化工原理第一章lx01

合集下载

化工原理第一章(1)

化工原理第一章(1)
4
本门课程主要讨论的内容
1、研究遵循流体动力学基本规律的单元操 作,包括流体流动、流体输送、流体通过 颗粒层的流动。 2、研究遵循热量传递基本规律的单元操 作,包括加热、冷却、冷凝。 3、研究遵循质量传递基本规律的单元操 作,包括蒸馏、吸收、萃取。 4、研究同时遵循热质传递规律的单元操 作,包括气体的增湿与减湿、干燥。
21
p1 表压 当地大气压 p2 真空度 绝对压强 绝对真空 压强的基准和度量
22
绝对压强
1-2-3流体静力学基本方程式 ——研究流体柱内压强沿高度变化的规律
1、推导 在垂直方向上,力的平衡:
p2=p1+ρg(Z1−Z2)
p2A=p1A+W=p1A+ρgA(Z1−Z2)
若Z1面在水平面上
p2=p0+ρgh
p1 = p A + ρgh1
p2 = p B + ρg (h2 − R) + ρ I gR
( p A + ρgz A ) − ( p B − ρgz B ) = Rg ( ρ i − ρ )
(℘ A − ℘B ) = Rg ( ρ i − ρ )
U形压差计直接测得的读数R不是 真正的压差,而是虚拟压强差。
PM m ρm = RT
体积分率表示
yA、yB…yn—气体混合物中各组分的体积分率。

M m = M A y A + M B y B + LL + M n y n
19
1-2-2 流体的静压强
1、 静压强 定义:流体垂直作用于单位面积上的压力。
P p = A
2、压强的单位 (1)直接按压强定义:N/m2,Pa(帕斯卡) (2)间接按流体柱高度表示:m H2O柱,mm Hg柱 (3)以大气压作为计量单位:标准大气压(atm), 工程大气压(at)kgf/cm2

化工原理第一章1

化工原理第一章1

h
A A'
⑵ pA pa 1 gh1 2 gh2 pA ' pa 2 gh
800 0.7 1000 0.6 1 h1 2 h2 h 1.16mH 2O 1000 2
1. 2. 4 流体静力学基本方程式的应用 一、压强与压强差的测量 测量压强的仪表有很多,以流体静力学基本方程 为依据的测压系统谓之液柱压差计 液柱压差计。常见类型如下图:
3.静压强的单位及表示法 ⑴ 单位 SI制中压强单位用Pa。其它单位有 atm、液柱高度(水银,水等), kgf kgf/cm /cm2 (即at at) ),bar 等。相互的换算关系见p17。 ⑵ 压强的表示方法
绝对压强-大气压强=表压强 当地大气压线 真空度=大气 大气压强- 压强-绝对 绝对 压强= -表 -表压强 压强 绝 对 压 强 为便于区 别,除绝 对压强不 注明外, 其余要相 应注明 ( 表 压或真空 度)。
(1-15a 15a) )表明了 表明了重力场 重力场下, 下,静止 静止的 的 连续 连续的流体内部任 的流体内部任 意两点间压强差 意两点间 压强差的规律。 的规律。
若将p1点升高至液面,改用p0点表示,上述关系仍然 成立: p( 2 ) p0 gh (1-15b) 当 液面压强p0=当地大气压(如敞口 槽 )时,压强差反映的是点 2的表压强。
m lim ②非均质流体某点的密度: V 0 V
⑴气体 (可压缩流体) ①纯气体 查取 值时,注意T,p的条件;在 p≤1Mpa,T不太低时 不太低时,按理想气体处理或将查取 ,按理想气体处理或将查取 的值换成操作条件下的值。
273k,(0℃)
pM T p M T0 p (1-2b) RT Tp 22.4Tp o

化工原理第一章第一节

化工原理第一章第一节
解:忽略吹气管出口端到U 型管两侧的气体流动阻 力造成的压强差,则:
pap 1, pbp2
p a 油 g H 1 h 水 g H h (表)
pb 油gH1 (表)
p1p2 Hg gR
油 g h 水 g H h H g gR
h 水HHgR 水油
10 01.001360.0067 10 08020
——流体阻力产生的依据
F u A y
F u A
y
剪应力:单位面积上的内摩擦力,以τ表示。
F u A y
适用于u与y成直线关系
du
dy
——牛顿黏性定律
式中:
du : 速度梯度 dy
:比例系数,它的值随流体的不同而不同,流
体的黏性愈大,其值愈大,称为黏性系数或动力黏度,简 称黏度。
1 80k0g/m ,3 水层高度h2=0.6m,密度为 2 100k0g/3m
1)判断下列两关系是否成立
pA=pA’,pB=pB’。
2)计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同一水平面上
pA pA'
因B,B’虽在同一水平面上,但不是连通着的同一种液
根据流体静力学方程可以导出:
p 1p 2A C gR
——微差压差计两点间压差计算公式
例:用3种压差计测量气体的微小压差
p10P0a
试问:1)用普通压差计,以苯为指示液,其读数R为多少?
2)用倾斜U型管压差计,θ=30°,指示液为苯,其读 数R’为多少? 3)若用微差压差计,其中加入苯和水两种指示液,扩大 室截面积远远大于U型管截面积,此时读数R〃为多少? R〃为R的多少倍?
1.1.2 流体的压缩性

化工原理第1章

化工原理第1章

第1章《流体流动》基本概念和公式1.主要单元操作1)流体流动及流体输送机械;流体力学2)流体与固体颗粒间的相对运动;如过滤、沉降(动量传递理论);3)传热学原理及设备;如接热器、蒸发器——热量传递理论;4)气体的吸收5)液体的蒸馏——质量传递理论6)固体的干燥2.单位制:S·I制; c·g·s 制——以质量为基本单位工程制——以重量为基本单位3.S·I制:基本单位七个:m、kg、s、K、mol、A、Cd辅助单位两个:平面角(弧度rad),立体角(球面度sr)导出单位:4.单位的正确使用——单位换算要点:·任何物理方程中物理量应换算成同一单位制代入进行计算;·由一种单位制换算成另一单位制要乘换算系数;·经验公式中的物理量要严格按公式规定计算,否则要出错。

5.记住的几个常数1 atm = 1.013×105 N/m2 = 0.1013 MPa = 10.33 mH2O柱(4℃)1 cal = 4.187 J; 1 kg.f = 9.807 NR = 8.315 N.m/mol.k = 8.315 J/mol·k6.经验公式的单位换算方法一、将已知单位换算成经验分式规定的单位代入计算;方法二、将经验分式转换为国际单位制表达形式,然后代入计算。

7.物料衡算——质量守恒定律:任意过程:输入=输出+积存ΣGI = ΣGO+ ΣGA稳定过程:过程中无物料积存输入=输出ΣGI = ΣGO8.热量衡算(能量衡算)——能量守恒定律ΣQI = ΣQO+ QLΣ(wH)I = Σ(wH)O + Q L9.求解方法:① 绘方框图表示所进行的过程;② 划定衡算范围;③ 规定衡算基准;④ 列出衡算式求解。

10.流体的密度定义:33()(/)()m m kg kg m V V m ρρ∆∆=或= 单位体积流体所具有的质量。

11.液体 3(/)mkg m Vρ=① 不可压缩液体密度随温度稍有改变; ② 液体混合物混合后总体积不变则 比容 31(/)υρρρρ==+++wAwBwnmABnx x x m kg③ 重度 3kg fm γ= 12.气体① 可压缩流体:理想气体 m PM V RTρ== ② 标准状态(1atm,0℃)下每kmol 气体体积为22.43m ,则 0/22.4MM kg kmol ρ=-气体的千摩尔质量③ 状态(,,T P ρ)与标准状态(000,,T P ρ)之间的转换 0022.4MT P T PTP TP ρρρ''='或= ④ 混合气体 m A vA B vB n vn x x x ρρρρ=+++ vi x i -气体混合物中组分的体积分率 平均分子量 m A A B B n n M M y M y M y =+++ i y ――气体混合物中I 组分的摩尔分率 13.流体的静压强1)定义: PP A∆=∆ 2)常用数据20℃水的密度 ρ水=1000kg/m 3 ρ水银=13600kg/m 3 20℃空气 ρ空气=1.2kg/m 33)大气压 1atm = 1.0133×105Pa = 10.33mH 2O = 760mmHg = 1.033 kgf/cm 2 = 1.0133 bar (巴) 4)工程大气压 = 1 kgf/cm 2= 735.6 mmHg = 10 mH 2O 柱= 0.9807 bar = 9.807×104 Pa14.绝对压强、表压强、大气压强、真空度大气压强绝对压强—流体的真实压强,以绝对零压为起点计算的压强。

化工原理第一章主要内容

化工原理第一章主要内容

湍流:无严格的层的概念,各质点相互碰撞混合
(二)雷诺数 Re 没有因次的特征数 雷诺数用于判断流动型态
Re
=
duρ μ
层流:Re<2000;过渡流:2000<Re<4000;湍流:Re>4000
雷诺数的物理意义:流体流动中惯性力与粘滞力之比
二、湍流的基本概念
(一)湍流的发生与发展 (二)湍流的脉动现象和时均化 脉动现象:湍流流体中各物理量围绕某一平均值上下波动的现象。 瞬时量 = 时均量 + 脉动量
ρm = ρ1ϕ1 + ρ2ϕ2 + ...... + ρnϕn
比容υ ν = 1/ ρ
比重(相对密度) d
d = 1 / ρ , 4° C水
二、压力 p 的表示方法
ρm
=
PM m RT
定义:垂直作用于流体单位面积上的力 1atm=760mmHg=1.013×105Pa=1.033kgf/cm2 =10.33mH2O 1at=735.6mmHg =9.807×105Pa =1kgf/cm2 =10mH20 表压 = 绝对压力 - 大气压力 真空度 = 大气压力 - 绝对压力
三、机械能衡算方程
依附于流体的能量:内能、动能、位能、压力能;
不依附于流体的能量:热、功 机械能:包括位能、动能、压力能和功,对流体流动有贡献。 非机械能:包括内能和热,对流体流动无贡献 (一)理想流体的伯努利方程
gZ1
+
u12 2
+
p1 ρ
=
gZ2
+
u22 2
+
p2 ρ
理想流体的机械能守恒
(二)实际流体的机械能衡算
τ = (μ + ε ) du dy

化工原理-第1章 流体流动 知识点

化工原理-第1章 流体流动 知识点
ux = fx (x, y, z,t),uy = fy (x, y, z,t), uz = fz (x, y, z, t)
可见,欧拉法描述的是空间各点的状态及其与时间的关系。 (3)定态流动(稳定流动,定常流动) 若空间各点的状态不随时间变化,改流动称为定态流动。
ux , u y , uz , p ,……,= f (x, y, z),与 t 无关
(1)连续性假设 在化工原理中是考察液体质点的宏观运动,流体质点是由大量分子组成的流体微团,其尺寸远小于设 备尺寸,但比起分子自由路程却要大的多。这样,可以假定流体是有大量质点组成、彼此间没有间隙、完 全充满所占空间连续介质。流体的物性及运动参数在空间作连续分布,从而可以使用连续函数的数学工具 加以描述。 在绝大多数情况下流体的连续性假设是成立的,只是高真空稀薄气体的情况下连续性假定不成立。 (2)流体运动的描述方法 ① 拉格朗日法 选定一个流体质点,对其跟踪观察,描述其运动参数(位移、数度等)与时间的关 系。可见,拉格朗日法描述的是同一质点在不同时刻的状态。 ② 欧拉法 在固定的空间位置上观察 流体质点的运动情况,直接描述各有关参数在空间各点的分布 情况合随时间的变化,例如对速度 u,可作如下描述:
积流量,须说明它的温度 t 和压强 p
质量流量 qm (Kg/s 或 Kg/h),解题指南用 ms 表示。 qv 与 qm 的关系为: qm =qv ρ 式中:ρ——流体的密度, Kg/m3
气体的ρ亦与温度 t、压强 p 有关,但 t、p 对ρ及 qv 的影响刚好相反,相互抵消,故气体 qm 与 t、p
设单位质量流体上的体积力在 x 方向的分量为 x(N/Kg),则微元所受的体积力在 x 方向的分量为
xρδxδyδz ,该流体处于静止状态,外力之和必等于零、对 x 方向,有

化工原理-第一章

化工原理-第一章

29
返回
(3) 倒U形压差计
指示剂密度小于被测流体密度,如空 气作为指示剂
p1 p2 Rg( 0 ) Rg
(4) 倾斜式压差计 适用于压差较小的情况。
30
返回
例1-1 如附图所示,水在水平管道内流动。为测量流
体在某截面处的压力,直接在该处连接一U形压差计,
指示液为水银,读数
18
返回
表 压 = 绝对压力 - 大气压力 真空度 = 大气压力 - 绝对压力
p1
表压
大气压
真空度 绝对压力
p2
绝对压力 绝对真空
19
返回
1.1.3 流体静力学平衡方程
一、静力学基本方程 设流体不可压缩, (1)上端面所受总压力
P1 p1 A
Const.
p1 G p2
p0
重力场中对液柱进行受力分析:
5
返回
1.0.0 流体的特征
液体和气体统称为流体。
• 具有流动性;
• 无固定形状,随容器形状而变化; • 受外力作用时内部产生相对运动。 不可压缩流体:流体的体积不随压力变化而变化,
如液体;
可压缩性流体:流体的体积随压力发生变化,
如气体。
6
返回
1.0.1 研究流体流动的目的
1、流体输送:选择适宜流速、确定管路直径、 选用输送设备; 2、压强、流速和流量的测量:便于了解和控制 生产; 3、为强化设备提供适宜流动条件:如传热、传 质设备的强化。
9
返回
1.0.3 流体流动中的作用力
1、体积力: 体积力作用于流体的每一个质点上,并与流体的 质量成正比,也称为质量力,如重力、离心力。 2、表面力:包括压力与剪力 压力:垂直于表面的力 剪力:平行于表面的力,又称粘性力,与流体运动 有关。 返回

《化工原理》第1章流体流动

《化工原理》第1章流体流动

(1-7)
式中ቤተ መጻሕፍቲ ባይዱP——垂直作用于流体截面积A上的压力,N;
A——流体的截面积,m2;
p——流体的平均静压力强度(Pa),又称静压强简称
压强。
6
第1章 流体流动
(2)绝对压强、表压强、真空度
按基准点不同,流体的压强有两种表示方法:一种是以
绝对真空为起点,称为绝对压强,用p表示。另一种是以周围 环境大气压强为起点,称为表压强或真空度,用p表表示。用 各种测压仪表测得的流体压强都是表压强或真空度。令 pa为 环境大气压强,则被测流体的绝对压强与表压强的关系为
位 m/s。
u Vs A
(1-16)
式中 A——与流动方向相垂直的管道截面积,m2。
(2)质量流速:单位面积上的质量流量。常用G表示,单
位 kg/m2·s。
G ws A
(1-17)
20
第1章 流体流动
质量流速与平均流速的关系为
G u
(1-18)
化工管道以圆形截面居多,若以d表示管道内径,则
p1 p2 ( A B )gR
(1-12)
若被测流体是气体,则因为气体的密度远小于指示液的
密度,所以
p1 p2 A gR
(1-13)
式(1-12)为测量液体压强差的计算公式,式(1-13) 为测量气体压强差的计算公式。
15
第1章 流体流动
当U型管一端连接大 气时,测得的就是管道内 流体的表压强或真空度。 如 图 1-4 为 测 量 管 道 某 截 面上的静压强的示意图, (a)测量的是流体的压 强大于大气压时的情况。 (b)测量的是流体的压 强小于大气压时的情况。
P2 P1 Agh 0

化工原理第一章

化工原理第一章

(2)怎样看成连续性?
考察对象:流体质点(微团)-------足够大,足够小
流体可以看成是由大量微团组成的,质点间无空
隙,而是充满所占空间的连续介质,从而可以使
用连续函数的数学工具对流体的性质加以描述。
第二节 流体静力学 本节将回答以下问题: 静力学研究什么?
采用什么方法研究?
主要结论是什么? 这些结论有何作用?
在静止流体中,任意点都受到大小相同方向不同的压强
静压强的特性:具有点的性质,p=f(x,y,z),各相同性
1.流体静力学方程的推导
向上的力 : pA 向下的力: ( p dp) A
重力: mg gAdZ
静止时三力平衡,即 :
pA ( p dp) A gAdz 0
dp gdZ 0
p A pB ( i ) gR g ( Z A Z B ) ( p A gZ A ) ( pB gZB ) ( i ) gR
p gZ
A B ( i ) gR
4. 斜管压差计
R R' sin
流体静力学(二)
1-4
流体静力学基本方程的应用
一. 压强与压强差的测量 1.简单测压管
p A p0 hR
A点的表压强
p A (表) p A p0 gR
特点:适用于对高于大气压的液体压强的测定,不适用于气体。
2. U型测压管 由静力学原理可知
p1 p A gh
p 2 p 0 i gR
这是两个非常重要的方程式,请大家注意。
1-5 流量及流速
一、流量:单位时间内流过管道内任一截面的流体量
体积流量qV
m3 / s

《化工原理》第一章流体流动基础

《化工原理》第一章流体流动基础

《化工原理》第一章流体流动基础流体流动问题是化工厂里最常遇到的一个问题,也是化工单元操作中的一个最基本问题。

化工生产中所处理的物料以流体占大多数,流体的输送是在管路中进行的,因此流体输送管路在化工生产中起着重要的作用,可看成与人体里的血管相当。

输送管路是由管子、阀门、输送机械(泵、通风机等)流量计等部分机械组成,它四通八大于各处。

对于这类大量的输送管路和设备,如能做到正确设计、布置和选用,就会为国家节约许多生产资料、避免浪费。

学习这一章主要目的有四个方面:1、讨论粘性流体动量传递的基本原理。

2、掌握流体一些基本规律。

3、了解流体输送设备的基本结构。

4、解决流体输送中的问题流体输送究竟包括那些内容,可通过以下实例了解概况。

QOHHSNHOHNHSH++=+2442(脱去半水煤气中的SH2)银川氨肥厂脱硫塔(脱硫变换工段)由上图可知,主要任务有二:一、选:(合适的流速、合适的管径、阀门、测量仪表、泵、风机)。

二、研:(为了选合适就得研究流体的性质,流动形态即条件,流体的有关规律。

)第一节流体的物理性质1.1.1 连续介质的假定一、连续介质假定:流体是有连续分布的流体质点所组成。

二、理想流体与实际流体1、流体:液体与气体的统称。

2、 粘度:流体内部摩擦力的表现,是流体重要的物性参数之一用μ表示。

注:固体有摩擦力,如粉笔盒(擦)在桌面上移动(摩擦产生于外表面)。

液体也有摩擦力,如倒一瓶水与一瓶油相比较,油到出来慢,为什么呢?油液内部有摩擦力。

(摩擦力产生于内部)。

3、 理想流体:理想液体与理想气体的统称,即粘度为零的流体。

4、 理想液体:不可压缩,受热不膨胀,粘度为零因而流动时不产生摩擦阻力的液体。

5、 理想气体:粘度为零,流动时没有摩擦阻力的气体,它完全符合理想气体状态方程式。

(物化上“理想气体”是指分子间无吸引力,分子体积为零,完全符合理想气体状态方程式nRT PV =的气体)。

6、 实际流体:粘度不为零的流体。

化工原理内容概要-第1章

化工原理内容概要-第1章

《化工原理》内容提要第一章流体流动1. 基本概念1)稳定流动:流速以及其他和流动有关的物理量不随时间而变的流动。

2)不稳定流动:流速以及其他和流动有关的物理量随时间而变的流动。

3)采用欧拉法考察流体运动,流线上各点的切线表示同一时刻各点的速度方向。

4)采用拉格朗日法考察流体运动,轨线是某一流体质点的流动轨迹,轨线上各点表示同一质点在不同时刻的空间位置。

5)轨线描述的是同一质点在不同时间的位置,而流线表示的则是同一瞬间不同质点的速度方向。

6)流体流动中的作用力有:表面力(压力、切力);体积力(质量力);剪应力。

7)流体中的能量包括:内能、机械能(位能、动能、压强能)。

8)层流:流体质点作直线运动,即流体分层流动,宏观上层次分明,彼此互不混杂。

9)湍流或紊流:流体不仅在总体上沿管道向前运动,同时还在各个方向作随机的脉动。

10)流型的判据—雷诺数Re:Re < 2000时,层流必定出现,为层流区;2000< Re < 4000时,为过渡流区;Re> 4000时,一般均出现湍流,为湍流区。

11)边界层:流体流动受固体壁面影响的区域称为流动边界层12)边界层发展:边界层厚度δ随流动距离增加而增加。

13)流动充分发展:边界层不再改变,管内流动状态也维持不变。

14)层流内(底)层:边界层内近壁面处一薄层,无论边界层内的流型为层流或湍流,其流动类型均为层流。

15)直管阻力损失:流体流经直管时,由于流体内摩擦力作用,沿管长产生的阻力损失。

16)局部阻力损失:流体流经管件阀件时,流道突变(流速的改变或流向的改变)产生的阻力损失。

阻力损失主要表现为流体势能的降低。

17)对非圆形管其当量直径:d e=4×流通截面积/润湿周边长;18)流体性质对流体输送管路最佳流速的选择:粘度较大的流体(如油类)流速应取低些;含有固体悬浮物的流体,为了防止管路的堵塞,流速则不能取得太低。

密度较大的液体,流速应取低些,而密度小的液体,流速则可取得比液体大得多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 qV 1 qV 4.hf∝ 4, h ; f∝ 5 , 1 d 16 d 32
5.流体的黏性;总势能降低
du Re Re 6.同样u, d, v液 v水 , , 液 Re 水
7. ζA↓, qVA↑, qVB↓, qV总↑, p↓, hfA↓, hfMN↓
C0 0.64
v
8、图示管路系统中,已知 流体流动的总阻力损失 hf=56J/kg, 若关小阀门, 则总阻力损失hf’= J/kg, 两槽液面的垂直距离 H= 9、图示管路系统中, 已知dab=dcd, εab=εcd, lab=lcd,μ≠0。比较 ua uc, (pa-pb) (pc-pd), (Pa-Pb) (Pc-Pd)。
p'1 p'2 H ' f 1 2 ( z2 z1 ) =8+3=11m g
二、选择 1、倒U型压差计,指示剂 C)不变 D)R不变, 但倒U型压差计中左侧液位高于右侧。 2、圆形直管内径 d=100mm,一般情况下输水能 力为( )。 3 3 3 3 A)3m /h;B)30m /h;C)200 m /h;D)300 m /h 3、某孔板流量计, 当水流量为qV时, U型压差计读 数 R=600mm,(ρi=3000kg/m3), 若 改 用 ρi=6000 3 kg/m 的指示液, 水流量不变, 则此时读数R为( ) A)150mm; B)120mm; C)300mm; D)240mm
2. 1) 粘度较大,设Re<2000, 处于层流
2) , R1 , R2
3、某敞口高位槽输送管路, 在管路OC段的水平位 置装一孔板流量计, 已知孔径do=25mm, 流量系数 Co=0.62。管长LOC=45m, LCB=15m, LCD=15m (均 包括全部局部阻力的当量长度), 管径dOC=50mm, dCB=40mm, dCA=40mm, 压力容器B中的压强维持 在9.81kPa(表压)。试求: 1)阀门D全关时, 孔板两侧的压差△P为多少Pa? 2)逐渐打开D阀, 直到使得CA,CB段管中的流速 相等,此时压力表PD读数为多少? 3 (已知液体密度为1000kg/m ,λ均取0.03)
问题: 1. 风吹门窗为什么会……? 2. 风筝为什么不会掉下来?开始放飞时是应该顺 着风向跑还是逆着风向跑?
练习一:第一章 流体流动 一、填充 1、连续性假定是指 。 2 、控制体与系统的区别在于考察方法的不同, 对系统进行考察的方法是 法,对控制体进 行考察的方法是 法。 3、圆管内湍流和层流的区别是:
练习一解答: 一、填充 1.流体是无数彼此无间隙的质点组成的连续介质 2.拉格朗日, 欧拉 3.
4、圆形直管内,qV一定,设计时若将d 增加一倍, 则层流时 hf是原值的 倍,高度湍流时,hf是 原值的 倍。(忽略ε/d的变化) 5 、流体在直管内流动造成阻力损失的根本原因 是 ,直管阻力损失体现在 。 6、某孔板流量计用水测得Co=0.64,现用于测 3 ρ=900kg/m ,μ=0.8mPas的液体,问此时 Co 0.64。(>, =, <) 7 、如图示管线,将支管 A 的阀门开大,则管内 以下参数如何变化?(↑,↓) qVA ,qVB , q V总 ,P , hfA , hfMN 。
m.
56 8. 56J/kg;H 5.7m 9.81
9. ua=uc, ( pa pb ) ( pc pd ) , (Pa Pb ) (Pc Pd )
10、如图示供水管线。管长 L, 流量qV, 今因检修管子, 用若干根直径为0.5d、管长 相同于L的管子并联代替原 管, 保证输水量qV不变, 设λ 为常数 ,ε/d 相同,局部阻力均忽略,则并联管数 至少需要 根。 11、如图通水管路,当 流量为qV时, 测得(P1-P2) =5mH2O, 若流量为2 qV mH2O 时, (P1-P2)= (设在阻力平方区)。
二、选择 1.ΔP=R(ρ-ρi)g, (ρ-ρi) ↓ ,R ↑, 选A 2. u=1~3m/s, 2 qV d u 0.785×0.12×1×3600≈30m3/h 选B 3. ΔP=R(ρi -ρ)g =R’(ρ’i -ρ)g
3000 1000 i 0.6 0.24m R' R 6000 1000 'i 4
选D
三、计算 1、如图所示三只容器A、B、C均装有水(液面恒 定), 已知:z1=1m, z2=2m, U型水银压差计读数: R=0.2m, H=0.1m 试求: 1) 容器A上方压力表读数p1; 2) 若p1(表压)加倍,则(R+H)值为多少?
三、1. 1) p1=pa+(ρ i-ρ)(H+R)g -(z2-z1)ρg =(13600-1000)×0.3×9.81-1×1000×9.81 =2.73×104Pa(表) 2) R H p1 pa ( z2 z1 ) g (i )g
第一章 基本概念: 孔板流量计、转子流量计的特点 非牛顿流体的特性(塑性、假塑性与涨塑性、触变 性与震凝性、粘弹性)
第一章
第一章
第一章
2 2.73 104 1 103 9.81 =0.52m (13600 1000) 9.81
2 、某输液管路如图所示 ,已知液体的密度为 900kg/m3 ,粘度为 30mPas ,除 AB 段外,直管总 长 ( 包括全部局部阻力的当量长度 ) , L=50m, 管 径d=53mm, 复式U型压差计指示剂为水银,两指 示剂中间流体与管内流体相同,指示剂读数 R1=7cm, R2=14cm。试求: 1)当两槽液面垂直距离4m时, 管内流速为多少? 2)当阀关闭时, R1、R2读数有何变化(定性判断)?
2 q q ' d ' 2 V V 10. hf∝ 5 , ( ) ( )5 d qV d
qV qV qV单 2.5 2 5.7 取6根并联 p1 p2 11. H f 1 2 ( z1 z2 ) =5-6×0.5=2m g
Hf∝qV2 , H1f1-2=22 Hf1-2= 8m
3.1)从1至B处排能量方程
2) 由1至B处排能量方程
第一章 基本概念: 连续性假定 质点 拉格朗日法 欧拉法 定态流动 轨线与流线 系统与控制体 黏性的物理本质 总势能 理想流体与实际流体的区别 可压缩流体与不可压缩流体的区别 牛顿流体与非牛顿流体的区别 伯努利方程的物理意义 平均流速 动能校正因子 均匀分布 均匀流段 层流与湍流的本质区别 稳定性与定态性 雷诺数的物理意义 泊谡叶方程 量纲分析实验研究方法的主要步骤 摩擦系数 完全湍流粗糙管 局部阻力当量长度 驻点压强
相关文档
最新文档