。
在实际应用中,双向可控硅常用于交流电源的控制,如变频调速、电流和电压的调整等。
它也广泛应用于照明、电动机控制、电力调度等领域。
总结起来,双向可控硅是一种重要的电子元件,其工作原理基于硅中的PN结,通过控制门极电压和触发脉冲来控制导通和断开。
可控硅的工作原理及基本特性
可控硅的工作原理及基本特性1、工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流 ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件状态条件说明从关断到导通 1、阳极电位高于是阴极电位2、控制极有足够的正向电压和电流两者缺一不可维持导通 1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断 1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基本伏安特性(1)反向特性当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。
此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。
此时,可控硅会发生永久性反向击穿。
图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压图4 阳极加正向电压由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(SCR)是一种半导体器件,常用于交流电路中的功率控制和开关。
它具有双向导通性,可以控制交流电路中的电流,从而实现电路的开关和调节。
本文将介绍双向可控硅的工作原理及原理图。
一、双向可控硅的基本结构1.1 门极:双向可控硅的门极用于控制器件的导通和关断。
1.2 主极:主极是双向可控硅的两个极性端,用于连接电路中的电源和负载。
1.3 控制电路:控制电路通过对门极施加控制信号,控制双向可控硅的导通和关断。
二、双向可控硅的工作原理2.1 导通状态:当双向可控硅的门极接收到正向触发脉冲时,器件将进入导通状态,电流可以从主极1流向主极2。
2.2 关断状态:当双向可控硅的门极接收到负向触发脉冲时,器件将进入关断状态,电流无法通过器件。
2.3 双向导通性:双向可控硅具有双向导通性,可以控制交流电路中的电流方向。
三、双向可控硅的应用3.1 交流电源控制:双向可控硅常用于交流电源控制中,可以实现对电路的精确调节和开关控制。
3.2 电动机控制:双向可控硅可以控制电动机的启动、停止和速度调节,广泛应用于工业控制领域。
3.3 灯光调节:双向可控硅可以用于调节灯光的亮度,实现灯光的调光功能。
四、双向可控硅的原理图4.1 主极1:连接电源的正极。
4.2 主极2:连接电路中的负载。
4.3 门极:用于接收控制信号。
五、双向可控硅的优点5.1 高效率:双向可控硅具有低导通压降和高导通能力,能够实现高效的电路控制。
5.2 可靠性:双向可控硅的结构简单,工作稳定可靠,长寿命。
5.3 灵活性:双向可控硅可以实现对电路的精确控制,适用于各种功率控制和开关应用。
总结:双向可控硅是一种重要的半导体器件,具有双向导通性和精确控制能力,广泛应用于交流电路中的功率控制和开关。
掌握双向可控硅的工作原理及原理图,对于电路设计和控制具有重要意义。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(Bidirectional Controlled Silicon, BCR)是一种常用的电子器件,广泛应用于电力电子领域。
它具有双向导通的特性,可以控制交流电的正、反向导通和截止,从而实现对电流的控制。
本文将详细介绍双向可控硅的工作原理和原理图。
一、双向可控硅的工作原理双向可控硅由两个PNPN结构的晶体管组成,分别为正向PNPN结构和反向PNPN结构。
当双向可控硅的两个极端施加正向电压时,正向PNPN结构的PN结会导通,电流会从正向PNPN结的P区注入到N区,然后再通过反向PNPN结的N区注入到P区,最终形成P区的电流输出。
反之,当施加反向电压时,反向PNPN结的PN结会导通,电流则从反向PNPN结的P区注入到N区,再通过正向PNPN结的N区注入到P区,实现P区的电流输出。
因此,双向可控硅可以实现正、反向电流的导通和截止。
双向可控硅的导通需要通过控制电流注入或截止来实现。
通常使用一个触发脉冲来控制双向可控硅的导通。
当触发脉冲的幅值高于双向可控硅的触发电压时,双向可控硅会导通。
在导通状态下,双向可控硅的电压降低,形成一个低电阻通路,电流可以通过。
当触发脉冲的幅值低于双向可控硅的触发电压时,双向可控硅会截止,形成一个高电阻状态,电流无法通过。
二、双向可控硅的原理图双向可控硅的原理图如下所示:```+--------|>|--------+| BCR |+--------|<|--------+```在原理图中,BCR代表双向可控硅。
箭头表示PNPN结的正向或反向导通方向。
双向可控硅的两个极端分别连接到电路的输入和输出。
通过控制输入电路中的触发脉冲,可以实现对双向可控硅的导通和截止控制。
三、双向可控硅的应用双向可控硅广泛应用于电力电子领域,特别是交流电调制控制和电力控制系统中。
以下是一些常见的应用场景:1. 交流电调制控制:双向可控硅可以用于交流电的调制控制,通过控制双向可控硅的导通和截止,可以实现对交流电的调制,改变电流的波形和幅值。
双向可控硅工作原理图解
双向可控硅工作原理图解一、引言双向可控硅(Bilateral Switch Diode,简称BSD)是一种特殊的半导体器件,具有双向导通的特性。
它可以在正向和反向电压下都能够可控导通,具有可靠的开关性能和较大的耐压能力。
本文旨在通过深入解析双向可控硅的工作原理,向读者展示其内部结构及关键组成部分,并详细说明其在电路中的应用。
二、双向可控硅的结构与特性2.1 结构双向可控硅由四个半导体元件组成:两个PNP型晶体管和两个NPN型晶体管。
这四个晶体管被连接在一起,形成了双向可控硅的结构。
双向可控硅的结构概览如下图所示:-> NPN|-> PNP|-> NPN|-> PNP2.2 特性双向可控硅具有以下几个主要特性:1.双向导通:双向可控硅能够在正向和反向电压下都能够可控导通,可以用于交流电路中的开关控制。
2.双向触发:双向可控硅在正向和反向触发电压下都可以工作,触发脉冲的极性可以根据不同应用需求选取。
3.可靠性高:双向可控硅具有较高的耐压能力和可靠的开关性能,能够承受较大的电流和电压。
4.响应速度快:双向可控硅具有快速的响应速度,可以迅速实现导通或截止状态的切换。
三、双向可控硅的工作原理3.1 正向电压下的工作原理当正向电压施加在双向可控硅的主电极之间时,两个PNP型晶体管之间的base-emitter结区会被偏置,使得P区中的少数载流子开始注入到N区,形成PN结。
此时,双向可控硅处于导通状态。
3.2 反向电压下的工作原理当反向电压施加在双向可控硅的主电极之间时,两个NPN型晶体管之间的base-emitter结区会被偏置,使得N区中的少数载流子开始注入到P区,形成PN结。
此时,双向可控硅也处于导通状态。
3.3 触发与导通控制双向可控硅的导通状态由触发电压控制。
通过施加一个触发电压脉冲来激活双向可控硅,使其从截止状态切换到导通状态。
触发脉冲的极性可以根据需要选择。
四、双向可控硅的应用4.1 交流电路的开关控制双向可控硅广泛应用于交流电路的开关控制领域。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(Bilateral Switch)是一种常见的半导体器件,也被称为双向可控整流二极管(Bilateral Controlled Rectifier)。
它具有双向导电特性,可以在正向和反向电压下进行控制。
双向可控硅的工作原理如下:1. 结构组成:双向可控硅由两个PN结组成,其中一个是正向PN结,另一个是反向PN结。
这两个PN结构成为了一个四层结构,形成为了双向导电的特性。
2. 正向工作状态:当正向电压施加在双向可控硅的正向PN结上时,正向PN结处于导通状态。
此时,双向可控硅的正向电流可以通过,相当于一个正向导通的二极管。
3. 反向工作状态:当反向电压施加在双向可控硅的反向PN结上时,反向PN结处于导通状态。
此时,双向可控硅的反向电流可以通过,相当于一个反向导通的二极管。
4. 触发控制:双向可控硅的触发控制是通过施加一个脉冲信号来实现的。
当触发脉冲信号施加在双向可控硅的控制端时,会使得正向PN结和反向PN结之间的耐压被突破,导致双向可控硅从关断状态转变为导通状态。
5. 工作特性:双向可控硅在导通状态下的电压降较小,具有低压降特性;在关断状态下具有较高的阻抗,能够有效地隔离电路。
双向可控硅的原理图如下:```__________| |---| Anode 1 |---|__________|| |-----| P |-----| N |-----| 1 |-----| |---| P |-----| N |---| 2 |---| |-----| Cathode |-----|__________|```在原理图中,Anode 1和Cathode是正向PN结的两个端口,Anode 2和Cathode是反向PN结的两个端口。
P和N分别代表P型和N型半导体材料。
总结:双向可控硅是一种具有双向导电特性的半导体器件,能够在正向和反向电压下进行控制。
它的工作原理是基于正向和反向PN结之间的导通特性,通过触发脉冲信号来实现从关断到导通的转变。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图一、双向可控硅的工作原理双向可控硅(Bidirectional Thyristor,简称BRT)是一种具有双向导通特性的半导体器件。
它由四个PN结组成,结构与普通可控硅相似,但具有额外的控制极,使其能够实现双向导通。
双向可控硅的工作原理如下:1. 正向导通:当控制极施加正向电压时,控制极和阳极之间的PN结正向偏置,导通电流从阳极流向阴极。
2. 反向导通:当控制极施加反向电压时,控制极和阴极之间的PN结反向偏置,导通电流从阴极流向阳极。
3. 关断状态:当控制极未施加电压时,双向可控硅处于关断状态,不导通电流。
双向可控硅的导通和关断状态是通过控制极的电压来控制的。
当控制极施加正向电压时,双向可控硅处于正向导通状态;当控制极施加反向电压时,双向可控硅处于反向导通状态;当控制极未施加电压时,双向可控硅处于关断状态。
二、双向可控硅的原理图双向可控硅的原理图如下:```+---------+| |A1 ----| |---- A2| |G ----| |---- K| |K ----| |---- G| |A2 ----| |---- A1| |+---------+```其中,A1和A2是双向可控硅的两个主电极,G是控制极,K是附加极。
三、双向可控硅的应用双向可控硅广泛应用于交流电控制领域,具有以下几个特点和优势:1. 双向导通:双向可控硅能够实现双向导通,可以控制交流电的正向和反向导通,适合于双向开关和控制电路。
2. 高可靠性:双向可控硅具有较高的可靠性和稳定性,能够承受较高的电压和电流,适合于高功率应用。
3. 快速响应:双向可控硅的开关速度较快,响应时间短,适合于需要快速控制的应用场景。
4. 低功耗:双向可控硅的控制电流较小,功耗较低,适合于需要节能的应用。
双向可控硅的应用领域包括电力电子、电动机控制、照明控制、电炉控制等。
例如,双向可控硅可以用于调光控制,通过控制双向可控硅的导通角度和导通时间,实现对灯光亮度的调节;双向可控硅还可以用于交流机电的启动和速度控制,通过控制双向可控硅的导通时间和导通角度,实现对机电的启停和调速。
双向可控硅的工作原理及原理图
双向可控硅的工作原理及原理图双向可控硅(Bidirectional Controlled Silicon, BCR)是一种常用的半导体器件,广泛应用于交流电源控制、机电驱动、电磁炉等领域。
本文将详细介绍双向可控硅的工作原理及其原理图。
一、双向可控硅的工作原理双向可控硅是一种具有双向导电特性的半导体器件,其工作原理基于PN结的正向和反向的导通特性。
1. PN结的正向导通特性当双向可控硅的正向电压(阳极其正,阴极其负)超过其正向阈值电压时,PN结会浮现正向偏置,进而导致电流的流动。
这时,双向可控硅处于正向导通状态,电流可以从阳极流向阴极。
2. PN结的反向导通特性当双向可控硅的反向电压(阳极其负,阴极其正)超过其反向阈值电压时,PN结会浮现反向偏置,阻挠电流的流动。
这时,双向可控硅处于反向截止状态,电流无法从阳极流向阴极。
3. 触发控制特性双向可控硅的触发控制是通过施加脉冲信号来实现的。
当施加一个触发脉冲信号时,双向可控硅会从正向导通状态转变为反向截止状态,即从导通状态切换为截止状态。
同样地,施加一个相反的触发脉冲信号,双向可控硅会从反向截止状态转变为正向导通状态。
二、双向可控硅的原理图下面是一个常见的双向可控硅的原理图示例:```+------+| |A+----| |----+C| |G+----| |----+K| |K+----| |----+G| |C+----| |----+A| |+------+```在上述原理图中,A、K、C、G分别表示双向可控硅的阳极、阴极、控制端和网格端。
三、双向可控硅的应用双向可控硅具有双向导电特性,因此在电源控制、机电驱动以及电磁炉等领域有着广泛的应用。
1. 交流电源控制双向可控硅可以用于交流电源的控制,通过控制双向可控硅的导通和截止状态,可以实现对交流电源的调节和控制。
例如,可以利用双向可控硅实现交流电源的开关控制、调光控制等功能。
2. 机电驱动双向可控硅可以用于机电驱动,通过控制双向可控硅的导通和截止状态,可以实现对机电的启动、住手、调速等控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控硅的工作原理(带图)
一.可控硅是可控硅整流器的简称。
它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。
图3-29是它的结构、外形和图形符号。
可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。
当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。
当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。
但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。
加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。
此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。
可控硅一旦导通,控制极便失去其控制作用。
就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。
图3-30是可控硅的伏安特性曲线。
图中曲线I为正向阻断特性。
无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。
当控制极电流大到一定程度时,就不再出现正向阻断状态了。
曲线Ⅱ为导通工作特性。
可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。
若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。
曲线Ⅲ为反向阻断特性。
当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。
只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。
正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。
可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。
利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。
二、可控硅的主要技术参数
1.正向阻断峰值电压(V PFU)
是指在控制极开路及正向阻断条件下,可以重复加在器件上的正向电压的峰值。
此电压规定为正向转折电压值的80%。
2.反向阻断峰值电压(V PRU)
它是指在控制极断路和额定结温度下,可以重复加在器件上的反向电压的峰值。
此电压规定为最高反向测试电压值的80%。
3.额定正向平均电流(I F)
在环境温度为+40C时,器件导通(标准散热条件)可连续通过工频(即指供电网供给的电源频率.一般为50Hz或60Hz,我国规定为50Hz)正弦半波电流的平均值。
4.正向平均压降(U F)
在规定的条件下,器件通以额定正向平均电流时,在阳极与阴极之间电压降的平均值。
5.维持电流(I H)
在控制极断开时,器件保持导通状态所必需的最小正向电流。
6.控制极触发电流(Ig)
阳极与阴极之间加直流6V电压时,使可控硅完全导通所必需的最小控制极直流电流。
7.控制极触发电压(U g)
是指从阻断转变为导通状态时控制极上所加的最小直流电压。
普通小功率可控硅参数见表3-lO。
表3-10 普通小功率可控硅参数
*正向阻断峰值电压及反向阻断峰值电压在30~3000范围内分档。
三、多种用途的可控硅
根据结构及用途的不同,可控硅已有很多不同的类型,除上述介绍的整流用普通可控硅之外还有;①快速可控硅。
这种可控硅可以工作在较高的频率下,用于大功率直流开关、电脉冲加工电源、激光电源和雷达调制器等电路中。
②双向可控硅。
它的特点是可以使用正的或负的控制极脉冲,控制两个方向电流的导通。
它主要用于交流控制电路,
如温度控制、灯光调节及直流电极调速和换向电路等。
③逆导可控硅。
主要用于直流供电车辆(如无轨电车)的调速。
④可关断可控硅。
这是一种新型可控硅,它利用正的控制极脉冲可触发导通,而用负的控制极脉冲可以关断阳极电
流,恢复阻断状态。
利用这种特性可以做成无触点开关或用于直流调压、电视机中行扫描电路及高压脉冲发生器电路等。
可控硅的用途很广泛,下面仅举两例来说明可控硅电路的工作过程。
图3-31是采用双基极管的可控硅调压电路,D1~D2组成全波桥式整流电路。
BG双基极管构成可控硅的同步触发电路(是一个张弛振荡器)。
整流电压经电阻R1降压后加在A、B两点。
整流后脉动电压的正半周通过R4、W向电容C 充电,当充电电压达到双基极管峰点电压U P时,BG由截止转为导通,电容C通过b1e结及R。
迅速放电,其放电电流在R。
上产生一个尖脉冲,成为触发可控硅(SCR)极的触发信号,从而导致可控硅导通。
可控硅导通后其正向压
降很低,所以张弛振荡器即停止工作,电源电压过零时(由于无滤波电容,故为单向脉动电压)可控硅就自动关断。
待下一个正半周到来时,电容C又充电,重复上述过程。
因而串联于整流电路的负载R L上就得到~个受控的脉冲电压。
电容C的充电速度与R4、、W及C的乘积有关,所以调节W之值,即能改变电容C充电到U,值的时间.也就可以改变可控硅的导通时间,从而改变了负载上电压的大小。
图3-32是一种利用可控硅做成的感应(接近)开关。
它是利用人体电容和电阻与电路上电容C1,并联促使氖管N导通点燃,从而在电阻R1上产生可控硅的触发信号,使可控硅导通,点着串于可控硅电路里的灯泡。
也可在电路里串接继电器,带动其他电器装置的开启或关闭。