几何图形初步知识归纳与例题

合集下载

七年级上册数学几何图形初步知识点梳理+例题详解

七年级上册数学几何图形初步知识点梳理+例题详解

七年级上册数学几何图形初步知识点梳理+例题详解几何图形初步知识网络:知识点梳理背诵1. 我们把实物中抽象的各种图形统称为几何图形。

2.有些几何图形(如长方体.正方体.圆柱.圆锥.球等)的各部分不都在同一平面内,它们是立体图形。

3.有些几何图形(如线段.角.三角形.长方形.圆等)的各部分都在同一平面内,它们是平面图形。

4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.几何体简称为体。

6.包围着体的是面,面有平的面和曲的面两种。

7.面与面相交的地方形成线,线和线相交的地方是点。

8.点动成面,面动成线,线动成体。

9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)13.连接两点间的线段的长度,叫做这两点的距离。

14.角∠也是一种基本的几何图形。

15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

19.等角的补角相等,等角的余角相等。

例题精讲。

几何图形(39张PPT)数学

几何图形(39张PPT)数学

第6章 图形的初步知识
6.1 几何图形
学习目标 1.在具体情况中认识立方体、长方体、圆柱体、圆锥体、球体,并能理解和描述它们的某些特征,进一步认识点、线、面、体,体验几何图形是怎样从实际情况中抽象出来的.2.了解几何图形、立体图形与平面图形的概念.掌握重点 认识常见几何体并能描述它们的某些特征.突破难点 体验几何图形与现实生活中图形的关系,区分立体图形与平面图形.

返回
解 立方体由6个面围成,它们都是平的;圆柱由3个面围成,其中有2个平的,1个曲的.解 圆柱的侧面和两个底面相交成2条线,它们都是曲的.解 立方体有8个顶点,经过每个顶点有3条线段(棱).
典例精析
例1 (教材补充例题)如图所示的图形.平面图形有_____________;立体图形有_____________.
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
①,②,⑥
③,④

②,③,⑤
①,④,⑥
19
13.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱?(3)这个三棱柱共有多少顶点?
解 这个三棱柱共有5个面.解 这个三棱柱一共有9条棱.解 这个三棱柱共有6个顶点.
C
解析 观察图形可知,其中一面、两面、三面涂色的小正方体的个数分别为x1=6,x2=12,x3=8,则x1-x2+x3=2.故选C.
1
2
3
4
5
6
7
8
9
10
11
12

几何初步例题和知识点总结

几何初步例题和知识点总结

几何初步例题和知识点总结在我们的数学学习中,几何是一个重要且有趣的部分。

它帮助我们理解和描述周围世界的形状、大小和位置关系。

接下来,让我们一起深入探讨几何初步的一些例题和关键知识点。

一、线段、射线和直线线段是指两端都有端点,不可延伸的线。

例如,连接两点 A 和 B 的线段,可以记作线段 AB。

射线是指由线段的一端无限延长所形成的线。

比如,以 A 为端点,向 B 的方向无限延伸,就是射线 AB。

直线则是可以向两端无限延伸,没有端点。

例题:已知线段 AB 长为 5 厘米,点 C 在线段 AB 上,且 AC = 2 厘米,求线段 BC 的长度。

解:因为线段 AB 长 5 厘米,AC 长 2 厘米,所以 BC = AB AC =5 2 = 3 厘米。

知识点:线段的和差计算,就是用总的线段长度减去已知部分的长度,得到另一部分的长度。

二、角的度量与表示角是由两条有公共端点的射线组成的几何图形。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

角的度量单位是度、分、秒。

1 度= 60 分,1 分= 60 秒。

例题:已知一个角的度数是 45 度 30 分,将其换算成度。

解:因为 1 分=(1/60)度,所以 30 分= 30×(1/60)= 05 度,所以这个角是 455 度。

知识点:角的度数换算要清楚度、分、秒之间的进率。

三、相交线与平行线相交线:两条直线相交,会形成四个角。

对顶角相等,邻补角互补。

平行线:在同一平面内,不相交的两条直线叫做平行线。

例题:如图,直线 a、b 被直线 c 所截,已知∠1 = 50°,∠2 =130°,判断直线 a 与 b 是否平行。

解:因为∠1 +∠2 = 50°+ 130°= 180°,根据同旁内角互补,两直线平行,所以直线 a 与 b 平行。

知识点:判断平行线的方法有同位角相等、内错角相等、同旁内角互补等。

四、三角形三角形是由三条线段首尾顺次相接组成的图形。

几何图形初步经典解析与练习

几何图形初步经典解析与练习

1几何图形初步经典解析与练习一、典型例题讲解例1 如图3—173所示,回答下列问题。

图3-173(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来。

解:(1)图中有1条直线,表示为直线AD (或直线AB ,AC ,BD ……);(2)图中共有8条射线,能用字母表示的有射线AD ,BD ,CD ,DA ,CA,BA,不能用字母表示的有2条,(3)图中共有6条线段,用字母表示为线段AB ,AC ,AD,BC ,BD ,CD , 例2如图1—1,正方体盒子中,一只蚂蚁从B 点沿正方体的表面爬到D 1点,画出蚂蚁爬行的最短线路.分析:正方体是空间图形,解决空间图形的问题,经常是将空间图形转化为平面图形,这正是转化思想的体现.解:将正方体展开成平面图形,如图1—2所示,因为两点之间线段最短,所以,在图1—2中,BD 1就是所要求的最短线路.例3如图2,点O 是直线A 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线, 求∠DOE 的度数。

分析:在解决线段的中点和角的平分线问题时,某个环节整体处理,能化难为易,轻松求解.分别求出∠DOC 、∠EOC 的度数,再相加得到∠DOE 的度数,是不可能的,可将∠DOE 作为一个整体来考虑.解:因为OD 是∠AOC 的平分线,OE 是∠COB 的平分线,所以∠COD=21∠COA,∠COE =21∠COB , 而∠COA +∠COB =180°,图1图2图32 所以∠DOE =21(∠COA +∠COB )=21×180°=90°. 《几何图形初步》练习题1.右图中五角星状的图形沿虚线折叠,得到一个几何体,你在生活中见过和这个几何体类似的物体吗?2。

你能根据下面的图形设计一个三棱锥、四棱锥吗?3.用平面截正方体,截面的形状可以是长方形吗?用平面截长方体,截面的形状可以是正方形吗?4。

七年级数学第四章几何图形初步典型例题及答题技巧

七年级数学第四章几何图形初步典型例题及答题技巧

七年级数学第四章几何图形初步典型例题及答题技巧单选题1、一个几何体由大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则从正面看该几何体的形状图为()A.B.C.D.答案:A解析:由已知条件可知,从正面看有3列,每列小正方形数目分别为4,2,3,据此可得出图形.解:根据所给出的图形和数字可得:从正面看有3列,每列小正方形数目分别为4,3,2,则符合题意的是:故选:A.小提示:本题考查了从不同方向看几何体等知识,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平2、下列各角中,是钝角的是( ).A .14周角B .23平角C .平角D .14平角答案:B解析:直接利用角的定义逐项分析即可得出答案.解:A. 14周角= 14×360°=90°,不是钝角,不合题意; B. 23平角=23×180°=120°,是钝角,符合题意;C. 平角=180°,不是钝角,不合题意;D. 14平角=14×180°=45°,不是钝角,不合题意. 故选:B小提示:此题主要考查了角的概念,正确掌握平角、周角、钝角的概念是解题关键.3、已知∠AOB =30°,如果用10倍的放大镜看,这个角的度数将( )A .缩小10倍B .不变C .扩大10倍D .扩大100倍答案:B解析:根据角是从同一点引出的两条射线组成的图形.它的大小与图形的大小无关,只与两条射线形成的夹角有关系,直接判断即可.解:角的大小只与角的两边张开的大小有关,放大镜没有改变顶点的位置和两条射线的方向,所以用10倍放大镜观察这个角还是30度.小提示:本题考查了角的概念.解题关键是掌握角的概念:从同一点引出的两条射线组成的图形叫做角,明确角的大小只与角的两边张开的大小有关.4、如图所示,∠COD的顶点O在直线AB上,OE平分∠COD,OF平分∠AOD,已知∠COD=90°,∠BOC=α,则∠EOF的度数为()A.90°+αB.90°+α2C.45°+αD.90°﹣α2答案:B解析:先利用∠COD=90°,∠BOC=α,求出∠BOD的度数,再求出∠AOD的度数,利用角平分线,分别求出∠FOD和∠EOD的度数,相加即可.解:∵∠COD=90°,∠BOC=α,∴∠BOD=90°-∠BOC=90°-α,∴∠AOD=180°-∠BOD=90°+α,∵OF平分∠AOD,∴∠DOF=12∠AOD=45°+12α,∵OE平分∠COD,∴∠DOE=12∠COD=45°,∴∠EOF=∠FOD+∠DOE=90°+α;2故选:B.小提示:本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系.5、观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D.答案:B解析:利用正方体及其表面展开图的特点解题.解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.小提示:本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.6、下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线答案:B解析:根据两点确定一条直线进而得出答案.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.小提示:此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.7、如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是()A.传B.国C.承D.基答案:D解析:正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,则:“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面.故选:D.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8、如图,是一个几何体的表面展开图,则该几何体中写“英”的面相对面上的字是( )A.战B.疫C.情D.颂答案:B解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“战”与“情”是相对面,“疫”与“英”是相对面,“颂”与“雄”是相对面.故选:B.小提示:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手分析是解题的关键.填空题9、下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:_____.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:_______.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:_________.答案:(3)(2)(1)解析:解:观察图形,根据所给的信息可得:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).所以答案是:(3);(2);(1).小提示:本题考查了直线、射线与线段的知识,注意掌握三者的特点,给出图形应该能判断出是哪一个.10、一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)答案:12π或16π解析:根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.解:绕它的直角边所在的直线旋转所形成几何体是圆锥,π×32×4=12π,①当绕它的直角边为3cm所在的直线旋转所形成几何体的的体积是:13π×42×3=16π,②当绕它的直角边为4cm所在的直线旋转所形成几何体的的体积是:13所以答案是:12π或16π.小提示:此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论.11、如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是________答案:丁解析:能围成正方体的“一四一”,“二三一”,“三三”,“二二二”的基本形态要记牢.解题时,据此即可判断答案.解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁,所以答案是:丁.小提示:本题考查了展开图折叠成正方体的知识,解题关键是根据正方体的特征,或者熟记正方体的11种展开图,只要有“田”,“凹”字格的展开图都不是正方体的表面展开图.12、如图,∠AOC=∠BOD=90°,∠AOB=70°,在∠AOB内画一条射线OP得到的图中有m对互余的角,其中∠AOP=x°,且满足0<x<50,则m=_______.答案:3或4或6解析:分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.∠AOB =35°时,∠BOP=35°①∠AOP=12∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共3对.则m=3或4或6.所以答案是:3或4或6.小提示:本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.13、已知∠A=20°18',则∠A的余角等于__.答案:69°42′解析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.解答题14、如图,线段AB=8cm,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)AC=3cm,求线段CM、NM的长;(2)若线段AC=m,线段BC=n,求MN的长度(m<n用含m,n的代数式表示).答案:(1)CM=1cm,NM=2.5cm;(2)12n解析:(1)求出AM长,代入CM=AM-AC求出即可;分别求出AN、AM长,代入MN=AM-AN求出即可;(2)分别求出AM和AN,利用AM-AN可得MN.解:(1)∵AB=8cm,M是AB的中点,∴AM=12AB=4cm,∵AC=3cm,∴CM=AM−AC=4−3=1cm;∵AB=8cm,AC=3cm,M是AB的中点,N是AC的中点,∴AM=12AB=4cm,AN=12AC=1.5cm,∴MN=AM−AN=4−1.5=2.5cm;(2)∵AC=m,BC=n,∴AB=AC+BC=m+n,∵M是AB的中点,N是AC的中点,∴AM =12AB =12(m +n),AN =12AC =12m ,∴MN =AM −AN =12(m +n)−12m =12n . 小提示:本题考查了两点之间的距离,线段中点的定义的应用,解此题的关键是求出AM 、AN 的长.15、已知:如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若线段AC =6,BC =4,求线段MN 的长度;(2)若AB =a ,求线段MN 的长度;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出MN 的长度. 答案:(1)5cm ;(2)12a ;(3)1或5. 解析:(1)由点M 、N 分别是AC 、BC 的中点.可知MC =3,CN =2,从而可求得MN 的长度.(2)由点M 、N 分别是AC 、BC 的中点,MN =MC +CN =12(AC +BC )=12AB .(3)由于点C 在直线AB 上,所以要分两种情况进行讨论计算MN 的长度.解:(1)∵ AC =6,BC =4,∴ AB =6+4=10,又∵ 点M 是AC 的中点,点N 是BC 的中点,∴ MC =AM =12AC ,CN =BN =12BC ,∴ MN =MC +CN =12AC +12BC =12(AC +BC )=12AB =5(cm ).(2)由(1)中已知AB =10cm 求出MN =5cm ,分析(1)的推算过程可知MN =12AB ,故当AB=a时,MN=12a,从而得到规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.(3)分类讨论:当点C在点B的右侧时,如图可得:MN=MC−NC=12AC−12BC=12(AC−BC)=12×(6−4)=1;当点C在线段AB上时,如(1);当点C在点A的左侧时,不满足题意.综上可得:点C在直线AB上时,MN的长为1或5.小提示:本题考查线段计算问题,涉及线段中点的性质,分类讨论的思想,属于基础题型.。

几何图形知识点总结(含例题)

几何图形知识点总结(含例题)

几何图形知识点总结1.立体图形与平面图形(1)对于一个物体,如果我们不考虑它的颜色、材料和重量等,而只考虑它的_________(如方的、圆的)、_________(如长度、面积、体积)和_________(如平行、垂直、相交),所得到的图形就称为_________.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.(2)立体图形:各部分不都在同一平面内的图形,叫做_________.长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.(3)平面图形:各部分都在同一平面内的图形,叫做_________.长方形、正方形、三角形、四边形、圆等都是平面图形.(4)立体图形与平面图形是两类不同的几何图形,但它们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.2.点、线、面、体(1)体:长方体、圆柱体、球、圆锥等都是_________.几何体也简称体.(2)面:包围着体的是面.面分为_________和_________两种.如下图的圆锥体有2个面,一个是平面,另一个是曲面.如下图的六棱柱有8个面,它们都是平面.如下图的圆柱有3个面,2个是平面,另一个是曲面.(3)线:面与面相交的地方形成线.线分为_________和_________两种.如圆锥体的两个面相交形成曲线.(4)点:线与线相交形成_________.点动成线,线动成面,面动成体.(5)正方体展开图,共11种图形.K知识参考答案:1.(1)形状,大小,位置,几何图形(2)立体图形(3)平面图形2.(1)几何体(2)平面,曲面(3)直线,曲线(4)点一、立体图形与平面图形1.立体图形有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.从不同的方向观察立体图形:从前往后看,得到的是主视图;从左往右看,得到的是左视图;从上往下看,得到的是俯视图.2.平面图形有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平内,这样的几何图形叫做平面图形.【例1】如图,下列图形全部属于柱体的是A.B.C.D.【答案】C二、点、线、面、体1.体:长方体、圆柱体、球、圆锥等都是几何体.几何体也简称体.2.面:包围着体的是面.面分为平面和曲面两种.3.线:面与面相交的地方形成线.线分为直线和曲线两种.4.点:线与线相交形成点.【例2】如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是A.B.C.D.【答案】C【名师点睛】(1)体与体相交成面,面与面相交成线,线与线相交成点.(2)从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.(3)从几何的观点来看点是组成图形的基本元素,线、面、体都是点的集合.(4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.(5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成.。

立体几何知识点和例题(含有答案)

立体几何知识点和例题(含有答案)

【考点梳理】一、考试内容1.平面。

平面的基本性质。

平面图形直观图的画法。

2.两条直线的位置关系。

平行于同一条直线的两条直线互相平行。

对应边分别平行的角。

异面直线所成的角。

两条异面直线互相垂直的概念。

异面直线的公垂线及距离。

3.直线和平面的位置关系。

直线和平面平行的判定与性质。

直线和平面垂直的判定与性质。

点到平面的距离。

斜线在平面上的射影。

直线和平面所成的角。

三垂线定理及其逆定理。

4.两个平面的位置关系。

平面平行的判定与性质。

平行平面间的距离。

二面角及其平面角。

两个平面垂直的判定与性质。

二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。

对于异面直线的距离,只要求会计算已给出公垂线时的距离。

2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。

对于异面直线上两点的距离公式不要求记忆。

3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。

能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。

三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。

(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。

七年级数学第四章几何图形初步知识总结例题

七年级数学第四章几何图形初步知识总结例题

(每日一练)七年级数学第四章几何图形初步知识总结例题单选题1、下列说法中,正确的是()①己知∠A=40°,则∠A的余角是50°②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④答案:A解析:根据余角及补角的定义进行判断即可.∵和为180度的两个角互为补角,和为90度的两个角互为余角,∴①已知∠A=40°,则∠A的余角=50°,正确,②若∠1+∠2=90°,则∠1和∠2互为余角,正确,③∠1、∠2和∠3三个角不能互为补角,故错误,④若一个角为120°,则这个角的补角为60°,不是钝角,故错误,∴正确的是:①②.故选:A.小提示:本题考查了余角及补角,掌握余角和补角的定义是解题的关键.2、下列说法:(1)在所有连结两点的线中,线段最短;(2)连接两点的线段叫做这两点的距离;(3)若线段AC=BC,则点C是线段AB的中点;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,其中说法正确的是()A.(1)(2)(3)B.(1)(4)C.(2)(3)D.(1)(2)(4)答案:B解析:根据两点之间线段最短,数轴上两点间的距离的定义求解,线段的中点的定义,直线的性质对各小题分析判断即可得解.解:(1)在所有连结两点的线中,线段最短,故此说法正确;(2)连接两点的线段的长度叫做这两点的距离,故此说法错误;(3)若线段AC=BC,则点C不一定是线段AB的中点,故此说法错误;(4)经过刨平的木板上的两个点,能弹出一条笔直的墨线,是因为两点确定一条直线,故此说法正确;综上所述,说法正确有(1)(4).故选:B.小提示:本题考查了线段的性质、两点间的距离的定义,线段的中点的定义,直线的性质等,是基础题,熟记各性质与概念是解题的关键.3、如图,BC=12AB,D为AC的中点,DC=3cm,则AB的长是()A.72cm B.4cm C.92cm D.5cm答案:B解析:先根据已知等式得出AB与AC的等量关系,再根据线段的中点定义可得出AC的长,从而可得出答案.∵BC=12AB∴AC=AB+BC=AB+12AB=32AB,即AB=23AC∵D为AC的中点,DC=3cm ∴AC=2CD=6cm∴AB=23AC=23×6=4(cm)故选:B.小提示:本题考查了线段的和差倍分、线段的中点定义,掌握线段的中点定义是解题关键.填空题4、如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.AC =3cm,CP=1cm,线段PN=__cm.答案:32解析:根据线段中点的性质求得线段CN的长度,即可求解.解:∵AP=AC+CP,CP=1cm,∴AP=3+1=4cm,∵P为AB的中点,∴AB=2AP=8cm,∵CB=AB﹣AC,AC=3cm,∴CB=5cm,∵N为CB的中点,∴CN=12BC=52cm,∴PN=CN−CP=32cm所以答案是:32.小提示:本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.5、单位换算:56°10′48″=_____°.答案:56.18解析:先将48″换算成“分”,再将“分”换算成“度”即可.解:48×(160)′=0.8′,则10.8×(160)°=0.18°,故56°10′48″=56.18°,所以答案是:56.18.小提示:本题考查度、分、秒的换算,掌握换算方法是正确计算的前提.解答题6、如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°,将一直角三角板的直角项点放在O处,一直角边OM在射线O上,另一直角边ON在直线AB 的下方.(1)将图1中的三角形绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时直线ON是否平分∠AOC?计算出图中相关角的度数说明你的观点;(2)将图1中的三角板以每秒5°的速度绕点O逆时针方向旋转一周,在旋转过程中,第n秒时,直线ON恰好平分∠AOC,则n的值为____________(直接写出答案);(3)将图1中三角板绕点O旋转至图3,使ON在∠AOC的内部时,求∠AOM与∠NOC 的数量关系,并说明理由.答案:(1)35°,见解析(2)11或47(3)∠AOM−∠NOC=20°,见解析解析:(1)如图,作射线NT,先求解∠BON,∠AOT,再求解∠COT,从而可得答案;(2)分两种情况:①如图2,当直线ON恰好平分锐角∠AOC时,此时逆时针旋转的角度为55°,②如图3,当NO平分∠AOC时,∠NOA=35°,此时逆时针旋转的角度为:180°+55°=235°,再求解时间t即可;(3)由∠AOM=90°−∠AON,∠NOC=70°−∠AON,消去∠AON即可得到答案.(1)解:如图,过点O作射线NT,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON−∠MOB=35°,∴∠AOT=35°,∠COT=180°−110°−35°=35°,∴∠AOT=∠COT,∴OT平分∠AOC,即直线ON平分∠AOC.(2)解:分两种情况:①如图2,∵∠BOC=110°,∴∠AOC=70°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;所以答案是:11或47;(3)解:∠AOM−∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,∴∠AOM=90°−∠AON,∠NOC=70°−∠AON,∴∠AOM−∠NOC=(90°−∠AON)−(70°−∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM−∠NOC=20°.小提示:本题考查的是几何图形中角的和差关系,角的动态定义,角平分线的定义,掌握“几何图形中角的和差关系”是解本题的关键.。

七年级上册数学第六章-《图形的初步知识》知识点及典型例题大全(精选.)

七年级上册数学第六章-《图形的初步知识》知识点及典型例题大全(精选.)

新浙教版七年级上册数学第六章《图形的初步知识》知识点及典型例题知识框图第一节几何图形:会区分平面图形与立体图形第二节线段、射线和直线:线段、射线和直线的概念及表示方法;直线的基本事实(经过两点有一条且只有一条直线,简单地说,两点确定一条直线)第三节线段的长短比较:度量法和叠合法;线段的基本事实(在所有连结两点的线中,线段最短,简单地说,两点之间线段最短)及两点间距离的概念第四节线段的和差:线段的中点以及三等分点等;线段的加减计算第五节角与角的度量:角的概念及表示方法;度、分、秒的相互换算及计算第六节角的大小比较:度量法和叠合法;角的分类第七节角的和差:角平分线的概念;角的加减计算第八节余角和补角:余角和补角的概念及性质;根据图形和文字,利用该性质进行简单的推理和计算第九节直线的相交:相交线的概念;对顶角的概念和性质;会用余角、补角、对顶角的性质进行推理和计算;两条直线互相垂直的概念、画法(一靠、二过、三画、四标)及表示法;垂线段最短的性质和点到直线的距离的概念考点一、与概念、性质、基本事实直接相关的题目考点二、关于角度的计算,注意一元一次方程在这种题目中的妙用。

若语言模糊,一定要分类讨论,多画图。

考点三、关于线段的计算,注意一元一次方程在这种题目中的妙用。

若语言模糊,一定要分类讨论。

考点四、与实际生活相关的线段问题考点五、关于规律性的角度、线段问题考点六、作图题将考点与相应习题联系起来考点一、与概念、性质、基本事实直接相关的题目 1、与课本、足球分别类似的图形是( )A.长方形、圆B.长方体、圆C.长方体、球D.长方形、球 2、如图,下列说法错误的是( )A.直线AB 与直线AC 是同一条直线B.线段AB 与线段BA 是同一条线段C.射线AB 与射线BA 是同一条射线D.射线AB 与射线AC 是同一条射线3、把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为( )A.线段有两个端点B.过两点可以确定一条直线C.两点之间,线段最短D.线段可以比较大小4、下列说法:① 过两点有且只有一条线段;② 连结两点的线段的长度叫做两点之间的距离;③ 两点之间线段最短;④ AB=BC ,则点B 是线段AC 的中点;⑤ 射线比直线短,正确的个数有( ) A.1个 B.2个 C.3个 D.4个5、如图所示,∠BAC=90°,AD ⊥BC ,则图中能表示点到直线距离的线段有( ) A.3条 B.4条 C.5条 D.6条6、在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( )A.南偏西50°方向B. 南偏西40°方向C.北偏东50°方向D. 北偏东40°方向 7、在同一平面内有4个点,过每两点画一条直线,则直线的条数有( )注意分类讨论的数学思想 A.1条 B.4条 C.6条 D.1或4或6条8、如果α和β是对顶角且互补,那么它们所在的直线( )A.互相垂直B.互相平行C.即不垂直也不平行D.1或4或6条 9、如图,∠AOB=∠COD=90°,则∠AOC=∠BOD ,这是根据( )A.同角的余角都相等B.等角的余角都相等C.互为余角的两个角相等D. 直角都相等10、下列选项中,∠1与∠2是对顶角的是( )D CBA2121212111、下列各角中,属于锐角的是( ) A.13周角 B.18平角 C.65直角 D.12平角 12、如图所示,∠BAC=90°,AD ⊥BC ,则图中表示点B 到AC 的距离的线段是( )A. ABB. ADC. BDD.AC★★★用平面去截一个立方体,得到的截面不可能是………………………………………( ) A.三角形 B.正方形 C.长方形 D.圆形 ★★★如果点C 在线段AB 上,下列表达式:①AC=12AB ;②AB=2BC ;③AC=BC ;④AC+BC=AB 中,能表示点C 是线段AB 中点的有 ( )A.1个B.2个C.3个D.4个EDC B O A★★★下列四个图中的线段(或直线、射线)能相交的是……………………………………( )1()CDBA2()CD BA3()C D BA4()CDBAA.(1)B.(2)C.(3)D.(4) ★★★已知线段则线段的长度是( ) A.5B.1C.5或1D.以上都不对考点二、关于角度的计算,注意一元一次方程在这种题目中的妙用。

小学数学-有答案-小升初数学专项复习:几何的初步知识

小学数学-有答案-小升初数学专项复习:几何的初步知识

小升初数学专项复习:几何的初步知识一、例题:1. 通过放大10倍的放大镜来看一个60∘的角,这个角是多少度?2. 王小明家把一块长15米,宽12米5分米的长方形草场围上篱笆,求篱笆有多长?3. 有一块正方形实验田,周长24米,它的面积是多少平方米?4. 用10.28厘米的铁丝围成一个半圆形,半圆形的面积是多少平方厘米?5. 一个长方形和一个三角形等底等高,已知三角形的面积是30平方厘米,长方形的面积是多少?6. 一块梯形棉田,上底长85米,下底长160米,高70米;在这块棉田里共收籽棉1845千克,每平方米产籽棉多少千克?二、填空题在同一平面内不相交的两条直线叫________.12个正方形可以摆成________种不同形式的长方形。

在等腰三角形中,如果顶角为124∘,底角各是________,这个三角形是________角三角形。

把两个边长都是2厘米的正方形拼成一个长方形,这个长方形的周长是________,面积是________.一个平行四边形,底是24厘米,高2分米,面积是________.一个等边三角形,周长是12.6厘米,它的边长是________厘米。

周长是28厘米的长方形,长是10厘米,面积是________.一个梯形的面积是10平方分米,高是4分米,上底是2.2分米,下底是________分米。

一个圆,周长是6.28分米,它的面积是________.圆心角是1∘的扇形的面积是________.三、判断小明画了一条25厘米长的直线。

________.(判断对错)等边三角形和等腰三角形都是锐角三角形。

________.两个面积相等的三角形一定能拼成平行四边形。

________(判断对错)平行四边形和长方形的周长相等,它们的面积也相等。

________.(判断对错)半径是2厘米的圆,它的周长和面积相等。

________.(判断对错)半圆的周长是和它相等半径的圆周长的一半。

________.(判断对错)平行四边形不是对称图形,没有对称轴。

(文末带答案)人教版初一数学几何图形初步常考题型例题

(文末带答案)人教版初一数学几何图形初步常考题型例题

(文末带答案)人教版初一数学几何图形初步常考题型例题单选题1、某个几何体的展开图如图所示,该几何体是()A.三棱柱B.三棱锥C.长方体D.圆柱2、如图,点A位于点O的()方向上.A.西偏东35°B.北偏西65°C.南偏东65°D.南偏西65°3、下面图形中,以直线l为轴旋转一周,可以得到圆柱体的是( )A.B.C.D.4、如图所示,与∠B不是同一个角的是()A.∠1B.∠ABC C.∠DBE D.∠DAC5、如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°6、下列说法中错误的有().(1)一个锐角的余角比这个角大;(2)一个锐角的补角比这个角大;(3)一个钝角的补角比这个角大;(4)直角没有余角,也没有补角;(5)同角或等角的补角相等;(6)若∠1与∠2互余,∠2与∠3互余,则∠1与∠3也互余.A.1个B.2个C.3个D.4个7、如图,钟表上显示的时间是12:20,此时,时针与分针的夹角是()A.100°B.110°C.115°D.120°8、点A,B,C在同一条直线上,AB=6cm,BC=2cm,M为AB中点,N为BC中点,则MN的长度为()A.2cm B.4cm C.2cm或4cm D.不能确定填空题9、已知∠A=20°18',则∠A的余角等于__.10、长方体的长、宽、高分别是12cm、7cm、5cm,它的底面面积是_________cm2;它的体积是_______cm3.11、长方体的长、宽、高分别是12cm、7cm、5cm,它的底面面积是_________cm2;它的体积是_______cm3.12、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=137°,则∠BOC=________°.13、将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=_________.解答题14、如图,AB与OC交于点O,OD平分∠BOC,OE平分∠AOC.(1)若∠BOC=60°,求∠AOE的度数;(2)∠COD与∠EOC存在怎样的数量关系?请说明理由.15、如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)(文末带答案)人教版初一数学几何图形初步_003参考答案1、答案:A解析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:三个长方形和两个等腰三角形折叠后,能围成的几何体是三棱柱.故选A.小提示:本题考查了由展开图判断几何体的知识,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.2、答案:B解析:根据方向角的定义即可直接解答.解:如图,A在点O的北偏西65°.故选:B.小提示:本题考查了方向角的定义,正确确定基准点是关键.3、答案:C解析:直接根据旋转变换的性质即可解答.解:因为圆柱从正面看到的是一个长方形,所以以直线为轴旋转一周,可以形成圆柱的是长方形,故选:C.小提示:此题主要考查图形的旋转变换,发挥空间想象是解题关键.4、答案:D解析:根据角的概念和角的表示方法,依题意求得答案.解:除了∠DAC,其他三种表示方法表示的都是同一个角∠B.故选:D小提示:利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1、角+3个大写英文字母;2、角+1个大写英文字母;3、角+小写希腊字母;4、角+阿拉伯数字.5、答案:B解析:首先根据补角的定义求得这个角的度数,然后根据余角的定义即可求出这个角的余角.根据定义一个角的补角是150°,则这个角是180°-150°=30°,这个角的余角是90°-30°=60°.故选B.小提示:此题主要考查的是补角和余角的定义,属于基础题,较简单,主要记住互为余角的两个角的和为90°;互为补角的两个角的和为180°.6、答案:D解析:根据余角和补角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.如果两个角的和等于180°(平角),就说这两个角互为补角进行解答即可.(1)若已知的锐角>等于45°,则它的余角<等于45°.错误;(2)锐角的补角是钝角,正确;(3)一个钝角的补角一定是锐角,所以钝角的补角比这个角小,错误;(4)直角有补角,补角为90°,错误;(5)根据补角定义,同角或等角的补角相等,正确;(6)若∠1与∠2互余,∠2与∠3互余,则∠1=∠3,错误;故选:D.小提示:本题考查的是余角和补角,熟知相关定义是解答此题的关键.7、答案:B解析:根据时针在钟面上每分钟转0.5∘,分针每分钟转6∘,然后分别求出时针、分针转过的角度,即可得到答案.解:∵时针在钟面上每分钟转0.5∘,分针每分钟转6∘,∴钟表上12时20分钟时,时针转过的角度为0.5∘×20=10∘,分针转过的角度为6∘×20=120∘,所以12:20时分针与时针的夹角为120∘−10∘=110∘.故选B .小提示:本题主要考查了钟面角,解题的关键在于能够熟练掌握时针和分针每分钟所转过的角度是多少.8、答案:C解析:分点C 在直线AB 上和直线AB 的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可. 解:①当点C 在直线AB 上时∵M 为AB 中点,N 为BC 中点∴AM=BM=12AB=3,BN=CN=12BC=1,∴MN=BM-BN=3-1=2;②当点C 在直线AB 延长上时∵M 为AB 中点,N 为BC 中点∴AM=CM=12AB=3,BN=CN=12BC=1,∴MN=BM+BN=3+1=4综上,MN 的长度为2cm 或4cm .故答案为C.小提示:本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.9、答案:69°42′解析:根据互为余角的两个角之和为90°解答即可.解:∵∠A=20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.10、答案: 84 420解析:根据长方体的底面积和体积公式计算即可;长方体的底面积=长×宽=12×7=84,长方体的体积=底面积×高=84×5=420.故答案为84,420.小提示:本题主要考查了长方体的底面积和体积,准确计算是解题的关键.11、答案: 84 420解析:根据长方体的底面积和体积公式计算即可;长方体的底面积=长×宽=12×7=84,长方体的体积=底面积×高=84×5=420.故答案为84,420.小提示:本题主要考查了长方体的底面积和体积,准确计算是解题的关键.12、答案:43解析:由题意可得∠AOB=∠COD=90°,则可得∠AOD+∠BOC=180°,即可求得结果.解:∵∠AOB=∠COD=90°∴∠AOC+∠BOC+∠BOD+∠BOC=180°即∠AOD+∠BOC=180°∵∠AOD=137°∴∠BOC=43°,所以答案是:43.小提示:本题主要考查角的和差关系,根据角的和差关系,列出算式,是解题的关键.13、答案:72°.解析:由∠AOB=∠COD=90°,∠AOC=∠BOD ,进而∠AOC=∠BOD=108°-90°=18°,由此能求出∠BOC . 解:∵ ∠AOB=∠COD=90°,∴ ∠AOC=∠BOD , 又∠AOD=108°,∴ ∠AOC=∠BOD=108°-90°=18°,∴ ∠BOC=90°-18°=72°.所以答案是:72°.小提示:本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.14、答案:(1)60°;(2)∠COD +∠EOC =90°.理由见解析解析:(1)先求出∠AOC 的度数,再根据角平分线的定义解答;(2)根据角平分线的定义表示出∠COD 与∠EOC ,然后整理即可得解.解:(1)∵∠BOC =60°,∴∠AOC =180°﹣∠BOC =180°﹣60°=120°,∵OE 平分∠AOC ,∴∠AOE =12∠AOC =12×120°=60°;(2)∠COD +∠EOC =90°.理由如下:∵OD 平分∠BOC ,OE 平分∠AOC ,∴∠COD =12∠BOC ,∠EOC =12∠AOC ,∴∠COD +∠EOC =1(∠BOC +∠AOC )=1×180°=90°.11小提示:本题考查了余角和补角的概念,角度的计算,以及角平分线的定义,准确识图并熟记概念是解题的关键.15、答案:(75√3+360)cm2.解析:试题分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积. 试题解析:∵其高为12cm ,底面半径为5,∴其侧面积为6×5×12=360cm 2密封纸盒的底面积为:12×5×√32×5×12=75√3cm 2, ∴其全面积为:(75√3+360)cm 2.。

几何图形初步

几何图形初步

几何图形初步一、知识点集结图形的认识:(1)几种基本立体图形(柱体与椎体)、平面图形(2)、三视图点线面体(1)、概念(2)、几何图形的展开三、考点的引发、思维的拓展4.1几何图形考点一:(1)几何体的认识棱柱与圆柱、圆锥的区别与联系:例1、说出下列立体图形的名称。

①②③④⑤⑥⑦例2、观察下列实物图片,它们的形状分别类似于哪种几何体?①②③④⑤变式:将下列图中的几何体进行分类,并简要说明理由。

①②③④⑤考点二:平面图形的认识例1、如图所示的各图中包含哪些简单的平面图形?①②③④变式、在下图中的三幅图案中,你分别看到了哪些图形?它们是怎样组合而成的?【知识当堂测试】1、写出如图所示图形的名称:①______;②______;③______;④______;⑤_____。

①②③④⑤2、下列几何体中不是多面体的是( )A、立方体B、长方体C、三棱锥D、圆柱3、下列几何体没有曲面的是()A、圆柱B、圆锥C、球D、棱柱4、下列图案是由哪些简单的几何图形组成的?5、请你用两个圆、两个三角形和两条线段组合几幅新奇、有趣的图形,并给出文字说明。

考点三:立体图形的三视图考点解读:观察同一个物体,由于方向和角度不同,可能看到不同的图形,首先从正面、上面和左面三个不同方向看同一个物体,然后描绘出三幅所看到的图,这样就可以把一个立体图形转化为平面图形。

例题讲解例1、画出下图中几何体从正面、左面和上面看所得的平面图形。

例2、如下图为某立体图形从上面看到的图形,该物体可能是什么形状?例3、用棱长为a的小正文体,摆成如下图的形状(1)如果这一物体摆放成如图的上下三层,请你求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积。

变式提升、题:用小正方体搭一个几何体,使得它从正面、上面看所得到的图形如下,搭成这样的一个几何体,至少需要多少个小正方体?最多需要多少个正方体?并分别画出所对应情况的几何体从左面看所得到的图形。

七年级数学上册第四章几何图形初步知识总结例题

七年级数学上册第四章几何图形初步知识总结例题

(名师选题)七年级数学上册第四章几何图形初步知识总结例题单选题1、如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.答案:B分析:根据圆锥体的立体图形判断即可.用平行底面的平面截圆锥体,截面是圆形,故选:B.小提示:本题考查了截面图形的判断,具有一定的空间想象力是解答本题的关键.2、下列图形属于平面图形的是()A.正方体B.圆柱体C.圆D.圆锥体答案:C分析:根据题意可知,正方体、圆柱体、圆锥体都是立体图形,圆是平面图形,据此即可求解.解:圆是平面图形,正方体、圆柱体、圆锥体都是立体图形故选C小提示:本题考查了平面图形与立体图形的认识,正确的区分是解题的关键.3、下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.正确的个数是.()A.2个B.3个C.4个D.5个答案:B分析:根据棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,侧面是四边形.根据柱体,锥体的定义及组成,即可求解.解:①柱体包括圆柱、棱柱;所以柱体的两个底面一样大;故此选项正确,②圆柱、圆锥的底面都是圆,正确;③棱柱的底面可以为任意多边形,故错误;④长方体符合柱体的条件,一定是柱体,正确;⑤只有直棱柱的侧面才一定是长方形,故错误;共有3个正确.故选B.小提示:本题考查了认识立体图形,注意棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,侧面是四边形是解题的关键.4、正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高答案:D分析:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.解:根据题意得:“盐”字所在面相对的面上的汉字是“高”,故选D小提示:本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.5、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表答案:A分析:根据正方体展开图的对面,逐项判断即可.解:由正方体展开图可知,A的对面点数是1;B的对面点数是2;C的对面点数是4;∵骰子相对两面的点数之和为7,∴A代表,故选:A.小提示:本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.6、如图,在数轴上,若点A,B表示的数分别是-2和10,点M到A,B距离相等,则M表示的数为()A.10B.8C.6D.4答案:D分析:根据两点之间的距离求出AB 的长度,根据点M 到A 、B 距离相等,求出BM 的长度,从而得到点M 表示的数.解:AB =10-(-2)=10+2=12,∵点M 到A 、B 距离相等,即M 是线段AB 的中点,∴BM =12AB =12×12=6,∴点M 表示的数为10-6=4,故选:D .小提示:本题考查了两点之间的距离,数轴,有理数的减法,线段的中点,根据两点之间的距离求出AB 的长度是解题的关键.7、下列说法正确的是( )A .长方体的截面形状一定是长方形;B .棱柱侧面的形状可能是一个三角形;C .“天空划过一道流星”能说明“点动成线”;D .圆柱的截面一定是长方形.答案:C分析:根据用平面截一个几何体,从不同的位置截取,得到的截面形状不一定相同,通过分析如何做截面即可得到答案.解:A. 长方体的截面形状也可能是三角形,故该选项不正确,不符合题意;B. 棱柱侧面的形状是平行四边形,不可能是三角形,故该选项不正确,不符合题意;C. “天空划过一道流星”能说明“点动成线”,故该选项正确,符合题意;D. 圆柱的截面不一定是长方形,也可能圆形,故该选项不正确,不符合题意;.故选:C.小提示:本题考查了平面截一个几何体,点、线、面之间的关系,掌握好空间想象能力是解决本题的关键.8、某立体图形的表面展开图如图所示,这个立体图形是( )A .B .C .D .答案:A 分析:利用立体图形及其表面展开图的特点解题.解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A .小提示:本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.9、如图,点M 在线段AN 的延长线上,且线段MN=20,第一次操作:分别取线段AM 和AN 的中点M 1,N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+⋯+M 10N 10=( )A .20−1029B .20+1029C .20−10210D .20+10210答案:A分析:根据MN =20,M 1、N 1分别为AM 、AN 的中点,求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,找到M n N n 的规律即可求出M 1N 1+M 2N 2+⋯+M 10N 10的值.解:∵MN =20,M 1、N 1分别为AM 、AN 的中点,∴M 1N 1=AM 1−AN 1=12AM −12AN =12(AM −AN )=12×20=10, ∵M 2、N 2分别为AM 1、AN 1的中点,∴M 2N 2=AM 2−AN 2=12AM 1−12AN 1=12(AM 1−AN 1)=12×10=5,根据规律得到M n N n =202n ,∴M 1N 1+M 2N 2+⋯+M 10N 10=202+2022+⋯+20210=20(12+122+⋯+1210)=20−1029,故选A. 小提示:本题是对线段规律性问题的考查,准确根据题意找出规律是解决本题的关键,相对较难.10、如果A ,B ,C 三点同在一直线上,且线段AB =6cm ,BC =3cm ,A ,C 两点的距离为d ,那么d =( )A.9cmB.3cmC.9cm或3cmD.大小不定答案:C分析:根据点C在线段AB上和线段AB延长线上计算即可;C在线段AB上,AC=6﹣3=3(cm),C在AB延长线上,AC=6+3=9(cm).故选:C.小提示:本题主要考查了线段上两点间的距离求解,准确计算是解题的关键.填空题11、点A和点B是数轴上的两点,点A表示的数为√2,点B表示的数为1,那么A、B两点间的距离为_____.答案:√2−1分析:数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.解:本题主要考查数轴上两点间的距离,点A和点B间的距离是|√2−1|=√2−1,故答案是:√2−1.小提示:本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.12、已知点C、点D在直线AB上,且AC=BD=1,若AB=7,则CD的长为________.答案:5或7或9分析:根据C,D点所在的位置分三类情况讨论,根据线段的和差与线段中点的性质即可求解.解:如图,当C,D在线段AB上,AC=BD=1,若AB=7,则CD的长为AB−AD−BC=7−1−1=5,如图,AC=BD=1,若AB=7,则CD的长为AB−AC+BD=7−1+1=7,如图,AC =BD =1,若AB =7,则CD 的长为AB +AD +BC =7+1+1=9,综上所述,CD 的长为5或7或9.所以答案是:5或7或9.小提示:本题考查了线段的和差计算,数形结合、分类讨论是解题的关键.13、如图,点C 为线段AB 上一点,AC :CB =3:2,D 、E 两点分别AC 、AB 的中点,若线段DE =2cm ,则AB =_____cm .答案:10分析:设AB =x ,根据比值可求出 AC 、BC 的长,再根据线段中点的性质可求出AD 、AE ,然后根据线段的和差列出关于x 的方程并求解即可.解:设AB =x ,由已知得:AC =35x ,BC =25 x , ∵D 、E 两点分别为AC 、AB 的中点,∴DC =310x ,BE =12x ,∵DE =DC ﹣EC =DC ﹣(BE ﹣BC ),∴310 x ﹣(12x ﹣25x )=2,解得:x =10, ∴AB 的长为10cm .故填10.小提示:本题考查两点间的距离、线段中点定义以及比例的知识,根据线段的和差列出方程是解答本题的关键.14、已知∠A =20°18',则∠A 的余角等于__.答案:69°42′分析:根据互为余角的两个角之和为90°解答即可.解:∵∠A =20°18',∴∠A的余角为90°﹣20°18′=69°42′.所以答案是:69°42′.小提示:本题考查余角定义,熟知互为余角的两个角之和为90°是解答的关键.15、如图所示,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11,则∠AOB=_______.答案:20°分析:由∠AOB+∠BOC=∠BOC+∠COD知∠AOB=∠COD,设∠AOB=2α,则∠AOD=11α,故∠AOB+∠BOC=5α=90°,解得α即可.解:∵∠AOB+∠BOC=∠BOC+∠COD,∴∠AOB=∠COD,设∠AOB=2α,∵∠AOB:∠AOD=2:11,∴∠AOB+∠BOC=9α=90°,解得α=10°,∴∠AOB=20°.故答案为20°.小提示:此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键.解答题16、如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BC=2cm.(1)图中共有______条线段?(2)求AC的长;(3)若点E在直线AD上,且EA=3cm,求BE的长.答案:(1)6;(2)5cm;(3)4cm或10cm.分析:(1)固定A为端点,数线段,依次类推,最后求和即可;(2)根据AC=AD-CD=AC-2BC,计算即可;(3)分点E在点A左边和右边两种情形求解.(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);所以答案是:6.(2)解:∵B为CD中点,BC=2cm∴CD=2BC=4cm∵AD=9cm∴AC=AD−CD=9−4=5cm(3)AB=AC+BC=7cm,AE=3cm第一种情况:点E在线段AD上(点E在点A右侧).BE=AB−AE=7−3=4cm第二种情况:点E在线段DA延长线上(点E在点A左侧).BE=AB+AE=7+3=10cm.小提示:本题考查了数线段,线段的中点,线段的和(差),熟练掌握线段的中点,灵活运用线段的和,差是解题的关键.17、如图,C是线段AB外一点,用没有刻度的直尺和圆规画图.(1)画射线CB;(2)画直线AC;(3)①延长线段AB到点E,使AE=3AB;②在①的条件下,如果AB=5cm,那么BE的长为__________.答案:10cm.分析:(1)根据射线的概念作图可得;(2)根据直线的概念作图可得;(3)①在射线AB上用圆规截取AE=3AB即可;②先求出AE的长,再根据BE=AE-AB求解即可.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=5cm,AE=3AB,∴AE=15cm.则BE=AE﹣AB=10cm.所以答案是:10cm.小提示:本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,要求同学们一定要认真作图,特别是直线向两方无限延伸,不需要延长,射线向一方无限延伸,不需延长,但可以反向延长;而线段不延伸,既可以延长,也可以反向延长.18、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.答案:(1)填表见解析,V+F-E=2;(2)20;(3)14分析:(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴x+y=14.小提示:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.。

《几何图形初步》全章知识讲解

《几何图形初步》全章知识讲解

《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩主(正)视图----------从正面看几何体的三视图左视图----------------从左边看俯视图----------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。

小学数学《几何图形题9大解法归纳》含例题

小学数学《几何图形题9大解法归纳》含例题

小学数学《几何图形题9大解法归纳》含例题分割法▌例1:将两个相等的长方形重合在一起,求组合图形的面积。

(单位:厘米)解:将图形分割成两个全等的梯形。

S组=(7-2+7)×2÷2×2=24(平方厘米)▌例2:下列两个正方形边长分别为8厘米和5厘米,求阴影部分面积。

解:将图形分割成3个三角形。

S=5×5÷2+5×8÷2+(8-5)×5÷2=12.5+20+7.5=38(平方厘米)▌例3:左图中两个正方形边长分别为8厘米和6厘米。

求阴影部分面积。

解:将阴影部分分割成两个三角形。

S阴=8×(8+6)÷2+8×6÷2=56+24=80(平方厘米)添辅助线▌例1:已知正方形边长4厘米,A、B、C、D是正方形边上的中点,P是任意一点。

求阴影部分面积。

解:从P点向4个定点添辅助线,由此看出,阴影部分面积和空白部分面积相等。

S阴=4×4÷2=8(平方厘米)▌例2:将下图平行四边形分成三角形和梯形两部分,它们面积相差40平方厘米,平行四边形底20.4厘米,高8厘米。

梯形下底是多少厘米?解:因为添一条辅助线平行于三角形一条边,发现40平方厘米是一个平行四边形。

所以梯形下底:40÷8=5(厘米)▌例3:平行四边形的面积是48平方厘米,BC分别是这个平行四边形相邻两条边的中点,连接A、B、C得到4个三角形。

求阴影部分的面积。

解:如果连接平行四边形各条边上的中点,可以看出空白部分占了整个平行四边形的八分之五,阴影部分占了八分之三。

S阴=48÷8×3=18(平方厘米)倍比法▌例1:已知OC=2AO,SABO=2㎡,求梯形ABCD的面积。

解:因为OC=2AO,所以SBOC=2×2=4(㎡)SDOC=4×2=8(㎡)SABCD=2+4×2+8=18(㎡)▌例2:已知S阴=8.75㎡,求下图梯形的面积。

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结

立体几何知识归纳+典型例题+方法总结一、知识归纳1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相PO A a交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1)棱柱a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱PαβθM A B O柱}⊃{正方体}.{直四棱柱}I {平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面l abc多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-. ②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件. (简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). O BDO R注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心, 则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r , 则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标). ①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a .222321a a a ++==(向量模与向量之间的转化:a a =⇒•=空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅•>=<ρρρρρρ(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n . ②异面直线间的距离d = (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③直线AB 与平面所成角的正弦值sin ||||AB m AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).d.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB二、经典例题考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++u u u r u u u r u u u r u u u r , 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r .答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r ,∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r ,∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r 可以用平面CDE 内的两个不共线的向量DE u u u r 和DC u u u r 线性表示. 答案:证明:如图,因为M 在BD 上,且13BM BD =, 所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133AN AD DE =+u u u r u u u r u u u r , 又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r 1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.A B C A B C E x yz4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄,PAD EA 平面⊂∴BM ∥PAD 平面(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥(3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32解法二: (1)ΘM 是PC 的中点,取PD 的中点E ,则ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =3∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图, 则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C .由M 为PB 中点,∴33(1,M . ∴33((3,0,3),DM PA ==u u u u r u u u r (0,2,0)DC =u u u r . ∴333203)0PA DM ⋅=⨯-=u u u r u u u u r ,03200(3)0PA DC ⋅=⨯+⨯-=u u u r u u u r .∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .(III)33(),(3,1,0)CM CB ==u u u u r u u u r .令平面BMC 的法向量(,,)n x y z =r , 则0n CM ⋅=u u u u r r ,从而x +z =0; ……①, 0n CB ⋅=u u u r r 30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(3,1)n=-r . 由(II)知平面CDM 的法向量可取(3,0,3)PA =u u u r , ∴2310cos ,||||56n PA n PA n PA ⋅-<>=⋅u u u r r u u u r r u u u r r 10法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MC CD C =I ,则PA MCD ⊥平面(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ∆中,易得PA=PB ===,cos AB PBA PB ∠===,cos cos()5NMB PBA π∠=-∠=-故,所求二面角的余弦值为5-点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利1D A B CD E 1A 1B 1C于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90︒. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=︒.于是111,DF DD D F ==易得Rt Rt BCE CDF ∆≅∆,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .∵1,B CED D BCE V V --=即1111113232CE D F h BE BC DD ⋅⋅⋅=⋅⋅⋅,∴11CE D F h BE BC DD ⋅⋅=⋅⋅,即=,∴4h =.故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r .∵111010DA D E ⋅=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r则异面直线1D E 与1A D 所成的角为90︒.(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则(,,)x y z =n|||cos ,|cos 45||||2⋅<>===︒=m n m n m n ∴222z x y =+. ①由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即10DC ⋅=u u u u r n ∴20y z -= ② 由①、②,可取(3,1,2)=n 又(1,0,0)CB =u u u r ,所以点B 到平面1D EC 的距离||36422CB d ⋅===u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°.(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB设平面BEF 的法向量x z y x n -=则),,,(0,02==++y z y ,则可取)0,1,2(=n ,∴向量)1,0,2(=n DB 和所成角的余弦为1010)2(21220222222=-++-+⋅. 即BD 和面BEF 所成的角的余弦1010. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=CP ),12,11,121(mm m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求.8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin 62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 02222a a AB VD a a a a θ⎛⎫=-=-++ ⎪ ⎪⎝⎭u u u r u u u r ,,,,··即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r,··nn .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是πsin 62BC BC θ===u u u r u u u r n n ··,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r ,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0AB DV θ⎛⎫== ⎪ ⎪⎝⎭u u u r u u u r ,,·,即AB DV ⊥. 又DC DV D =I , AB ⊥∴平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又220BC a a ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,, 于是22tan π22sin sin 61tan a BC BC a θθθ===+u u u r u u u r n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故角π4θ=时, 即直线BC 与平面VAB 所成角为π6.点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE V 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD V 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点,ADBCVxyAEB CF DG∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形∴BF//ED.,EF AED BF AED ⊂⊄Q 平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GDQ ∆ACD 为正三角形,∴AC=AD. ∴CG=GD. Q G在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF中,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.2AG a ∴=在Rt ∆ADE 中, AH DE AE AD ⋅=⋅AH ∴=.GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如果ΔAMD 的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径. 解: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC.记E 是AD 的中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 的内心. 设球O 的半径为r ,则r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +, r =22)2(22aa a a +++≤2222+=2-1. 当且仅当a =a2,即a =2时,等号成立.∴当AD =ME =2时,满足条件的球最大半径为2-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系. 三、方法总结1.位置关系:(1)两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直.2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)两条异面直线的距离。

七年级数学上册第四章几何图形初步典型例题

七年级数学上册第四章几何图形初步典型例题

(名师选题)七年级数学上册第四章几何图形初步典型例题单选题1、如图是由6块相同的小正方体组成的立体图形,从左面看到的形状是()A.B.C.D.答案:B分析:根据从左面看的要求画图即可.根据题意,从左面看到的形状是:,故选B.小提示:本题考查了从左面看几何体的形状,熟练掌握从左面看到图形的画法是解题的关键.2、如图,在同一平面内,∠AOB=∠COD=90°,∠AOF=∠DOF,点E为OF反向延长线上一点(图中所有角均指小于180°的角).下列结论:①∠COE=∠BOE;②∠AOD+∠BOC=180°;③∠BOC−∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:由∠AOB=∠COD=90°,根据等角的余角相等得到∠AOC=∠BOD,结合∠AOF=∠DOF即可判断①正确;由∠AOD+∠BOC=∠AOD+∠AOC+∠AOD+∠BOD,结合∠AOB=∠COD=90°即可判断②正确;由∠BOC-∠AOD=∠AOC+90°-∠AOD,而不能判断∠AOD=∠AOC,即可判断③不正确;由E、O、F三点共线得∠BOE+∠BOF=180°,而∠COE=∠BOE,从而可判断④正确.解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠AOF=∠DOF,∴180°-∠AOC-∠AOF=180°-∠BOD-∠DOF,即∠COE=∠BOE,所以①正确;∠AOD+∠BOC=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB =180°,所以②正确;∠COB-∠AOD=∠AOC+90°-∠AOD,而∠AOC≠∠AOD,所以③不正确;∵E、O、F三点共线,∴∠BOE+∠BOF=180°,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.所以,正确的结论有3个.故选:C.小提示:题考查了余角和补角、角度的计算、余角的性质以及角平分线的定义等知识,准确识图是解题的关键.3、如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.图中共有三个角:∠AOB,∠AOC,∠BOCC.∠β+∠AOB=∠AOCD.∠AOC也可用∠O来表示答案:D分析:根据角的表示方法表示各个角,再判断即可.解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.小提示:本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.4、下列展开图中,是正方体展开图的是()A.B.C.D.答案:C分析:根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.小提示:此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.5、下面每个图形都是由6个边长相同的正方形拼成的,其中能折叠成正方体的是()A.B.C.D.答案:C分析:利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.解:能折叠成正方体的是故选:C.小提示:本题主要考查展开图折叠成几何体的知识点,牢记正方体的展开图是解题的关键.6、现有一个长方形,长和宽分别为3cm和2cm,绕它的一条边所在的直线旋转一周,得到的几何体的体积为()A.12πB.27πC.12π或18πD.12π或27π答案:C分析:以不同的边为轴旋转一周,所得到的圆柱体的底面半径和高,根据圆柱体体积的计算方法进行计算即可.解:绕着3cm的边为轴,旋转一周所得到的是底面半径为2cm,高为3cm的圆柱体,因此体积为π×22×3=12π(cm3);绕着2cm的边为轴,旋转一周所得到的是底面半径为3cm,高为2cm的圆柱体,因此体积为π×32×2=18π(cm3),故选:C.小提示:本题考查点、线、面、体,掌握圆柱体体积的计算方法是正确解答的前提,以不同的边为轴旋转得到的圆柱体的底面半径和高是正确计算的关键.7、如图为正方体的展开图,将标在①②③④的任意一面上,使得还原后的正方体中与是相邻面,则不能标在().A.①B.②C.③D.④答案:C分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:∵正方体中与是相邻面,与③是对面∴不能标在③故选:C.小提示:本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手.8、如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°答案:B分析:根据钟面分成12个大格,每格的度数为30°即可解答.解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°故选B.小提示:考核知识点:钟面角.了解钟面特点是关键.9、如图,直线l上有A,B,C,D四点,点P从点A的左侧沿直线l从左向右运动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,点P就称为这两个点的黄金伴侣点,例:若PA=PB,则在点P从左向右运动的过程中,点P成为黄金伴侣点的机会有()A.4次B.5次C.6次D.7次答案:C分析:由题意知,点P与A,B,C,D四点中的至少两个点距离相等时,恰好点P是其中一条线段的中点,根据线段中点定义解答即可.解:由题意知,点P与A,B,C,D四点中的至少两个点距离相等时,恰好点P是其中一条线段的中点,图中共有六条线段:AB、BC、CD、AC、AD、BD,∴点P成为黄金伴侣点的机会有六次,故选:C.小提示:此题考查了线段中点的定义,确定线段的数量,正确理解题意得到线段中点定义是解题的关键.10、在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了( )A .点动成线B .线动成面C .面动成体D .以上都不对答案:A分析:根据点动成线,线动成面,面动成体,即可解答.解:在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了:点动成线,故选:A .小提示:本题考查了点、线、面、体的关系,熟练掌握点动成线,线动成面,面动成体是解题的关键. 填空题11、钟表上的时针和分针都绕其轴心旋转,从8点到8点40分,时针转了_____度,分针转了_____度,8点40分时针与分针所成的角是_____度.答案: 20 240 20分析:根据分针每分钟走6度,时针每分钟走0.5度,乘以走的时间即可求解钟表上的时针和分针都绕其轴心旋转,钟表一圈有360度、60分钟、12个小时,所以分针转动的速度等于360÷60=6 度/分钟,时针转动的速度等于360÷12÷60=0.5 度/分钟.由题意可知,时针和分针都走了40分钟,所以时针转了0.5×40=20 度,分针转了6×40=240 度,8点时时针与分针所形成的角是120度,所以8点40分时针与分针所形成的角是360−(240−20+120)=20 度.所以答案是:20;240;20小提示:本题考查钟面角,需注意一开始时针与分针的位置不一定重合12、单位换算:56°10′48″=_____°.答案:56.18分析:先将48″换算成“分”,再将“分”换算成“度”即可.解:48×(160)′=0.8′,10.8×(160)°=0.18°,故56°10′48″=56.18°,所以答案是:56.18.小提示:本题考查度、分、秒的换算,掌握换算方法是正确计算的前提.13、一个几何体由若干个大小相同的小立方块搭成,从左面和上面看到的平面图形如图所示,则搭成这个几何体的小立方块的个数为_____.答案:4分析:根据左面看与上面看的图形,得到俯视图解答即可.解:根据左视图和俯视图,这个几何体的底层有3个小正方体,第二层有1个小正方体,所以有3+1=4个小正方体,所以答案是:4.小提示:本题主要考查从不同方向看几何体,熟练掌握几何体的特征是解题的关键.14、下列儿何体中,属于棱柱的有________(填序号).答案:①③⑤分析:根据棱柱的特征进行判断即可.解:棱柱的两个底面是形状、大小相同的多边形,侧面是长方形,因此①③⑤是棱柱,而②是圆柱,④是圆锥,⑥是球,所以答案是:①③⑤.小提示:本题考查认识立体图形,掌握棱柱的特征是正确判断的前提.15、将一根长4m 的圆柱体木料锯成2段(2段都是圆柱体),表面积增加60dm 2,这根木料的体积是______m 3. 答案:1.2分析:将一根长4m 的圆柱体木料锯成2段,增加两个底面,又知表面积增加60dm 2,由此求出这根木料的底面积,根据圆柱的体积公式即可计算.解:60dm 2=0.6m 2;0 .6÷2=0.3(m 2);0 .3×4=1.2(m 3),故这根木料的体积是1.2m 3.所以答案是:1.2.小提示:本题考查了计算圆柱的体积.解题的关键是掌握圆柱的体积公式V =Sℎ.解答题16、一个正方体的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示.(1)A 的对面是 ,B 的对面是 ,C 的对面是 ;(直接用字母表示)(2)若A =﹣2,B =|m ﹣3|,C =m ﹣3n ﹣112,E =(52+n )2,且小正方体各对面上的两个数都互为相反数,请求出F 所表示的数.答案:(1)D ,E ,F ;(2)F 所表示的数是﹣5.分析:(1)依据A 与B 、C 、E 、F 都相邻,故A 对面的字母是D ;E 与A 、C 、D 、F 都相邻,故B 对面的字母是E ,进一步可求C 的对面是F ;(2)依据小正方体各对面上的两个数都互为相反数,可求m ,n ,进一步求出F 所表示的数.解:(1)由图可得,A 与B 、C 、E 、F 都相邻,故A 对面的字母是D ;E 与A 、C 、D 、F 都相邻,故B 对面的字母是E ;故C 的对面是F .所以答案是:D ,E ,F ;(2)∵字母A 表示的数与它对面的字母D 表示的数互为相反数,∴|m ﹣3|+(52+n )2=0,∴m ﹣3=0,52+n =0, 解得m =3,n =﹣52,∴C =m ﹣3n ﹣112=3﹣3×(﹣52)﹣112=5, ∴F 所表示的数是﹣5.小提示:本题主要考查的是由三视图判断几何体,正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.17、设棱锥的顶点数为 V ,面数为F ,棱数为E .(1)观察与发现:如图,三棱锥中,V 3= ,F 3= ,E 3= ;五棱锥中,V 5= ,F 5= ,E 5= .(2)猜想:①十棱锥中,V 10= ,F 10= ,E 10= ;② N 棱锥中,V n = ,F n = ,E n = .(用含有 n 的式子表示)(3)探究:①棱锥的顶点数(V )与面数(F )之间的等量关系: ;②棱锥的顶点数(V )、面数(F )、棱数(E )之间的等量关系: .(4)拓展:棱柱的顶点数(V )、面数(F )、棱数(E )之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.答案:(1)4,4,6,6,6,10;(2)11,11,20,n +1,n +1,2n(3)V =F ,V +F −E =2(4)存在,相应的等式为:V +F −E =2分析:(1)观察与发现:根据三棱锥、五棱锥的特征填写即可.(2)猜想:①根据十棱锥的特征填写即可,②根据n 棱锥的特征的特征填写即可.(3)探究:①通过列举得到棱锥的顶点数(V )与面数(F )之间的等量关系,②通过列举得到棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系.(4)拓展:根据棱柱的特征得到棱柱的顶点数(V)、面数(F)、棱数(E)之间的等量关系.(1)解:三棱锥中,V3=4,F3=4,E3=6,五棱锥中,V5=6,F5=6,E5=10.(2)解:①十棱锥中,V10=11,F10=11,E10=20;②n棱锥中,Vn=n+1,F n=n+1,En=2n.(3)解:①棱锥的顶点数(V)与面数(F)之间的等量关系:V=F,②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E=V+F﹣2.(4)解:棱柱的顶点数(V)、面数(F)、棱数(E)之间也存在某种等量关系,相应的等式是:V+F﹣E=2.小提示:本题主要考查了立体几何的点、棱、面,熟知对应的立体图形的特征是解决本题的关键.18、如图,P是线段AB上一点,AB=18cm,C,D两动点分别从点P,B同时出发沿射线BA向左运动,到达点A处即停止运动.(1)若点C,D的速度分别是1cm/s,2cm/s.①当动点C,D运动了2s,且点D仍在线段PB上时,AC+PD=_________cm;②若点C到达AP中点时,点D也刚好到达BP的中点,则AP∶PB=_________;(2)若动点C,D的速度分别是1cm/s,3cm/s,点C,D在运动时,总有PD=3AC,求AP的长度.答案:(1)①12;②1:2(2)9cm2分析:(1)①先计算BD,PC的长度,再计算AC+PD;②设运动时间为:t秒,则PC=t,BD=2t,利用中点的性质表达出:AP=2PC=2t,BP=2BD=4t,即可得出答案;(2)依题意得出BD=3PC,PD=3AC,再由PB=BD+PD=3AP和PB+AP=AB,即可得出AP的长度.(1)①依题意得:PC=1×2=2,BD=2×2=4,∴AC+PD=AB−PC−PD=18−2−4=12(cm),所以答案是:12;②设运动时间为t秒,则PC=t,BD=2t∵当点C到达AP中点时,点D也刚好到达BP的中点,∴AP=2PC=2t,BP=2BD=4t∴AP:BP=2t:4t=1:2所以答案是:1:2;(2)设运动时间为t秒,则PC=t,BD=3t,∴BD=3PC,∵PD=3AC,∴PB=BD+PD=3PC+3AC=3(PC+AC)=3AP,∵PB+AP=AB∴3AP+AP=AB∴AP=14AB=14×18=92(cm).小提示:此题考查了与线段有关的动点问题、线段的和与差,中点的性质,掌握线段之间的数量关系是解题的关键.。

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题(带答案)

高中数学必修二第八章立体几何初步典型例题单选题1、如图,△A′B′C′是水平放置的△ABC的直观图,其中B′C′=C′A′=2,A′B′,A′C′分别与x′轴,y′轴平行,则BC=()A.2B.2√2C.4D.2√6答案:D分析:先确定△A′B′C′是等腰直角三角形,求出A′B′,再确定原图△ABC的形状,进而求出BC.由题意可知△A′B′C′是等腰直角三角形,A′B′=2√2,其原图形是Rt△ABC,AB=A′B′=2√2,AC=2A′C′=4,∠BAC=90°,则BC=√8+16=2√6,故选:D.2、如图直角△O′A′B′是一个平面图形的直观图,斜边O′B′=4,则原平面图形的面积是()A.8√2B.4√2C.4D.√2答案:A解析:根据斜二测画法规则可求原平面图形三角形的两条直角边长度,利用三角形的面积公式即可求解.由题意可知△O′A′B′为等腰直角三角形,O′B′=4,则O′A′=2√2,所以原图形中,OB=4,OA=4√2,×4×4√2=8√2.故原平面图形的面积为12故选:A3、正方体中,点P,O,R,S是其所在棱的中点,则PQ与RS是异面直线的图形是()A.B.C.D.答案:C分析:对于A,B,D,利用两平行线确定一个平面可以证明直线PQ与RS共面,对于C,利用异面直线的定义推理判断作答.对于A,在正方体ABCD−A1B1C1D1中,连接AC,A1C1,则AC//A1C1,如图,因为点P,Q,R,S是其所在棱的中点,则有PQ//AC,RS//A1C1,因此PQ//RS,则直线PQ与RS共面,A错误;对于B,在正方体ABCD−A1B1C1D1中,连接AC,QS,PR,如图,因为点P,Q,R,S是其所在棱的中点,有AP//CR且AP=CR,则四边形APRC为平行四边形,即有AC//PR,又QS//AC,因此QS//PR,直线PQ与RS共面,B错误;对于C,在正方体ABCD−A1B1C1D1中,如图,因为点P,Q,R,S是其所在棱的中点,有RS//BB1,而BB1⊂平面ABB1A1,RS⊄平面ABB1A1,则RS//平面ABB1A1,PQ⊂平面ABB1A1,则直线PQ与RS无公共点,又直线PQ与直线BB1相交,于是得直线PQ与RS不平行,则直线PQ与RS是异面直线,C正确;对于D,在正方体ABCD−A1B1C1D1中,连接A1B,D1C,PS,QR,如图,因为A1D1//BC且A1D1=BC,则四边形A1D1CB为平行四边形,有A1B//D1C,因为点P,Q,R,S是其所在棱的中点,有PS//A1B,QR//D1C,则PS//QR,直线PQ与RS共面,D错误.故选:C4、下面四个选项中一定能得出平面α/⁄平面β的是()A.存在一条直线a,a//α,a//βB.存在一条直线a,a⊂α,a//βC.存在两条平行直线a,b,a⊂α,b⊂β,a//β,b//αD.存在两条异面直线a,b,a⊂α,b⊂β,a//β,b//α答案:D分析:对于A,B,C,举出符合条件的特例即可判断;对于D,过直线a作平面γ∩β=c,再证c//α即可. 如图,ABCD−A1B1C1D1是长方体,平面ABCD为平面α,平面ABB1A1为平面β,对于A,直线C1D1为直线a,显然a//α,a//β,而α与β相交,A不正确;对于B,直线CD为直线a,显然a⊂α,a//β,而α与β相交,B不正确;对于C,直线CD为直线a,直线A1B1为直线b,显然a⊂α,b⊂β,a//β,b//α,而α与β相交,C不正确;对于D,因a,b是异面直线,且a⊂α,b⊂β,过直线a作平面γ∩β=c,如图,则c//a,并且直线c与b必相交,而c⊄α,于是得c//α,又b//α,即β内有两条相交直线都平行于平面α,⁄平面β.因此,平面α/故选:D5、某正方体被截去部分后得到的空间几何体的三视图如图所示,则该空间几何体的体积为()A .132B .223C .152D .233答案:C分析:根据几何体的三视图,可知该几何体是棱长为2的正方体截去两个小三棱锥,根据三棱锥的体积公式即可求解.解:根据几何体的三视图,该空间几何体是棱长为2的正方体截去两个小三棱锥,由图示可知,该空间几何体体积为V =23−(13×12×12×1+13×12×12×2)=152,故选:C.6、已知圆锥的母线长为3,其侧面展开图是一个圆心角为2π3的扇形,则该圆锥的体积为( ) A .√23πB .2√23πC .πD .√2π 答案:B分析:根据弧长计算公式,求得底面圆半径以及圆锥的高,即可求得圆锥的体积.设圆锥的底面圆半径为r ,故可得2πr =2π3×3,解得r =1,设圆锥的高为ℎ,则ℎ=√32−12=2√2,则圆锥的体积V =13×πr 2×ℎ=13×π×2√2=2√23π. 故选:B.7、已知正四棱锥的底面边长为6,侧棱长为5,则此棱锥的侧面积为( )A .6B .12C .24D .48答案:D分析:首先由勾股定理求出斜高,即可求出侧面积;解:正四棱锥的底面边长为6,侧棱长为5,则其斜高ℎ′=√52−(62)2=4,所以正四棱锥的侧面积S =12×4×6×4=48故选:D8、已知三棱锥P −ABC ,其中PA ⊥平面ABC ,∠BAC =120°,PA =AB =AC =2,则该三棱锥外接球的表面积为( )A .12πB .16πC .20πD .24π答案:C分析:根据余弦定理、正弦定理,结合球的性质、球的表面积公式进行求解即可.根据题意设底面△ABC 的外心为G ,O 为球心,所以OG ⊥平面ABC ,因为PA ⊥平面ABC ,所以OG//PA ,设D 是PA 中点,因为OP =OA ,所以DO ⊥PA ,因为PA ⊥平面ABC ,AG ⊂平面ABC ,所以AG ⊥PA ,因此OD//AG ,因此四边形ODAG 是平行四边形,故OG =AD =12PA =1, 由余弦定理,得BC =√AB 2+AC 2−2AB ⋅AC ⋅cos120°=√4+4−2×2×2×(−12)=2√3,由正弦定理,得2AG =√3√32⇒AG =2,所以该外接球的半径R 满足R 2=(OG )2+(AG )2=5⇒S =4πR 2=20π,故选:C .小提示:关键点睛:运用正弦定理、余弦定理是解题的关键.多选题9、(多选)下列说法中正确的是()A.若直线l与平面α不平行,则l与α相交B.直线l在平面外是指直线和平面平行C.如果直线l经过平面α内一点P,又经过平面α外一点Q,那么直线l与平面α相交D.如果直线a∥b,且a与平面α相交于点P,那么直线b必与平面α相交答案:CD分析:由线面直线的位置关系逐一判断即可求解.若直线l与平面α不平行,则l与α相交或l⊂α,所以A不正确.若l⊄α,则l//α或l与α相交,所以B不正确.由线面直线的位置关系可知,C、D正确.故选:CD10、如图,长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,M为AA1的中点,过B1M作长方体的截面α交棱CC1于N,则()A.截面α可能为六边形B .存在点N ,使得BN ⊥截面αC .若截面α为平行四边形,则1≤CN ≤2D .当N 与C 重合时,截面面积为3√64答案:CD分析:利用点N 的位置不同得到的截面α的形状判断选项A ,C ,利用线面垂直的判定定理分析选项B ,利用平面几何知识求相应的量结合梯形的面积公式求得截面的面积,从而可判断选项D .长方体ABCD −A 1B 1C 1D 1中,AB =BC =1,AA 1=2,M 为AA 1的中点,过B 1M 作长方体的截面α交棱CC 1于N , 设N 0为CC 1的中点,根据点N 的位置的变化分析可得:当1≤CN ≤2时,截面α为平行四边形,当0<CN <1时,截面α为五边形,当CN =0时,即点N 与点C 重合时,截面α为梯形,故A 不正确,C 正确;设BN ⊥截面α,因为B 1M ⊂面α,所以BN ⊥B 1M ,所以N 只能与C 重合才能使BN ⊥B 1M ,因为BN 不垂直平面B 1CQM ,故此时不成立,故B 不正确;因为当点N 与点C 重合时,截面α为梯形,如下图所示:过M 作MH 垂直于B 1C 于H ,设梯形的高为ℎ,MH =x ,则由平面几何知识得:ℎ2=(√2)2−x 2=(√52)2−(√52−x)2,解得x =2√55,ℎ=√305,所以截面α的面积为:12×(√5+√52)×ℎ=12×3√52×√305=3√64,故D 正确;故选:CD .小提示:关键点睛:本题考查长方体的截面的形状,关键在于分析动点在不同的位置时,截面的形状,运用线面平行的判定定理和平面几何知识求得截面的面积.11、在棱长为2的正方体ABCD−A1B1C1D1中,点P是正方体的棱上一点,|PB|+|PC1|=λ,则()A.λ=2时,满足条件的点P的个数为1B.λ=4时,满足条件的点P的个数为4C.λ=4√2时,满足条件的点P的个数为2D.若满足|PB|+|PC1|=λ的点P的个数为6,则λ的取值范围为(2√2,4)答案:BC分析:根据各棱上的点P到B,C1两点距离之和对选项进行逐一分析,由此确定正确选项.设E,F分别是C1D1,AB的中点,|BD1|=√22+(2√2)2=2√3,|BE|=|C1F|=√12+(2√2)2=3,|A1C1|=|A1B|=2√2.由于|BC1|=2√2,所以|PB|+|PC1|=λ≥2√2,所以A选项错误.λ=4,满足|PB|+|PC1|=4的点为B1,C,E,F共4个,所以B选项正确.λ=4√2,满足|PB|+|PC1|=4√2的点为A1,D共2个,所以C选项正确.当P在正方形ADD1A1(不包括A,D,D1,A1)上运动时,λ∈(2+2√3,4√2),此时棱A1B1与棱CD上,也存在点使λ∈(2+2√3,4√2).所以当λ∈(2+2√3,4√2)时,满足|PB|+|PC1|=λ的点P的个数为6,所以D选项错误.故选:BC填空题12、已知A、B、C、D四点不共面,且AB//平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG是______四边形.答案:平行分析:由题,平面ABD∩平面α=FH,结合AB//平面α可得AB//FH,同理可得四边形EFHG另外三边与AB,CD的位置关系,即可得到答案.由题,平面ABD∩平面α=FH,因为AB//平面α,所以AB//FH,又平面ABC∩平面α=EG,所以AB//EG,则FH//EG,同理GH//CD//EF,所以四边形EFHG是平行四边形,所以答案是:平行13、如图已知A是△BCD所在平面外一点,AD=BC,E、F分别是AB、CD的中点,若异面直线AD与BC所成角的大小为π3,则AD与EF所成角的大小为___________.答案:π3或π6分析:取AC的中点G,连接EG,GF,则∠EGF=π3或∠EGF=2π3,分别分析这两种情况下∠GFE的大小即为AD与EF所成角.解:如图所示:取AC的中点G,连接EG,GF,则EG//BC,GF//AD,所以∠EGF为异面直线AD与BC所成角或其补角.因为AD=BC,所以EG=GF,当∠EGF=π3时,△EGF为等边三角形,∠GFE=π3,即AD与EF所成角的大小为π3;当∠EGF=2π3时,EG=GF,△EGF为等腰三角形,∠GFE=π6,即AD与EF所成角的大小为π6.所以答案是:π3或π6.14、已知三棱柱ABC −A 1B 1C 1中,棱长均为2,顶点A 1在底面ABC 上的射影恰为AB 的中点D ,E 为AC 的中点,则直线BE 与直线AB 1所成角的余弦值为________.答案:34分析:根据三棱柱性质与题中的中点条件,可将所求直线BE 与直线AB 1所成角的余弦值转化为求直线GB 1与直线AB 1所成角的余弦值,那么就要通过多次转化最终求得△AGB 1中三边长,然后直接在△AGB 1中运用余弦定理即可.如图,取A 1C 1中点G ,连接B 1G,AG,AE,DE,GE ,由三棱柱的性质易证得GE //BB 1,GE =BB 1,所以四边形GEBB 1为平行四边形,所以GB 1//BE ,所以下面即求直线GB 1与直线AB 1所成角的余弦值.由题意知,A 1D ⊥平面ABC ,因为AB,DE ⊂平面ABC ,所以A 1D ⊥AB,A 1D ⊥DE ,在Rt △AA 1D 中,AA 1=2,AD =12AB =1,∠A 1DA =90°,求得A 1D =√3,∠A 1AD =60°. 所以在菱形AA 1B 1B 中,AB 1=2ABcos30°=2√3.在Rt △A 1DE 中,∠A 1DE =90°,A 1D =√3,DE =12BC =1,求得A 1E =2. 所以在△A 1AE 中,根据余弦定理得cos∠A 1AE =AA 12+AE 2−A1E 22AE⋅AA 1=14,所以cos∠AA 1G =cos(π−∠A 1AE)=−14.在△A 1AG 中根据余弦定理得AG 2=AA 12+A 1G 2−2AA 1⋅A 1Gcos∠AA 1G,AG =√6.在△AGB 1中,AG =√6,AB 1=2√3,GB 1=√3,根据余弦定理得cos∠GB 1A =GB 12+AB12−AG 22GB 1⋅AB 1=34,所以直线GB 1与直线AB 1所成角的余弦值为34,即直线BE 与直线AB 1所成角的余弦值为34. 故答案为:34解答题15、在空间四边形ABCD中,AB=CD,点M、N分别为BD、AC的中点.(1)若直线AB与MN所成角为60°,求直线AB与CD所成角的大小;(2)若直线AB与CD所成角为θ,求直线AB与MN所成角的大小.答案:(1)60°(2)θ2或π−θ2分析:根据异面直线所成角的定义,借助平行关系作出平行直线,从而找到异面直线所成角(或补角)即可求解.(1)如图,取AD的中点为P,连接PM、PN.因为点M、N分别为BD、AC的中点,所以PM//AB,PN//CD,且PM=12AB,PN=12CD,所以,∠MPN为直线AB与CD所成的角(或补角),∠PMN为直线AB与MN所成的角(或补角). 又AB=CD,所以PM=PN,即△PMN为等腰三角形.直线AB与MN所成角为60°,即∠PMN=60°,则∠MPN=180°−2×60°=60°.所以,直线AB与CD所成的角为60°.(2)(2)若直线AB与CD所成的角为θ,则∠MPN=θ或∠MPN=π−θ.若∠MPN=θ,则∠PMN=π−∠MPN2=π−θ2,即直线AB与MN所成角为π−θ2;若∠MPN=π−θ,则∠PMN=π−∠MPN2=θ2,即直线AB与MN所成角为θ2.综上所述,直线AB与MN所成的角为θ2或π−θ2.。

七年级上册几何图形初步认识单元复习优质讲义(含答案解析)

七年级上册几何图形初步认识单元复习优质讲义(含答案解析)

. . . .基础训练内容提要直线、射线、线段3.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,则该几何体至少是用 个小立方块搭成的.1.[单选题]在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )A .3个 B .4个 C .5个 D .6个2.正四面体的每条棱上有相同数目的小球,小球的分布特点如图所示(图中只示意了一条棱上有4个小球的情况),假设每条棱上的小球数为a ,则正四面体上小球总数是 .3.如图,从三个不同方向看同一个几何体得到的平面图形,则这个几何体的侧面积是 cm .2例题基础训练1.[单选题]如图,王伟同学根据图形写出了四个结论:①图中共有3条直线;②图中共有7条射线;③图中共有6条线段;④图中射线BC与射线CD是同一条射线.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个2.[单选题]如图所示,关于线段、射线和直线的条数,下列说法正确的是( )A.五条线段,三条射线 B.三条线段,两条射线,一条直线 C.三条射线,三条线段 D.三条线段,三条射线1.[单选题]下列说法不正确的是( )A.过两点有且只有一条直线 B.连接两点间的线段的长度叫做这两点的距离 C.两点之间,线段最短 D.射线比直线少一半2.[单选题]下列语句中:正确的个数有( )①画直线AB=3cm;②射线AB与射线BA是同一条射线;③用一个平面去截一个正方体,其截面最多为六边形.A.0 B.1 C.2 D.3内容提要余角和补角例题基础训练3.[单选题]如果点B 在线段AC 上,那么下列各式中不能说明点B 是AC 中点的是( )A .AB =AC B .AB =BC C .AC =2AB D .AB+BC =AC1.一个角的余角的3倍等于它的补角,则这个角的度数为 .2.如图1,已知∠ABC =50°,有一个三角板BDE 与∠ABC 共用一个顶点B ,其中∠EBD =45°.(1)若BD 平分∠ABC ,求∠EBC 的度数;(2)如图2,将三角板绕着点B 顺时针旋转α度(0°<α<90°),当AB ⊥BD 时,求∠EBC 的度数.1.若∠α的余角是43°21′,则它的补角是 .模块二常见考法内容提要尺规作图例题基础训练2.如图,已知点O 是直线AB 上的一点,∠BOC =40°,OD 、OE 分别是∠BOC 、∠AOC 的角平分线.(1)求∠AOE 的度数;(2)直接写出图中与∠EOC 互余的角 ;(3)直接写出∠COE 的补角 .1.如图,已知线段a 和线段AB .(1)尺规作图:延长线段AB 到C ,使BC =a (不写作法,保留作图痕迹)(2)在(1)的条件下,若AB =4,BC =2,取线段AC 的中点O ,求线段OB 的长.2.已知线段m 、n .(1)尺规作图:作线段AB ,满足AB =m+n (保留作图痕迹,不用写作法);(2)在(1)的条件下,点O 是AB 的中点,点C 在线段AB 上,且满足AC =m ,当m =5,n =3时,求线段OC 的长.1.如图,点C 是线段AB 外一点,用没有刻度直尺和圆规画图:(1)画射线CB ;内容提要线段的计算例题(2)画直线AC ;(3)①延长线段AB 到E ,使AE =3AB ;②在①的条件下,如果AB =2cm ,那么BE = cm .2.如图,已知∠AOB ,利用尺规作∠PDE ,使得∠PDE =∠AOB .(保留作图痕迹,不写作法)1.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =8cm ,BD =2cm .(1)图中共有 条线段.(2)求AC 的长.(3)若点E 在直线AD 上,且EA =3cm ,则BE 的长为 cm .基础训练2.如图,P 是线段AB 上一点,AB =12cm ,M 、N 两点分别从P 、B 出发以1cm/s 、3cm/s 的速度同时向左运动(M 在线段AP 上,N 在线段BP 上),运动时间为ts .(1)若M 、N 运动1s 时,且PN =3AM ,求AP 的长;(2)若M 、N 运动到任一时刻时,总有PN =3AM ,AP 的长度是否变化?若不变,请求出AP 的长;若变化,请说明理由;(3)在(2)的条件下,Q 是直线AB 上一点,且AQ =PQ+BQ ,求PQ的长.3.如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,求A ,B 两点间距离.(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.1.如图,点C 、D 是线段AB 上两点,AC :BC =3:2,点D 为AB 的中点.(1)如图1所示,若AB =40,求线段CD 的长.(2)如图2所示,若E 为AC 的中点,ED =7,求线段AB的长.内容提要角的计算2.已知点C 在线段AB 上,AC =2BC ,点D 、E 在直线AB 上,点D 在点E 的左侧.若AB =18,DE =8,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,AF =3AD ,CE+EF =3,求AD的长.3.已知数轴上,点O 为原点,点A 对应的数为11,点B 对应的数为b ,点C 在点B 右侧,长度为3个单位的线段BC 在数轴上移动,(1)如图1,当线段BC 在O ,A 两点之间移动到某一位置时,恰好满足线段AC =OB ,求此时b 的值;(2)线段BC 在数轴上沿射线AO 方向移动的过程中,是否存在AC ﹣OBAB ?若存在,求此时满足条件的b的值;若不存在,说明理由.例题基础训练1. 180°﹣50°24′×3.2.[单选题]如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120° B .130° C .140° D .150°3.已知∠AOB =60°,求:(1)如图1,OC 为∠AOB 内部任意一条射线,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON = ;(2)如图2,当OC 旋转到∠AOB 的外部时,∠MON 的度数会发生变化吗?请说明原因;(3)如图3,当OC 旋转到∠AOB (∠BOC <120°)的外部且射线OC 在OB 的下方时,OM 平分∠AOC ,射线ON 在∠BOC 内部,∠NOC =∠BOC ,求∠COM ﹣∠BON 的值?1.计算:(1)131°28′﹣51°32′15″ (2)58°38′27″+47°42′40″ (3)34°25′×3+35°42′模块三数学思想内容提要分类讨论思想例题基础训练2.[单选题]如图,OA 是北偏东30°方向的一条射线,若∠BOA =90°,则OB 的方位角是( )A .北偏西30° B .北偏西60° C .北偏东30° D .北偏东60°3.如图,已知∠AOB =120°,OC 是∠AOB 内的一条射线,且∠AOC :∠BOC =1:2.(1)求∠AOC ,∠BOC 的度数;(2)作射线OM 平分∠AOC ,在∠BOC 内作射线ON ,使得∠CON :∠BON =1:3,求∠MON 的度数;(3)过点O 作射线OD ,若2∠AOD =3∠BOD ,求∠COD 的度数.1.[单选题]当分针指向12,时针这时恰好与分针成30°的角,此时是( )A .9点钟 B .10点钟 C .11点钟或1点钟 D .2点钟或10点钟内容提要方程思想例题基础训练1.已知A ,B ,C 三点在同一条直线上,AB =80cm ,BC AB ,E 是AC 的中点,求BE的长.1.如图,射线OB 、OC 在∠AOD 内部,其中OB 为∠AOC 的三等分线,OE 、OF 分别平分∠BOD 和∠COD ,若∠EOF =14°,请直接写出∠AOC的大小.1.如图,点O 为直线AB 上一点,∠BOC =40°,OD 平分∠AOC .(1)求∠AOD 的度数;(2)作射线OE ,使∠BOE =∠COE ,求∠COE 的度数;(3)在(2)的条件下,作∠FOH =90°,使射线OH 在∠BOE 的内部,若∠DOF =3∠BOH ,求∠AOH 的度数.自主评价自主探究自主探究题目1.[单选题]A,B两点间的距离是指( )A.过A,B两点间的直线 B.连接A,B两点间的线段 C.直线AB的长 D.连接A,B两点间的线段的长度2.[单选题] 下列所述几何体中,主视图、左视图和俯视图都是正方形的几何体是( )A.圆柱 B.圆锥 C.正方体 D.长方体3.[单选题]设两个锐角分别为∠1和∠2,( )A.若∠1的余角和∠2的余角互余,则∠1和∠2互补 B.若∠1的余角和∠2的补角互补,则∠1和∠2互补 C.若∠1的补角和∠2的余角互补,则∠1和∠2互余 D.若∠1的补角和∠2的补角互补,则∠1和∠2互余4.[单选题]如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是( )A.B.C.D.5.[单选题]如图,点B、D在线段AC上,BD=AB=CD,E是AB的中点,F是CD的中点,EF=5,则AB的长为( )A.5 B.6 C.7 D.86.[单选题]如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最少是( )A .2 B .3 C .4 D .57.若∠1=58°37’,∠2=43°55’,则∠1+∠2= .8.如图,OA 的方向是北偏东15°,OB 的方向是西偏北50°.(1)若∠AOC =∠AOB ,求OC 的方向;(2)OD 是OB 的反向延长线,求OD 的方向;(3)∠BOD 可看作是OB 绕点O 顺时针方向旋转至OD ,作∠BOD 的平分线OE ,求OE 的方向.9.(2019·番禺区)如图,点D 是线段AB 上的任意一点(不与点A 和B 重合),C 是线段AD 的中点,AB =4cm .(1)若D 是线段AB 的中点,求线段CD 的长度.(2)在图中作线段DB 的中点E ,当点D 在线段AB 上从左向右移动时,试探究线段CE 长度的变化情况.10.已知数轴上A 、B 两点表示的数分别为a 、b ,且a 、b 满足|a+20|+(b ﹣10)=0;点P 、Q 沿数轴从A 出发向右匀速运动,点P 的速度为5个单位长度/秒,点Q 的速度为3个单位长度/秒,当点Q 运动3秒到点C 后P 再从A 出发;(1)a = ;b = ;(2)若点P 、Q 运动到点B ,迅速以原来的速度返回,到达出发点后,P 又折返向点B 运动,点Q 运动至点C 后停止运动,当点Q 停止运动时点P 也停止运动.在点P 开始运动后第几秒时,P 、Q 两点之间的距离为1?请说明理由.2参考答案模块一基本概念例题1.B解析:解:由于n棱柱有2n个顶点,3n条棱,n+2个面,所以当一个n棱柱有18个顶点时,这个棱柱是9棱柱,故有11个面,因此n=9,m=11,故选:B.2.D解析:解:从侧面看该几何体,选项D中的图形符合题意,故选:D.3.6解析:解:根据主视图、俯视图,可以得出最少时需要3+1+2=6(个).故答案为:6.基础训练基础训练题目1.B解析:解:一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中,属于柱体有正方体、长方体、圆柱、六棱柱,4个,故选:B.2.6a﹣8解析:解:因为正四面体有6条棱,所以6条棱上有6a个小球,但每个顶点处的小球被多计算2次,4个顶点就被多计算2×4=8次,所以正方体上小球总数为6a﹣8,故答案为:6a﹣8.3.36解析:解:这个几何体是直三棱柱,4×3×3=36(cm ).故这个几何体的侧面积是36cm .故答案为:36.例题1.A解析:解:①图中只有BD1条直线,原来的说法错误;②图中共有2×3+1×2=8条射线,原来的说法错误;③图中共有6条线段的说法是正确的;④图中射线BC 与射线CD 不是同一条射线,原来的说法错误.故选:A .2.B解析:解:如图:由直线、射线及线段的定义可知:线段有:AB 、BC 、CA ;射线有:AD 、AE ;直线有:DE .即有三条线段,两条射线,一条直线.故选:B .基础训练基础训练题目1.D解析:解:A 、过两点有且只有一条直线,正确,不符合题意;B 、连接两点的线段的长度叫做两点间的距离,正确,不符合题意;C 、两点之间,线段最短,正确,不符合题意;D 、射线比直线少一半,错误,符合题意,故选:D .2.B解析:解:①画直线AB =3cm ,说法错误,直线没有长度,故原说法错误;②射线AB 与射线BA 不是同一条射线,故原说法错误;③正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,故原说法正确.22所以正确的个数有1个,故选:B.3.D解析:解:AB=AC、AB=BC、AC=2AB能说明点B是AC中点,AB+BC=AC不能,故选:D.例题1.45°解析:解:设这个角是x度,则:3(90﹣x)=180﹣x,解得:x=45.所以这个角是45°.故答案为:45°.2.(1)∠EBC=70°.(2)∠EBC=5°.解析:解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠CBD==25°,∵∠EBD=45°,∴∠EBC=∠EBD+∠DBC=45°+25°=70°.(2)∵AB⊥BD,∴∠ABD=90°,∵∠ABC=50°,∴∠DCB=90°﹣50°=40°,∵∠EBD=45°,∴∠EBC=45°﹣40°=5°.基础训练基础训练题目1.133°21′解析:解:根据题意,得90°+43°21′=133°21′.答:它的补角是133°21′.故答案为:133°21′.2.(1);(2)∠COD,∠BOD;(3)∠BOE.解析:解:(1)∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∵OE是∠AOC的角平分线,∴;(2)∵OD、OE分别是∠BOC、∠AOC的角平分线.∴∠BOD=∠COD=∠BOC,∠AOE=∠COE=∠AOC,又∵∠AOC+∠BOC=180°,∴∠EOC+∠COD=×180°=90°=∠EOC+∠BOD,∴∠EOC的余角为∠COD,∠BOD,故答案为:∠COD,∠BOD;(3)∵∠COE=∠AOE,∠AOE+∠BOE=180°,∴∠COE+∠BOE=180°,即∠COE的补角为∠BOE,故答案为:∠BOE.模块二常见考法例题1.解:(1)如图,BC=a即为所求;(2)∵AB=4,BC=2,∴AC=AB+BC=6,∵点O是线段AC的中点,∴OA=OC=AC=6=3,∴OB=AB﹣OA=4﹣3=1.答:线段OB的长为1.解析:2.解:(1)如图所示,线段AB即为所求;(2)如图,∵点O是AB的中点,∴AO=AB=(m+n),又∵AC=m,∴OC=AC﹣AO=m﹣(m+n)=m﹣n,∴当m=5,n=3时,OC=﹣=1.解析:基础训练基础训练题目1.解:(1)如图所示,射线CB即为所求;(2)如图所示,直线AC即为所求;(3)①如图所示,线段AE即为所求;②∵AB=2cm,AE=3AB,∴AE=6cm.则BE=AE﹣AB=4cm.故答案为:4.解析:2.解:如图,∠PDE为所作.解析:例题1.(1)6;(2)AC=4cm;(3)3或9.解析:解:(1)图中共有6条线段;故答案为:6;(2)∵点B为CD的中点.∴CD=2BD.∵BD=2cm,∴CD=4cm.∵AC=AD﹣CD且AD=8cm,CD=4cm,∴AC=4cm;(3)当E在点A的左边时,则BE=BA+EA且BA=6cm,EA=3cm,∴BE=9cm当E在点A的右边时,则BE=AB﹣EA且AB=6cm,EA=3cm,∴BE=3cm.综上,BE=3cm 或9cm.故答案为:3或9.2.(1)AP=3cm;(2)长度不发生变化,(3)PQ=6cm或12cm.解析:解:(1)根据M、N的运动速度可知:BN=3cm,PM=1cm,∵AM+MP+PN+BN=AB,且PN=3AM,∴AM+1+3AM+3=12,∴AM=2cm,∴AP=3cm;(2)长度不发生变化,理由如下:根据M、N的运动速度可知:BN=3PM,∵AM+MP+PN+BN=AB,且PN=3AM,∴4AM+4PM=12,∴AP=3cm,(3)如图:∵AQ=PQ+BQ,AQ=AP+PQ,∴AP=BQ,∴PQ=AB﹣AP﹣BQ=6cm;当点Q’在AB的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm.综上所述,PQ=6cm或12cm.3.(1)点B所对应的数是2;(2)A,B两点间距离是12个单位长度.(3)经过4秒或8秒A,B两点相距4个单位长度.解析:解:(1)﹣2+4=2.故点B所对应的数是2;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒A,B两点相距4个单位长度.基础训练基础训练题目1.(1)CD=4;(2)AB=35.解析:解:(1)∵AB=40,点D是AB的中点,∴AD=BD=AB=20,又AC:BC=3:2,∴BC=AB=16,∴CD=BD﹣BC=20﹣16=4;(2)∵AC:BC=3:2,点D为AB的中点,∴AC=AB,AD=AB,∵E为AC的中点,∴AE=AC=×AB,∴ED=AD﹣AE=AB﹣×AB=7,解得AB=35.2.(1)AD=7;(2)AD的长为3或5.解析:解:(1)AC=2BC,AB=18,∴BC=6,AC=12,如图1,∵E为BC中点,∴CE=BE=3,∵DE=8,∴BD=DE+BE=8+3=11,∴AD=AB﹣DB=18﹣11=7;(2)①当点E在点F的左侧,如图2,或∵CE+EF=3,BC=6,∴点F是BC的中点,∴CF=BF=3,∴AF=AB﹣BF=18﹣3=15,∴AD=AF=5;∵CE+EF=3,故图2(b)这种情况求不出;②如图3,当点E在点F的右侧,或∵AC=12,CE+EF=CF=3,∴AF=AC﹣CF=9,∴AF=3AD=9,∴AD=3.∵CE+EF=3,故图3(b)这种情况求不出;综上所述:AD的长为3或5.3.(1)线段AC=OB,此时b的值是4.(2)若AC﹣OB AB,满足条件的b值是或﹣5.解析:解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b的值是4.(2)由题意得:①11﹣(b+3)﹣b(11﹣b),解得:b.②11﹣(b+3)+b(11﹣b),解得:b=﹣5.答:若AC﹣OB AB,满足条件的b值是或﹣5.例题1.28°48′.解析:解: 180°﹣50°24′×3=180°﹣150°72′=179°60′﹣151°12′=28°48′.2.B解析:解:如图,8:20时针与分针所处的位置如图所示:由钟面角的特征可知,∠BOC=∠COD=∠DOE=∠EOF=×360°=30°,由时针与分针旋转过程中所成角度的变化关系可得,∠AOF=30°×=10°,∴∠AOB=30°×4+10°=130°,故选:B.3.(1)30°;(2)不变,(3)∠COM﹣∠BON=30°.解析:解:(1)∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠BOC+∠AOC=∠AOB=×60°=30°.故答案为:30°;(2)不变,当OC旋转到∠AOB的外部时,∵OM平分∠AOC,ON平分∠BOC,∠AOB=60°,∴∠MOC=∠AOC,∴∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=∠BOC﹣∠AOC=∠AOB=×60°=30°.∴∠MON的度数不会发生变化;(3)当OC旋转到∠AOB(∠BOC<120°)的外部且射线OC在OB的下方时,∵OM平分∠AOC,∠NOC=∠BOC,∴∠COM=∠AOC,∠BON=∠BOC,∴∠COM﹣∠BON=∠AOC﹣×∠BOC=∠BOC﹣∠AOC=∠AOB=30°.基础训练基础训练题目1.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.解析:2.B解析:解:由方向角的意义可知,∠AON=30°,∵∠AOB=90°,∴∠NOB=∠AOB﹣∠AON=90°﹣30°=60°,∴OB的方向角为北偏西60°,故选:B.3.(1)∠AOC=40°,∠BOC=80°;(2)∠MON=40°;(3)∠COD的度数为32°或176°.解析:解:(1)∵∠AOC:∠BOC=1:2,∠AOB=120°,∴∠AOC=∠AOB=×120°=40°,∠BOC=∠AOB=×120°=80°;(2)∵OM平分∠AOC,∴∠COM=∠AOC=×40°=20°,∵∠CON:∠BON=1:3,∴∠CON=∠BOC=×80°=20°,∴∠MON=∠COM+∠CON=20°+20°=40°;(3)如图,当OD在∠AOB内部时,设∠BOD=x°,∵2∠AOD=3∠BOD,∴∠AOD=x°,∵∠AOB=120°,∴x+x=120,解得:x=48,∴∠BOD=48°,∴∠COD=∠BOC﹣∠BOD=80°﹣48°=32°,如图,当OD在∠AOB外部时,设∠BOD=y°,∵2∠AOD=3∠BOD,∴∠AOD=y°,∵∠AOB=120°,∴y+y+120°=360°解得:y=96°,∴∠COD=∠BOD+∠BOC=96°+80°=176°,综上所述,∠COD的度数为32°或176°.模块三数学思想例题1.C解析:解:∵钟表上每一个大格之间的夹角是30°,∴当分针指向12,时针这时恰好与分针成30°的角时,距分针成30°的角时针应该有两种情况,即距时针1个格,∴只有11点钟或1点钟是符合要求.故选:C.基础训练基础训练题目1.BE的长为70cm或10cm.解析:解:根据题意可知AB=80cm,BC AB,∴BC80=60(cm),当点C在点B的左侧时,AC=AB﹣BC=80﹣60=20(cm),∵E是AC的中点,∴EC=AE AC20=10(cm),BE=BC+EC=60+10=70(cm);当点C在点B的右侧时,AC=AB+BC=80+60=140(cm),∵E是AC的中点,∴EC=AE AC140=70(cm),BE=EC﹣BC=70﹣60=10(cm);综上所述,BE的长为70cm或10cm.例题1.∠AOC=84°或42°.解析:解:①当∠AOC=3∠BOC时,设∠BOC=x,∠DOF=y,∵OB为∠AOC的三等分线,OF平分∠COD,∴∠AOC=3x,∠COD=2y,∠BOD=x+2y,∵OE平分∠BOD,∴∠EOD=∠BOD=x+y,∵∠EOF=14°,∴x+y﹣y=14°,解得x=28°,故∠AOC=3x=84°.②当∠AOC=∠BOC时,设∠BOC=2x,∠DOF=y,∵OB为∠AOC的三等分线,OF平分∠COD,∴∠AOC=3x,∠COD=2y,∠BOD=2x+2y,∵OE平分∠BOD,∴∠EOD=∠BOD=x+y,∵∠EOF=14°,∴x+y﹣y=14°,解得x=14°,故∠AOC=3x=42°.综上,∠AOC=84°或42°.基础训练基础训练题目1.(1)∠AOD=70°;(2)∠COE的度数为24°或120°;(3)∠AOH的度数为175°或170°或140°.解析:解:(1)∵∠BOC=40°,∴∠AOC=180°﹣∠BOC=140°,∵OD平分∠AOC,∴∠AOD=AOC=70°;(2)①如图1,当射线OE在AB上方时,∠BOE=∠COE,∵∠BOE+∠COE=∠BOC,∴∠COE+∠COE=40°,∴∠COE=24°;②如图2,当射线OE在AB下方时,∠BOE=∠COE,∵∠COE﹣∠BOE=∠BOC,∴∠COE﹣∠COE=40°,∴∠COE=120°;综上所述:∠COE的度数为24°或120°;(3)①如图3,当射线OE在AB上方,OF在AB上方时,作∠FOH=90°,使射线OH在∠BOE的内部,∠DOF=3∠BOH,设∠BOH=x°,则∠DOF=3x°,∠FOC=∠COD﹣∠DOF=70°﹣3x°,∵∠AOH=∠AOD+∠DOF+∠FOH=70°+3x°+90°=160°+3x°,∠EOH=∠BOC﹣∠COE﹣∠BOH=40°﹣24°﹣x°=16°﹣x°,∴∠FOH=∠FOC+∠COE+∠EOH=70°﹣3x°+24°+16°﹣x°=90°,∴x°=5°,∴∠AOH=160°+3x°=175°;②如图4,当射线OE在AB上方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°﹣x°=180°,解得x°=80°,∵∠COB=40°,∵80°>40°,∴x°=80°不符合题意舍去;③如图5,当射线OE在AB下方,OF在AB上方时,∵∠AOF=∠DOF+∠AOD=3x°+70°,∠BOF=∠FOH﹣∠BOH=90°﹣x°,∠AOF+∠BOF=180°,∴3x°+70°+90°﹣x°=180°,解得x°=10°,∴∠AOH=180°﹣∠BOH=180°﹣x°=170°;④如图6,当射线OE在AB下方,OF在AB下方时,∵∠AOF=∠DOF﹣∠AOD=3x°﹣70°,∠BOF=∠FOH+∠BOH=90°+x°,∠AOF+∠BOF=180°,∴3x°﹣70°+90°+x°=180°,解得x°=40°,∴∠AOH=∠AOF+∠FOH=50°+90°=140°.综上所述:∠AOH的度数为175°或170°或140°.自主探究自主探究题目1.D解析:解:A,B两点间的距离是指连接A,B两点间的线段的长度,故选:D.2.C解析:3.C解析:解:A、若∠1的余角和∠2的余角互余,则∠1和∠2互余,故错误;B、若∠1的余角和∠2的补角互补,则∠1和∠2互余,故错误;C、若∠1的补角和∠2的余角互补,则∠1和∠2互余,故正确;D、若∠1的补角和∠2的补角互补,则∠1和∠2互补,故错误;故选:C.4.D解析:解:左边的图形绕着给定的直线旋转一周后形成的几何体是空心圆柱,故选:D.5.B解析:解:设BD=x,则AB=3x,CD=4x,∵线段AB、CD的中点分别是E、F,∴BE=AB=1.5x,DF=2x,∵EF=5,∴1.5x+2x﹣x=5,解得:x=2,故AB=3×2=6.故选:B.6.C解析:7.102°32’解析:解:∠1+∠2=58°37’+43°55’=101°92′=102°32’,故答案为:102°32’.8.(1)OC的方向是北偏东70°;(2)OD的方向是东偏南50°;(3)OE的方向是东偏北40°.解析:解:(1)∵OB的方向是西偏北50°,∴∠BOF=90°﹣50°=40°,∴∠AOB=40°+15°=55°,∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°;(2)∵OB的方向是西偏北50°,∴∠DOH=50°,∴OD的方向是东偏南50°;(3)∵OE是∠BOD的平分线,∴∠DOE=90°,∵∠DOH=50°,∴∠HOE=40°,∴OE的方向是东偏北40°.9.解:(1)∵AB=4,点D在线段AB上,点D是线段AB的中点,∴AD AB4=2,∵点C是线段AD的中点,∴CD AD2=1;(2)因为点D在线段AB上,点C是线段AD的中点,点E是线段BD的中点,∴CD AD,DE BD,∴CE=CD+DE AD BD(AD+BD )AB,∵AB=4,∴CE=2,∴线段CE长度不变.解析:10.(1)﹣20,10;(2)在点P开始运动后第4秒或5秒或6.5秒或6.25秒或13.75秒或14秒时,P、Q两点之间的距离为1.2解析:解:(1)∵|a+20|+(b﹣10)=0,∴a=﹣20,b=10,故答案为:﹣20,10;(2)设P运动的时间为t秒,①当0<t≤6时,|(﹣20+5t)﹣(﹣11+3t)|=1,解得t=4或t=5;②当6<t≤7时,|10﹣(5t﹣30)﹣(﹣11+3t)|=1,解得t 或t;③当7<t≤12时,|[10﹣(5t﹣30)]﹣[10﹣(3t﹣21)]|=1,解得:t=4或t=5;④当12<t≤14时,|[10﹣(3t﹣21)]﹣[﹣20+(5t﹣60)]|=1,解得t或t=14;综上所述,在点P开始运动后第4秒或5秒或6.5秒或6.25秒或13.75秒或14秒时,P、Q两点之间的距离为1.。

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。

4.几何图形的结构:点、线、面、体组成几何图形。

点是构成图形的基本元素。

4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。

2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。

简述为,两点确定一条直线。

(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。

(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。

(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。

(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。

(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

4.线段:直线上两点和它们之间的部分叫做线段。

(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。

(3)线段的基本性质:两点的所有连线中,线段最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 第四章 几何图形初步知识归纳与例题
4.1 几何图形 : 1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

2、立体
图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看
6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;
⑵点无大小,线、面有曲直; ⑶几何图形都是由点、线、面、体组成的;
⑷点动成线,线动成面,面动成体; ⑸点:是组成几何图形的基本元素。

4.2 直线、射线、线段:
1、直线公理:经过两点有一条直线,并且只有一条直线。

即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:
7、在直线上取点O ,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如上图就是一条射线,记作射线OM 或记作射线a .
注意:射线有一个端点,向一方无限延伸.
8、在直线上取两个点A 、B ,把直线分成三个部分,去掉两边的部分,保留点A 、B 和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB 或记作线段a .
注意:线段有两个端点. 4.3 角:
1. 角的定义:有公共端点的两条射线组成的图形叫角。

这个公共端点是角的顶点,两条射线为角的两边。

如图,角的顶点是O ,两边分别是射线OA 、OB .
2、角有以下的表示方法:
① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB 或∠BOA . ② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O .当有两个或两
个以上的角是同一个顶点时,不能用一个大写字母表示.
③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点 处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠α、∠1
2、以度、分、秒为单位的角的度量制,叫做角度制。

角的度、分、秒是60进制的。

1度=60分 1分=60秒 1周角=360度 1平角=180度
3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。

4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;
如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

5、同角(等角)的补角相等;同角(等角)的余角相等。

6、方位角:一般以正南正北为基准,描述物体运动的方向。

典型例题: 1.下列说法:①若一个物体的三视图都是圆,则这个物体是球;②圆柱的侧面展开图的形状
是长方形;③圆柱由3个面组成,其中2个是曲面,1个是平面;④直角三角形绕着它的一条直角边旋转一周所得的立体图形是棱锥.其中不正确的个数是 ( )A.1个 B.2个 C.3个 D.4个
2、下列各个角度不能..
用一副三角板拼出的是( ) A. 15° B. 105° C. 125° D. 150° α1
O B A
a
A B C D N M
1.如果与互补,与互余,则与的关系是【 】
6、下面四个图形中,经过折叠能围成如图所示的几何图形的是【 】
A B C D
7、 (1)40°26′+30°30′30″÷6; (2)13°53′×3-32°5′31″.
8、如图,M 是AB 的中点,AB =32BC ,N 是BD 的中点,且BC =2CD , 如果AB =2cm ,求AD.AN 的长.
9、一个角的余角比它的补角9
2还多1°,求这个角.
10、如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。

⑴求线段MN 的长;
⑵若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长度吗?并说明理由。

⑶若C 在线段AB 的延长线上,且满足AC -BC = b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。

⑷你能用一句简洁的话,描述你发现的结论吗?
A B C
M N 11、如图所示,已知 30,90=∠=∠BOC AOB ,OE 平分AOB ∠,OF 平分BOC ∠。

(1)求EOF ∠的度数;
(2)使条件中的 130,110=∠=∠BOC AOB ,求EOF ∠的度数;
(3)使条件中的βα=∠=∠BOC AOB ,,求EOF ∠的度数;
(4)从(1)、(2)、(3)题的结论中你得出了什么结论?
(5)根据这一规律你能编一道类似的关于线段的题目吗? O A E B F C。

相关文档
最新文档