最新人教A版高中数学选修1-2 3.1.1同步练习习题
高中数学《3.1.1数系的扩充和复数的概念》评估训练 新人教A版选修1-2
第三章 数系的扩充与复数的引入 3.1.1 数系的扩充和复数的概念双基达标 限时20分钟1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ).A .3-3iB .3+iC .-2+2iD.2+2i解析 3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A. 答案 A2.若复数cos θ+isin θ和sin θ+icos θ相等,则θ值为( ).A.π4B.π4或54π C .2k π+π4(k ∈Z )D .k π+π4(k ∈Z )解析 由复数相等定义得⎩⎪⎨⎪⎧cos θ=sin θ,sin θ=cos θ,∴tan θ=1,∴θ=k π+π4(k ∈Z ).答案 D 3.下列命题中①若x ,y ∈C ,则x +y i =2+i 的充要条件是x =2,y =1; ②纯虚数集相对复数集的补集是虚数集; ③若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 2=z 3. 正确的命题个数是( ).A .0B .1C .2D .3解析 ①x ,y ∈C ,x +y i 不一定是代数形式,故①错.②③错;对于④,a =0时,a i =0,④错,故选A. 答案 A4.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.解析 z =m 2+m 2i -m 2-m i =(m 2-m )i ,∴m 2-m =0, ∴m =0或1. 答案 0或15.已知(1+i)m 2+(7-5i)m +10-14i =0,则实数m =________.解析 把原式整理得(m 2+7m +10)+(m 2-5m -14)i =0,∵m ∈R ,∴⎩⎪⎨⎪⎧m 2+7m +10=0,m 2-5m -14=0,∴m =-2.答案 -26.实数m 取什么值时,复数lg(m 2-2m -2)+(m 2+3m +2)i 分别是(1)纯虚数;(2)实数.解 (1)复数lg(m 2-2m -2)+(m 2+3m +2)i 为纯虚数.则⎩⎪⎨⎪⎧m 2-2m -2=1,m 2+3m +2≠0,∴⎩⎪⎨⎪⎧m =3或m =-1,m ≠-2且m ≠-1,∴m =3.即m =3时,lg(m 2-2m -2)+(m 2+3m +2)i 为纯虚数, (2)复数为实数,则⎩⎪⎨⎪⎧m 2-2m -2>0, ①m 2+3m +2=0, ②解②得m =-2或m =-1, 代入①检验知满足不等式,∴m =-2或m =-1时,lg(m 2-2m -2)+(m 2+3m +2)i 为实数.综合提高 限时25分钟7.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的值为( ).A .4B .-1C .4或-1D .1或6解析 由题意⎩⎪⎨⎪⎧m 2-3 m -1=3,m 2-5 m -6=0,∴m =-1.答案 B8.如果关于x 的方程x 2-2x -a =0的一个根是i ,那么复数a( ).A .一定是实数B .一定是纯虚数C .可能是实数,也可能是虚数D .一定是虚数,但不是纯虚数解析 因为i 是方程x 2-2x -a =0的根,故代入整理得:a =x 2-2x =i 2-2i =-1-2i ,故选D.答案 D9.若4-3a -a 2i =a 2+4a i ,则实数a 的值为________.解析 易知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.答案 -410.若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的取值范围是________.解析 ∵log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,∴⎩⎪⎨⎪⎧log 2x 2-3x -2>1,log 2x 2+2x +1=0,∴x =-2.答案 -211.已知A ={1,2,(a 2-3a -1)+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解 按题意:(a 2-3a -1)+(a 2-5a -6)i =3,∴⎩⎪⎨⎪⎧a 2-5a -6=0a 2-3a -1=3,得a =-1.12.(创新拓展)若m 为实数,z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m +2+(m 3-5m 2+4m )i ,那么使z 1>z 2的m 值的集合是什么?使z 1<z 2的m 值的集合又是什么? 解 当z 1∈R 时,m 3+3m 2+2m =0,m =0,-1,-2,z 1=1或2或5.当z 2∈R 时,m 3-5m 2+4m =0,m =0,1,4,z 2=2或6或18.上面m 的公共值为m =0, 此时z 1与z 2同时为实数, 此时z 1=1,z 2=2.所以z 1>z 2时m 值的集合为空集,z 1<z 2时m 值的集合为{0}.。
高中数学选修2-3人教A:第1章1.2.1第一课时同步训练及解析
人教A高中数学选修2-3同步训练A.107B.323C.320 D.348解析:选D.原式=5×5×4×3+4×4×3=348.2.4×5×6×…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n解析:选D.原式可写成n·(n-1)·…×6×5×4,故选D.3.6名学生排成两排,每排3人,则不同的排法种数为()A.36 B.120C.720 D.240解析:选C.排法种数为A66=720.4.下列问题属于排列问题的是________.①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作幂运算.解析:①选出的2人有不同的劳动内容,相当于有顺序.②选出的2人劳动内容相同,无顺序.③5人一组无顺序.④选出的两个数作为底数或指数其结果不同,有顺序.答案:①④一、选择题1.甲、乙、丙三地客运站,需要准备在甲、乙、丙三地之间运行的车票种数是( )A .1B .2C .3D .6解析:选D.A 23=6.2.已知A 2n +1-A 2n =10,则n 的值为( )A .4B .5C .6D .7解析:选B.由A 2n +1-A 2n =10,得(n +1)n -n (n -1)=10,解得n =5.3.从5本不同的书中选两本送给2名同学,每人一本,则不同的送法种数是( )A .5B .10C .20D .60解析:选C.A 25=20.4.将3张不同的电影票分给10人中的3人,每人一张,则不同的分法种数是( )A .2160B .720C .240D .120解析:选B.A 310=10×9×8=720.5.某段铁路所有车站共发行132种普通车票,那么这段铁路共有车站数是( )A .8B .12C .16D .24解析:选B.设车站数为n ,则A 2n =132,n (n -1)=132,∴n =12.6.S =1!+2!+3!+…+99!,则S 的个位数字为( )A .0B .3C .5D .7解析:选B.∵1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,…∴S =1!+2!+3!+…+99!的个位数字是3.二、填空题7.若A m 10=10×9×…×5,则m =________.解析:10-m +1=5,得m =6.答案:68.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧ n +3≤2n ,n +1≤4,n ∈N *,得n =3, ∴A n +32n +A n +14=6!+4!=744. 答案:7449.甲、乙、丙、丁四人轮读同一本书,则甲首先读的安排方法有________种. 解析:甲在首位,相当于乙、丙、丁全排,即3!=3×2×1=6.答案:6三、解答题10.解不等式:A x 9>6A x -29.解:原不等式可化为9!(9-x )!>6·9!(9-x +2)!,其中2≤x ≤9,x ∈N *,∴(11-x )(10-x )>6,即x 2-21x +104>0,∴(x -8)(x -13)>0,∴x <8或x >13.又∵2≤x ≤9,x ∈N *,∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.11.解方程3A x 8=4A x -19.解:由3A x 8=4A x -19得3×8!(8-x )!=4×9!(10-x )!. ∴3×8!(8-x )!=4×9×8!(10-x )(9-x )(8-x )!. 化简得:x 2-19x +78=0,解得x 1=6,x 2=13.∵x ≤8,且x -1≤9,∴原方程的解是x =6.12.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题;(2)植树和种菜是不同的,存在顺序问题,属于排列问题;(3)、(4)不存在顺序问题,不属于排列问题;(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题;(6)A 给B 写信与B 给A 写信是不同的,所以存在着顺序问题,属于排列问题. 所以在上述各题中(2)、(5)、(6)属于排列问题.。
高中数学选修1-2:3.2.1同步练习
高中数学人教A 版选修1-2 同步练习1.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B.由z =z 2-z 1=1+2i -(2+i)=(1-2)+(2-1)i =-1+i ,因此,复数z =z 2-z 1对应的点为(-1,1),在第二象限.2.已知z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),若z 1+z 2为纯虚数,则有( )A .a -c =0且b -d ≠0B .a -c =0且b +d ≠0C .a +c =0且b +d ≠0D .a +c ≠0且b +d =0解析:选C.∵z 1+z 2=(a +c )+(b +d )i 为纯虚数,∴a +c =0,b +d ≠0.3.当1<m <2时,复数2m +m i -(4+i)在复平面内对应的点位于第________象限.解析:2m +m i -(4+i)=(2m -4)+(m -1)i.∵1<m <2,∴2m -4<0,m -1>0,故复数2m +m i -(4+i)在复平面内对应的点位于第二象限.答案:二4.已知复数z 满足z +(1+2i)=10-3i ,则z =________.解析:z =(10-3i)-(1+2i)=9-5i.答案:9-5i[A 级 基础达标]1.已知z =11-20i ,则1-2i -z 等于( )A .z -1B .z +1C .-10+18iD .10-18i解析:选C.1-2i -z =1-2i -(11-20i)=(1-11)+[-2-(-20)]i=-10+18i ,故选C.2.a ,b 为实数,设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( )A .1+iB .2+iC .3D .-2-i解析:选D.∵z 1+z 2=(2+b i)+(a +i)=(2+a )+(b +1)i =0,∴⎩⎪⎨⎪⎧2+a =0,b +1=0.∴⎩⎪⎨⎪⎧a =-2,b =-1. ∴a +b i =-2-i.3.A ,B 分别是复数z 1,z 2在复平面内对应的点,O 是原点,若|z 1+z 2|=|z 1-z 2|,则三角形AOB 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形解析:选B.根据复数加(减)法的几何意义,知以OA ,OB 为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB 为直角三角形.4.计算(-1+2i)+(i -1)-|1+2i|=________.解析:原式=-1+2i +i -1-5=-2-5+3i.答案:-2-5+3i5.复平面内,若复数z =a 2(1+i)-a (4+i)-6i 所对应的点在第二象限,则实数a 的取值范围是________.解析:z =(a 2-4a )+(a 2-a -6)i.∵复数z 所对应的点在第二象限.∴⎩⎪⎨⎪⎧a 2-4a <0,a 2-a -6>0, 解得3<a <4.答案:(3,4)6.计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-.+.i)+(.-.i)+(-.+.i)+(.-.i).解:原式=(1-2+3-4+…-.+.-.+.)+(-2+3-4+5+…+.-.+.-.)i=(.-1005)+(1005-.)i =1006-1007i.[B 级 能力提升]7.设z =3-4i ,则复数z -|z |+(1-i)在复平面内的对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C.∵z =3-4i ,∴z -|z |+(1-i)=3-4i -32+(-4)2+1-i=(3-5+1)+(-4-1)i =-1-5i.8.若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值是( )A .2B .3C .4D .5解析:选B.设z =x +y i(x ,y ∈R),则由|z +2-2i|=1得(x +2)2+(y -2)2=1,表示以(-2,2)为圆心,以1为半径的圆,如图所示,则|z -2-2i|=(x -2)2+(y -2)2表示圆上的点与定点(2,2)间的距离,数形结合得|z -2-2i|的最小值为3.9.设f (z )=z -2i ,z 1=3+4i ,z 2=-2-i ,则f (z 1-z 2)=__________.解析:∵f (z )=z -2i ,∴f (z 1-z 2)=z 1-z 2-2i=(3+4i)-(-2-i)-2i=(3+2)+(4+1-2)i=5+3i.答案:5+3i10.在复平面内,A ,B ,C 三点对应的复数为1,2+i ,-1+2i.D 为BC 的中点.(1)求向量AD 对应的复数;(2)求△ABC 的面积.解:(1)由条件知在复平面内B (2,1),C (-1,2).则D (12,32),点D 对应的复数是12+32i , AD =OD -OA =(12,32)-(1,0)=(-12,32), ∴AD 对应的复数为-12+32i. (2)AB =OB -OA =(1,1),|AB |=2,AC =OC -OA =(-2,2),|AC |=8=22,BC =OC -OB =(-3,1),|BC |=10,∴|BC |2=|AC |2+|AB |2,∴△ABC 为直角三角形.∴S△ABC=12|AB|·|AC|=122·22=2.11.(创新题)已知z1=cosθ+isinθ,z2=cosα+isinα(θ,α∈R),求|z1+z2|的取值范围.解:法一:∵z1+z2=cosθ+isinθ+cosα+isinα=(cosθ+cosα)+i(sinθ+sinα),∴|z1+z2|2=(cosθ+cosα)2+(sinθ+sinα)2=2+2(cosθcosα+sinθsinα)=2+2cos(θ-α),由于(2+2cos(θ-α))∈[0,4],∴|z1+z2|∈[0,2].法二:∵|z1=|z2|=1,又||z1|-|z2||≤|z1+z2|≤|z1|+|z2|,∴0≤|z1+z2|≤2,即|z1+z2|∈[0,2].。
人教a版高中数学选修21全册同步练习及单元检测含答案
答案: 一元二次方程 ax2+ bx+ c=0( a≠0) 此方程有两个不相等的实数根
假
三、解答题 ( 每小题 10 分,共 20 分 )
7.指出下列命题的条件 p 和结论 q: (1) 若 x+ y 是有理数,则 x, y 都是有理数;
(2) 如果一个函数的图象是一条直线,那么这个函数为一次函数.
1
1
∴ a+1≥1且 a≤ 2,即 0≤ a≤ 2.
1 ∴满足条件的 a 的取值范围为 0, 2 .
4 8.求证: 0≤ a< 是不等式
ax2- ax+1- a>0 对一切实数
x 都成立的充要条件.
5
4 证明: 充分性:∵ 0<a< ,
5 ∴ Δ=a2- 4a(1 -a) = 5a2- 4a= a(5 a-4)<0 , 则 ax2- ax+ 1- a>0 对一切实数 x 都成立. 而当 a= 0 时,不等式 ax2-ax+ 1- a>0 可变成 1>0.
x 都成立的充要条件.
尖子生题库 ☆☆☆ 9. (10 分 ) 已知条件 p: A= { x|2 a≤ x≤ a2+ 1} ,条件 q: B={ x| x2- 3( a+ 1) x+2(3 a+ 1) ≤0} .若 p 是 q 的充分条件,求实数 a 的取值范围. 解析: 先化简 B, B= { x|( x- 2)[ x- (3 a+1)] ≤0} ,
答案: (1)(2)(3)
x 6.设集合 A= x| x-1<0 ,B= { x|0< x<3} ,那么“ m∈ A”是“ m∈ B”的 ________条件.
x
解析:
A=
x|
<0 x- 1
2014-2015学年高中数学(人教版选修1-2)课时训练第三章 3.1.1 数系的扩充和复数的相关概念
栏 目 链 接
题型2 复数的分类 例2
栏 目 链 接
栏 目 链 接
点评:①研究一个复数在什么情况下是实数、虚数或纯虚数,首 先保证复数的实部和虚部有意义.本题分母不为零的条件容易忽 略. ② 纯虚数要求实部为零的条件也易考虑不周. ③ 本题“ 或 ”和 “且”等逻辑用语的使用会模糊,应重点分析.
栏 目 链 接
2.复数的代数形式和复数的分类 (1)复数的代数形式z= a+bi要求a和b必须是实数,否则 不是代数形式. (2) 若 z 是纯虚数,可设 z = bi(b≠0 , b∈R) ;若 z 是虚数, 可设 z = a + bi(b≠0 , b∈R) ;若 z 是复数,可设 z = a + bi(a , b∈R). (3)形如z=bi的数不一定是纯虚数,只有b≠0,b∈R时, 才是纯虚数,否则不是纯虚数.
栏 目 链 接
栏 目 链 接
1.虚数单位i具有两条性质: (1)它的平方等于-1,即i2=-1. (2) 实数可以与它进行四则运算,在进行四则运算时,原 栏 目 链 有的加、乘运算律仍成立.
栏 目 链 接
栏 目 链 接
题型1 复数的基本概念
例1 判断下列命题是否正确.
(1)1-ai(a∈R)是一个复数. (2)若a∈R,则(a+1)i是纯虚数. (3)若a,b∈R,且a>b,则a+i>b+i. (4)若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1.
栏 目 链 接
基础 自测
2.下列命题:①i 是-1 的一个平方根;②-i 是一个负数;③ 如果 a+bi=3+4i(a、b∈C),则 a=3,b=4.其中正确的命题的个数 是( ) A. 0 B . 1 栏 C. 2 D . 3
【人教A版】2021年高中数学选修1-2(全集)同步练习汇总+章节测试卷汇总
(人教A版)高中数学选修1-2(全册)同步练习汇总+章节测试卷汇总课时作业31一、选择题1.[2013·北京通州一模]对两个变量y 和x 进行回归分析, 得到一组样本数据: (x 1, y 1), (x 2, y 2), …, (x n , y n ), 则下列说法中不正确的是( )A .由样本数据得到的回归方程y ^=b ^x +a ^必过样本点的中心(x , y ) B .残差平方和越小的模型, 拟合的效果越好C .用相关指数R 2来刻画回归效果, R 2的值越小, 说明模型的拟合效果越好D .若变量y 和x 之间的相关系数r =-0.9362, 则变量y 与x 之间具有线性相关关系 解析: R 2的值越大, 说明残差平方和越小, 也就是说模型的拟合效果越好, 故选C. 答案: C2.[2014·烟台高二检测]甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验, 并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:A .甲B .乙C .丙D .丁解析: 由表可知, 丁同学的相关系数r 最大且残差平方和m 最小, 故丁同学的试验结果体现A 、B 两变量更强的线性相关性.答案: D3.甲、乙、丙、丁4位同学各自对A 、B 两变量做回归分析, 分别得到散点图与残差平方和 i =1n(y i -y ^i )2, 如下表:A .甲B .乙C .丙D .丁解析: 根据线性相关知识知, 散点图中各样本点条状分布越均匀, 同时保持残差平方和越小(对于已经获取的样本数据, R 2表达式中∑i =1n(y i -y )2为确定的数, 则残差平方和越小, R 2越大), 由回归分析建立的线性回归模型的拟合效果就越好, 由试验结果知丁要好些.答案: D4.某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程y =b x +a 中的b 为9.4, 据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元解析: 由表可计算x =4+2+3+54=72, y =49+26+39+544=42, 因为点(72, 42)在回归直线y ^=b ^x +a ^上, 且b ^为9.4, 所以42=9.4×72+a ^, 解得a ^ =9.1, 故回归方程为y ^ =9.4x +9.1, 令x =6得y ^=65.5, 选B.答案: B 二、填空题5.面对竞争日益激烈的消费市场, 众多商家不断扩大自己的销售市场, 以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位: 千箱)与单位成本的资料进行线性回归分析, 结果如下: x =72, y =71, ∑i =16x 2i =79, ∑i =16x i y i =1481.b ^ =1481-6×72×7179-6×(72)2≈-1.8182,a ^ =71-(-1.8182)×72≈77.36, 则销量每增加1000箱, 单位成本下降__________元.解析: 由上表可得, y ^=-1.8182x +77.36, 销量每增加1千箱, 则单位成本下降1.8182元.答案: 1.81826.已知回归直线的斜率的估计值为 1.23.样本点的中心为(4,5), 则回归直线方程是________.解析: 由斜率的估计值为 1.23, 且回归直线一定经过样本点的中心(4,5), 可得y ^-5=1.23(x -4),即y ^=1.23x +0.08. 答案: y ^ =1.23x +0.087.[2014·宁夏吴忠模拟]某单位为了了解用电量y 度与气温x ℃之间的关系, 随机统计了某4天的用电量与当天气温, 并制作了对照表:由表中数据得线性回归方程y =b x +a 中b =-2, 预测当气温为-4℃时, 用电量的度数约为________.解析: x =10, y =40, 回归方程过点(x , y ), ∴40=-2×10+a ^. ∴a ^=60.∴y ^=-2x +60.令x =-4, ∴y ^=(-2)×(-4)+60=68. 答案: 68 三、解答题8.某地最近十年粮食需求量逐年上升, 下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解: (1)由所给数据看出, 年需求量与年份之间是近似直线上升, 下面来求回归直线方程, 先将数据预处理如下:x =0, y =3.2, b ^=6.5,a ^=y -b ^x =3.2.由上述计算结果知, 所求回归直线方程为 y ^-257=b ^(x -2006)+a ^=6.5(x -2006)+3.2. 即y ^ =6.5(x -2006)+260.2.(2)利用所求得的直线方程, 可预测2012年的粮食需求量为6.5×(2012-2006)+260.2=6.5×6+260.2=299.2(万吨)≈300(万吨).9.[2013·重庆高考]从某居民区随机抽取10个家庭, 获得第i 个家庭的月收入x i (单位: 千元)与月储蓄y i (单位: 千元)的数据资料, 算得∑i =110x i =80, ∑i =110y i =20, ∑i =110x i y i =184, ∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^ =b ^x +a ^ ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元, 预测该家庭的月储蓄. 附: 线性回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2, a ^ =y -b ^x ,其中x , y 为样本平均值, 线性回归方程也可写为y ^ =b ^ x +a ^.解: (1)由题意知n =10, x =1n ∑i =1n x i =8010=8, y =1n ∑i =1n y i =2010=2, 又∑i =1n x 2i -n x 2=720-10×82=80, ∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=2480=0.3, a ^ =y -b ^ x =2-0.3×8=-0.4, 故所求回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b ^=0.3>0), 故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).课时作业32一、选择题1.对于分类变量X与Y的随机变量K2的观测值k, 下列说法正确的是()A. k越大, “X与Y有关系”的可信程度越小B. k越小, “X与Y有关系”的可信程度越小C. k越接近于0, “X与Y没有关系”的可信程度越小D. k越大, “X与Y没有关系”的可信程度越大解析: k越大, “X与Y没有关系”的可信程度越小, 则“X与Y有关系”的可信程度越大.即k越小, “X与Y有关系”的可信程度越小.答案: B2.分类变量X和Y的列联表如下:A. ad-bc越小, 说明X与Y关系越弱B. ad-bc越大, 说明X与Y关系越弱C. (ad-bc)2越大, 说明X与Y关系越强D. (ad-bc)2越接近于0, 说明X与Y关系越强解析: 对于同一样本, |ad-bc|越小, 说明X与Y之间关系越弱; |ad-bc|越大, 说明X与Y 之间的关系越强.答案: C3.[2014·广州高二检测]利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验, 现通过计算高中生的性别与喜欢数学课程列联表中的数据, 得到K 2≈5.12, 并且知道P (K 2≥3.841)≈0.05, 那么下列结论中正确的是( )A .100个高中生中只有5个不喜欢数学B .100个高中生中只有5个喜欢数学C .在犯错误的概率不超过0.05的前提下, 可以认为高中生的性别与喜欢数学课程有关系D .在犯错误的概率不超过0.05的前提下, 可以认为高中生的性别与喜欢数学课程没有关系解析: 当K 2≈5.12时, P (K 2≥3.841)≈0.05, 说明在犯错误的概率不超过0.05的前提下认为高中生性别与喜欢数学课程有关系.答案: C4.某班主任对全班50名学生进行了作业量的调查, 数据如表( ) A .0.01 B .0.005 C .0.025 D .0.001解析: K 2=50×(18×15-8×9)226×24×27×23≈5.059>5.024.∵P (K 2≥5.024)=0.025. ∴犯错误的概率不超过0.025. 答案: C 二、填空题5.下列说法正确的是__________.①对事件A 与B 的检验无关, 即两个事件互不影响 ②事件A 与B 关系越密切, K 2就越大③K 2的大小是判断事件A 与B 是否相关的唯一数据 ④若判定两事件A 与B 有关, 则A 发生B 一定发生解析: 对于①, 事件A 与B 的检验无关, 只是说两事件的相关性较小, 并不一定两事件互不影响, 故①错.②是正确的.对于③, 判断A 与B 是否相关的方式很多, 可以用列联表, 也可以借助于概率运算, 故③错.对于④, 两事件A与B有关, 说明两者同时发生的可能性相对来说较大, 但并不是A发生B一定发生, 故④错.答案: ②6.在一次独立性检验中, 有300人按性别和是否色弱分类如下表:由此表计算得解析: 代入K2公式计算即可.答案: 3.247.[2013·广东湛江一模]为了解某班学生喜爱打篮球是否与性别有关, 对该班50名学生进行了问卷调查, 得到了如下的2×2列联表:(请用百分数表示).附: K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)解析: K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=50×(20×15-5×10)225×25×30×20≈8.333>7.879, 所以在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关.答案: 0.5%三、解答题8.为了调查胃病是否与生活规律有关, 在某地对540名40岁以上的人进行了调查, 结果是: 患胃病者生活不规律的共60人, 患胃病者生活规律的共20人, 未患胃病者生活不规律的共260人, 未患胃病者生活规律的共200人.(1)根据以上数据列出2×2列联表;(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗? 为什么?解: (1)由已知可列2×2列联表:(2)k =540×(20×260-200×60)2220×320×80×460≈9.638.因为9.638>6.635,所以在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关.9.某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系, 随机抽取了189名员工进行调查, 所得数据如下表所示:解: 计算K 2的观测值k = 189×(54×63-32×40)294×95×86×103≈10.759.由于10.759>7.879, 所以在犯错误的概率不超过0.005的前提下, 可以认为企业的全体员工对待企业改革的态度与其工作积极性是有关的.课时作业33一、选择题1.下列关于归纳推理的说法错误..的是()A.归纳推理是由一般到一般的推理过程B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论不一定正确D.归纳推理具有由具体到抽象的认识功能解析: 由归纳推理的定义与特征可知选项A错误, 选项B, C, D均正确, 故选A. 答案: A2.定义A*B, B*C, C*D, D*B依次对应下列4个图形:那么下列4个图形中,可以表示A*D, A*C的分别是()A. 1,2B. 1,3C. 2,4D. 1,4解析: 由①②③④可归纳得出: 符号“*”表示图形的叠加, 字母A代表竖线, 字母B代表大矩形, 字母C代表横线, 字母D代表小矩形, ∴A*D是图2, A*C是图4.答案: C3.观察下列数表规律则数2014的箭头方向是()解析: 因上行偶数是首项为2, 公差为4的等差数列, 若2014在上行, 则2014=2+(n -1)·4⇒n =504∈N *.故2014在上行, 又因为在上行偶数的箭头为, 故选A.答案: A4.观察(x 2)′=2x , (x 4)′=4x 3, (cos x )′=-sin x , 由归纳推理可得: 若定义在R 上的函数f (x )满足f (-x )=f (x ), 记g (x )为f (x )的导函数, 则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )解析: 本题考查了推理证明及函数的奇偶性内容, 由例子可看出偶函数求导后都变成了奇函数,∴g (-x )=-g (x ), 选D, 体现了对学生观察能力, 概括归纳推理的能力的考查. 答案: D 二、填空题5.观察下列等式: 13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2, …根据上述规律, 第四个等式.....为__________. 解析: 13+23=(1+2)2,13+23+33=(1+2+3)2, …, 所以13+23+33+43+53=(1+2+3+4+5)2. 答案: 13+23+33+43+53=(1+2+3+4+5)26.设{a n }是首项为1的正数项数列, 且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *), 经归纳猜想可得这个数列的通项公式为__________.解析: 由首项为1, 得a 1=1;由n =1时, 由2a 22-1+a 2=0, 得a 2=12; 当n =2时, 由3a 23-2(12)2+12a 3=0,即6a 23+a 3-1=0, 解得a 3=13; …归纳猜想该数列的通项公式为a n =1n (n ∈N *).答案: a n =1n(n ∈N *)7.[2013·湖北高考]古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10, …, 第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n , k )(k ≥3), 以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n ,............可推测N (n , k )的表达式, 由此计算N (10,24)=________.解析: 首先将三、四、五、六边形数中第n 个数的表达式分别通分, 化成分母统一为2的形式如下:三角形数: N (n,3)=12n 2+12n =n 2+n2=(3-2)n 2+(4-3)n2;正方形数: N (n,4)=n 2=(4-2)n 2+(4-4)n2;五边形数: N (n,5)=3n 22-12n =(5-2)n 2+(4-5)n 2;六边形数: N (n,6)=2n 2-n =4n 2-2n2=(6-2)n 2+(4-6)n2;....根据以上规律总结, 推测: N (n , k )=(k -2)n 2+(4-k )n2.故N (10,24)=(24-2)×102+(4-24)×102=1000.答案: 1000三、解答题8.已知数列{a n }满足条件(n -1)a n +1=(n +1)·a n -n -1, 且a 2=6, 设b n =a n +n (n ∈N *), 猜想数列{b n }的通项公式.解: a 1=1, a 2=6, a 3=15, a 4=28, b 1=2, b 2=8, b 3=18, b 4=32.可以通过求数列{a n }的通项公式来求数列{b n }的通项公式. 我们发现a 1=1=1×1; a 2=6=2×3; a 3=15=3×5; a 4=28=4×7; …, 猜想a n =n ×(2n -1), 进而猜想b n =2n 2-n +n =2n 2. 9.观察下列各式:sin 230°+cos 260°+sin30°cos60°=34;sin 240°+cos 270°+sin40°cos70°=34;sin 215°+cos 245°+sin15°cos45°=34,分析以上各式的共同特点, 根据其特点写出能反映一般规律的等式, 并对等式是否正确加以证明.解: 反映一般规律的等式是:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.(表达形式不唯一)该等式是正确的, 证明如下: sin 2α+cos 2(α+30°)+sin αcos(α+30°)=sin 2α+(cos αcos30°-sin αsin30°)2+sin α(cos αcos30°-sin αsin30°) =sin 2α+⎝⎛⎭⎫32cos α-12sin α2+32sin α·cos α-12sin 2α =sin 2α+34cos 2α+14sin 2α-32sin αcos α+32sin αcos α-12sin 2α=34(sin 2α+cos 2α)=34.课时作业34一、选择题1.下列平面图形中, 与空间中的平行六面体作为类比对象较为合适的是()A.三角形B.梯形C.平行四边形D.矩形解析: 只有平行四边形与平行六面体较为接近.答案: C2.类比平面内正三角形的“三边相等, 三内角相等”的性质, 可推知正四面体的下列哪些性质, 你认为比较恰当的是()①各棱长相等, 同一顶点上的任两条棱的夹角都相等②各个面都是全等的正三角形, 相邻两个面所成的二面角都相等③各个面都是全等的正三角形, 同一顶点上的任两条棱的夹角都相等A.①B.①②C.①②③D.③解析: 正四面体的面(或棱)可与正三角形的边类比, 正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比, 故①②③都对.答案: C3.把下面在平面内成立的结论类比地推广到空间, 结论仍然正确的是()A.如果一条直线与两条平行线中的一条相交, 则也与另一条相交B.如果一条直线与两条平行线中的一条垂直, 则也与另一条垂直C.如果两条直线同时与第三条直线相交, 则这两条直线相交或平行D.如果两条直线同时与第三条直线垂直, 则这两条直线平行解析: 推广到空间以后, 对于A, 还有可能异面, 对于C还有可能异面, 对于D, 还有可能异面.答案: B4.已知结论: “在正三角形ABC 中, 若D 是BC 边的中点, G 是三角形ABC 的重心, 则AGGD=2”.若把该结论推广到空间, 则有结论: 在棱长都相等的四面体A -BCD 中, 若ΔBCD 的中心为M , 四面体内部一点O 到四面体各面的距离都相等, 则AOOM=( )A. 1B. 2C. 3D. 4解析: 面的重心类比几何体重心, 平面类比空间, AG GD =2类比AO OM =3, 故选C. 答案: C 二、填空题5.在平面直角坐标系xOy 中, 二元一次方程Ax +By =0(A , B 不同时为0)表示过原点的直线.类似地: 在空间直角坐标系O -xyz 中, 三元一次方程Ax +By +Cz =0(A , B , C 不同时为0)表示__________________.解析: 由方程的特点可知: 平面几何中的直线类比到立体几何中应为平面, “过原点”类比仍为“过原点”, 因此应得到: 在空间直角坐标系O -xyz 中, 三元一次方程Ax +By +Cz =0(A , B , C 不同时为0)表示过原点的平面.答案: 过原点的平面6.[2014·潍坊质检]在平面几何中有如下结论: 若正三角形ABC 的内切圆面积为S 1, 外接圆面积为S 2, 则S 1S 2=14.推广到空间几何可以得到类似结论: 若正四面体A -BCD 的内切球体积为V 1, 外接球体积为V 2, 则V 1V 2=________.解析: 平面几何中, 圆的面积与圆半径的平方成正比, 而在空间几何中, 球的体积与半径的立方成正比, 设正四面A -BCD 的棱长为a , 可得其内切球的半径为612a , 外接球的半径为64a , 则V 1V 2=127. 答案:1277.给出下列推理:(1)三角形的内角和为(3-2)·180°, 四边形的内角和为(4-2)·180°, 五边形的内角和为(5-2)·180°, …所以凸n 边形的内角和为(n -2)·180°;(2)三角函数都是周期函数, y =tan x 是三角函数, 所以y =tan x 是周期函数;(3)狗是有骨骼的; 鸟是有骨骼的; 鱼是有骨骼的; 蛇是有骨骼的; 青蛙是有骨骼的, 狗、鸟、鱼、蛇和青蛙都是动物, 所以, 所有的动物都是有骨骼的;(4)在平面内如果两条直线同时垂直于第三条直线, 则这两条直线互相平行, 那么在空间中如果两个平面同时垂直于第三个平面, 则这两个平面互相平行.其中属于合情推理的是__________.(填序号)解析: 根据合情推理的定义来判断.因为(1)(3)都是归纳推理, (4)是类比推理, 而(2)不符合合情推理的定义, 所以(1)(3)(4)都是合情推理.答案: (1)(3)(4) 三、解答题8.在公差为3的等差数列{a n }中, 若S n 是{a n }的前n 项和, 则有S 20-S 10, S 30-S 20, S 40-S 30也成等差数列, 且公差为300.类比上述结论, 相应的在公比为4的等比数列{b n }中, 若T n 是b n 的前n 项积, 试得出类似结论并证明.解: 类比等差数列可得等比数列对应性质:在公比为4的等比数列{b n }中, T n 表示b n 的前n 项积, 则T 20T 10, T 30T 20, T 40T 30也成等比数列且公比为4100.证明如下: T n =b 1b 2…b n =b 1·b 1q ·b 1q 2…b 1q n -1=b n 1q0+1+2+…+(n -1)==,∴T 10=b 101·445, T 20=b 2014190, T 30=b 3014435, T 40=b 4014780. ∴T 20T 10=b 101·4145, T 30T 20=b 1014245, T 40T 30=b 1014345. 而b 1014245b 1014145=4100, b 1014345b 1014245=4100, ∴T 20T 10, T 30T 20, T 40T 30是以4100为公比的等比数列. 9.已知椭圆具有性质: 若M , N 是椭圆C 上关于原点对称的两个点, 点P 是椭圆上任意一点, 当直线PM , PN 的斜率都存在, 并记为k PM , k PN 时, k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似特征的性质, 并加以证明.解: 类似的性质为: 若M , N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点, 点P 是双曲线上任意一点, 当直线PM , PN 的斜率都存在, 并记为k PM , k PN 时, 那么k PM 与k PN 之积是与点P 的位置无关的定值.证明: 设点M , P 的坐标分别为(m , n ), (x , y ), 则N (-m , -n ).因为点M (m , n )在已知的双曲线上, 所以n 2=b 2a 2m 2-b 2, 同理, y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).课时作业35一、选择题1.已知在△ABC 中, ∠A =30°, ∠B =60°, 求证: a <b . 证明:∵∠A =30°,∠B =60°,∴∠A <∠B .∴a <b .画框格部分是演绎推理的( ) A .大前提 B .小前提 C .结论D .三段论解析: 本题应用了三段论.大前提是大角对大边, 小前提是∠A <∠B .故选B. 答案: B2.下面几种推理是演绎推理的是( )A. 全等三角形的对应角相等, 如果△ABC ≌△A ′B ′C ′, 则A =A ′B. 某校高三(1)班有55人, (2)班有54人, (3)班有52人, 由此得高三各班的人数均超过50人C. 由平面内三角形的性质, 推测空间中四面体的性质D. 在数列{a n }中, a 1=1, a n =12(a n -1+1a n -1)(n ≥2), 由此猜想出{a n }的通项公式解析: B 项是归纳推理, C 项是类比推理, D 项是归纳推理. 答案: A3.指数函数都是增函数, 大前提 函数y =(1e )x 是指数函数, 小前提所以函数y =(1e )x 是增函数.结论上述推理错误的原因是( ) A. 大前提不正确B. 小前提不正确C. 推理形式不正确D. 大、小前提都不正确解析: 大前提错误.因为指数函数y =a x (a >0且a ≠1). 在a >1时是增函数, 而在0<a <1时为减函数.故选A. 答案: A4.在R 上定义运算⊗: x ⊗y =x (1-y ), 若不等式(x -a )⊗(x +a )<1对任意实数x 都成立, 则( )A. -1<a <1B. 0<a <2C. -12<a <32D. -32<a <12解析: (x -a )⊗(x +a )<1对任意x 恒成立 ⇔(x -a )[1-(x +a )]<1对任意x 恒成立 ⇔x 2-x -a 2+a +1>0对任意x 恒成立 ⇔Δ=1-4(-a 2+a +1)<0⇔-12<a <32.答案: C 二、填空题5.已知推理: “因为△ABC 的三边长依次为3,4,5, 所以△ABC 是直角三角形”.若将其恢复成完整的三段论, 则大前提是________.解析: 大前提: 一条边的平方等于其他两条边的平方和的三角形是直角三角形; 小前提: △ABC 的三边长依次为3,4,5满足32+42=52; 结论: △ABC 是直角三角形.答案: 一条边的平方等于其他两条边的平方和的三角形是直角三角形6.若不等式ax 2+2ax +2<0的解集为空集, 则实数a 的取值范围为________.解析: ①a =0时, 有2<0, 显然此不等式解集为∅.②a ≠0时须有⎩⎪⎨⎪⎧ a >0,Δ≤0,⇒⎩⎪⎨⎪⎧a >0,4a 2-8a ≤0,⇒⎩⎪⎨⎪⎧a >0,0≤a ≤2. ∴0<a ≤2.综上可知实数a 的取值范围是[0,2]. 答案: [0,2]7.有些导演留大胡子, 因此, 有些留大胡子的人是大嗓门, 为使上述推理成立, 请补充大前提________________.解析: 利用“三段论”推理. 大前提: 所有导演是大嗓门, 小前提: 有些导演留大胡子, 结论: 有些留大胡子的人是大嗓门. 答案: 所有导演是大嗓门 三、解答题8.如下图所示, 在梯形ABCD 中, AB =DC =AD , AC 和BD 是对角线.求证: CA 平分∠BCD .证明: 等腰三角形两底角相等(大前提), △DAC 是等腰三角形, DA , DC 是两腰(小前提), ∴∠1=∠2(结论).两条平行线被第三条直线所截得的内错角相等(大前提), ∠1和∠3是平行线AD , BC 被AC 截出的内错角(小前提), ∴∠1=∠3(结论).等于同一个量的两个量相等(大前提),∠2和∠3都等于∠1(小前提),∴∠2=∠3(结论),即CA平分∠BCD.9.(1)证明函数f(x)=-x2+2x在(-∞, 1]上是增函数;(2)判断函数f(x)=-x2+2x在区间[-5, -2]上的单调性, 并加以证明.(1)证法一: 任取x1, x2∈(-∞, 1], x1<x2,则f(x1)-f(x2)=(x2-x1)(x2+x1-2),∵x1<x2≤1,∴x2+x1-2<0.∴f(x1)-f(x2)<0, ∴f(x1)<f(x2).于是, 根据“三段论”可知,f(x)=-x2+2x在(-∞, 1]上是增函数.证法二: ∵f′(x)=-2x+2=-2(x-1),当x∈(-∞, 1)时, x-1<0,∴-2(x-1)>0.∴f′(x)>0在x∈(-∞, 1)上恒成立.故f(x)在(-∞, 1]上是增函数.(2)解: f(x)在区间[-5, -2]上单调递增, 证明如下:∵由(1)可知f(x)在(-∞, 1]上是增函数,而[-5, -2]是区间(-∞, 1]的子区间,∴f(x)在[-5, -2]上是增函数.课时作业36一、选择题1.命题“对于任意角θ, cos4θ-sin4θ=cos2θ”的证明: “cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”, 其过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.间接证法解析: 从证明过程来看, 是从已知条件入手, 经过推导得出结论, 符合综合法的证明思路.答案: B2.欲证2-3<6-7成立, 只需证()A. (2-3)2<(6-7)2B. (2-6)2<(3-7)2C. (2+7)2<(3+6)2D. (2-3-6)2<(-7)2解析: A中, 2-3<0, 6-7<0平方后不等价; B、D与A情况一样; 只有C项, 2-3<6-7⇔2+7<6+3⇔(2+7)2<(6+3)2.故选C.答案: C3.在△ABC中, A>B是cos2B>cos2A的()A.既不充分也不必要条件B.充分不必要条件C.充要条件D .必要不充分条件解析: ∵A >B ⇔a >b ⇔sin A >sin B (由正弦定理得), 又cos2B >cos2A ⇔1-2sin 2B >1-2sin 2A ⇔sin 2B <sin 2A ⇔sin B <sin A .∴A >B ⇔cos2B >cos2A .故选C. 答案: C4.已知a 、b 、c 、d 为正实数, 且a b <cd , 则( )A. a b <a +c b +d <c dB.a +cb +d <a b <cdC. a b <c d <a +c b +dD. 以上均可能解析: 先取特值检验, ∵a b <cd ,可取a =1, b =3, c =1, d =2, 则a +cb +d =25, 满足a b <a +c b +d <cd .∴B 、C 不正确.要证a b <a +c b +d , ∵a 、b 、c 、d 为正实数,∴只需证a (b +d )<b (a +c ), 即证ad <bc . 只需证a b <c d .而a b <cd 成立,∴a b <a +cb +d .同理可证a +c b +d <c d . 故A 正确, D 不正确. 答案: A 二、填空题5.设n ∈N , a =n +4-n +3, b =n +2-n +1, 则a , b 的大小关系是________. 解析: 要比较n +4-n +3与n +2-n +1的大小, 即判断(n +4-n +3)-(n +2-n +1)=(n +4+n +1)-(n +3+n +2)的符号, ∵(n +4+n +1)2-(n +3+n +2)2 =2[(n +4)(n +1)-(n +3)(n +2)] =2(n 2+5n +4-n 2+5n +6)<0, ∴n +4-n +3<n +2-n +1. 答案: a <b6.已知p =a +1a -2(a >2), q =2-a 2+4a -2(a >2), 则p 与q 的大小关系是________. 解析: p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2, ∴q <22=4≤p . 答案: p >q7.若不等式(-1)na <2+(-1)n +1n 对任意正整数n 恒成立, 则实数a 的取值范围是________.解析: 当n 为偶数时, a <2-1n , 而2-1n ≥2-12=32, ∴a <32.当n 为奇数时, a >-2-1n , 而-2-1n <-2,∴a ≥-2.综上可得-2≤a <32.答案: [-2, 32)三、解答题8.设a , b >0, 且a ≠b , 求证: a 3+b 3>a 2b +ab 2. 证明: 综合法a ≠b ⇒a -b ≠0⇒(a -b )2>0 ⇒a 2-2ab +b 2>0⇒a 2-ab +b 2>ab . 注意到a , b ∈R +, a +b >0, 由上式即得 (a +b )(a 2-ab +b 2)>ab (a +b ). ∴a 3+b 3>a 2b +ab 2.9.证明: 若a >b >c 且a +b +c =0, 则b 2-aca < 3.证明: ∵a >b >c 且a +b +c =0, ∴a >0, c <0. 要证b 2-ac a <3,只需证b 2-ac <3a , 即证b 2-ac <3a 2. 因为b =-a -c ,故只需证(a +c )2-ac <3a 2, 即证2a 2-ac -c 2>0, 即证(2a +c )(a -c )>0.∵2a+c>a+b+c=0, a-c>0,∴(2a+c)(a-c)>0成立.∴原不等式成立.课时作业37一、选择题1.否定结论“至多有两个解”的说法中, 正确的是()A.有一个解B.有两个解C.至少有三个解D.至少有两个解解析: 在逻辑中“至多有n个”的否定是“至少有n+1个”, 所以“至多有两个解”的否定为“至少有三个解”, 故应选C.答案: C2.设a, b, c为正实数, P=a+b-c, Q=b+c-a, R=c+a-b, 则“PQR>0”是“P, Q, R 同时大于零”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析: 首先若P, Q, R同时大于零, 则必有PQR>0成立.其次, 若PQR>0, 则P, Q, R同时大于零或其中两个负数一个正数, 不妨假设P<0, Q<0, ∴a+b-c<0, b+c-a<0, ∴b<0与b 为正实数矛盾, 故P , Q , R 都大于0.故选C.答案: C3.已知f (x )是R 上的增函数, a , b ∈R , 下列四个命题: ①若a +b ≥0, 则f (a )+f (b )≥f (-a )+f (-b ); ②若f (a )+f (b )≥f (-a )+f (-b ), 则a +b ≥0; ③若a +b <0, 则f (a )+f (b )<f (-a )+f (-b ); ④若f (a )+f (b )<f (-a )+f (-b ), 则a +b <0. 其中真命题的个数为( ) A. 1 B. 2 C. 3D. 4解析: 易知①③正确.②用反证法: 假设a +b <0, 则a <-b , b <-a , ∴f (a )<f (-b ), f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b )与条件矛盾, 故a +b ≥0, 从而②为真命题, ④类似于②用反证法.故选D.答案: D4.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值, 则( ) A. △A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B. △A 1B 1C 1和△A 2B 2C 2都是钝角三角形C. △A 1B 1C 1是钝角三角形, △A 2B 2C 2是锐角三角形D. △A 1B 1C 1是锐角三角形, △A 2B 2C 2是钝角三角形解析: 因为正弦值在(0°, 180°)内是正值, 所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形, 并设cos A 1=sin A 2, 则cos A 1=cos(90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2, cos C 1=sin C 2, 则有∠B 1=90°-∠B 2, ∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,∴(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾, 所以原假设不成立.故选D. 答案: D 二、填空题5.用反证法证明“f (x )=x 2+px +q , 求证: |f (1)|, |f (2)|, |f (3)|中至少有一个不小于12”时的假设为________.解析: “至少有一个”的反设词为“一个也没有”. 答案: 假设|f (1)|, |f (2)|, |f (3)|都小于126.用反证法证明“一个三角形不能有两个钝角”有三个步骤: ①∠A +∠B +∠C >180°, 这与三角形内角和为180°矛盾, 故假设错误. ②所以一个三角形不能有两个钝角.③假设△ABC 中有两个钝角, 不妨设∠A >90°, ∠B >90°. 上述步骤的正确顺序为__________.解析: 根据反证法知, 上述步骤的正确顺序应为③①②. 答案: ③①②7.若下列两个方程x 2+(a -1)x +a 2=0, x 2+2ax -2a =0中至少有一个方程有实根, 则实数a 的取值范围是______.解析: 假设两个一元二次方程均无实根, 则有⎩⎪⎨⎪⎧Δ1=(a -1)2-4a 2<0,Δ2=(2a )2-4(-2a )<0,即⎩⎪⎨⎪⎧3a 2+2a -1>0,a 2+2a <0,解得{a |-2<a <-1}, 所以其补集{a |a ≤-2或a ≥ -1}即为所求的a 的取值范围. 答案: {a |a ≤-2或a ≥-1} 三、解答题8.设{a n }, {b n }是公比不相等的两个等比数列, c n =a n +b n , 证明数列{c n }不是等比数列. 证明: 假设数列{c n }是等比数列, 利用{a n }, {b n }是公比不相等的等比数列的条件推出矛盾, 即知假设不成立.假设数列{c n }是等比数列, 则(a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①∵{a n }, {b n }是公比不相等的两个等比数列, 设公比分别为p , q , ∴a 2n =a n -1a n +1, b 2n =b n -1b n +1.代入①并整理, 得2a n b n =a n +1b n -1+a n -1b n +1=a n b n (p q +q p ),即2=p q +q p.②当p , q 异号时, p q +qp<0, 与②相矛盾;当p , q 同号时, 由于p ≠q , ∴p q +qp >2, 与②相矛盾.故数列{c n }不是等比数列.9.已知a , b , c 是互不相等的实数, 求证: 由y =ax 2+2bx +c , y =bx 2+2cx +a 和y =cx 2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.证明: 假设题设中的函数确定的三条抛物线都不与x轴有两个不同的交点.由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b,得Δ1=(2b)2-4ac≤0,且Δ2=(2c)2-4ab≤0,且Δ3=(2a)2-4bc≤0.同向不等式求和得4b2+4c2+4a2-4ac-4ab-4bc≤0,∴2a2+2b2+2c2-2ab-2bc-2ac≤0.∴(a-b)2+(b-c)2+(a-c)2≤0.∴a=b=c.这与题设a, b, c互不相等矛盾,因此假设不成立, 从而命题得证.课时作业38一、选择题1.下列各数中, 纯虚数的个数是()3+7, 23i,0i,8+3i, (2+3)i,0.618A. 0B. 1C. 2D. 3解析: 根据纯虚数的定义知, 23i, (2+3)i 是纯虚数.答案: C2.复数(1+3)i 的虚部是( ) A .1 B. 3 C .0D .1+ 3解析: (1+3)i 为纯虚数, 故虚部为1+ 3. 答案: D3.下列命题中, 正确命题的个数是( )①若x , y ∈C , 则x +y i =1+i 的充要条件是x =y =1; ②若a , b ∈R 且a >b , 则a +i>b +i; ③若x 2+y 2=0, 则x =y =0. A .0 B .1 C .2D .3 解析: ①由于x , y ∈C ,所以x +y i 不一定是复数的代数形式, 不符合复数相等的充要条件, ①是假命题. ②由于两个虚数不能比较大小, ∴②是假命题. ③当x =1, y =i 时, x 2+y 2=0成立, ∴③是假命题. 答案: A4.若sin2θ-1+i(2cos θ+1)是纯虚数, 则θ的值为( ) A .2k π-π4B .2k π+π4C .2k π±π4D.k π2+π4(以上k ∈Z ) 解析: 由⎩⎨⎧sin2θ-1=0,2cos θ+1≠0,得⎩⎨⎧2θ=2k π+π2,θ≠2k π+π±π4(k ∈Z ).∴θ=2k π+π4(k ∈Z ).答案: B 二、填空题5.若复数(a 2-a -2)+(|a -1|-1)i(a ∈R )不是纯虚数, 则a 的取值范围是________.解析: 若复数为纯虚数, 则有⎩⎪⎨⎪⎧|a -1|-1≠0,a 2-a -2=0,即⎩⎪⎨⎪⎧a ≠0且a ≠2,a =2或a =-1,∴a =-1.故复数不是纯虚数时a ≠-1. 答案: (-∞, -1)∪(-1, +∞)6.若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1, 则实数x 的值(或取值范围)是________.解析: 由题意知⎩⎪⎨⎪⎧log 2(x 2+2x +1)=0,log 2(x 2-3x -2)>1.解得x =-2.答案: -27.已知2x -1+(y +1)i =x -y +(-x -y )i, 则实数x 、y 的值分别为________、________. 解析: 由复数相等的充要条件知⎩⎪⎨⎪⎧ 2x -1=x -y ,y +1=-x -y ,解得⎩⎪⎨⎪⎧x =3,y =-2. 答案: 3 -2 三、解答题8.已知M ={1, (m 2-2m )+(m 2+m -2)i}, P ={-1,1,4i}, 若M ∪P =P , 求实数m 的值. 解: ∵M ∪P =P , ∴M ⊆P .即(m 2-2m )+(m 2+m -2)i =-1或(m 2-2m )+(m 2+m -2)i =4i. 由(m 2-2m )+(m 2+m -2)i =-1得⎩⎪⎨⎪⎧ m 2-2m =-1,m 2+m -2=0,解得m =1; 由(m 2-2m )+(m 2+m -2)i =4i 得⎩⎪⎨⎪⎧m 2-2m =0,m 2+m -2=4,解得m =2. 综上可知m =1或m =2.9.当实数m 为何值时, z =m 2-m -6m +3+(m 2+5m +6)i 分别是: (1)实数; (2)虚数; (3)纯虚数.解: 复数z 的实部为m 2-m -6m +3, 虚部为m 2+5m +6.(1)复数z 是实数的充要条件是:⎩⎪⎨⎪⎧ m 2+5m +6=0,m +3≠0⇔⎩⎪⎨⎪⎧m =-2或m =-3,m ≠-3⇔m =-2.∴当m =-2时复数z 为实数. (2)复数z 是虚数的充要条件是:⎩⎪⎨⎪⎧m 2+5m +6≠0,m +3≠0,即m ≠-3且m ≠-2. ∴当m ≠-3且m ≠-2时复数z 为虚数. (3)复数z 是纯虚数的充要条件是:⎩⎪⎨⎪⎧m 2-m -6m +3=0,m 2+5m +6≠0⇔⎩⎪⎨⎪⎧m =-2或m =3且m ≠-3,m ≠-2且m ≠-3 ⇔m =3.∴当m =3时复数z 为纯虚数.课时作业39一、选择题1.若32<m <2, 则复数z =(2m -2)+(3m -7)i 在复平面上对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限解析: ∵32<m <2, ∴2m -2>0,3m -7<0.∴复数z =(2m -2)+(3m -7)i 在复平面上对应的点位于第四象限. 答案: D2.已知复数z =a +3i(a ∈R )在复平面内对应的点位于第二象限, 且|z |=2, 则复数z 等于( )A .-1+3iB .1+3iC .-1+3i 或1+3iD .-2+3i解析: 因为z 在复平面内对应的点位于第二象限, 所以a <0. 由|z |=2知,a 2+(3)2=2, 解得a =±1.故a =-1, 所以z =-1+3i. 答案: A3.复平面内, 向量OA →表示的复数为1+i, 将OA →向右平移一个单位后得到向量O ′A ′―――→, 则向量O ′A ′―――→与点A ′对应的复数分别为( )A .1+i,1+iB .2+i,2+iC .1+i,2+iD .2+i,1+i解析: ∵OA →表示复数1+i, ∴点A (1,1),将OA →向右平移一个单位, 将O ′A ′―――→对应1+i, A ′(2,1), ∴点A ′对应复数2+i. 故选C. 答案: C4.已知0<a <2, 复数z 的实部为a , 虚部为1, 则|z |的取值范围是( ) A .(1, 3) B .(1, 5) C .(1,3)D .(1,5) 解析: ∵|z |=a 2+1, a ∈(0,2), ∴|z |∈(1, 5).故选B. 答案: B。
(人教A版)高中数学选修1-2(全册)课时同步练习汇总
(人教A版)高中数学选修1-2(全册)课时同步练习汇总[课时作业][A组基础巩固]1.观察下列各式:72=49,73=343,74=2401,…,则72 015的末两位数字为()A.01B.43C.07 D.49解析:因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…,所以这些数的末两位数字呈周期性出现,且周期T=4.又2 015=4×503+3,所以72 015的末两位数字与73的末两位数字相同,为43.答案:B2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③C.①②④D.②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( ) A .a 1a 2a 3…a 9=29 B .a 1+a 2+…+a 9=29 C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:等比数列中积――→类比等差数列中的和 ∴a 1+a 2+…+a 9=2×9. 答案:D4.定义A *B ,B *C ,C *D ,D *B 依次对应4个图形:那么4个图表中,可以表示A *D ,A *C 的分别是( ) A .(1),(2)B .(1),(3)C .(2),(4)D .(1),(4)解析:由①②③④可归纳得出:符号“*”表示图形的叠加,字母A 代表竖线,字母B 代表大矩形,字母C 代表横线,字母D 代表小矩形,∴A *D 是(2),A *C 是(4). 答案:C5.n 个连续自然数按规律排列下表:根据规律,从2 015到2 017箭头的方向依次为( ) A .↓→ B .→↑ C .↑→D .→↓解析:观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由可知从2015到2 017为→↓,故应选D. 答案:D6.把1,3,6,10,15,21,…这些数叫作三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图),试求第七个三角形数是________.解析:观察知第n 个三角形数为1+2+3+…+n =n (n +1)2,∴第7个三角形数为7×(7+1)2=28.答案:287.在平面上,若两个正三角形的边长比为1∶2.则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h 113S 2h 2=S 1S 2·h 1h 2=14×12=18.答案:1∶88.设函数f (x )=xx +2(x >0),观察:f 1(x )=f (x )=x x +2, f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________. 解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…可知f n (x )的分母中常数项为2n ,分母中x 的系数为2n -1,故f n (x )=x(2n -1)x +2n .答案:x(2n -1)x +2n9.在平面几何里,有勾股定理:“设△ABC 的两边AB ,AC 互相垂直,则AB 2+AC 2=BC 2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系, 给出正确结论.解析:由平面直角三角形类比空间三棱锥由边垂直――→类比侧面垂直.直角三角形的“直角边长、斜边长”类比“三棱锥的侧面积、底面积”,因此类比的结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ABD 两两相互垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD ”.10.已知数列{a n }的第1项a 1=1,且a n +1=a n1+a n (n =1,2,…),试归纳出这个数列的通项公式.解析:当n =1时,a 1=1 当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为:a n =1n(n =1,2,…). [B 组 能力提升]1.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=a ,a 2=b ,设S n =a 1+a 2+…+a n ,则下列结论正确的是( ) A .a 100=-a ,S 100=2b -a B .a 100=-b ,S 100=2b -a C . a 100=-b ,S 100=b -a D .a 100=-a ,S 100=b -a解析:∵a 1=a ,a 2=b ,a 3=b -a ,a 4=-a ,a 5=-b ,a 6=a -b . 且a 7=a 6-a 5=a ,a 8=b ,…,∴数列{a n }具有周期性,周期为6,且S 6=0 则a 100=a 4=-a ,S 100=S 4=2b -a . 答案:A2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任意两条棱的夹角相等; ②各个面是全等的正三角形,相邻的两个面所成的二面角相等; ③各个面是全等的正三角形,同一顶点上的任意两条棱的夹角相等; ④各棱长相等,相邻的两个面所成的二面角相等. A .①④ B .①② C .①③D .③④解析:类比推理的原则是:类比前后保持类比规则的一致性,而③④违背了这一原则,只有①②符合. 答案:B3.已知x >0,由不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…我们可以得出推广结论:x +axn ≥n +1(n ∈N *),则a =________.解析:由观察可得:x +a x n =n x xx n n n ++个式子+axn ≥(n +1)·n +1x n ·x n ·…x n ·a x n =(n +1)·n +1a n n =n +1,则a =n n . 答案:n n4.已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m ,n 都成立的条件不等式________.解析:观察所给不等式可以发现:不等式左边两个根式的被开方数的和等于20,不等式的右边都是210,因此对正实数m ,n 都成立的条件不等式是:若m ,n ∈R +,则当m +n =20时,有m +n <210.答案:若m ,n ∈R +,则当m +n =20时,有m +n <210 5.观察下列等式:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想? 并证明你的猜想.解析:由①②知,两角相差30°,运算结果为34,猜想:sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=1-cos 2α2+1+cos (2α+60°)2+sin αcos(α+30°)=1-cos 2α2+cos 2αcos 60°-sin 2αsin 60°2+sin α⎝⎛⎭⎫32cos α-sin α2 =1-12cos 2α+14cos 2α-34sin 2α+34sin 2α-1-cos 2α4=34=右边故sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.6.已知椭圆具有以下性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似的性质,并加以证明.解析:类似的性质为:若M 、N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM 、PN 的斜率都存在,并记为k PM 、k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M 、P 的坐标为(m ,n )、(x ,y ),则 N (-m ,-n ).∵点M (m ,n )在已知双曲线上, ∴n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2. 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).[课时作业] [A 组 基础巩固]1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数.以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:函数f (x )=sin(x 2+1)不是正弦函数,故小前提不正确. 答案:C2.已知△ABC 中,∠A =30°,∠B =60°,求证a <b .证明:∵∠A =30°,∠B =60°,∴∠A <∠B ,∴a <b ,画线部分是演绎推理的( ) A .大前提 B .小前提 C .结论D .三段论解析:结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提. 答案:B3.“因为四边形ABCD 是矩形,所以四边形ABCD 的对角线相等”,补充以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形 答案:B4.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C .由三角形的性质,推测四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),由此归纳出a n 的通项公式 解析:B 、C 、D 是合情推理,A 为演绎推理. 答案:A5.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( ) A .类比推理 B .归纳推理 C .演绎推理D .一次三段论解析:这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式. 答案:C6.下面几种推理:①两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°;②某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人; ③由平面三角形的性质,推测空间四面体的性质;④在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式其中是演绎推理的是________.解析:①是三段论,②④是归纳推理,③是类比推理. 答案:①7.若不等式ax 2+2ax +2<0的解集为空集,则实数a 的取值范围为________. 解析:①a =0时,有2<0,显然此不等式解集为∅.②a ≠0时需有⎩⎪⎨⎪⎧ a >0,Δ≤0,⇒⎩⎪⎨⎪⎧ a >0,4a 2-8a ≤0,⇒⎩⎪⎨⎪⎧a >0,0≤a ≤2,所以0<a ≤2.综上可知实数a 的取值范围是[0,2]. 答案:[0,2]8.求函数y =log 2x -2的定义域时,第一步推理中大前提是a 有意义时,a ≥0,小前提是log 2x -2有意义,结论是________.解析:由三段论方法知应为log2x-2≥0.答案:log2x-2≥09.如图所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥F A,求证:ED =AF.证明:同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以DF∥EA.结论两组对边分别平行的四边形是平行四边形,大前提DE∥F A,且DF∥EA,小前提所以四边形AFDE为平行四边形.结论平行四边形的对边相等,大前提ED和AF为平行四边形的一组对边,小前提所以ED=AF.结论10.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0.对任意正数a,b,若a<b,求证:af(b)<bf(a).证明:构造函数F(x)=xf(x),则F′(x)=xf′(x)+f(x).由题设条件知F (x)=xf(x)在(0,+∞)上单调递减.若0<a<b,则F(a)>F(b),即af(a)>bf(b).又f(x)是定义在(0,+∞)上的非负可导函数,∴af(a)<bf(a),且bf(b)>af(b).所以bf(a)>af(b).[B组能力提升]1.设a >0,b >0,a +b ≥2ab ,大前提 x +1x≥2x ·1x,小前提 所以x +1x≥2.结论以上推理过程中的错误为( ) A .大前提 B .小前提 C .结论D .无错误解析:小前提中“x >0”条件不一定成立,不满足利用基本不等式的条件. 答案:B2.已知函数f (x )=|sin x |的图象与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,令A =12sin2α,B =1+α24α,则( )A .A >B B .A <BC .A =BD .A 与B 的大小不确定解析:作y =kx 及f (x )=|sin x |的图象依题意,设y =kx 与y =f (x )相切于点M 设M (α,|sin α|),α∈(π,32π).由导数的几何意义,f ′(α)=|sin α|α,则-cos α=-sin αα,∴α=tan α. 由A =12sin 2α=sin 2α+cos 2α4sin αcos α=tan 2α+14tan α∴A =1+α24α=B .答案:C3.由“(a 2+a +1)x >3,得x >3a 2+a +1”的推理过程中,其大前提是________.解析:写成三段论的形式:不等式两边同除以一个正数,不等号方向不变大前提 (a 2+a +1)x >3,a 2+a +1>0小前提 x >3a 2+a +1结论 答案:不等式两边同除以一个正数,不等号方向不变.4.已知函数f (x )满足:f (1)=14,4f (x )f (y )=f (x +y )+f (x -y )(x ,y ∈R),则f (2 016)=________.解析:令y =1得4f (x )·f (1)=f (x +1)+f (x -1),即f (x )=f (x +1)+f (x -1)① 令x 取x +1则f (x +1)=f (x +2)+f (x )②由①②得f (x )=f (x +2)+f (x )+f (x -1),即f (x -1)=-f (x +2) ∴f (x )=-f (x +3), ∴f (x +3)=-f (x +6),∴f (x )=f (x +6),即f (x )周期为6, ∴f (2 016)=f (6×336+0)=f (0)对4f (x )f (y )=f (x +y )+f (x -y ),令x =1,y =0,得4f (1)f (0)=2f (1), ∴f (0)=12,即f (2 016)=12.答案:125.已知y =f (x )在(0,+∞)上有意义,单调递增,且满足f (2)=1,f (xy )=f (x )+f (y ), (1)求证:f (x 2)=2f (x ). (2)求f (1)的值.(3)若f (x )+f (x +3)≤2,求x 的取值范围. 证明:(1)∵f (xy )=f (x )+f (y ),x 、y ∈(0,+∞). ∴f (x 2)=f (x ·x )=f (x )+f (x )=2f (x ). (2)令x =1,则f (1)=2f (1)∴f (1)=0. (3)∵f (x )+f (x +3)=f [x (x +3)],且f (4)=2. 又f (x )在(0,+∞)上单调递增.所以⎩⎪⎨⎪⎧x >0,x +3>0,x (x +3)≤4,解得0<x ≤1.6.在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n }是等比数列.(2)求数列{a n }的前n 项和S n .(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立. 证明:(1)∵a n +1=4a n -3n +1 ∴a n +1-(n +1)=4a n -4n ,n ∈N *. 又a 1-1=1所以数列{a n -n }是首项为1,公比为4的等比数列. (2)由(1)可知,a n -n =4n -1,于是a n =4n -1+n 故S n =4n -13+n (n +1)2.(3)S n +1-4S n =4n +1-13+(n +1)(n +2)2-4⎣⎡⎦⎤4n -13+n (n +1)2. =-12(3n 2+n -4)=-12(3n +4)(n -1)≤0,故S n +1≤4S n 对任意n ∈N *恒成立.[课时作业] [A 组 基础巩固]1.在证明命题“对于任意角θ,cos 4θ-sin 4θ=cos2θ”的过程:“cos 4θ-sin 4θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)=cos 2θ-sin 2θ=cos 2θ”中应用了( ) A .分析法 B .综合法C .分析法和综合法综合使用D .间接证法 答案:B2.已知函数f (x )=lg 1-x 1+x ,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1bD .-1b解析:f (x )定义域为(-1,1),f (-a )=lg 1+a 1-a =lg(1-a 1+a )-1=-lg 1-a1+a =-f (a )=-b .答案:B3.分析法又叫执果索因法,若使用分析法证明:设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ,则证明的依据应是( ) A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔(a -c )·(2a +c )>0⇔(a -c )(a -b )>0. 答案:C4.在不等边△ABC 中,a 为最大边,要想得到 A 为钝角的结论,对三边a ,b ,c 应满足的条件,判断正确的是( ) A .a 2<b 2+c 2 B .a 2=b 2+c 2 C .a 2>b 2+c 2D .a 2≤b 2+c 2解析:要想得到A 为钝角,只需cos A <0,因为cos A =b 2+c 2-a 22bc ,所以只需b 2+c 2-a 2<0,即b 2+c 2<a 2. 答案:C5.设a =lg 2+lg 5,b =e x (x <0),则a 与b 大小关系为( ) A .a >b B .a <b C .a =bD .a ≤b解析:a =lg 2+lg 5=1,b =e x ,当x <0时,0<b <1. ∴a >b . 答案:A 6.已知sin x =55,x ∈(π2,3π2),则tan(x -π4)=________. 解析:∵sin x =55,x ∈(π2,3π2),∴cos x =- 45, ∴tan x =-12,∴tan(x -π4)=tan x -11+tan x =-3.答案:-37.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b8.设a >0,b >0,则下面两式的大小关系为lg(1+ab )________12[lg(1+a )+lg(1+b )].解析:∵(1+ab )2-(1+a )(1+b )=1+2ab +ab -1-a -b -ab =2ab -(a +b )=-(a -b )2≤0,∴(1+ab )2≤(1+a )(1+b ),∴lg(1+ab )≤12[lg(1+a )+lg(1+b )].答案:≤9.设a ,b 大于0,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 证明:要证a 3+b 3>a 2b +ab 2成立, 即需证(a +b )(a 2-ab +b 2)>ab (a +b )成立. 又因a +b >0,故只需证a 2-ab +b 2>ab 成立, 即需证a 2-2ab +b 2>0成立, 即需证(a -b )2>0成立.而依题设a ≠b ,则(a -b )2>0显然成立. 故原不等式a 3+b 3>a 2b +ab 2成立.10.设函数f (x )=ax 2+bx +c (a ≠0),若函数y =f (x +1)与y =f (x )的图象关于y 轴对称,求证:函数y =f (x +12)为偶函数.证明:∵函数y =f (x )与y =f (x +1)的图象关于y 轴对称. ∴f (x +1)=f (-x ) ,则y =f (x )的图象关于x =12对称,∴-b 2a =12,∴a =-b .则f (x )=ax 2-ax +c =a (x -12)2+c -a4,∴f (x +12)=ax 2+c -a4为偶函数.[B 组 能力提升]1.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B2.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ⊥m ;④若l ∥m ,则α⊥β. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:若l ⊥α,m ⊂β,α∥β,则l ⊥β,所以l ⊥m ,①正确; 若l ⊥α,m ⊂β,l ⊥m ,α与β可能相交,②不正确; 若l ⊥α,m ⊂β,α⊥β,l 与m 可能平行或异面,③不正确; 若l ⊥α,m ⊂β,l ∥m ,则m ⊥α,所以α⊥β,④正确. 答案:B3.如图,在直四棱柱A 1B 1C 1D 1-ABCD (侧棱与底面垂直)中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形). 解析:要证明A 1C ⊥B 1D 1, 只需证明B 1D 1⊥平面A 1C 1C , 因为CC 1⊥B 1D 1,只要再有条件B 1D 1⊥A 1C 1,就可证明B 1D 1⊥平面A 1CC 1, 从而得B 1D 1⊥A 1C 1.答案:B 1D 1⊥A 1C 1(答案不唯一)4.如果不等式|x -a |<1成立的充分非必要条件是12<x <32,则实数a 的取值范围是________.解析:|x -a |<1⇔a -1<x <a +1,由题意知(12,32)⊆(a -1,a +1),则有⎩⎨⎧a -1≤12a +1≥32(且等号不同时成立),解得12≤a ≤32.答案:12≤a ≤325.在△ABC 中,三个内角A ,B ,C 对应的边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 证明:由A ,B ,C 成等差数列,有2B =A +C . ① 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π. ② 由①②,得B =π3. ③由a ,b ,c 成等比数列,有b 2=ac . ④ 由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac . 再由④,得a 2+c 2-ac =ac , 即(a -c )2=0,因此a =c , 从而有A =C . ⑤由②③⑤,得A =B =C =π3,所以△ABC 为等边三角形.6.设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.解析:(1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1),即a n +1n +1-a n n=1,又a 22-a 11=1,故数列⎩⎨⎧⎭⎬⎫a n n 是首项为1,公差为1的等差数列,所以a nn =1+(n -1)×1=n ,所以a n =n 2.(3)证明:当n =1时,1a 1=1<74;当n =2时,1a 1+1a 2=1+14=54<74;当n ≥3时,1a n =1n 2<1(n -1)n =1n -1-1n,此时1a 1+1a 2+…+1a n =1+122+132+142+…+1n 2<1+14+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n =1+14+12-1n =74-1n <74. 综上,对一切正整数n ,有1a 1+1a 2+…+1a n <74.[课时作业] [A 组 基础巩固]1.用反证法证明:“自然数a ,b ,c 中恰有一个偶数”时正确的反设为( ) A .a ,b ,c 都是偶数 B .a ,b ,c 都是奇数 C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中都是奇数或至少有两个偶数解析:自然数a ,b ,c 的奇偶性共有四种情形:3个都是奇数,1个偶数2个奇数,2个偶数1个奇数,3个都是偶数,所以否定“自然数a ,b ,c 中恰有一个偶数”时正确的反设为“a ,b ,c 中都是奇数或至少有两个偶数.” 答案:D2.实数a ,b ,c 满足a +2b +c =2,则( ) A .a ,b ,c 都是正数 B .a ,b ,c 都大于1 C .a ,b ,c 都小于2D .a ,b ,c 中至少有一个不小于12解析:假设a ,b ,c 中都小于12,则a +2b +c <12+2×12+12=2,与a +2b +c =2矛盾∴a ,b ,c 中至少有一个不小于12.答案:D3.(1)已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2,(2)已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1,以下结论正确的是( ) A .(1)与(2)的假设都错误 B .(1)与(2)的假设都正确 C .(1)的假设正确;(2)的假设错误 D .(1)的假设错误;(2)的假设正确解析:(1)的假设应为p +q >2;(2)的假设正确. 答案:D4.设a ,b ,c 大于0,则3个数:a +1b ,b +1c ,c +1a 的值( )A .都大于2B .至少有一个不大于2C .都小于2D .至少有一个不小于2解析:假设a +1b ,b +1c ,c +1a都小于2则a +1b <2,b +1c <2,c +1a <2∴a +1b +b +1c +c +1a <6,①又a ,b ,c 大于0所以a +1a ≥2,b +1b ≥2,c +1c ≥2.∴a +1b +b +1c +c +1a ≥6.②故①与②式矛盾,假设不成立所以a +1b ,b +1c ,c +1a 至少有一个不小于2.答案:D5.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是( ) A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至少有一个大于60° D .假设三内角至多有两个大于60°解析:三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°. 答案:B6.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.解析:“至少有一个”的否定是“没有一个”. 答案:没有一个是三角形或四边形或五边形7.设a ,b 是两个实数,给出下列条件:①a +b =1;②a +b =2;③a +b >2;④a 2+b 2>2. 其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).解析:显然①、②不能推出,③中a +b >2能推出“a ,b 中至少有一个大于1”否则a ≤1,且b ≤1,则a +b ≤2与a +b >2矛盾.④中取a =-2,b =0,推不出. 答案:③8.用反证法证明质数有无限多个的过程如下:假设________.设全体质数为p 1,p 2,…,p n ,令p =p 1p 2…p n +1.显然,p 不含因数p 1,p 2,…,p n .故p 要么是质数,要么含有________的质因数.这表明,除质数p 1,p 2,…,p n 之外,还有质数,因此原假设不成立.于是,质数有无限多个. 解析:由反证法的步骤可得.答案:质数只有有限多个 除p 1,p 2,…,p n 之外9.用反证法证明:过已知直线a 外一点A 有且只有一条直线b 与已知直线a 平行. 证明:由两条直线平行的定义可知,过点A 至少有一条直线与直线a 平行. 假设过点A 还有一条直线b ′与已知直线a 平行,即b ∩b ′=A ,b ′∥a .因为b ∥a ,由平行公理知b ′∥b .这与假设b ∩b ′=A 矛盾,所以假设错误,原命题成立. 10.已知f (x )=a x +x -2x +1(a >1),证明方程f (x )=0没有负数根.证明:假设x 0是f (x )=0的负数根, 则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,由0<ax 0<1⇒0<-x 0-2x 0+1<1,解之得12<x 0<2,这与x 0<0矛盾,所以假设不成立.故方程f (x )=0没有负实根.[B 组 能力提升]1.已知直线a ,b 为异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线D .不可能是相交直线解析:假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线. 答案:C2.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a 、b 为实数)”,其反设为________. 解析:“a 、b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”. 答案:a ,b 不全为03.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N *,则恒有an >bn ,从而an +2>bn +1恒成立,∴不存在n 使a n =b n . 答案:04.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能都大于14,证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14.因为0<a <1,0<b <1,所以1-a >0.由基本不等式(1-a )+b 2≥(1-a )b >12同理(1-b )+c 2>12,(1-c )+a 2>12以上三个不等式相加(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32,即32>32. 这是不可能的.故(1-a )b ,(1-b )c ,(1-c )a 不能都大于14.5.设{a n },{b n }是公比不相等的两个等比数列,c n =a n +b n .证明数列{c n }不是等比数列. 证明:假设数列{c n }是等比数列,则 (a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①因为{a n },{b n }是公比不相等的两个等比数列,设公比分别为p ,q ,所以a 2n =a n -1a n +1,b 2n =b n -1b n +1.代入①并整理,得 2a n b n =a n +1b n -1+a n -1b n +1 =a n b n ⎝⎛⎭⎫p q +q p , 即2=p q +q p.②当p ,q 异号时,p q +qp <0,与②相矛盾;当p ,q 同号时,由于p ≠q , 所以p q +qp >2,与②相矛盾.故数列{c n }不是等比数列.章末检测时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R)是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R)是周期函数. A .①②③B .③②①C.②③①D.②①③解析:显然②是大前提,①是小前提,③是结论.答案:D2.用反证法证明命题“2+3是无理数”时,假设正确的是()A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数解析:假设应为“2+3不是无理数”,即“2+3是有理数”.答案:D3.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32……得出1+3+5+…+(2n-1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列解析:A是类比推理,B是归纳推理,C是类比推理,D为演绎推理.答案:D4.求证:3+7<2 5.证明:因为3+7和25都是正数,所以为了证明3+7<25,只需证明(3+7)2<(25)2,展开得10+221<20,即21<5,只需证明21<25.因为21<25成立,所以不等式3+7<25成立.上述证明过程应用了()A.综合法B.分析法C.综合法、分析法配合使用D.间接证法解析:结合证明特征可知,上述证明过程用了分析法,其属于直接证明法.答案:B5.四个小动物换座位,开始是猴、兔、猫、鼠分别坐在1,2,3,4号位置上,第1次前后排动物互换位置,第2次左右列互换座位,…,这样交替进行下去,那么第2 014次互换座位后,小兔的位置对应的是()开始第1次第2次第3次A.编号1 B.编号2C.编号3 D.编号4解析:由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,所以第2 012次互换座位后的结果与最初的位置相同,故小兔坐在第3号座位上.答案:C6.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n=(1,-2)的直线(点法式)方程为:1×(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为m=(-1,-2,1)的平面的方程为()A.x+2y-z-2=0 B.x-2y-z-2=0C.x+2y+z-2=0 D.x+2y+z+2=0解析:所求的平面方程为-1×(x-1)+(-2)×(y-2)+1×(z-3)=0.化简得x+2y-z-2=0.答案:A7.用反证法证明命题“若a2+b2=0,则a,b全为0(a,b∈R)”,其反设正确的是() A.a,b至少有一个不为0B .a ,b 至少有一个为0C .a ,b 全不为0D .a ,b 中只有一个为0解析:“a ,b 全为0”的反设应为“a ,b 不全为0”,即“a ,b 至少有一个不为0”. 答案:A8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2解析:归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2. 答案:C9.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:在等比数列{a n }中,q =2≠1, 设首项为a 1≠0,则S 4=a 1(1-q 4)1-q =15a 1,又a 2=a 1q =2a 1, 故S 4a 2=15a 12a 1=152. 答案:C10.下列不等式中一定成立的是( ) A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z)C .x 2+1≥2|x |(x ∈R) D.1x 2+1>1(x ∈R) 解析:A 项中,因为x 2+14≥x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x ; B 项中sin x +1sin x≥2只有在sin x >0时才成立;C 项中由不等式a 2+b 2≥2ab 可知成立;D 项中因为x 2+1≥1,所以0<1x 2+1≤1.答案:C二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上)11.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证:∠BAP <∠CAP ,用反证法证明时的假设为________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP .答案:∠BAP =∠CAP 或∠BAP >∠CAP 12.2+23=2 23, 3+38=3 38, 4+415=4 415……若 6+a b=6 a b(a ,b 均为实数),猜想,a =________,b =________.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律,由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+ab中:a =6,b =62-1=35,即a =6,b =35. 答案:6 35 13.观察下列等式 12=1, 12-22=-3, 12-22+32=6, 12-22+32-42=-10, ……照此规律,第n 个等式可为____________.解析:观察等号左边可知,左边的项数依次加1,故第n 个等式左边有n 项,每项所含的底数也增加1,依次为1,2,3,…,n ,指数都是2,符号正负交替出现,可以用(-1)n+1表示;等号的右边数的绝对值是左边项的底数的和,故等式的右边可以表示为(-1)n +1·n (n +1)2,所以第n 个式子可为:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)214. 已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为________.解析:圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.答案:经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=115.若定义在区间D 上的函数f (x )对于 D 上的n 个值x 1,x 2,…,x n ,总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝⎛⎭⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________. 解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:332三、解答题(本大题共有6小题,共75分.解答时应写出文字说明、证明过程或运算步骤) 16.(12分)(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n . 由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)解:由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.17.(12分)已知函数f (x )=xx +2(x >0).如下定义一列函数:f 1(x )=f (x ),f 2(x )=f (f 1(x )),f 3(x )=f (f 2(x )),…,f n (x )=f (f n -1(x )),…,n ∈N *,那么由归纳推理求函数f n (x )的解析式. 解析:依题意得,f 1(x )=xx +2,f 2(x )=x x +2x x +2+2=x 3x +4=x(22-1)x +22,f 3(x )=x 3x +4x 3x +4+2=x 7x +8=x (23-1)x +23,…,由此归纳可得f n(x )=x(2n -1)x +2n(x >0). 18.(12分)设函数f (x )=lg |x |,若0<a <b ,且f (a )>f (b ). 证明:0<ab <1. 证明:f (x )=lg |x |=⎩⎪⎨⎪⎧lg x ,(x ≥1),-lg x ,(0<x <1). ∵0<a <b ,f (a )>f (b ).∴a 、b 不能同时在区间[1,+∞)上, 又由于0<a <b ,故必有a ∈(0,1). 若b ∈(0,1),显然有0<ab <1; 若b ∈(1,+∞),由f (a )-f (b )>0, 有-lg a -lg b >0, ∴lg(ab )<0,∴0<ab <1.19.(12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,若1a ,1b ,1c 成等差数列. (1)比较b a与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角. 解析:(1) b a< cb.证明如下: 要证b a< c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列, ∴2b =1a +1c≥2 1ac,∴b 2≤ac . 又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:解法一:假设角B 是钝角,则cos B <0. 由余弦定理得,cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac >0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.解法二:假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c >1b >0,则1a +1c >1b +1b =2b ,这与1a +1c =2b 矛盾,故假设不成立. 所以角B 不可能是钝角.20.(13分)(2016·高考全国卷Ⅲ)设函数f (x )=αcos 2x +(α-1)·(cos x +1),其中α>0,记|f (x )|的最大值为A . (1)求f ′(x ); (2)求A ;(3)证明|f ′(x )|≤2A .解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)解:当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0).故A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1. 令g (t )=2αt 2+(α-1)t -1, 则A 是|g (t )|在[-1,1]上的最大值, g (-1)=α,g (1)=3α-2, 且当t =1-α4α时,g (t )取得极小值,极小值为g ⎝⎛⎭⎫1-α4a =-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α>15.①当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|, 所以A =2-3α.②当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)>g ⎝⎛⎭⎫1-α4α.又⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α-|g (-1)|=(1-α)(1+7α)8α>0.所以A =⎪⎪⎪⎪g ⎝⎛⎭⎫1-α4α=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|. 当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1, 所以|f ′(x )|≤1+α<2A .当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A . 所以|f ′(x )|≤2A .21.(14分)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列. (1)证明:a 2=4a 1+5;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12.解析:(1)证明:当n =1时,4a 1=a 22-5,a 22=4a 1+5,又a n >0,∴a 2=4a 1+5.(2)当n ≥2时,4S n -1=a 2n -4(n -1)-1,∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)知a 1=1.又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1.(3)证明:1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1<12.[课时作业] [A 组 基础巩固]1.若复数2-b i(b ∈R)的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2解析:2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),∴b =2. 答案:D2.设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:直接法.∵a +bi =a -b i 为纯虚数,∴必有a =0,b ≠0,而ab =0时有a =0或b =0,∴由a =0, b ≠0⇒ab =0,反之不成立.∴“ab =0”是“复数a +bi 为纯虚数”的必要不充分条件.答案:B3.已知复数z =1a -1+(a 2-1)i 是实数,则实数a 的值为( )A .1或-1B .1C .-1D .0或-1解析:因为复数z =1a -1+(a 2-1)i 是实数,且a 为实数,则⎩⎪⎨⎪⎧a 2-1=0,a -1≠0,解得a =-1.答案:C4.设a ,b 为实数,若复数1+2i =(a -b )+(a +b )i ,则( ) A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3解析:由1+2i =(a -b )+(a +b )i 可得⎩⎪⎨⎪⎧a -b =1,a +b =2,解得a =32,b =12.答案:A5.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的为( ) A .4 B .-1 C .4或-1D .1或6解析:由题意⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 答案:B6.已知x 2-x -6x +1=(x 2-2x -3) i(x ∈R),则x =________.解析:∵x ∈R ,∴x 2-x -6x +1∈R ,。
2021年高中数学选修1-2人教A版全册教学:1.1同步练习含答案
高中数学人教A版选修1-2 同步练习1.下列各项中的两个变量具有相关关系的是( )A.长方体的体积与高B.人的寿命与营养C.正方形的边长与面积D.匀速行驶的车辆的行驶距离与时间解析:选B.相关关系是一种不确定关系,A、C、D是确定关系,是函数关系,故选B.2.(2021·高考山东卷)某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)423 5销售额y(万元)49263954根据上表可得回归方程y^=b^x+a^中的b^为9.4,据此模型预报广告费用为6万元时,销售额为( )A.63.6万元B.65.5万元C.67.7万元D.72.0万元解析:选B.由表可计算x=4+2+3+54=72,y=49+26+39+544=42,因为点(72,42)在回归直线y^=b^+a^x上,且b^为9.4,所以42=9.4×72+a^,解得a^=9.1,故回归方程为y^=9.4x+9.1,令x=6得y^=65.5.3.为了考察两个变量y与x的线性相关性,测得x,y的13对数据,若y与x 具有线性相关关系,则相关指数R2的取值范围是________.解析:相关指数R.R2的取值范围是[0,1].当R2=0时,即残差平方和等于总偏差平方和,解释变量效应为0,x与y没有任何关系;当R2=1时,即残差平方和为0,x与y之间是确定的函数关系.其他情形,即当x与y是不确定的相关关系时,R2∈(0,1).答案:(0,1)4.如图是x和y的一组样本数据的散点图,去掉一组数据________________后,剩下的4组数据的相关指数最大.解析:经计算,去掉D(3,10)这一组数据后,其他4 组数据对应的点都集中在某一条直线附近,即两变量的线性相关性最强,此时相关指数最大.答案:D(3,10)1.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是A.残差B.残差平方和C.随机误差D.相关指数R2解析:选B.残差平方和的大小表明了数据点和它在回归直线上相应位置的差异.3.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),( x2,y2),…,( x n,y n),则下列说法中不正确的是A.若残差恒为0,则R2为1B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数r=-0.9362,则变量y和x之间具有线性相关关系解析:选C. R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好,故选C.6.(2012·莱州一中高二期中考试)一机器可以按各种不同速度运转,其生产物件有一些会有缺点.每小时生产有缺点物件的多少,随机器运转速度而变化,下列即为其试验结果.(1)求出机器运转速度影响每小时生产有缺点物件数的回归直线方程;(2)若实际生产中所允许的每小时最大缺点物件数为10,那么机器的运转速度不得超过多少转/秒?7.(2012·莱阳一中期中考试)〖HT〗如下所示的是一组观测值的四个回归模型对应的残差图,由残差图分析拟合效果最好的回归模型为解析:选A.如题中A所示的残差图中的点分布在以原点为中心的水平带状区域上,并且沿水平方向散点的分布规律相同,说明残差是随机的,所选择的回归模型是合理的.如题中B所示的残差图中的点分布在一条倾斜的带状区域上,并且沿带状区域方向散点的分布规律相同,说明残差与横坐标有线性关系,此时所选用的回归模型的效果不是最好的,有改进的余地.如题中C所示的残差图中的点分布在一条抛物线形状的弯曲带状区域上,说明残差与坐标轴变量有二次关系,此时所选用的回归模型的效果不是最好的,有改进的余地.如题中D所示的残差图中的点分布范围随着横坐标的增加而扩大,说明残差与横坐标变量有关,所选用的回归模型的效果不是最好的,有改进的余地.综上分析可知,应选A8.如果散点图中所有的样本点均在同一条直线上,那么残差平方和与相关系数分别为A.1,0B.0,1C.0.5,0.5D.0.43,0.57解析:选B.如果所有的样本点均在同一条直线上,建立的回归模型一定是这条直线,所以每个样本点的残差均为0,所以残差平方和也为0,即此时的模型为y=bx+a,没有随机误差项,所以是严格的一次函数关系,通过计算可以证明解释变量与预报变量之间的相关系数是1.9.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了10次和15次试验,并且利用线性回归方程,求得回归直线分别为l1和l2.已知两个人在试验中发现变量x的观测数据的平均值都是s,变量y的观测数据的平均值都为t,那么下列说法正确的是①l1与l2的相交点为(s,t);②l1与l2相交,相交点不一定是(s,t);③l1与l2必关于点(s,t)对称;④l1与l2必定重合.10.某运动员训练次数与成绩之间的数据关系如下:(1)作出散点图;(2)求出线性回归方程;(3)作出残差图;(4)计算R2,并作出解释;(5)试预测该运动员训练47次及55次时的成绩.解: (1)作出该运动员训练次数(x)与成绩(y)之间的散点图,如图所示(3)残差分析将这8名运动员依次编号为1,2,3,…,8,因残差e^1≈-1.24,e^2≈-0.37,e^3≈0.55,e^4≈0.47,e^5≈1.39,e^6≈0.18,e^7≈0.09,e^8≈-1.07,于是可作残差图如图所示:由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适.(4)计算相关指数R2计算相关指数R2=0.9855.说明了该运动员的成绩的差异有98.55%是由训练次数引起的.(5)作出预报由上述分析可知,我们可用回归方程y^=1.0415x-0.003875作为该运动员成绩的预报值.将x=47和x=55分别代入该方程可得y≈49和y≈57.故预测运动员训练47次和55次的成绩分别为49和57.11.(创新题)已知x,y之间的5组数据如下表所示:x 13678y 1234 5对于表中数据,甲、乙两位同学给出的拟合直线分别为y^=13x+1与y^=12x+12,试利用“最小二乘法”判断哪条直线拟合效果更好?解:用y^=13x+1作为拟合直线时,所得y值与y实际值的差的平方和,即残差平方和为∑i =15(y i -y ^i )2=⎝ ⎛⎭⎪⎫43-12+(2-2)2+(3-3)2+⎝ ⎛⎭⎪⎫103-42+⎝ ⎛⎭⎪⎫113-52=73.用y ^=12x +12作为拟合直线时,所得y 值与y 实际值的差的平方和,即残差平方和为∑i =15(y i -y ^i )2=(1-1)2+(2-2)2+⎝ ⎛⎭⎪⎫72-32+(4-4)2+⎝ ⎛⎭⎪⎫92-52=12.∵12<73,而残差平方和小的拟合效果好, ∴直线y =12x +12拟合效果更好.。
高中数学选修1-1(人教A版)第三章导数及其应用3.1知识点总结含同步练习及答案
当点 Pn 趋近于点 P (x 0 , f (x 0 )) 时,割线 P Pn 趋近于确定的位置,这个确定位置的直线 P T 称为点 P 处的切线(tangent line). 割线 P Pn 的斜率是
kn =
f (x n ) − f (x 0 ) . xn − x0
当点 Pn 无限趋近于点 P 时, kn 无限趋近于切线 P T 的斜率. 函数 f (x) 在 x0 处的导数 f ′ (x0 ) 的几何意义,就是曲线 y = f (x) 在点 (x0 , f (x 0 ) 处的导数就是切线 P T 的斜率 k ,即
y ′ ,即 f ′ (x) = y ′ = lim
Δx→0
f (x + Δx) − f (x) . Δx
例题: 求函数 y = 2 2 + 5 在区间 [2, 2 + Δx] 上的平均变化率,并计算当 Δx = 1 时,平均变化率的值. x 解:因为
2
Δy = 2 × (2 + Δx)2 + 5 − (2 × 2 2 + 5) = 8Δx + 2(Δx)2 ,
高中数学选修1-1(人教A版)知识点总结含同步练习题及答案
第三章 导数及其应用 3.1 变化率与导数
一、学习任务 1. 2.
了解平均变化率的概念和瞬时变化率的意义. 了解导数概念的实际背景,体会导数的思想及其内涵.
二、知识清单
数列极限与函数极限 变化率与导数
三、知识讲解
1.数列极限与函数极限 描述: 数列极限 设 {xn } 为实数数列,a 为常数.若对任意给定的正数 ε ,总存在正整数 N ,使得当 n > N 时,有 |x n − a| < ε ,则称 数列 {x n }收敛于 a ,常数 a 称为数列 {x n } 的极限.并记作
最新整理高中数学 1.3课时同步练习 新人教A版选修2-1.doc
第1章 1.3一、选择题(每小题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题 解析: ∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析: ∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x在R 上为增函数,p 2:函数y =2x +2-x在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析: ∵y =2x 在R 上为增函数,y =2-x =⎝ ⎛⎭⎪⎫12x在R 上为减函数,∴y =-2-x =-⎝ ⎛⎭⎪⎫12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D ,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C二、填空题(每小题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A A∪B.其中,真命题为________.解析:①此命题为“非p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的一个解,所以p是真命题,所以非p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q 为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“非p”的形式,其中p:A⊆A∪B.因为p为真命题,所以“非p”为假命题,故是假命题.所以填②.答案:②三、解答题(每小题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8∉{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:方程x2-x+1=0有实根;(2)p:函数y=tan x是周期函数;(3)p :∅⊆A ;(4)p :不等式x 2+3x +5<0的解集是∅.解析:尖子生题库☆☆☆9.(10分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0. 解得⎩⎪⎨⎪⎧ -2≤x ≤3,x <-4或x >2.即2<x ≤3.所以q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧ 1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q ⇒/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].。
高中数学 3.1.1课时同步练习 新人教A版选修2-1
第3章 3.1.1一、选择题(每小题5分,共20分)1.在平行六面体ABCD -A ′B ′C ′D 中,与向量A ′B ′→嘚模相等嘚向量有( ) A .7个B .3个C .5个D .6个解析: |D ′C ′→|=|DC →|=|C ′D ′→|=|C D →|=|B A →|=|AB →|=|B ′A ′→|=|A ′B ′→|.答案: A2.在空间四边形OABC 中, OA →+AB →-CB →等于( )A .OA →B .AB →C . OC →D .AC → 解析: OA →+AB →-CB →=O B →-CB →=OB →+BC →=OC →.答案: C3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→嘚是( )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.A .①③B .②④C .③④D .①②③④解析: ①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;④(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.答案: D4.如图所示,在平行六面体A 1B 1C 1D 1-ABCD 中,M 是AC 与BD 嘚交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等嘚向量是( )A .-12a +12b +cB.12a +12b +cC.12a -12b +cD .-12a -12b +c解析: B 1M →=B 1B →+BM →=BB 1→+12(BA →+BC →)=c +12(-a +b)=-12a +12b +c.答案: A二、填空题(每小题5分,共10分)5.已知正方形ABCD 嘚边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c|等于________.解析: |a +b +c|=|AB →+BC →+AC →|=|2AC →|=22.答案: 226.在直三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B →=________.(用a ,b ,c 表示)解析: A 1B →=CB →-CA 1→=CB →-(CA →+CC 1→)=-a +b -c.答案: -a +b -c三、解答题(每小题10分,共20分)7.如图所示,在长、宽、高分别为AB =3,AD =2,AA 1=1嘚长方体ABCD -A 1B 1C 1D 1嘚八个顶点嘚两点为始点和终点嘚向量中,(1)单位向量共有多少个?(2)试写出模为5嘚所有向量.(3)试写出与AB →相等嘚所有向量.(4)试写出AA 1→嘚相反向量.解析: (1)由于长方体嘚高为1,所以长方形4条高所对应嘚AA 1→,A 1A →,BB 1→,B 1B →,CC 1→,C 1C →,DD 1→,D1D→这8个向量都是单位向量,而其他向量嘚模均不为1,故单位向量共8个.(2)由于这个长方体嘚左右两侧嘚对角线长均为5,故模为5嘚向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等嘚所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.(4)向量AA1→嘚相反向量为A1A→,B1B→,C1C→,D1D→.8.在空间四边形ABCD中,G为△BCD嘚重心,E,F分别为边CD和AD嘚中点,试化简AG→+13BE→-12AC→,并在图中标出化简结果嘚向量.解析:∵G是△BCD嘚重心,BE是CD边上嘚中线,∴GE→=13BE→,又12AC→=12(DC→-DA→)=12DC→-12DA→=DE→-DF→=FE→,∴AG→+13BE→-12AC→=AG→+GE→-FE→=AF→.尖子生题库☆☆☆9.(10分)在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若PA→=a,PB→=b,PC→=c.试用a,b,c表示向量BE→.解析:BE→=12(BD→+BP→)=12(BA→+BC→+BP→)=12(PA→-PB→+PC→-PB→-PB→) =12PA→-32PB→+12PC→=12a-32b+12c.。
高二人教A版数学选修1-1同步练习3-1-2导数的几何意义 Word版含答案
3.1.2导数的几何意义一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( )A .9B .6C .-3D .-1 [答案] A[解析] Δy =(2+Δx )3-3(2+Δx )-23+6=9Δx +6Δx 2+Δx 3,Δy Δx=9+6Δx +Δx 2, lim Δx →0 Δy Δx =lim Δx →0(9+6Δx +Δx 2)=9, 由导数的几何意可知,曲线y =x 3-3x 在点(2,2)的切线斜率是9.2.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( ) A .30°B .45°C .135°D .60° [答案] B[解析] Δy =13(-1+Δx )3-13×(-1)3=Δx -Δx 2+13Δx 3,Δy Δx =1-Δx +13Δx 2, lim Δx →0 Δy Δx =lim Δx →0 (1-Δx +13Δx 2)=1, ∴曲线y =13x 3-2在点⎝⎛⎭⎫-1,-73处切线的斜率是1,倾斜角为45°. 3.函数y =-1x 在点(12,-2)处的切线方程是( ) A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 [答案] B[解析] Δy =2Δx Δx +12,Δy Δx =2Δx +12,lim Δx →0 2Δx +12=4, ∴切线的斜率为4.∴切线方程为y =4⎝⎛⎭⎫x -12-2=4x -4. 4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在[答案] B[解析] 由导数的几何意义可知f ′(x 0)=-12<0,故选B. 5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线[答案] C[解析] 由于对导数在某点处的概念及导数的几何意义理解不透彻,不能认真分析题中所给选项,事实上A 、B 是一样的.它们互为逆否命题,讨论的是“f ′(x 0)存在与否”与切线存在与否的关系,而在导数的几何意义中讨论的是“切线的斜率”与“f ′(x 0)”,得C 是正确的,而A 、B 、D 都是不正确的,可一一举例说明.6.设f (x )为可导函数且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2 [答案] B[解析] lim x →0f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f (1)-2x=lim -2x →0 f [1+(-2x )]-f (1)-2x=f ′(1)=-1.7.在曲线y =x 2上的点________处的倾斜角为π4( ) A .(0,0)B .(2,4)C .(14,116) D .(12,14) [答案] D[解析] 倾斜角的正切值即为斜率,设点(x 0,y 0)则k =y ′|x =x 0=lim Δx →0(x 0+Δx )2-x 20Δx =lim Δx →02x 0Δx +Δx 2Δx =lim Δx →0(2x 0+Δx )=2x 0=1, ∴x 0=12,y 0=x 20=14,∴点坐标(12,14). 8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( )A .90°B .0°C .锐角D .钝角 [答案] C[解析] 函数图像在点(4,f (4))处的切线斜率为f ′(4)=-sin4>0,所以函数图像在点(4,f (4))处的切线的倾斜角为锐角.9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1) [答案] C[解析] k =lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0(x 0+Δx )3+(x 0+Δx )-x 30-x 0Δx =lim Δx →0[3x 20+3x 0Δx +(Δx )2+1] =3x 20+1=4,∴3x 20=3,即x 0=±1, ∴点P 0的坐标为(1,0)或(-1,-4).10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B.12 C .-12D .-1[答案] A[解析] ∵y ′|x =1=lim Δx →1a (1+Δx )2-a ×12Δx =lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a , ∴2a =2,∴a =1.二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________.[答案] 12[解析] f ′(2)=lim Δx →0(2+Δx )3+2-23-2Δx =lim Δx →0(2+Δx -2)[(2+Δx )2+(2+Δx )·2+22]Δx =lim Δx →0[4+4Δx +(Δx )2+4+2Δx +4] =lim Δx →0[12+6Δx +(Δx )2]=12. 12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.[答案] (2,4)[解析] 设切点坐标为(x 0,y 0),y ′|x =x 0=lim Δx →0(x 0+Δx )2-3(x 0+Δx )-(x 20-3x 0)Δx =lim Δx →02x 0Δx -3Δx Δx =2x 0-3=1=k , 故x 0=2,y 0=x 20=4,故切点坐标为(2,4).13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________.[答案] 83[解析] y ′=lim Δx →0(x +Δx )3-x 3Δx =3x 2,所以k =y ′|x =1=3×1=3,所以在点(1,1)处的切线方程为y =3x -2,它与x 轴的交点为⎝⎛⎭⎫23,0,与x =2的交点为(2,4),所以S =12×⎝⎛⎭⎫2-23×4=83. 14.曲线y =x 3+x +1在点(1,3)处的切线是________.[答案] 4x -y -1=0[解析] 因为y ′=lim Δx →0(x +Δx )3+(x +Δx )+1-(x 3+x +1)Δx =3x 2+1, 所以k =y ′|x =1=3+1=4,所以切线的方程为y -3=4(x -1),即4x -y -1=0.三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程.[分析] 点是曲线上的点→求切线的斜率k →得切线方程[解析] y ′|x =1=lim Δx →0(1+Δx )2+3(1+Δx )+1-(12+3×1+1)Δx =lim Δx →05Δx +(Δx )2Δx =lim Δx →0(5+Δx )=5, 即切线的斜率k =5,∴曲线在点(1,5)处的切线方程为y -5=5(x -1)即5x -y =0.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.[解析] 设直线l 与曲线C 相切于P (x 0,y 0)点.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx =3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1. 于是切点的坐标为⎝⎛⎭⎫-13,2327或(1,1).当切点为⎝⎛⎭⎫-13,2327时,2327=-13+a ,a =3227; 当切点为(1,1)时,1=1+a ,a =0(舍去).∴a 的值为3227,切点坐标为(-13,2327). [点评] 利用曲线在一点处的导数等于在这一点的切线的斜率,确定出切点.17.求过点(2,0)且与曲线y =1x相切的直线方程. [解析] 易知(2,0)不在曲线y =1x 上,令切点为(x 0,y 0),则有y 0=1x 0. 又y ′=lim Δx →0 Δy Δx =lim Δx →01x +Δx -1x Δx =-1x 2, 所以y ′|x =x 0=-1x 20, 即切线方程为y =-1x 20(x -2)① 而y 0x 0-2=-1x 20② 由①②可得x 0=1,故切线方程为y +x -2=0.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标.[解析] 设P (x 0,y 0),Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x ·Δx +(Δx )2-3Δx ,Δy Δx =2x ·Δx +(Δx )2-3Δx Δx=2x +Δx -3. lim Δx →0 Δy Δx =lim Δx →0(2x +Δx -3)=2x -3, ∴y ′|x =x 0=2x 0-3,令2x 0-3=0得x 0=32, 代入曲线方程得y 0=-94, ∴P ⎝⎛⎭⎫32,-94.。
数学:选修2-3人教A全册课时同步练习及解析第1章1.3.1同步训练及解析
人教A 高中数学选修2-3同步训练1.(x +2)6的展开式中x 3的系数是( )A .20B .40C .80D .160解析:选D.法一:设含x 3的为第r +1项,则T r +1=C r n x6-r ·2r ,令6-r =3,得r =3,故展开式中x 3的系数为C 36×23=160. 法二:根据二项展开式的通项公式的特点:二项展开式每一项中所含的x 与2分得的次数和为6,则根据条件满足条件x 3的项按3与3分配即可,则展开式中x 3的系数为C 36×23=160.2.(2x -12x)6的展开式的常数项是( ) A .20 B .-20C .40D .-40解析:选B.由题知(2x -12x)6的通项为T r +1=(-1)r C r 626-2r x 6-2r ,令6-2r =0得r =3,故常数项为(-1)3C 36=-20.3.1.056的计算结果精确到0.01的近似值是( )A .1.23B .1.24C .1.33D .1.34解析:选 D.1.056=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.0375+0.0025+…≈1.34.4.设二项式⎝⎛⎭⎫x -a x 6(a >0)的展开式中x 3的系数是A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4,由B =4A 知,4C 26(-a )2=C 46(-a )4,解得a =±2.又∵a >0,∴a =2.答案:2一、选择题1.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( )A .-5B .5C .-10D .10解析:选D.(1-x )5中x 3的系数-C 35=-10,-(1-x )6中x 3的系数为-C 36·(-1)3=20,故(1-x )5-(1-x )6的展开式中x 3的系数为10.2.(x -2y )10的展开式中x 6y 4项的系数是( )A .840B .-840C .210D .-210解析:选A.在通项公式T r +1=C r 10(-2y )r x10-r 中,令r =4,即得(x -2y )10的展开式中x 6y 4项的系数为C 410·(-2)4=840.3.⎝⎛⎭⎫x +a x 5(x ∈R )展开式中x 3的系数为10,则实数a 等于( ) A .-1B.12 C .1 D .2解析:选D.由二项式定理,得T r +1=C r 5x 5-r ·⎝⎛⎭⎫a x r =C r 5·x 5-2r ·a r ,∴5-2r =3,∴r =1,∴C 15·a =10,∴a =2.4.若C 1n x +C 2n x 2+…+C n n x n 能被7整除,则x ,n 的值可能为( )A .x =4,n =3B .x =4,n =4C .x =5,n =4D .x =6,n =5解析:选C.由C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,分别将选项A 、B 、C 、D 代入检验知,仅有C 适合.5.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数指数幂的项数是( ) A .0 B .2C .4D .6解析:选B.T r +1=C r 10x 10-r 2·⎝⎛⎭⎫-13r ·x -r =C r 10⎝⎛⎭⎫-13r ·x 10-3r 2.若是正整数指数幂,则有10-3r 2为正整数, ∴r 可以取0,2,∴项数为2.6.(1+2x )3(1-3x )5的展开式中x 的系数是( )A .-4B .-2C .2D .4解析:选C.(1+2x )3(1-3x )5=(1+6x 12+12x +8x 32)·(1-5x 13+10x 23-10x +5x 43-x 53),x 的系数是-10+12=2.二、填空题7.⎝⎛⎭⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝⎛⎭⎪⎫-13x 3=-160x . 答案:-160x8.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________.解析:∵T 4=C 35(x )2·a 3=10x ·a 3. ∴10xa 3=10a 2(a >0),∴x =1a. 答案:1a9.(1+x +x 2)⎝⎛⎭⎫x -1x 6的展开式中的常数项为__________. 解析:(1+x +x 2)⎝⎛⎭⎫x -1x 6=(1+x +x 2)[ C 06x 6⎝⎛⎭⎫-1x 0+C 16x 5⎝⎛⎭⎫-1x 1+C 26x 4⎝⎛⎭⎫-1x 2+C 36x 3⎝⎛⎭⎫-1x 3+C 46x 2·⎝⎛⎭⎫-1x 4+C 56x ⎝⎛⎭⎫-1x 5+C 66x 0⎝⎛⎭⎫-1x 6 ] =(1+x +x 2)⎝⎛⎭⎫x 6-6x 4+15x 2-20+15x 2-6x 4+1x 6, 所以常数项为1×(-20)+x 2·15x 2=-5. 答案:-5三、解答题10.用二项式定理证明1110-1能被100整除.证明:∵1110-1=(10+1)10-1=(1010+C 110×109+…+C 910×10+1)-1=1010+C 110×109+C 210×108+…+102=100×(108+C 110×107+C 210×106+…+1),∴1110-1能被100整除.11.⎝ ⎛⎭⎪⎫x +23x n 展开式第9项与第10项二项式系数相等,求x 的一次项系数.解:C 8n =C 9n ,∴n =17,T r +1=C r n x 17-r 2·2r ·x -r 3, ∴17-r 2-r 3=1, ∴r =9,∴T r +1=C 917·x 4·29·x -3, ∴T 10=C 917·29·x ,其一次项系数为C 91729.12.求⎝⎛⎭⎫x 2+1x +25的展开式的常数项.解:法一:由二项式定理得⎝⎛⎭⎫x 2+1x +25=⎣⎡⎦⎤⎝⎛⎭⎫x 2+1x +25=C 05·⎝⎛⎭⎫x 2+1x 5+C 15·⎝⎛⎭⎫x 2+1x 4·2+C 25·⎝⎛⎭⎫x 2+1x 3·(2)2+C 35·⎝⎛⎭⎫x 2+1x 2·(2)3+C 45·(x 2+1x)·(2)4+C 55·(2)5.其中为常数项的有: C 15·⎝⎛⎭⎫x 2+1x 4·2中第3项:C 15C 24·⎝⎛⎭⎫122·2; C 35·⎝⎛⎭⎫x 2+1x 2·(2)3中第2项:C 35C 12·12·(2)3; C 55·(2)5.综上可知,常数项为C 15C 24·⎝⎛⎭⎫122·2+C 35C 12·12·(2)3+C 55·(2)5=6322. 法二:⎝⎛⎭⎫x 2+1x +25=⎝ ⎛⎭⎪⎫x 2+22x +22x 5 =[](x +2)25(2x )5=(x +2)10(2x )5. 因此本题可以转化为二项式问题,即将求原来式子的常数项,转化为求分子(x +2)10中含x 5的项的系数.而分子中含x 5的项为T 6=C 510·x 5·(2)5.所以常数项为C 510·(2)525=6322.。
最新人教A版高中数学选修2-1第3章3.1.3同步练习习题(含解析)
高中数学人教A版选2-1 同步练习1.设a、b、c是任意地非零平面向量,且它们相互不共线,下列命题:①(a·b)c-(c·a)b=0;②|a|-|b|<|a-b|;③(b·a)c-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确地有( )A.①② B.②③C.③④D.②④解析:选 D.根据数量积地定义及性质可知:①③错误,②④正确.故选 D.2.在如图所示地正方体中,下列各对向量地夹角为135°地是( )A.AB →与A ′C ′→B.AB →与C ′A ′→C.AB →与A ′D ′→D.AB →与B ′A ′→解析:选 B.〈AB →,A ′C ′→〉=〈AB →,AC →〉=45°;〈AB →,C ′A ′→〉=180°-〈AB →,AC →〉=135°;〈AB →,A ′D ′→〉=〈AB →,AD →〉=90°;〈AB →,B ′A ′→〉=180°.3.已知i 、j 、k 是两两垂直地单位向量,a =2i -j+k ,b =i +j -3k ,则a ·b 等于________.解析:a ·b =(2i -j +k )·(i +j -3k )=2i 2-j 2-3k 2=-2. 答案:-24.在棱长为1地正方体ABCD -A ′B ′C ′D ′中,AD ′→·BC ′→=__________.解析:由正方体知BC ′∥AD ′,∴〈AD ′→,BC ′→〉=0,又|AD ′→|=|BC ′→|=2,所以AD ′→·BC ′→=2·2·1=2. 答案:2[A 级基础达标]1.若向量m 垂直于向量a 和b ,向量n =λa +μb (λ,μ∈R,且λμ≠0),则( )A.m∥n B.m⊥nC.m,n既不平行也不垂直D.以上三种情况都可能解析:选 B.因为m·n=m·(λa+μb)=λm·a+μm·b=0,所以m⊥n.2.已知向量a、b是平面α内地两个不相等地非零向量,非零向量c是直线l地一个方向向量,则c·a =0且c·b=0是l⊥α地( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.当a与b不共线时,由c·a=0,c·b=0,可推出l⊥α;当a与b为共线向量时,由c·a=0,c ·b =0,不能够推出l ⊥α;l ⊥α一定有c ·a =0且c ·b =0,故选B.3.已知PA ⊥平面ABC ,∠ABC =120°,PA =AB =BC =6,则PC 等于()A .6 2B .6C .12D .144解析:选 C.∵PC →=PA →+AB →+BC →,∴PC →2=PA →2+AB →2+BC →2+2 AB →·BC→=36+36+36+2×36cos60°=144. ∴PC =12.4.已知|a |=32,|b |=4,m =a +b ,n =a +λb ,〈a ,b 〉=135°,且m⊥n ,则实数λ等于__________.解析:∵m ·n =(a +b )·(a +λb )=|a |2+λa ·b +a ·b +λ|b |2=18+λ×32×4×cos135°+32×4×cos135°+λ×16=6-12λ+16λ=6+4λ,∴m ·n =0=6+4λ,∴λ=-32.答案:-325.已知正方体ABCD -A 1B 1C 1D 1地棱长为a ,则A 1B →·B 1C →=__________.解析:连接向量A 1D →.A 1B →·B 1C →=A 1B →·A 1D →=|A 1B →|·|A 1D →|·cos 〈A 1B →,A 1D →〉=2a ×2a ×cos 60°=a 2.答案:a26.如图所示,已知四面体ABCD 地每条棱地长都等于1,点E ,F 分别是棱AB ,AD 地中点,计算:(1)EF →·BA →;(2)EF →·BD →;(3)EF →·DC →.解:(1)EF →·BA →=12|BD →||BA →|·cos 〈BD →,BA →〉=12cos π3=14. (2)EF →·BD →=12BD →·BD→=12. (3)EF →·DC →=12BD →·DC →=12|BD →||DC →|·cos 〈BD →,DC →〉=12cos 2π3=-14. [B 级能力提升]7.已知a 、b 是异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a 与b 所成地角是()A .30°B .45°C .60°D .90°解析:选C.AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=AC →·CD →+CD →2+DB →·CD →=0+12+0=1,又|AB→|=2,|CD →|=1.∴cos 〈AB →,CD →〉=AB ,→·CD →|AB →||CD →|=12×1=12.∴a 与b 所成地角是60°.8.设A 、B 、C 、D 是空间不共面地四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定解析:选 B.BD →=AD →-AB →,BC →=AC →-AB →,BD →·BC →=(AD →-AB →)·(AC →-AB →)=AD →·AC →-AD →·AB →-AB→·AC →+|AB →|2=|AB →|2>0,∴cos ∠CBD =cos 〈BC →,BD →〉=BC ,→·BD →|BC →|·|BD →|>0.∴∠CBD 为锐角,同理,∠BCD 与∠BDC 均为锐角,∴△BCD 为锐角三角形.9.空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉地值为__________.解析:cos 〈OA →,BC →〉=OA ,→·BC→|OA →||BC →|=OA ,→·(OC→-OB →)|OA →||BC →|=|OA ,→||OC →|cos π3-|OA →||OB →|cosπ3|OA →||BC →|=0. 答案:010.直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别为AB 、BB ′地中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角地余弦值.解:(1)证明:设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)AC ′→=-a +c ,∴|AC ′→|=2|a |,又|CE →|=52|a |,AC ′→·CE →=(-a +c )·b +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. 即异面直线CE 与AC ′所成角地余弦值为1010. 11.(创新题)如图所示,已知空间四边形ABCD 地各边和对角线地长都等于a ,点M、N 分别是AB 、CD 地中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求MN 地长.解:(1)证明:连接AN (图略).设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p=12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN ⊥AB ,同理可证MN ⊥CD .(2)由(1)可知MN →=12(q +r -p ).∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14a 2+a 2+a 2+2a 22-a 22-a 22=14×2a 2=a22.∴|MN →|=22a ,∴MN 地长为22a .。
最新人教A版高中数学选修2-1 3.1.1课时同步练习 习题(含解析)
第3章 3.1.1一、选择题(每小题5分,共20分)1.在平行六面体ABCD -A ′B ′C ′D 中,与向量A ′B ′→地模相等地向量有( )A .7个B .3个C .5个D .6个解析: |D ′C ′→|=|DC →|=|C ′D ′→|=|C D →| =|B A →|=|AB →|=|B ′A ′→|=|A ′B ′→|. 答案: A2.在空间四边形OABC 中, OA →+AB →-CB →等于( )A .OA →B .AB →C . OC →D .AC →解析: OA →+AB →-CB →=O B →-CB →=OB →+BC →=OC →. 答案: C3.如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC1→地是( ) ①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→. A .①③ B .②④ C .③④D .①②③④解析: ①(AB →+BC →)+CC 1→=AC →+CC1→=AC 1→;②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; ③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; ④(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→. 答案: D4.如图所示,在平行六面体A 1B 1C 1D 1-ABCD 中,M 是AC 与BD 地交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等地向量是( )A .-12a +12b +c B.12a +12b+cC.12a -12b +c D .-12a -12b +c解析: B 1M →=B 1B →+BM →=BB 1→+12(BA →+BC →)=c +12(-a +b )=-12a +12b +c .答案: A二、填空题(每小题5分,共10分)5.已知正方形ABCD 地边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c |等于________.解析: |a +b +c |=|AB →+BC →+AC →|=|2AC →|=2 2.答案: 2 2CA→6.在直三棱柱ABC -A 1B 1C 1中,若=a ,CB →=b ,CC 1→=c ,则A 1B →=________.(用a ,b ,c 表示)解析: A 1B →=CB →-CA 1→=CB →-(CA →+CC 1→)=-a+b-c.答案:-a+b-c三、解答题(每小题10分,共20分)7.如图所示,在长、宽、高分别为AB=3,AD =2,AA1=1地长方体ABCD-A1B1C1D1地八个顶点地两点为始点和终点地向量中,(1)单位向量共有多少个?(2)试写出模为5地所有向量.(3)试写出与AB→相等地所有向量.→地相反向量.(4)试写出AA1解析:(1)由于长方体地高为1,所以长方形4条高所对应地AA 1→,A 1A →,BB 1→,B 1B →,CC 1→,C 1C →,DD 1→,D 1D →这8个向量都是单位向量,而其他向量地模均不为1,故单位向量共8个.(2)由于这个长方体地左右两侧地对角线长均为5,故模为5地向量有AD 1→,D 1A →,A 1D →,DA 1→,BC 1→,C 1B →,B 1C →,CB 1→共8个.(3)与向量AB →相等地所有向量(除它自身之外)共有A 1B 1→, DC →及D 1C 1→3个.(4)向量AA 1→地相反向量为A 1A →,B 1B →,C 1C →,D 1D →. 8.在空间四边形ABCD 中,G 为△BCD地重心,E ,F 分别为边CD 和AD 地中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果地向量.解析:∵G是△BCD地重心,BE是CD边上地中线,∴GE→=13BE→,又12AC→=12(DC→-DA→)=12DC→-12DA→=DE→-DF→=FE→,∴AG→+13BE→-12AC→=AG→+GE→-FE→=AF→.尖子生题库☆☆☆9.(10分)在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若PA→=a,PB→=b,PC→=c.试用a,b,c表示向量BE→.解析:BE→=12(BD→+BP→)=12(BA→+BC→+BP→)=12(PA→-PB→+PC→-PB→-PB→)=12PA→-32PB→+12PC→=12a-32b+12c.。
【最新人教A版】高中选修数学【选修2-1】3.1.2课时同步练习(含答案)
第3章 3.1.2一、选择题(每小题5分,共20分)1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量C .不共面向量D .既不共线也不共面向量答案: A2.当|a |=|b |≠0,且a ,b 不共线时,a +b 与a -b 的关系是( ) A .共面 B .不共面 C .共线D .无法确定 解析: 由加法法则知:a +b 与a -b 可以是菱形的对角线. 答案: A3.已知点M 在平面ABC 内,并且对空间任意一点O , OM →=xOA →+13OB →+13OC →,则x 的值为( )A .3B .0 C.13D .1解析: ∵OM →=xOA →+13OB →+13OC →,且M 、A 、B 、C 四点共面,∴x +13+13=1,x =13.故选C.答案: C4.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ、μ∈R 且λ2+μ2≠0),则( ) A .a ∥e 1B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能解析: 当λ=0,μ≠0时,a =μe 2,则a ∥e 2; 当λ≠0,μ=0时,a =λe 1,则a ∥e 1; 当λ≠0,μ≠0时,a 与e 1,e 2共面. 答案: D二、填空题(每小题5分,共10分)5.已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =________.解析: ∵A 、B 、C 、D 共面,∴OA →=OB →+λB C →+μBD →=OB →+λ(O C →-OB →)+μ(O D →-OB →) =(1-λ-μ) OB →+λO C →+μOD →=(λ+μ-1) BO →-λCO →-μDO →=2xBO →+3yCO →+4zDO →,∴2x +3y +4z =(λ+μ-1)+(-λ)+(-μ) =-1. 答案: -16.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析: ∵A ,B ,C 三点共线,∴存在唯一实数k 使AB →=kAC →,即O B →-OA →=k (OC →-O A →), ∴(k -1) OA →+OB -kOC →=0,又λOA →+mOB →+nOC →=0, 令λ=k -1,m =1,n =-k , 则λ+m +n =0. 答案: 0三、解答题(每小题10分,共20分)7.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为BC 、PD 的中点,求满足M N →=xAB →+yAD →+zAP →的实数x ,y ,z 的值.解析: MN →=MC →+CD →+DN →=12BC →+BA →+12DP → =12AD →-AB →+12(AP →-AD →) =-AB →+12AP →,∴x =-1,y =0,z =12.8.如图,平行六面体ABCD -A 1B 1C 1D 1中,M 是AD 1中点,N 是BD中点,判断MN →与D 1C →是否共线?解析: ∵M ,N 分别是AD 1,BD 的中点,四边形ABCD 为平行四边形,连结AC ,则N 为AC 的中点.∴MN →=A N →-A M →=12A C →-12AD 1→=12(A C →-AD 1→)=12D 1C →∴MN →与D 1C →共线.尖子生题库☆☆☆9.(10分)如图,若P 为平行四边形ABCD 所在平面外一点,点H 为PC 上的点, 且PH HC =12,点G 在AH 上,且AGAH=m .若G ,B ,P ,D 四点共面,求m 的值.解析: 连结BD ,BG , ∵AB →=PB →-PA →且AB →=DC →, ∴DC →=PB →-PA →. ∵PC →=PD →+DC →,∴PC →=PD →+PB →-PA →=-PA →+PB →+PD →. ∵PH HC =12, ∵PH →=13PC →=13(-PA →+PB →+PD →)=-13PA →+13PB →+13 PD →.又∵AH →=PH →-PA →, ∴AH →=-43PA →+13PB →+13PD →.∵AGAH=m , ∴AG →=mAH →=-4m 3PA →+m 3 PB →+m 3PD →.∴BG →=-A B →+AG →=PA →-PB →+AG →,∴BG →=⎝ ⎛⎭⎪⎫1-4m 3PA →+⎝ ⎛⎭⎪⎫m 3-1PB →+m 3PD →.又∵B ,G ,P ,D 四点共面, ∴1-4m3=0,∴m =34.。
高中数学 1.3课时同步练习 新人教A版选修2-1
第1章 1.3一、选择题(每小题5分,共20分)1.已知p:x2-1≥-1,q:4+2=7,则下列判断中,错误嘚是()A.p为真命题,p且q为假命题B.p为假命题,q为假命题C.q为假命题,p或q为真命题D.p且q为假命题,p或q为真命题解析:∵p为真命题,q为假命题,∴p且q为假命题,p或q是真命题.答案: B2.如果命题“綈p∨綈q”是假命题,则在下列各结论中,正确嘚为()①命题“p∧q”是真命题;②命题“p∧q”是假命题;③命题“p∨q”是真命题;④命题“p∨q”是假命题.A.①③B.②④C.②③D.①④解析:∵綈p∨綈q是假命题∴綈(綈p∨綈q)是真命题即p∧q是真命题答案: A3.“p∨q为假命题”是“綈p为真命题”嘚()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若p∨q为假命题,则p,q都为假命题,綈p为真命题.若綈p为真命题,则p∨q可能为真命题,∴“p∨q为假命题”是“綈p为真命题”嘚充分不必要条件.答案: A4.已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2和q4:p1∧(綈p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4解析:∵y=2x在R上为增函数,y=2-x=()12x在R上为减函数,∴y=-2-x=-()12x在R上为增函数,∴y=2x-2-x在R上为增函数,故p1是真命题.y=2x+2-x在R上为减函数是错误嘚,故p2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C二、填空题(每小题5分,共10分)5.“a≥5且b≥3”嘚否定是____________;“a≥5或b≤3”嘚否定是____________.答案:a<5或b<3a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A⃘A∪B.其中,真命题为________.解析:①此命题为“非p”嘚形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式嘚一个解,所以p是真命题,所以非p是假命题.②此命题是“p或q”嘚形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”嘚形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“非p”嘚形式,其中p:A⊆A∪B.因为p为真命题,所以“非p”为假命题,故是假命题.所以填②.答案: ②三、解答题(每小题10分,共20分)7.分别写出由下列各组命题构成嘚p ∧q ,p ∨q ,綈p 形式命题.(1)p :8∈{x|x 2-8x ≤0},q :8∈{2,8}.(2)p :函数f(x)=3x 2-1是偶函数,q :函数f(x)=3x 2-1嘚图象关于y 轴对称. 解析: (1)p ∧q :8∈({x|x 2-8x ≤0}∩{2,8}).p ∨q :8∈({x|x 2-8x ≤0}∪{2,8}).綈p :8∉{x|x 2-8x ≤0}.(2)p ∧q :函数f(x)=3x 2-1是偶函数并且它嘚图象关于y 轴对称.p ∨q :函数f(x)=3x 2-1是偶函数或它嘚图象关于y 轴对称.綈p :函数f(x)=3x 2-1不是偶函数.8.写出下列命题嘚否定,然后判断其真假:(1)p :方程x 2-x +1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :∅⊆A ;(4)p :不等式x 2+3x +5<0嘚解集是∅.解析:题号判断p 嘚真假 綈p 嘚形式 判断綈p 嘚真假 (1)假 方程x 2-x +1=0无实数根 真 (2)真 函数y =tan x 不是周期函数 假 (3)真 ∅ A 假 (4)真 不等式x 2+3x +5<0嘚解集不是∅ 假尖子生题库☆☆☆ 9.(10分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a>0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 嘚取值范围;(2)綈p 是綈q 嘚充分不必要条件,求实数a 嘚取值范围. 解析: (1)由x 2-4ax +3a 2<0得(x -3a)(x -a)<0.又a>0,所以a<x<3a ,当a =1时,1<x<3,即p 为真命题时实数x 嘚取值范围是1<x<3. 由⎩⎪⎨⎪⎧ x 2-x -6≤0,x 2+2x -8>0. 解得⎩⎪⎨⎪⎧-2≤x ≤3,x<-4或x>2.即2<x ≤3. 所以q 为真时实数x 嘚取值范围是2<x ≤3. 若p ∧q 为真,则⎩⎨⎧ 1<x<3,2<x ≤3⇔2<x<3, 所以实数x 嘚取值范围是(2,3).(2)綈p 是綈q 嘚充分不必要条件,即綈p ⇒綈q 且綈q ⇒/ 綈p.设A ={x|x ≤a 或x ≥3a},B ={x|x ≤2或x>3},则A B. 所以0<a ≤2且3a>3,即1<a ≤2.所以实数a 嘚取值范围是(1,2].。
人教A版高中数学选修1-2 3.1.1同步练习习题
高中数学人教A版选修1-2 同步练习1.复数(a2-a-2)+(|a-1|-1)i(a∈R)是纯虚数,则有()A.a≠0B.a≠2C.a≠-1且a≠2 D.a=-1解析:选D.需要a2-a-2=0,且|a-1|-1≠0,即a=-1.2.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是() A.B∪(∁S B)=C B.∁S A=BC.A∩(∁S B)=∅D.A∪B=C解析:选A.依据复数的分类可知B∪(∁S B)=C.3.以3i-2的虚部为实部,以-3+2i的实部为虚部的复数是__________.解析:3i-2的虚部为3,-3+2i的实部为-3.∴以3i-2的虚部为实部,以-3+2i的实部为虚部的复数是3-3i.答案:3-3i4.下列四个命题:①两个复数不能比较大小;②若x,y∈R,则x+y i=1+i的充要条件是x=y=1;③若实数a与a i对应,则实数集与纯虚数集一一对应;④纯虚数集相对复数集的补集是虚数集.其中真命题的个数是________.解析:①中当这两个复数都是实数时,可以比较大小.②由复数相等的充要条件知②是真命题.③若a=0,则a i不是纯虚数.④由纯虚数集、虚数集、复数集之间的关系知:所求补集应是非纯虚数集与实数集的并集.答案:1[A级基础达标]1.复数i-1的虚部为()A.0 B.1C.i D.-2解析:选B.i-1的虚部为1.2.下列说法正确的是()A.如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B.若a,b∈R且a>b,则a i>b iC .如果复数x +y i 是实数,则x =0,y =0D .复数a +b i 不是实数解析:选A.由两个复数相等的充要条件知这两个复数的实部与虚部分别相等,即它们的实部差与虚部差都为0.3.若sin 2θ-1+i(2cos θ+1)是纯虚数,则θ的值为( )A .2k π-π4B .2k π+π4C .2k π±π4 D.k π2+π4(以上k ∈Z) 解析:选B.由⎩⎨⎧sin 2θ-1=0,2cos θ+1≠0,解得⎩⎨⎧θ=k π+π4,k ∈Z ,θ≠2k π+3π4且θ≠2k π+5π4,k ∈Z .∴θ=2k π+π4,k ∈Z.故选B. 4.若4=a +b i(i 为虚数单位,a ,b ∈R),则a +b =________.解析:∵a +b i =4,∴a =4,b =0,∴a +b =4.答案:45.已知复数z =k 2-3k +(k 2-5k +6)i(k ∈Z),且z <0,则k =________.解析:⎩⎪⎨⎪⎧k 2-3k <0k 2-5k +6=0⇒⎩⎪⎨⎪⎧0<k <3k =2或k =3⇒k =2. 答案:26.已知关于实数x ,y 的方程组⎩⎪⎨⎪⎧(2x -1)+i =y -(3-y )i ①(2x +ay )-(4x -y +b )i =9-8i ②有实数解,求实数a ,b 的值. 解:根据复数相等的充要条件,得⎩⎪⎨⎪⎧2x -1=y 1=-(3-y ), 解得⎩⎪⎨⎪⎧x =52y =4③.把③代入②, 得5+4a -(6+b )i =9-8i ,且a 、b ∈R ,∴⎩⎪⎨⎪⎧5+4a =96+b =8,解得⎩⎪⎨⎪⎧a =1b =2. [B 级 能力提升]7.下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1;②若a ,b ∈R 且a >b ,则a +i >b +i ;③a i 一定为纯虚数.A .0B .1C .2D .3解析:选A.①由于x ,y ∈C ,∴x +y i 不一定是复数的代数形式,不符合复数相等的充要条件,①是假命题.②由于两个虚数不能比较大小,∴②是假命题.③当a ∈R 且a ≠0时,a i 才是纯虚数,∴③是假命题. 8.已知M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},M ∩N ={3},则实数m 的值为( )A .-1或6B .-1或4C .-1D .4解析:选C.由M ∩N ={3},知m 2-3m -1+(m 2-5m -6)i =3,∴⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 9.已知z 1=-4a +1+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R ,z 1>z 2,则a 的值为________. 解析:由z 1>z 2,得⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,即⎩⎪⎨⎪⎧a =0或a =-32,a =0或a =-1,a <16.解得a =0.答案:010.已知关于t 的一元二次方程t 2+(2+i)t +2xy +(x -y )i =0(x ,y ∈R),若方程有实数根,求x ,y 满足的关系式.解:设实数根为a ,代入方程得(a 2+2a +2xy )+(a +x -y )i =0.由复数相等的充要条件,得⎩⎪⎨⎪⎧a 2+2a +2xy =0,①a +x -y =0,②由②得a =y -x ,③把③代入①,得(y -x )2+2(y -x )+2xy =0,整理,得(x -1)2+(y +1)2=2.故所求的关系式为(x -1)2+(y +1)2=2.11.(创新题)已知集合M ={(a +3)+(b 2-1)i ,8},集合N ={3i ,(a 2-1)+(b +2)i}同时满足M ∩N M ,M∩N ≠∅,求整数a 、b .解:依题意得(a +3)+(b 2-1)i =3i ,①或8=(a 2-1)+(b +2)i ,②或(a +3)+(b 2-1)i =(a 2-1)+(b +2)i.③由①得a =-3,b =±2,经检验,a =-3,b =-2不合题意,舍去.∴a=-3,b=2.由②得a=±3,b=-2.又a=-3,b=-2不合题意.∴a=3,b=-2.③中,a,b无整数解不符合题意.综上所述得a=-3,b=2或a=3,b=-2.。
最新整理高中数学 3.1.2课时同步练习 新人教A版选修2-1.doc
第3章 3.1.2一、选择题(每小题5分,共20分)1.对于空间中任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量C .不共面向量D .既不共线也不共面向量答案: A2.当|a |=|b |≠0,且a ,b 不共线时,a +b 与a -b 的关系是( ) A .共面 B .不共面 C .共线D .无法确定 解析: 由加法法则知:a +b 与a -b 可以是菱形的对角线. 答案: A3.已知点M 在平面ABC 内,并且对空间任意一点O , OM →=xOA →+13OB →+13OC →,则x 的值为( )A .3B .0 C.13D .1解析: ∵OM →=xOA →+13OB →+13OC →,且M 、A 、B 、C 四点共面,∴x +13+13=1,x =13.故选C.答案: C4.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ、μ∈R 且λ2+μ2≠0),则( ) A .a ∥e 1B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能解析: 当λ=0,μ≠0时,a =μe 2,则a ∥e 2; 当λ≠0,μ=0时,a =λe 1,则a ∥e 1; 当λ≠0,μ≠0时,a 与e 1,e 2共面. 答案: D二、填空题(每小题5分,共10分)5.已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =________.解析: ∵A 、B 、C 、D 共面,∴OA →=OB →+λB C →+μBD →=OB →+λ(O C →-OB →)+μ(O D →-OB →) =(1-λ-μ) OB →+λO C →+μOD →=(λ+μ-1) BO →-λCO →-μDO →=2xBO →+3yCO →+4zDO →,∴2x +3y +4z =(λ+μ-1)+(-λ)+(-μ) =-1. 答案: -16.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析: ∵A ,B ,C 三点共线,∴存在唯一实数k 使AB →=kAC →,即O B →-OA →=k (OC →-O A →), ∴(k -1) OA →+OB -kOC →=0,又λOA →+mOB →+nOC →=0, 令λ=k -1,m =1,n =-k , 则λ+m +n =0. 答案: 0三、解答题(每小题10分,共20分)7.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为BC 、PD 的中点,求满足M N →=xAB →+yAD →+zAP →的实数x ,y ,z 的值.解析: MN →=MC →+CD →+DN →=12BC →+BA →+12DP → =12AD →-AB →+12(AP →-AD →) =-AB →+12AP →,∴x =-1,y =0,z =12.8.如图,平行六面体ABCD -A 1B 1C 1D 1中,M 是AD 1中点,N 是BD中点,判断MN →与D 1C →是否共线?解析: ∵M ,N 分别是AD 1,BD 的中点,四边形ABCD 为平行四边形,连结AC ,则N 为AC 的中点.∴MN →=A N →-A M →=12A C →-12AD 1→=12(A C →-AD 1→)=12D 1C →∴MN →与D 1C →共线.尖子生题库☆☆☆9.(10分)如图,若P 为平行四边形ABCD 所在平面外一点,点H 为PC 上的点, 且PH HC =12,点G 在AH 上,且AGAH=m .若G ,B ,P ,D 四点共面,求m 的值.解析: 连结BD ,BG , ∵AB →=PB →-PA →且AB →=DC →, ∴DC →=PB →-PA →. ∵PC →=PD →+DC →,∴PC →=PD →+PB →-PA →=-PA →+PB →+PD →. ∵PH HC =12, ∵PH →=13PC →=13(-PA →+PB →+PD →)=-13PA →+13PB →+13 PD →.又∵AH →=PH →-PA →, ∴AH →=-43PA →+13PB →+13PD →.∵AGAH=m , ∴AG →=mAH →=-4m 3PA →+m 3 PB →+m 3PD →.∴BG →=-A B →+AG →=PA →-PB →+AG →,∴BG →=⎝ ⎛⎭⎪⎫1-4m 3PA →+⎝ ⎛⎭⎪⎫m 3-1PB →+m 3PD →.又∵B ,G ,P ,D 四点共面, ∴1-4m3=0,∴m =34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学人教A版选修1-2 同步练习
1.复数(a2-a-2)+(|a-1|-1)i(a∈R)是纯虚数,则有( )
A.a≠0 B.a≠2
C.a≠-1且a≠2 D.a=-1
解析:选D.需要a2-a-2=0,且|a-1|-1≠0,即a=-1.
2.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确地是( )
A.B∪(∁S B)=C B.∁S A=B
C.A∩(∁S B)=∅D.A∪B=C
解析:选A.依据复数地分类可知B∪(∁S B)=C.
3.以3i-2地虚部为实部,以-3+2i地实部为虚部地复数是__________.
解析:3i-2地虚部为3,-3+2i地实部为-3. ∴以3i-2地虚部为实部,以-3+2i地实部为虚部地复数是3-3i.
答案:3-3i
4.下列四个命题:
①两个复数不能比较大小;
②若x,y∈R,则x+y i=1+i地充要条件是x=y =1;
③若实数a与a i对应,则实数集与纯虚数集一一对应;
④纯虚数集相对复数集地补集是虚数集.
其中真命题地个数是________.
解析:①中当这两个复数都是实数时,可以比较大小.
②由复数相等地充要条件知②是真命题.
③若a=0,则a i不是纯虚数.
④由纯虚数集、虚数集、复数集之间地关系知:所求补集应是非纯虚数集与实数集地并集.
答案:1
[A级基础达标]
1.复数i-1地虚部为( )
A.0 B.1
C.i D.-2
解析:选B.i-1地虚部为1.
2.下列说法正确地是( )
A.如果两个复数地实部地差和虚部地差都等于0,那么这两个复数相等
B.若a,b∈R且a>b,则a i>b i
C.如果复数x+y i是实数,则x=0,y=0 D.复数a+b i不是实数
解析:选A.由两个复数相等地充要条件知这两个复数地实部与虚部分别相等,即它们地实部差与虚部差都为0.
3.若sin 2θ-1+i(2cos θ+1)是纯虚数,则θ地值为( )
A .2k π-π4
B .2k π+π4
C .2k π±π4 D.k π2+π4(以上k ∈Z)
解析:选B.由⎩⎪⎨⎪⎧sin 2θ-1=0,2cos θ+1≠0, 解得⎩
⎪⎨⎪⎧θ=k π+π4,k ∈Z ,θ≠2k π+3π4且θ≠2k π+5π4,k ∈Z . ∴θ=2k π+π4
,k ∈Z.故选B. 4.若4=a +b i(i 为虚数单位,a ,b ∈R),则a +b =________.
解析:∵a +b i =4,∴a =4,b =0,∴a +b =4. 答案:4
5.已知复数z =k 2-3k +(k 2
-5k +6)i(k ∈Z),且z <0,则k =________.
解析:⎩
⎪⎨⎪⎧k 2-3k <0k 2-5k +6=0⇒⎩⎪⎨⎪⎧0<k <3k =2或k =3⇒k =2. 答案:2
6.已知关于实数x ,y 地方程组
⎩
⎪⎨⎪⎧(2x -1)+i =y -(3-y )i ①(2x +ay )-(4x -y +b )i =9-8i ②有实数解,求实数a ,b 地值.
解:根据复数相等地充要条件,得⎩⎪⎨⎪⎧2x -1=y 1=-(3-y )
, 解得⎩⎪⎨⎪⎧x =52y =4
③.把③代入②, 得5+4a -(6+b )i =9-8i ,且a 、b ∈R ,
∴⎩⎪⎨⎪⎧5+4a =96+b =8,解得⎩⎪⎨⎪⎧a =1b =2
. [B 级 能力提升]
7.下列命题中,正确命题地个数是( )
①若x ,y ∈C ,则x +y i =1+i 地充要条件是x =y =1;
②若a ,b ∈R 且a >b ,则a +i >b +i ;
③a i 一定为纯虚数.
A .0
B .1
C .2
D .3
解析:选A.①由于x ,y ∈C ,∴x +y i 不一定是复数地代数形式,不符合复数相等地充要条件,①是假命题.②由于两个虚数不能比较大小,∴②是假命
题.③当a ∈R 且a ≠0时,a i 才是纯虚数,∴③是假命题.
8.已知M ={1,2,m 2-3m -1+(m 2
-5m -6)i},N ={-1,3},M ∩N ={3},则实数m 地值为( )
A .-1或6
B .-1或4
C .-1
D .4 解析:选C.由M ∩N ={3},
知m 2-3m -1+(m 2
-5m -6)i =3,
∴⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 9.已知z 1=-4a +1+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R ,z 1>z 2,则a 地值为________. 解析:由z 1>z 2,
得⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,即⎩
⎪⎪⎨⎪⎪⎧a =0或a =-32,a =0或a =-1,a <16. 解得a =0.
答案:0
10.已知关于t 地一元二次方程t 2
+(2+i)t +2xy +(x -y )i =0(x ,y ∈R),若方程有实数根,求x ,y 满足地关系式.
解:设实数根为a ,代入方程得(a 2+2a +2xy )+(a +x -y )i =0.
由复数相等地充要条件,得⎩⎪⎨⎪⎧a 2+2a +2xy =0,①a +x -y =0,② 由②得a =y -x ,③
把③代入①,得(y-x)2+2(y-x)+2xy=0,
整理,得(x-1)2+(y+1)2=2.
故所求地关系式为(x-1)2+(y+1)2=2.
11.(创新题)已知集合M={(a+3)+(b2-1)i,8},集合N={3i,(a2-1)+(b+2)i}同时满足M∩N M,M∩N≠∅,求整数a、b.
解:依题意得(a+3)+(b2-1)i=3i,①
或8=(a2-1)+(b+2)i,②
或(a+3)+(b2-1)i=(a2-1)+(b+2)i.③
由①得a=-3,b=±2,
经检验,a=-3,b=-2不合题意,舍去.
∴a=-3,b=2.
由②得a=±3,b=-2.
又a=-3,b=-2不合题意.
∴a=3,b=-2.
③中,a,b无整数解不符合题意.
综上所述得a=-3,b=2或a=3,b=-2.。