2015年朝阳高三一模数学卷(理科)(有答案)
数学_2015年北京市朝阳区高考数学一模试卷(文科)(含答案)
2015年北京市朝阳区高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集U={a, b, c, d},集合A={a, b},B={b, c},则∁U(A∪B)等于()A {b}B {d}C {a, c, d}D {a, b, c}2. 命题p:∀x∈R,都有sinx≤1,则()A ¬p:∃x0∈R,使得sinx0≥1B ¬p:∃x0∈R,使得sinx0>1C ¬p:∀x0∈R,使得sinx0≥1D ¬p:∀x0∈R,使得sinx0>13. 若抛物线y2=2px,p>0的焦点与双曲线x2−y2=2的右焦点重合,则p的值为()A √2B 2C 4D 2√24. 如图所示的程序框图表示的算法功能是()A 计算S=1×2×3×4×5×6的值B 计算S=1×2×3×4×5的值C 计算S=1×2×3×4的值 D 计算S=1×3×5×7的值5. 已知x1=log132,x2=2−12,x3满足(13)x3=log3x3,则()A x1<x3<x2B x1<x2<x3C x2<x1<x3D x3<x1<x26. 函数f(x)=2sin(x−π6)cos(x−π6)图象的一条对称轴方程是()A x=π6 B x=π3C x=5π12D x=2π37. 已知实数x,y满足{2x+y≥02x−y≤00≤y≤t其中t>0.若z=3x+y的最大值为5,则z的最小值为()A 52B 1C 0D −18. 已知边长为3的正方形ABCD与正方形CDEF所在的平面互相垂直,M为线段CD上的动点(不含端点),过M作MH // DE交CE于H,作MG // AD交BD于G,连结GH.设CM=x(0< x<3),则下面四个图象中大致描绘了三棱锥C−GHM的体积y与变量x变化关系的是()A B C D二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 若i 为虚数单位,则1+i 1−i =________.10. 若向量a ,b 满足|a →|=|b →|=1,a →,b →的夹角为60∘,则a →⋅a →+a →⋅b →=________.11. 圆C :(x −2)2+(y −2)2=8与y 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为________.12. 一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是________,四棱锥侧面中最大侧面的面积是________. 13. 稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额−800)×20%×(1−30%)(2)每次收入在4000元以上的:应纳税额=每次收入额×(1−20%)×20%×(1−30%). 已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为________元.14. 记x 2−x 1为区间[x 1, x 2]的长度.已知函数y =2|x|,x ∈[−2, a](a ≥0),其值域为[m, n],则区间[m, n]的长度的最小值是________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. 在△ABC 中,A =π3,cosB =√63,BC =6. (Ⅰ)求AC 的长;(Ⅱ)求△ABC 的面积.16. 某次考试结束后,为了解甲、乙两所学校学生的数学考试情况,随机抽取甲、乙两校各10名学生的考试成绩,得茎叶图如图所示(部分数据不清晰):(Ⅰ)请根据茎叶图判断哪个学校的数学成绩平均水平较高(直接写出结果);(Ⅱ)若在抽到的这20名学生中,分别从甲、乙两校随机各抽取1名成绩不低于90分的学生,求抽到的学生中,甲校学生成绩高于乙校学生成绩的概率.17. 如图,在三棱柱ABC−A1B1C1中,各个侧面均是边长为2的正方形,D为线段AC的中点.(Ⅰ)求证:BD⊥平面ACC1A1;(Ⅱ)求证:直线AB1 // 平面BC1D;(Ⅲ)设M为线段BC1上任意一点,在△BC1D内的平面区域(包括边界)是否存在点E,使CE⊥DM,并说明理由.18. 设数列{a n}的前n项和为S n,且a1=4,a n+1=S n,n∈N∗.(Ⅰ)写出a2,a3,a4的值;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)已知等差数列{b n}中,有b2=a2,b3=a3,求数列{a n⋅b n}的前n项和T n.19. 已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1(−2, 0),F2(2, 0),离心率为√63.过焦点F2的直线l(斜率不为0)与椭圆C交于A,B两点,线段AB的中点为D,O为坐标原点,直线OD交椭圆于M,N两点.(Ⅰ)求椭圆C的方程;(Ⅱ)当四边形MF1NF2为矩形时,求直线l的方程.20. 已知函数f(x)=(x+ax)e x,a∈R.(Ⅰ)当a=0时,求曲线y=f(x)在点(1, f(1))处的切线方程;(Ⅱ)当a=−1时,求证:f(x)在(0, +∞)上为增函数;(Ⅲ)若f(x)在区间(0, 1)上有且只有一个极值点,求a的取值范围.2015年北京市朝阳区高考数学一模试卷(文科)答案1. B2. B3. C4. B5. B6. C7. D8. A9. i10. 32 11. 90∘12. √36,√7413. 由题意,设这个人应得稿费(扣税前)为x 元,则280=(x −800)×20%×(1−30%) 所以x =2800,280014. 315. (1)∵ cosB =√63,B ∈(0, π),又sin 2B +cos 2B =1,解得sinB =√33. 由正弦定理得:AC sinB =BC sinA ,即√33=√32,∴ AC =4;(2)在△ABC 中,sinC =sin(B +60∘)=sinBcos60∘+cosBsin60∘=12sinB +√32cosB =12×√33+√32×√63=√3+3√26. ∴ S △ABC =12AC ⋅BCsinC =12×4×6×√3+3√26=2√3+6√2.16. (1)从茎叶图可以看出,乙校10名学生的考试的数学成绩平均分高于甲校10名学生的考试的数学成绩,故乙学校的数学成绩平均水平较高(2)设事件M 为分别从甲、乙两校随机各抽取1名成绩不低于90分的学生,抽到的学生中,甲校学生成绩高于乙校学生成绩,由茎叶图可以看出,甲校数学成绩不低于90分的有2人,记为a 、b ,甲校数学成绩不低于90分的有5人,记为A 、B 、C ,D ,E ,其中a =92,b =93,A =90,B =91,B =95,D =96,E =98,分别从甲、乙两校随机各抽取1名成绩不低于90分的学生其情况有(aA)、(aB)、(aC)、(aD)、(aE)、(bA)、(bB)、(bC)、(bD)、(bE),共10种情况;甲校学生成绩高于乙校学生成绩共有(aA)、(aB)、(bA)、(bB)四种可能, 故P(M)=410=25 17. (1)证明:∵ 三棱柱ABC −A 1B 1C 1中,各个侧面均是边长为2的正方形,∴ CC 1⊥BC ,CC 1⊥AC ,∴ CC 1⊥底面ABC ,∵ BD ⊂底面ABC ,∴ CC 1⊥BD ,又底面为等边三角形,D 为线段AC 的中点.∴ BD ⊥AC ,又AC ∩CC 1=C ,∴ BD ⊥平面ACC 1A 1;(2)证明:连接B 1C 交BC 1于O ,连接OD ,如图则O 为B 1C 的中点,∵ D 是AC 的中点,∴ AB 1 // OD ,又OD ⊂平面BC 1D ,OD ⊄平面BC 1D∴ 直线AB 1 // 平面BC 1D ;(Ⅲ)在△BC 1D 内的平面区域(包括边界)存在点E ,使CE ⊥DM ,此时E 在线段C 1D 上; 证明如下:过C 作CE ⊥C 1D 交线段C 1D 与E ,由(Ⅰ)可知BD ⊥平面ACC 1A 1,而CE ⊂平面ACC 1A 1,所以BD ⊥CE ,由CE ⊥C 1D ,BD ∩C 1D =D ,所以CE ⊥平面BC 1D ,DM ⊂平面BC 1D ,所以CE ⊥DM .18. (1)∵ a 1=4,a n+1=S n ,∴ a 2=S 1=a 1=4,a 3=S 2=a 1+a 2=4+4=8,a 4=S 3=a 1+a 2+a 3=4+4+8=16;(2)由a n+1=S n ,得a n =S n−1(n ≥2),两式作差得:a n+1−a n =a n ,即a n+1=2a n (n ≥2),∴ 数列{a n }从第二项起为公比是2的等比数列,当n ≥2时,a n =4⋅2n−2=2n .∴ a n ={4,n =12n ,n ≥2; (Ⅲ)依题意,b 2=a 2=4,b 3=a 3=8,则{b 1+d =4b 1+2d =8 ,得{b 1=0d =4, ∴ b n =4(n −1).∴ a n ⋅b n ={0,n =1(n −1)⋅2n+2,n ≥2, 则a n ⋅b n =(n −1)⋅2n+2(n ∈N ∗),T n =a 1b 1+a 2b 2+...+a n−1b n−1+a n b n=0+1×24+2×25+3×26+...+(n −2)×2n+1+(n −1)×2n+2, 2T n =1×25+2×26+3×27+⋯+(n −2)×2n+2+(n −1)×2n+3, 两式作差得:−T n =24+25+⋯+2n+2−(n −1)×2n+3=24(1−2n+1)1−2−(n −1)×2n+3=−16−(n −2)×2n+3.∴ T n =16+(n −2)×2n+3.19. (I )由已知可得:{c =2c a =√63a 2=b 2+c 2 ,解得a 2=6,b 2=2,∴ 椭圆C 的方程为x 26+y 22=1;(II)由题意可知直线l 的斜率存在,设直线l 方程为y =k(x −2),A(x 1, y 1),B(x 2, y 2),M(x 3, y 3),N(−x 3, −y 3).联立{x 26+y 22=1y =k(x −2),化为(1+3k 2)x 2−12k 2x +12k 2−6=0, ∴ x 1+x 2=12k 21+3k 2,y 1+y 2=k(x 1+x 2−4)=−4k 1+3k 2, ∴ 线段AB 的中点D(6k 21+3k 2,−2k 1+3k 2),∴ 直线OD 的方程为:x +3ky =0(k ≠0).联立{x +3ky =0x 2+3y 2=6,解得y 32=21+3k 2,x 3=−3ky 3. ∵ 四边形MF 1NF 2为矩形,∴ F 2M →⋅F 2N →=0,∴ (x 3−2, y 3)⋅(−x 3−2, −y 3)=0,∴ 4−x 32−y 32=0,∴ 4−2(9k 2+1)1+3k 2=0,解得k =±√33, 故直线方程为y =±√33(x −2). 20. 函数f(x)=(x +a x )e x 的定义域为{x|x ≠0},f′(x)=x 3+x 2+ax−ax 2e x ;(1)当a =0时,f(x)=xe x ,f′(x)=(x +1)e x ,所以f(1)=e ,f′(1)=2e ;所以曲线y =f(x)在点(1, f(1))处的切线方程是y −e =2e(x −1), 即2ex −y −e =0;(2)证明:当a =−1时,f′(x)=x 3+x 2−x+1x 2e x ,设g(x)=x 3+x 2−x +1,则g′(x)=3x 2+2x −1=(3x −1)(x +1), 故g(x)在(0, 13)上是减函数,在(13, +∞)上是增函数,所以g(x)≥g(13)=2227>0,所以当x ∈(0, +∞)时,f′(x)=x 3+x 2−x+1x 2e x >0恒成立,所以f(x)在(0, +∞)上为增函数.(Ⅲ)f′(x)=x 3+x 2+ax−ax 2e x ;设ℎ(x)=x3+x2+ax−a,ℎ′(x)=3x2+2x+a,(1)当a>0时,ℎ′(x)>0恒成立,故ℎ(x)在(0, +∞)上为增函数;而ℎ(0)=−a<0,ℎ(1)=2>0,故函数ℎ(x)在(0, 1)上有且只有一个零点,故这个零点为函数f(x)在区间(0, 1)上的唯一的极小值点;(2)当a=0时,x∈(0, 1)时,ℎ′(x)=3x2+2x>0,故ℎ(x)在(0, 1)上为增函数;又ℎ(0)=0,故f(x)在(0, 1)上为增函数;故函数f(x)在区间(0, 1)上没有极值;(3)当a<0时,ℎ(x)=x3+x2+a(x−1),当x∈(0, 1)时,总有ℎ(x)>0成立,即f(x)在(0, 1)上为增函数;故函数f(x)在区间(0, 1)上没有极值;综上所述,a>0.。
【名师解析】北京市朝阳区2015届高三上学期期中统一考试数学(理)试题 Word版含解析
北京市朝阳区2015届高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.1.已知集合A={x|x2+x﹣2<0},B={x|x>0},则集合A∪B等于()A.{x|x>﹣2} B.{x|0<x<1} C.{x|x<1} D.{x|﹣2<x<1}解答:解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},B={x|x>0},∴集合A∪B={x|x>﹣2}.故选:A.点评:本题考查并集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.2.已知命题p:∀x>0,x+≥4;命题q:∃x0∈R,2x0=﹣1.则下列判断正确的是()A.p是假命题B.q是真命题C.p∧(¬q)是真命题D.(¬p)∧q是真命题解答:解:对于命题p:∵x>0,∴x+≥2=4,∴命题p为真命题;对于命题q:∵对∀x∈R,2x>0,∴命题q为假命题,¬q为真命题,故只有选项C为真命题.故选:C.点评:本题综合考查了复合命题的真假,简单命题的真假判断等知识,属于中档题,解题的关键是:准确理解两个命题的真值情况.3.执行如图所示的程序框图,则输出的k的值是()A.120 B.105 C.15 D.5考点:循环结构.专题:算法和程序框图.分析:据题意,模拟程序框图的运行过程,得出程序框图输出的k值是什么.解答:解:第一次循环得到:k=1,i=3;第二次循环得到:k=3,i=5;第三次循环得到:k=15,i=7;满足判断框中的条件,退出循环∴k=15故选C点评:本题考查了求程序框图的运行结果的问题,解题时应模拟程序框图的运行过程,以便得出结论,是基础题.4.曲线y=与直线x=1,x=e2及x轴所围成的图形的面积是()A.e2B.e2﹣1 C.e D.2分析:确定被积区间及被积函数,利用定积分表示面积,即可得到结论.解答:解:由题意,由曲线y=与直线x=1,x=e2及x轴所围成的图形的面积是S===2.故选:D.点评:本题考查面积的计算,解题的关键是确定曲线交点的坐标,确定被积区间及被积函数,利用定积分表示面积.5.设,是两个非零的平面向量,下列说法正确的是()①若•=0,则有|+|=|﹣|;②|•|=||||;③若存在实数λ,使得=λ,则|+|=||+||;④若|+|=||﹣||,则存在实数λ,使得=λ.A.①③B.①④C.②③D.②④分析:①当•=0时,判断|+|=|﹣|成立;②利用数量积判断|•|=||||不一定成立;③当=λ时,判断|+|=||+||不一定成立;④当|+|=||﹣||时,得出、共线,即可判断正误.解答:解:对于①,当•=0时,|+|===|﹣|,∴①正确;对于②,∵•=||||cos<,>,∴|•|=||||不一定成立,②错误;对于③,当=λ时,则|+|=|λ+|=|||λ+1|,||+||=|λ|+||=||(|λ|+1),|+|=||+||不一定成立,∴③错误;对于④,当|+|=||﹣||时,∴+2•+=﹣2||||+,∴•=﹣||||,∴共线,即存在实数λ,使得=λ,∴④正确.综上,正确的是①④.故选:B.点评:本题考查了平面向量的应用问题,解题时应熟练地掌握平面向量的有关概念,是基础题.6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为()A.3000 B.3300 C.3500 D.4000考点:函数最值的应用.专题:计算题;应用题;函数的性质及应用.分析:由题意,设利润为y元,租金定为3000+50x元,(0≤x≤70,x∈N),则y=(3000+50x)(70﹣x)﹣100(70﹣x),利用基本不等式求最值时的x的值即可.解答:解:由题意,设利润为y元,租金定为3000+50x元,(0≤x≤70,x∈N)则y=(3000+50x)(70﹣x)﹣100(70﹣x)=(2900+50x)(70﹣x)=50(58+x)(70﹣x)≤50()2,当且仅当58+x=70﹣x,即x=6时,等号成立,故每月租金定为3000+300=3300(元),故选B.点评:本题考查了学生由实际问题转化为数学问题的能力及基本不等式的应用,属于中档题.7.如图,某地一天中6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b(其中ω>0,<φ<π),则估计中午12时的温度近似为()A.30℃B.27℃C.25℃D.24℃考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由函数的图象的顶点坐标求出A和b,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,从而其求得x=12时的值.解答:解:由函数的图象可得b=20,A=30﹣20=10,根据•=10﹣6,可得ω=.再根据五点法作图可得,×6+φ=,求得φ=,∴y=10sin(x+)+20.令x=12,可得y=10sin(+)+20=10sin+20 10×+20≈27℃,故选:B.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.8.设函数f(x),g(x)满足下列条件:(1)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2);(2)f(﹣1)=﹣1,f(0)=0,f(1)=1.下列四个命题:①g(0)=1;②g(2)=1;③f2(x)+g2(x)=1;④当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为1.其中所有正确命题的序号是()A.①③B.②④C.②③④D.①③④考点:命题的真假判断与应用.专题:函数的性质及应用.分析:既然对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2),那么分别令x1,x2取1,0,﹣1求出g(0),g(1),g(﹣1),g(2),然后令x1=x2=x可得③,再根据不等式即可得④解答:解;对于①结论是正确的.∵对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2)且f(﹣1)=﹣1,f(0)=0,f(1)=1,令x1=x2=1,得[f(1)]2+[g(1)]2=g(0),∴1+[g(1)]2=g(0),∴g(0)﹣1=[g(1)]2令x1=1,x2=0,得f(1)f(0)+g(1)g(0)=g(1),∴g(1)g(0)=g(1),g(1)[g (0)﹣1]=0解方程组得对于②结论是不正确的,令x1=0,x2=﹣1,得f(0)f(﹣1)+g(0)g(﹣1)=g(1),∴g (﹣1)=0令x1=1,x2=﹣1,得f(1)f(﹣1)+g(1)g(﹣1)=g(2),∴﹣1=g(2),∴g(2)≠1 对于③结论是正确的,令x1=x2=1,得f2(x)+g2(x)=g(0)=1,对于④结论是正确的,由③可知f2(x)≤1,∴﹣1≤f(x)≤1,﹣1≤g(x)≤1∴|f n(x)|≤f2(x),|g n(x)|≤g2(x)对n>2,n∈N*时恒成立,[f(x)]n+[g(x)]n≤f2(x)+g2(x)=1综上,①③④是正确的.故选:D点评:本题考查赋值法求抽象函数的性质属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知平面向量,满足||=1,=(1,1),且∥,则向量的坐标是或.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:设=(x,y).由于平面向量,满足||=1,=(1,1),且∥,可得=1,x﹣y=0.解出即可.解答:解:设=(x,y).∵平面向量,满足||=1,=(1,1),且∥,∴=1,x﹣y=0.解得.∴=或.故答案为:或.点评:本题考查了向量模的计算公式、向量共线定理,属于基础题.10.已知tan(+α)=,α∈(,π),则tanα的值是﹣;cosα的值是﹣.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的求值.分析:利用两角和与差的正切函数及任意角的三角函数的定义,即可求得tanα与cosα的值.解答:解:tan(+α)=,∴tanα=tan[(+α)﹣]===﹣;又α∈(,π),∴cosα=﹣=﹣.故答案为:;.点评:本题考查两角和与差的正切函数及任意角的三角函数的定义,属于中档题.11.若f(x)=,是奇函数,则a+b的值是﹣1.考点:函数奇偶性的性质.分析:不妨设x<0,则﹣x>0,根据所给的函数解析式,利用f(﹣x)=﹣f(x),由此可得a、b的值,即可得到a+b.解答:解:函数f(x)=,是奇函数,任意x<0,则﹣x>0,由f(﹣x)=﹣f(x),则﹣2x+3=﹣ax﹣b,则a=2,b=﹣3.则a+b=﹣1,故答案为:﹣1.点评:本题主要考查分段函数求函数的奇偶性,运用函数的奇偶性的定义是解题的关键,属于基础题.12.已知等差数列{a n}中,S n为其前n项和.若a1+a3+a5+a7=﹣4,S8=﹣16,则公差d=﹣2;数列{a n}的前3项和最大.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a2+a4+a6+a8=﹣4+4d,可得S8=﹣4+(﹣4+4d)=﹣16,解之可得d=﹣2,进而可得a1=5,可得a n=7﹣2n,解不等式可得等差数列{a n}的前3项为正数,从第4项起为负数,故数列{a n}的前3项和最大.解答:解:∵a1+a3+a5+a7=﹣4,∴a2+a4+a6+a8=﹣4+4d,∴S8=﹣4+(﹣4+4d)=﹣16,解得d=﹣2,∴a1+a3+a5+a7=4a1+12d=﹣4,解得a1=5,∴等差数列{a n}的通项公式a n=5﹣2(n﹣1)=7﹣2n,令a n=7﹣2n≤0可得n≥,∴等差数列{a n}的前3项为正数,从第4项起为负数,∴数列{a n}的前3项和最大故答案为:﹣2;3点评:本题考查等差数列的前n项和公式,属基础题.13.已知x,y满足条件若目标函数z=ax+y(其中a>0)仅在点(2,0)处取得最大值,则a的取值范围是(,+∞).考点:简单线性规划的应用.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,确定目标取最优解的条件,即可求出a的取值范围.解答:解:作出不等式对应的平面区域,由z=ax+y得y=﹣ax+z,∵a>0,∴此时目标函数的斜率k=﹣a<0,要使目标函数z=ax+y仅在点A(2,0)处取得最大值,则此时﹣a≤k AB=﹣,即a>,故答案为:(,+∞)点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14.如图,在水平地面上有两座直立的相距60m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角.则从塔BB1的底部看塔AA1顶部的仰角的正切值为;塔BB1的高为45m.考点:解三角形的实际应用.专题:应用题;解三角形.分析:设从塔BB1的底部看塔AA1顶部的仰角为α,则AA1=60tanα,BB1=60tan2α,利用从两塔底部连线中点C分别看两塔顶部的仰角互为余角,可得△A1AC∽△CBB1,即可求出结论.解答:解:设从塔BB1的底部看塔AA1顶部的仰角为α,则AA1=60tanα,BB1=60tan2α,∵从两塔底部连线中点C分别看两塔顶部的仰角互为余角,∴△A1AC∽△CBB1,∴,∴AA1•BB1=900,∴3600tanαtan2α=900,∴tanα=,tan2α=,BB1=60tan2α=45.故答案为:,45点评:本题考查解三角形的实际应用,考查学生的计算能力,属于中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(13分)已知函数f(x)=sinx﹣acosx(x∈R)的图象经过点(,1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)的最小正周期和单调递减区间.考点:两角和与差的正弦函数;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)代点可求a值,可得解析式;(Ⅱ)由(Ⅰ)知f(x)=,易得周期为T=2π,解可得单调递减区间.解答:解:(Ⅰ)∵函数f(x)的图象经过点,∴,即﹣a=1,解得a=1.∴==.(Ⅱ)由(Ⅰ)知f(x)=.∴函数f(x)的最小正周期为T=2π.由,k∈Z.可得,k∈Z.∴函数f(x)的单调递减区间为:[],k∈Z点评:本题考查三角函数的图象和性质,涉及三角函数公式和三角函数的单调性和周期性,属基础题.16.(13分)如图,在△ABC中,∠ACB为钝角,AB=2,BC=.D为AC延长线上一点,且CD=+1.(Ⅰ)求∠BCD的大小;(Ⅱ)求BD的长及△ABC的面积.考点:余弦定理的应用.专题:解三角形.分析:(Ⅰ)利用正弦定理求出∠BCD的正弦函数值,然后求出角的大小;(Ⅱ)在△BCD中,由余弦定理可求BD的长,然后求出AC的长,即可求解△ABC的面积.解答:(本小题满分13分)解:(Ⅰ)在△ABC中,因为,,由正弦定理可得,即,所以.因为∠ACB为钝角,所以.所以.…(6分)(Ⅱ)在△BCD中,由余弦定理可知BD2=CB2+DC2﹣2CB•DC•cos∠BCD,即,整理得BD=2.在△ABC中,由余弦定理可知BC2=AB2+AC2﹣2AB•AC•cosA,即,整理得.解得.因为∠ACB为钝角,所以AC<AB=2.所以.所以△ABC的面积.….(13分)点评:本题考查余弦定理的应用,解三角形,考查基本知识的应用.17.(13分)在递减的等比数列{a n}中,设S n为其前n项和,已知a2=,S3=.(Ⅰ)求a n,S n;(Ⅱ)设b n=log2S n,试比较与b n+1的大小关系,并说明理由.考点:数列与函数的综合.专题:综合题;等差数列与等比数列.分析:(Ⅰ)利用a2=,S3=,建立方程组,即可求a n,S n;(Ⅱ)b n+1=log2S n+1,由于函数y=log2x在定义域上为增函数,所以只需比较与S n+1的大小关系.解答:解:(Ⅰ)由已知可得,解得q=2或.由上面方程组可知a1>0,且已知数列{a n}为递减数列,所以.代入求得,则.….(6分)(Ⅱ)依题意,=;b n+1=log2S n+1,由于函数y=log2x在定义域上为增函数,所以只需比较与S n+1的大小关系,即比较S n•S n+2与S2n+1的大小关系,=,=,由于,即,所以.即S n•S n+2<S2n+1,即<b n+1….(13分)点评:本题考查数列的通项,考查大小比较,考查学生分析解决问题的能力,属于中档题.18.(14分)已知函数f(x)=,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若f(x)在(1,2)上是单调函数,求a的取值范围.考点:函数的单调性及单调区间.专题:函数的性质及应用;导数的综合应用.分析:本题考察函数的单调性.(Ⅰ)先写出函数的定义域,然后求导数,分a=0,a>0,a<0,利用导数的符号讨论函数的单调性即可,(Ⅱ)结合(Ⅰ)中的函数单调性,对a进行分类讨论,又x∈(1,2),分成a≤0,0<2a≤1,1<2a<2,2a≥2四种情况进行讨论.解答:解:(Ⅰ)f(x)的定义域为{x|x≠a}..①当a=0时,f(x)=x(x≠0),f'(x)=1,则x∈(﹣∞,0),(0,+∞)时,f(x)为增函数;②当a>0时,由f'(x)>0得,x>2a或x<0,由于此时0<a<2a,所以x>2a时,f(x)为增函数,x <0时,f(x)为增函数;由f'(x)<0得,0<x<2a,考虑定义域,当0<x<a,f(x)为减函数,a<x<2a时,f (x)为减函数;③当a<0时,由f'(x)>0得,x>0或x<2a,由于此时2a<a<0,所以当x<2a时,f(x)为增函数,x>0时,f(x)为增函数.由f'(x)<0得,2a<x<0,考虑定义域,当2a<x<a,f(x)为减函数,a<x<0时,f (x)为减函数.综上,当a=0时,函数f(x)的单调增区间为(﹣∞,0),(0,+∞).当a>0时,函数f(x)的单调增区间为x∈(﹣∞,0),(2a,+∞),单调减区间为(0,a),(a,2a).当a<0时,函数f(x)的单调增区间为x∈(﹣∞,2a),(0,+∞),单调减区间为(2a,a),(a,0).(Ⅱ)①当a≤0时,由(Ⅰ)可得,f(x)在(1,2)单调增,且x∈(1,2)时,x≠a.②当0<2a≤1时,即时,由(Ⅰ)可得,f(x)在(2a,+∞)单调增,即在(1,2)单调增,且x∈(1,2)时,x≠a.③当1<2a<2时,即时,由(Ⅰ)可得,f(x)在(1,2)上不具有单调性,不合题意.④当2a≥2,即a≥1时,由(Ⅰ)可得,f(x)在(0,a),(a,2a)为减函数,同时需注意a∉(1,2),满足这样的条件时f(x)在(1,2)单调减,所以此时a=1或a≥2.综上所述,或a=1或a≥2.点评:本题易忽略函数的定义域,在讨论函数的性质的题目中一定要先求出函数的定义域,在定义域内讨论;难点是分类讨论较复杂,要做到不重不漏,按照数轴从左向右讨论,还要注意特殊情况.19.(14分)已知函数y=f(x),若在区间(﹣2,2)内有且仅有一个x0,使得f(x0)=1成立,则称函数f(x)具有性质M.(Ⅰ)若f(x)=sinx+2,判断f(x)是否具有性质M,说明理由;(Ⅱ)若函数f(x)=x2+2mx+2m+1具有性质M,试求实数m的取值范围.考点:函数零点的判定定理.专题:计算题;新定义;函数的性质及应用.分析:(Ⅰ)f(x)=sinx+2具有性质M.若存在x0∈(﹣2,2),使得f(x0)=1,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数f(x)=x2+2mx+2m+1具有性质M,即方程x2+2mx+2m=0在(﹣2,2)上有且只有一个实根.设h(x)=x2+2mx+2m,即h(x)=x2+2mx+2m在(﹣2,2)上有且只有一个零点.讨论m的取值范围,结合零点存在定理,即可得到m的范围.解答:解:(Ⅰ)f(x)=sinx+2具有性质M.理由:依题意,若存在x0∈(﹣2,2),使得f(x0)=1,则x0∈(﹣2,2)时有sinx0+2=1,即sinx0=﹣1,x0=2kπ﹣,k∈Z.由于x0∈(﹣2,2),所以x0=﹣.又因为区间(﹣2,2)内有且仅有一个x0=﹣.使得f(x0)=1成立,所以f(x)具有性质M;(Ⅱ)依题意,若函数f(x)=x2+2mx+2m+1具有性质M,即方程x2+2mx+2m=0在(﹣2,2)上有且只有一个实根.设h(x)=x2+2mx+2m,即h(x)=x2+2mx+2m在(﹣2,2)上有且只有一个零点.解法一:(1)当﹣m≤﹣2时,即m≥2时,可得h(x)在(﹣2,2)上为增函数,只需解得交集得m>2.(2)当﹣2<﹣m<2时,即﹣2<m<2时,若使函数h(x)在(﹣2,2)上有且只有一个零点,需考虑以下3种情况:(ⅰ)m=0时,h(x)=x2在(﹣2,2)上有且只有一个零点,符合题意.(ⅱ)当﹣2<﹣m<0即0<m<2时,需解得交集得∅.(ⅲ)当0<﹣m<2时,即﹣2<m<0时,需解得交集得.(3)当﹣m≥2时,即m≤﹣2时,可得h(x)在(﹣2,2)上为减函数只需解得交集得m≤﹣2.综上所述,若函数f(x)具有性质M,实数m的取值范围是m或m>2或m=0;解法二:依题意,(1)由h(﹣2)•h(2)<0得,(4﹣2m)(6m+4)<0,解得或m>2.同时需要考虑以下三种情况:(2)由解得m=0.(3)由解得,不等式组无解.(4)由解得,解得.综上所述,若函数f(x)具有性质M,实数m的取值范围是或m>2或m=0.点评:本题考查函数的零点的判断和求法,考查零点存在定理的运用,考查分类讨论的思想方法,考查运算能力,属于中档题.20.(13分)对于项数为m的有穷数列{a n},记b k=max{a1,a2,a3,…,a k}(k=1,2,3,…,m),即b k为a1,a2,a3,…,a k中的最大值,则称{b n}是{a n}的“控制数列”,{b n}各项中不同数值的个数称为{a n}的“控制阶数”.(Ⅰ)若各项均为正整数的数列{a n}的控制数列{b n}为1,3,3,5,写出所有的{a n};(Ⅱ)若m=100,a n=tn2﹣n,其中,{b n}是{a n}的控制数列,试用t表示(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)的值;(Ⅲ)在1,2,3,4,5的所有全排列中,将每种排列视为一个数列,对于其中控制阶数为2的所有数列,求它们的首项之和.考点:数列的应用.专题:新定义;等差数列与等比数列.分析:(Ⅰ)若各项均为正整数的数列{a n}的控制数列{b n}为1,3,3,5,可得{a n};(Ⅱ)确定当n≥2时,总有a n+1>a n,n≥3时,总有b n=a n.从而只需比较a1和a2的大小,即可得出结论.(Ⅲ)确定首项为1、2、3、4的数列的个数,即可得出结论.解答:解:(Ⅰ)1,3,1,5;1,3,2,5;1,3,3,5….(3分)(Ⅱ)因为,所以.所以当n≥2时,总有a n+1>a n.又a1=t﹣1,a3=9t﹣3.所以a3﹣a1=8t﹣2>0.故n≥3时,总有b n=a n.从而只需比较a1和a2的大小.(1)当a1≤a2,即t﹣1≤4t﹣2,即时,{a n}是递增数列,此时b n=a n对一切n=1,2,3,…100均成立.所以(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)=0.(2)当a1>a2时,即t﹣1>4t﹣2,即时,b1=a1,b2=a1,b n=a n(n≥3).所以(b1﹣a1)+(b2﹣a2)+(b3﹣a3)+…+(b100﹣a100)=0+[(t﹣1)﹣(4t﹣2)]+0+…+0=1﹣3t.综上,原式=….(9分)(Ⅲ)154.首项为1的数列有6个;首项为2的数列有6+2=8个;首项为3的数列有6+4+2=12个;首项为4的数列有6+6+6+6=24个;所以,控制阶数为2的所有数列首项之和6+8×2+12×3+24×4=154.…(13分)点评:本题考查数列的应用,着重考查分析,对抽象概念的理解与综合应用的能力,对(3)观察,分析寻找规律是难点,是难题.。
北京市理科朝阳区2015-2016学年度高三年级第一学期期末统一考试
北京市朝阳区2015-2016学年度高三年级第一学期期末统一考试数学试卷(理工类) 2016.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}|11M x x =-<<M N = A .{}|01x x ≤< B .{|01x x << C .{}|0x x ≥ D .{}|10x x -<≤2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的坐标为A .(1,1)B .(1,1)--C .(1,1)-D . (1,1)-3.执行如图所示的程序框图,则输出的i 值为A .3B .4C .5D .6第3题图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~km/h )频率120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有 A .30辆 B .300辆 C .170辆 D .1700辆第4题图5.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知点)0,22(Q 及抛物线24x y =上一动点(,)P x y ,则y PQ +的最小值是A .12B .1C . 2D . 3 7.某四棱锥的三视图如图所示,则该四棱锥的侧面积是A .27B .30C .32D .36第7题图8.设函数()f x 的定义域D ,如果存在正实数m ,使得对任意x D ∈,都有()()f x m f x +>,则称()f x 为D 上的“m 型增函数”.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a ∈R ).若()f x 为R 上的“20型增函数”,则实数a 的取值范围是A .0a >B .5a <C .10a< D .20a <第二部分(非选择题 共110分)侧视图俯视图二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.函数2sin(2)16y x π=++的最小正周期是 ,最小值是 .10.若x ,y 满足约束条件2211x y x y y -⎧⎪+⎨⎪⎩≤,≥,≤,则z x y =+的最大值为 .11.在各项均为正数的等比数列{}n a 中,若22a =,则132a a +的最小值是 . 12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为 .13.已知B A ,为圆9)()(:22=-+-n y m x C (,m n ∈R )上两个不同的点(C 为圆心),且满足||CA CB +=,则=AB .14.已知点O 在ABC ∆的内部,且有xOA yOB zOC ++=0,记,,AOB BOC AOC ∆∆∆的面积分别为AOB BOC AOC S S S ∆∆∆,,.若1x y z ===,则::AOB BOC AOC S S S ∆∆∆= ;若2,3,4x y z ===,则::AOB BOC AOC S S S ∆∆∆= .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率;(Ⅱ)设X 为选出同学中高一(1)班同学的人数,求随机变量X 的分布列和数学期望. 16.(本小题满分13分)如图,在ABC ∆中,点D 在BC 边上,7,42CAD AC π∠==,cos 10ADB ∠=-. (Ⅰ)求sin C ∠的值;(Ⅱ)若5,BD =求ABD ∆的面积.17.(本小题满分13分)ADBC如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且60DAB ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (Ⅰ)求证:AB ∥EF ;(Ⅱ)若PA PD AD ==,且平面PAD ⊥平面ABCD , 求平面PAF 与平面AFE 所成的锐二面角的余弦值.18.(本小题满分14分)已知函数()ln f x ax x =+,其中a ∈R .(Ⅰ)若()f x 在区间[1,2]上为增函数,求a 的取值范 围;(Ⅱ)当e a =-时,(ⅰ)证明:()20f x +≤;19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A ,B 两点. (Ⅰ)求椭圆C 的离心率; (Ⅱ)求证:OA OB ⊥; (Ⅲ)求OAB ∆面积的最大值.20.(本小题满分13分)已知有穷数列:*123,,,,(,3)k a a a a k k ∈≥N 的各项均为正数,且满足条件: ①1k a a =;②11212(1,2,3,,1)n n n n a a n k a a +++=+=- . (Ⅰ)若13,2k a ==,求出这个数列; (Ⅱ)若4k =,求1a 的所有取值的集合; (Ⅲ)若k 是偶数,求1a 的最大值(用k 表示).北京市朝阳区2015-2016学年度第一学期期末高三年级统一考试数学答案(理工类) 2016.1一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A ,则1203373731049().60C C C C P A C ⋅+⋅== 所以选出的3名同学来自班级的概率为4960. ……………………………5分 (Ⅱ)随机变量X 的所有可能值为0,1,2,3,则03373107(0)24C C P X C ⋅===; 123731021(1)40C C P X C ⋅===; 21373107(2)40C C P X C ⋅===; 30373101(3)120C C P X C ⋅===. 所以随机变量X 的分布列是随机变量X 的数学期望721719()012324404012010E X =⨯+⨯+⨯+⨯=. …………………………13分 16.(本小题满分13分) 解:(Ⅰ)因为cos 10ADB ∠=-,所以sin 10ADB ∠=又因为4CAD π∠=,所以4C ADB π∠=∠-.所以sin sin()sin cos cos sin 444C ADB ADB ADB πππ∠=∠-=∠⋅-∠⋅45=+=.………………………7分 (Ⅱ)在ACD ∆中,由ADCACC AD ∠=∠sin sin,得74sin sin AC C AD ADC ⋅⋅∠===∠.所以11sin 572210ABD S AD BD ADB ∆=⋅⋅∠=⋅⋅=. …………13分 17.(本小题满分13分)(Ⅰ)证明:因为底面ABCD 是菱形,所以AB ∥CD . 又因为AB ⊄面PCD ,CD ⊂面PCD ,所以AB ∥面PCD . 又因为,,,A B E F 四点共面,且平面ABEF 平面PCD EF =, 所以AB ∥EF . ………………………5分 (Ⅱ)取AD 中点G ,连接,PG GB .因为PA PD =,所以PG AD ⊥. 又因为平面PAD ⊥平面ABCD , 且平面PAD 平面ABCD AD =,所以PG ⊥平面ABCD .所以PG GB ⊥. 在菱形ABCD 中,因为AB AD =, 60DAB ∠=︒,G 是AD 中点, 所以AD GB ⊥.如图,建立空间直角坐标系G xyz -.设2PA PD AD a ===, 则(0,0,0),(,0,0)G A a ,,0),(2,0),(,0,0),)B C a D a P --.又因为AB ∥EF ,点E 是棱PC 中点,所以点F 是棱PD 中点.所以(E a -,(,0,)22a F -.所以3()22a AF =-,(,,0)22a EF =- .设平面AFE 的法向量为(,,)x y z =n ,则有0,0.AF EF ⎧⋅=⎪⎨⋅=⎪⎩n n所以,.z y x ⎧=⎪⎨=⎪⎩令3x =,则平面AFE的一个法向量为=n .因为BG ⊥平面PAD,所以,0)GB =是平面PAF 的一个法向量.因为cos ,GB <GB >GB⋅===⋅n n n所以平面PAF 与平面AFE. ……………………13分 18.(本小题满分14分)解:函数()f x 定义域),0(+∞∈x ,1()f x a x'=+.(Ⅰ)因为()f x 在区间[1,2]上为增函数,所以()0f x '≥在[1,2]x ∈上恒成立, 即1()0f x a x '=+≥,1a x≥-在[1,2]x ∈上恒成立, 则1.2a ≥- ………………………………………………………4分(Ⅱ)当e a =-时,() e ln f x x x =-+,e 1()x f x x-+'=. (ⅰ)令0)(='x f ,得1ex =.令()0f x '>,得1(0,)e x ∈,所以函数)(x f 在1(0,)e 单调递增.令()0f x '<,得1(,)e x ∈+∞,所以函数)(x f 在1(,)e +∞单调递减.所以,max 111()()e ln 2e e ef x f ==-⋅+=-.所以()20f x +≤成立. …………………………………………………9分 (ⅱ)由(ⅰ)知, max ()2f x =-, 所以2|)(|≥x f . 设ln 3(),(0,).2x g x x x =+∈+∞所以2ln 1)(xx x g -='. 令0)(='x g ,得e x =.令()0g x '>,得(0,e)x ∈,所以函数)(x g 在(0,e)单调递增, 令()0g x '<,得(e,)x ∈+∞,所以函数)(x g 在(e,)+∞单调递减;所以,max lne 313()(e)2e 2e 2g x g ==+=+<, 即2)(<x g . 所以)(|)(|x g x f > ,即>|)(|x f ln 32x x +. 所以,方程=|)(|x f ln 32x x +没有实数解. ……………………………14分 19.(本小题满分14分)解:(Ⅰ)由题意可知24a =,243b =,所以22283c a b =-=.所以c e a ==.所以椭圆C…………………………3分 (Ⅱ)若切线l 的斜率不存在,则:1l x =±.在223144x y +=中令1x =得1y =±. 不妨设(1,1),(1,1)A B -,则110OA OB ⋅=-=.所以OA OB ⊥.同理,当:1l x =-时,也有OA OB ⊥. 若切线l 的斜率存在,设:l y kx m =+1=,即221k m +=.由2234y kx m x y =+⎧⎨+=⎩,得222(31)6340k x kmx m +++-=.显然0∆>. 设11(,)A x y ,22(,)B x y ,则122631km x x k +=-+,21223431m x x k -=+. 所以2212121212()()()y y kx m kx m k x x km x x m =++=+++.所以1212OA OB x x y y ⋅=+221212(1)()k x x km x x m =++++22222346(1)3131m kmk km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+22244431m k k --=+ 2224(1)44031k k k +--==+.所以OA OB ⊥.综上所述,总有OA OB ⊥成立. ………………………………………………9分(Ⅲ)因为直线AB 与圆O 相切,则圆O 半径即为OAB ∆的高, 当l 的斜率不存在时,由(Ⅱ)可知2AB =.则1OAB S ∆=.当l 的斜率存在时,由(Ⅱ)可知,AB ====== 所以2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++24222164164164419613396k k k k k=+⋅=+≤+=++++(当且仅当k =时,等号成立).所以AB ≤.此时, max (S )OAB ∆=.综上所述,当且仅当3k =±时,OAB ∆面积的最大值为3.…………………14分 20.(本小题满分13分)解:(Ⅰ)因为13,2k a ==,由①知32a =; 由②知,21211223a a a a +=+=,整理得,2222310a a -+=.解得,21a =或212a =.当21a =时,不满足2323212a a a a +=+,舍去; 所以,这个数列为12,,22. …………………………………………………3分(Ⅱ)若4k =,由①知4a =1a . 因为11212(1,2,3)n n n n a a n a a +++=+=,所以111(2)(1)0n n n n a a a a ++--=. 所以112n n a a +=或11(1,2,3)n na n a +==. 如果由1a 计算4a 没有用到或者恰用了2次11n na a +=,显然不满足条件; 所以由1a 计算4a 只能恰好1次或者3次用到11n na a +=,共有下面4种情况: (1)若211a a =,3212a a =,4312a a =,则41114a a a ==,解得112a =;(2)若2112a a =,321a a =,4312a a =,则4111a a a ==,解得11a =;(3)若2112a a =,3212a a =,431a a =,则4114a a a ==,解得12a =;(4)若211a a =,321a a =,431a a =,则4111a a a ==,解得11a =; 综上,1a 的所有取值的集合为1{,1,2}2. ………………………………………………8分 (Ⅲ)依题意,设*2,,m 2k m m =∈≥N.由(II )知,112n n a a +=或11(1,2,3,21)n na n m a +==- . 假设从1a 到2m a 恰用了i 次递推关系11n na a +=,用了21m i --次递推关系112n n a a +=,则有(1)211()2itm a a -=⋅,其中21,t m i t ≤--∈Z .当i 是偶数时,0t ≠,2111()2tm a a a =⋅=无正数解,不满足条件;当i 是奇数时,由12111(),21222t m a a a t m i m -=⋅=≤--≤-得22211()22t m a -=≤,所以112m a -≤.11 又当1i =时,若213221222211111,,,,222m m m m a a a a a a a a ---==== , 有222111()2m m a a --=⋅,222112m m a a a -==,即112m a -=. 所以,1a 的最大值是12m -.即1212k a -=.…………………………………13分。
2105年度朝阳高三数学期末理科试题及答案
北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学试卷(理工类) 2015.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.设i 为虚数单位,则复数1iiz +=在复平面内对应的点所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 过抛物线24y x =的焦点F 的直线l 交抛物线于,A B 两点.若AB 中点M 到抛物线准线的距离为6,则线段AB 的长为A .6B .9C .12D .无法确定 3.设函数()sin(2)3f x x π=-的图象为C ,下面结论中正确的是 A .函数()f x 的最小正周期是2πB .图象C 关于点(,0)6π对称C .图象C 可由函数()sin 2g x x =的图象向右平移3π个单位得到 D .函数()f x 在区间(,)2ππ-12上是增函数4.某三棱锥的三视图如图所示,则该三棱锥的全面积是A . 4+B .8C . 4+D .5.αβ,表示不重合的两个平面,m ,l 表示不重合的两条直线.若m αβ=,l α⊄,l β⊄,则“l ∥m ”是“l ∥α且l ∥β”的A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件 6.在ABC ∆中,π4B =,则sin sin A C ⋅的最大值是A .14 B .34 C .2D .24+7.点O 在ABC ∆的内部,且满足24OA OB OC ++=0,则ABC ∆的面积与AOC ∆的面积之比是A .72 B . 3 C .52D .2 8.设连续正整数的集合{}1,2,3,...,238I =,若T 是I 的子集且满足条件:当x T ∈时,7x T ∉,则集合T 中元素的个数最多是( )A.204B. 207C. 208D.209第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(1,2)P ,则sin(π)α-的值是 .10.双曲线22:C x y λ-=(0λ>)的离心率是 ;渐近线方程是 .11.设不等式组240,0,0x y x y +-≤⎧⎪≥⎨⎪≥⎩表示平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .12.有一口大钟每到整点就自动以响铃的方式报时,1点响1声,2点响2声,3点响3声,……,12点响12声(12时制),且每次报时时相邻两次响铃之间的间隔均为1秒.在一次大钟报时时,某人从第一声铃响开始计时,如果此次是12点的报时,则此人至少需等待 秒才能确定时间;如果此次是11点的报时,则此人至少需等待 秒才能确定时间.13.在锐角AOB 的边OA 上有异于顶点O 的6个点,边OB 上有异于顶点O 的4个点,加上点O ,以这11个点为顶点共可以组成 个三角形(用数字作答).14.已知函数1sin π()()ππx xxf x x -=∈+R .下列命题: ①函数()f x 既有最大值又有最小值; ②函数()f x 的图象是轴对称图形;③函数()f x 在区间[π,π]-上共有7个零点; ④函数()f x 在区间(0,1)上单调递增.其中真命题是 .(填写出所有真命题的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.(Ⅰ)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;(Ⅱ)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中随机抽取3人,记抽到“老年人”的人数为X ,求随机变量X 的分布列和数学期望.1 6.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAB ⊥底面ABCD , PA AB =,点E 是PB 的中点,点F 在边BC 上移动.(Ⅰ)若F 为BC 中点,求证:EF //平面PAC ; (Ⅱ)求证:AE PF ⊥;(Ⅲ)若PB =,二面角E AF B --,试判断点F 在边BC 上的位置,并说明理由.DPCBFAE0.0217.(本小题满分13分)若有穷数列1a ,2a ,3,,m a a (m 是正整数)满足条件:1(1,2,3,,)i m i a a i m -+==,则称其为“对称数列”.例如,1,2,3,2,1和1,2,3,3,2,1都是“对称数列”. (Ⅰ)若}{n b 是25项的“对称数列”,且,13b ,14b 15,b ,25b 是首项为1,公比为2的等比数列.求}{n b 的所有项和S ;(Ⅱ)若}{n c 是50项的“对称数列”,且,26c ,27c 28,c ,50c 是首项为1,公差为2的等差数列.求}{n c 的前n 项和n S ,150,n n *≤≤∈N .18.(本小题满分13分)设函数2e (),1axf x a x =∈+R . (Ⅰ)当35a =时,求函数)(x f 的单调区间; (Ⅱ)设()g x 为()f x 的导函数,当1[,2e]ex ∈时,函数()f x 的图象总在()g x 的图象的上方,求a 的取值范围.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>过点.过椭圆右顶点A 的两条斜率乘积为14-的直线分别交椭圆C 于,M N 两点. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线MN 是否过定点D ?若过定点D ,求出点D 的坐标;若不过,请说明理由.20.(本小题满分13分)已知函数123()()()()f x x x x x x x =---,1x ,2x ,3x ∈R ,且123x x x <<.(Ⅰ)当10x =,21x =,32x =时,若方程()f x mx =恰存在两个相等的实数根,求实数m 的值; (Ⅱ)求证:方程()0f x '=有两个不相等的实数根; (Ⅲ)若方程()0f x '=的两个实数根是,αβ()αβ<,试比较122x x +与,αβ的大小并说明理由.北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学答案(理工类) 2015.1一、选择题(满分40分)三、解答题(满分80分) 15.(本小题满分13分)解:(Ⅰ)由题意估算,所调查的600人的平均年龄为:250.1350.2450.3550.2650.1750.148⨯+⨯+⨯+⨯+⨯+⨯=(岁)….…..4分(Ⅱ)由频率分布直方图可知,“老年人”所占的频率为15. 所以从该城市20~80年龄段市民中随机抽取1人,抽到“老年人”的概率为15. 依题意,X 的可能取值为0,1,2,3.00331464(0)()()55125P X C === 1231448(1)()()55125P X C ===2231412(2)()()55125P X C ===3303141(3)()()55125P X C === 所以,随机变量X 的分布列如下表:因此,随机变量X 的数学期望64481213()01231251251251255E X =⨯+⨯+⨯+⨯=. ……………..13分 16. (本小题满分14分) (Ⅰ)证明:在PBC ∆中,因为点E 是PB 中点,点F 是BC 中点,所以EF //PC .又因为EF ⊄平面PAC ,PC ⊂平面PAC , 所以EF //平面PAC .………..4分 (Ⅱ)证明:因为底面ABCD 是正方形,所以BC AB ⊥. 又因为侧面PAB ⊥底面ABCD ,平面PAB平面ABCD =AB ,且BC ⊂平面ABCD ,所以BC ⊥平面PAB .由于AE ⊂平面PAB ,所以BC AE ⊥. 由已知PA AB =,点E 是PB 的中点,所以AE PB ⊥. 又因为=PBBC B ,所以AE ⊥平面PBC .因为PF ⊂平面PBC ,所以AE PF ⊥.……………..9分 (Ⅲ)点F 为边BC 上靠近B 点的三等分点.因为PA AB =,PB =,所以PA AB ⊥.由(Ⅱ)可知,BC ⊥平面PAB .又BC //AD ,所以AD ⊥平面PAB ,即AD PA ⊥,AD AB ⊥ . 所以AD ,AB ,AP 两两垂直.分别以AD ,AB ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 不妨设2AB =,BF m =,则(0,0,0)A ,(0,2,0)B ,(0,0,2)P ,(0,1,1)E ,(,2,0)F m .于是(0,1,1)AE =,(,2,0)AF m =. 设平面AEF 的一个法向量为(,,)p q r =n ,由0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 20.q r mp q +=⎧⎨+=⎩ 取2p =,则q m =-,r m =,得 (2,,)m m =-n .由于AP AB ⊥,AP AD ⊥,AB AD A =,所以AP ⊥平面ABCD .即平面ABF 的一个法向量为(0,0,2)AP =.根据题意,||||4AP AP ⋅==⋅n n ,解得23m =.由于2BC AB ==,所以13BF BC =. 即点F 为边BC 上靠近B 点的三等分点.………..14分 17.(本小题满分13分)(Ⅰ)依题意,131,b =142b =,…,1212251322b b =⋅=. 则121252b b ==,112242b b ==,…,12142b b ==.则()12121212121()22 (121112)S b b b ⎡⎤-⎢⎥⎣⎦=++++=⨯+-1423=- ……………..6分 (Ⅱ)依题意,502624249c c =+⨯=,因为}{n c 是50项的“对称数列”,所以15049,c c ==24947,c c ==…, 2526 1.c c == 所以当125n ≤≤时,250n S n n =-+;当2650n ≤≤时,251(25)(25)(26)22n S S n n n =+-+⨯--⨯, n S =1250502+-n n . 综上,22501255012502650,.n n nn n S n n n n **⎧-+≤≤∈⎪=⎨-+≤≤∈⎪⎩N N ,, ……………..13分18. (本小题满分13分)(Ⅰ)解:当35a =时,32522e (3103)()5(1)xx x f x x -+'=+. 由()0f x '>得231030x x -+>,解得13x <或3x >;由()0f x '<得231030x x -+<,解得133x <<. 所以函数)(x f 的单调增区间为1(,)3-∞,(3,)+∞,单调减区间为1(,3)3.……..5分(Ⅱ)因为222e (2)()()(1)ax ax x a g x f x x -+'==+,又因为函数()f x 的图象总在()g x 的图象的上方, 所以()()f x g x >,即2222e e (2)1(1)ax ax ax x a x x -+>++在1[,2e]e x ∈恒成立. 又因为2e 01axx >+,所以22(1)2(1)a x x x +-<+,所以2(1)(1)2a x x -+<. 又210x +>,所以2211x a x -<+. 设22()1x h x x =+,则min1()a h x -<1([,2e])ex ∈即可. 又2222(1)()(1)x h x x -'=+.由2222(1)()0(1)x h x x -'=>+,注意到1[,2e]e x ∈,解得11e x ≤<; 由2222(1)()0(1)x h x x -'=<+,注意到1[,2e]e x ∈,解得12e x <≤. 所以()h x 在区间1,1e ⎡⎫⎪⎢⎣⎭单调递增,在区间(]1,2e 单调递减.所以()h x 的最小值为1()eh 或(2e)h . 因为212e ()e e 1h =+,24e (2e)4e 1h =+,作差可知224e 2e 4e 1e 1<++,所以24e14e 1a -<+. 所以a 的取值范围是224e 4e+1(,)4e 1+-∞+. ……………..13分 19.(本小题满分14分)解:(Ⅰ)由已知得221314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩, 解得2241a b ⎧=⎨=⎩. 所以椭圆的标准方程为2214x y +=.………..4分(Ⅱ)直线MN 过定点(0,0)D .说明如下:由(Ⅰ)可知椭圆右顶点(2,0)A . 由题意可知,直线AM 和直线AN 的斜率存在且不为0.设直线AM 的方程为(2)y k x =-.由2244(2)x y y k x ⎧+=⎨=-⎩得2222(14)161640k x k x k +-+-=.42225616(14)(41)160k k k ∆=-+-=>成立,所以22164214M k x k -⋅=+.所以228214M k x k -=+. 所以222824(2)(2)1414M M k k y k x k k k --=-=-=++.于是,点222824(,)1414k kM k k--++. 因为直线AM 和直线AN 的斜率乘积为14-,故可设直线AN 的方程为1(2)4y x k=--. 同理,易得222218()228411414()4N k k x k k---==++-.所以点222284(,)1414k k N k k -++. 所以,当M N x x ≠时,即12k ≠±时,2214MN kk k=-. 直线MN 的方程为22224228()141414k k k y x k k k--=-+-+. 整理得2214ky x k =-.显然直线MN 过定点(0,0)D .(点,M N 关于原点对称)当M N x x =,即12k =±时,直线MN 显然过定点(0,0)D . 综上所述,直线MN 过定点(0,0)D . ……………..14分20.(本小题满分13分)(Ⅰ)当10x =,21x =,32x =时,()(1)(2)f x x x x =--.当(1)(2)x x x mx --=时,即()2320x x x m -+-=.依题意,若方程()f x mx =恰存在两个相等的实数根,包括两种情况: (1)若0x =是一元二次方程2320x x m -+-=的一个实数根,则2m =时,方程()2320x x x m -+-=可化为2(3)0x x -=,恰存在两个相等的实数根0(另一根为3).(2)若一元二次方程2320x x m -+-=有两个相等的实数根,则方程2320x x m -+-=的根的判别式94(2)0m ∆=--=,解得14m =-.此时方程()f x mx =恰存在 两个相等的实数根32(另一根为0). 所以当14m =-或2m =时,方程()f x mx =恰存在两个相等的实数根. ………4分(Ⅱ)证明:由123()()()()f x x x x x x x =---,可得,()()32123121323123()f x x x x x x x x x x x x x x x x =-+++++-, 所以()2123121323()320f x x x x x x x x x x x x '=-+++++=.此一元二次方程的判别式21231213234)12()x x x x x x x x x ∆=++-++(,则()()()2221223312x x x x x x ⎡⎤∆=-+-+-⎣⎦.由123x x x <<可得,0∆>恒成立.所以方程()0f x '=有两个不等的实数根. ………8分 (Ⅲ)122x x αβ+<<.说明如下: 由()2123121323()320f x x x x x x x x x x x x '=-+++++=,得12()2x x f +'=()()212123123()+4x x x x x x x +-+++121323x x x x x x ++.()()22121212=044x x x x x x +--=-<.即12()2x x f +'=12123()()022x x x xαβ++--<, 由αβ<,得122x x αβ+<<. ………13分。
2015年全国1卷高考理科数学试卷及答案(精校word详细解析版)
2015年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 设复数z 满足1+z1z-=i ,则|z |=(A )1 (B )2 (C )3 (D )2(2)sin 20°cos 10°-cos 160°sin 10°=(A )32-(B )32 (C )12- (D )12(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N , 2n >2n (B )∃ n ∈N , 2n ≤2n (C )∀n ∈N , 2n ≤2n (D )∃ n ∈N , 2n =2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.312 (5)已知M (x 0,y 0)是双曲线C :=1 上的一点,F 1、F 2是C 的两个焦点,若12MF MF ⋅<0,则y 0的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233) (6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛 (7)设D 为ABC 所在平面内一点,3BC CD =,则(A ) 1433AD AB AC =-+ (B ) 1433AD AB AC =- (C ) 4133AD AB AC =+ (D ) 4133AD AB AC =-(8)函数f (x )=cos (ωx+ϕ)的部分图像如图所示, 则f (x )的单调递减区间为A .(k π﹣,k π+,),k ∈z B .(2k π﹣,2k π+),k ∈z C .(k ﹣,k+),k ∈zD . (,2k+),k ∈z(9)执行右面的程序框图,如果输入的t =0.01,则输出的n =(A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何 体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的 表面积为16 + 20π,则r =(A )1 (B )2 (C )4 (D )812.设函数f (x )=e x (2x -1)-ax +a ,其中a 1,若存在 唯一的整数x 0,使得f (x 0)0,则a 的取值范围是( )A .[32e -,1) B . [33,24e -) C . [33,24e ) D . [32e,1)二、填空题:本大题共4小题,每小题5分 (13)若函数f (x )=xln (x +2a x +)为偶函数,则a = . (14)一个圆经过椭圆=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 ______________________ .(15)若x ,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .(16)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 ______________________ .三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分) S n 为数列{a n }的前n 项和.已知a n >0,2243n n n a a S +=+ (Ⅰ)求{a n }的通项公式;(Ⅱ)设 11n n n b a a +=,求数列}的前n 项和.(18) (本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(Ⅰ)证明:平面AEC ⊥平面AFC ;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.(19) (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()i ii w w yy =--∑46.6 563 6.8289.8 1.6 1469 108.8表中i i w x =8118i i w w ==∑(Ⅰ)根据散点图判断,y =a +bx 与y =c +x y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:121()(),()niii nii u u v v v u u u βαβ==--==--∑∑A B C F E D(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.(21)(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=- .(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目计分. (22)(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若OA= CE ,求∠ACB 的大小.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1C : x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△C 2MN 的面积 .(24)(本小题满分10分)选修4—5:不等式选讲 已知函数=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标I )理科数学答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2015年朝阳高三一模数学卷(理科)(有答案)
北京市朝阳区高三年级第一次综合练习数学〔理工类〕2015.4〔考试时间120分钟 总分值150分〕本试卷分为选择题〔共40分〕和非选择题〔共110分〕两部分第一部分〔选择题 共40分〕一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{}21,2,A m =,{}1,B m =.假设B A ⊆,则m =A.0B. 2C. 0 或2D. 1或22.已知点0(1,)A y 0(0)y >为抛物线22y px =()0p >上一点.假设点A 到该抛物线焦点的距离为3,则0y =A.B. 2C. D. 43.在ABC ∆中,假设π3A =,cos B =6BC =,则AC =A. B.4C.4.“x ∀∈R ,210x ax ++≥成立”是“2a ≤”的 A .充分必要条件 B .必要而不充分条件 C .充分而不必要条件 D.既不充分也不必要条件5.某商场每天上午10点开门,晚上19点停止进入.在如下图的框图中,t 表示整点时刻,()a t 表示时间段[1,)t t -内进入商场人次,S 表示某天某整点时刻前进入商场人次总和,为了统计某天进入商场的总人次数,则判断框内可以填A. 17?t ≤ B .19?t ≥ C .18?t ≥ D .18?t ≤6.设123,,x x x 均为实数,且1211log (1)3x x ⎛⎫=+ ⎪⎝⎭,2321log 3x x ⎛⎫= ⎪⎝⎭,3231log 3xx ⎛⎫= ⎪⎝⎭则A. 132x x x <<B. 321x x x <<C. 312x x x <<D. 213x x x <<7.在平面直角坐标系中,O 为坐标原点,已知两点(1,0)A ,(1,1)B ,且90BOP ∠=.设OP OA kOB =+()k ∈R ,则OP =A . 12B.C.D.28. 设集合M ={}22000000(,)20,,x y x y x y +≤∈∈Z Z ,则M 中元素的个数为 A.61 B. 65 C. 69 D.84第二部分〔非选择题 共110分〕二、填空题:本大题共6小题,每题5分,共30分.把答案填在答题卡上. 9.i 为虚数单位,计算12i1i-=+ ______. 10.设n S 为等差数列{}n a 的前n 项和.假设383a a +=,31S =,则通项公式n a =______. 11.在极坐标中,设002πρθ>≤<,,曲线2ρ=与曲线sin 2ρθ=交点的极坐标为______. 12.已知有身穿两种不同队服的球迷各有三人,现将这六人排成一排照相,要求身穿同一种队服的球迷均不能相邻,则不同的排法种数为 . 〔用数字作答〕13. 设3z x y =+,实数x ,y 满足20,20,0,x y x y y t +≥⎧⎪-≤⎨⎪≤≤⎩其中0t >.假设z 的最大值为5,则实数t的值为______,此时z 的最小值为______.14.将体积为1的四面体第一次挖去以各棱中点为顶点的构成的多面体,第二次再将剩余的每个四面体均挖去以各棱中点为顶点的构成的多面体,如此下去,共进行了n (n *∈N )次.则第一次挖去的几何体的体积是______;这n 次共挖去的所有几何体的体积和是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.〔本小题总分值13分〕已知函数2()cos cos f x x x x =+,x ∈R . 〔Ⅰ〕求()f x 的最小正周期和单调递减区间;〔Ⅱ〕设x m =()m ∈R 是函数()y f x =图象的对称轴,求sin4m 的值.如下图,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[)50,60,[)60,70,[)70,80,[)80,90,[90,100].据此解答如下问题.〔Ⅰ〕求全班人数及分数在[80,100]之间的频率;〔Ⅱ〕现从分数在[80,100]之间的试卷中任取3份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为X ,求X 的分布列和数学期望.17.〔本小题总分值14分〕如图,正方形ADEF 与梯形ABCD 所在平面互相垂直, 已知//,AB CD AD CD ⊥,12AB AD CD ==.〔Ⅰ〕求证:BF //平面CDE ;〔Ⅱ〕求平面BDF 与平面CDE 所成锐二面角的余弦值;(Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面BDF ?假设存在,求出EM EC的值;假设不存在,说明理由.0.0375 0.0125O0.025 A BF E D C已知函数2()ln (1)2x f x a x a x =+-+,a ∈R .〔Ⅰ〕 当1a =-时,求函数()f x 的最小值; 〔Ⅱ〕 当1a ≤时,讨论函数()f x 的零点个数.19.〔本小题总分值14分〕已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(2,0)F ,离心率为3.过焦点F的直线l 与椭圆C 交于,A B 两点,线段AB 中点为D ,O 为坐标原点,过O ,D 的直线 交椭圆于,M N 两点.〔Ⅰ〕求椭圆C 的方程;〔Ⅱ〕求四边形AMBN 面积的最大值.假设数列{}n a 中不超过()f m 的项数恰为m b ()m ∈*N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是{}n a 生成{}m b 的控制函数.设2()f m m =. 〔Ⅰ〕假设数列{}n a 单调递增,且所有项都是自然数,11=b ,求1a ; 〔Ⅱ〕假设数列{}n a 单调递增,且所有项都是自然数,,11b a =求1a ;(Ⅲ)假设2(1,2,3)n a n n ==,是否存在{}m b 生成{}n a 的控制函数2()g n pn qn r =++〔其中常数,,p q r ∈Z 〕?使得数列{}n a 也是数列{}m b 的生成数列?假设存在,求出)(n g ;假设不存在,说明理由.北京市朝阳区高三年级第一次综合练习数学答案〔理工类〕 2015.4一、选择题〔总分值40分〕〔注:两空的填空,第一空3分,第二空2分〕三、解答题〔总分值80分〕 15.〔本小题总分值13分〕解:〔Ⅰ〕由已知,函数2()cos cos f x x x x = 1(1cos2)2x =+2x=π1sin(2)62x ++.函数()f x 的最小正周期为πT =.当ππ3π2π22π262k x k +≤+≤+时〔k ∈Z 〕,即π2ππ+π+63k x k ≤≤时,函数()f x 为减函数.即函数()f x 的单调减区间为π2ππ+,π+63k k ⎡⎤⎢⎥⎣⎦,k ∈Z . ………………….9分〔Ⅱ〕由x m =是函数()y f x =图象的对称轴,则ππ2=π62m k ++〔k ∈Z 〕,即126m k π=π+,k ∈Z .则423m k 2π=π+.则sin 4m ………………….13分16. 〔本小题总分值13分〕解:〔Ⅰ〕由茎叶图可知,分布在[50,60)之间的频数为4,由直方图,频率为0.0125100.125⨯=,所以全班人数为4320.125=人.所以分数在[80,100]之间的人数为32(4810)10人.分数在[80,100]之间的频率为100.312532= ………………….4分 〔Ⅱ〕由〔Ⅰ〕知,分数在[80,100]之间的有10份,分数在[90,100]之间的人数有0.01251032=4份,由题意,X 的取值可为0,1,2,3.363101(0)6C P X C ===, 12463101(1)2C C P X C ===,21463103(2)10C C P X C ===, 343101(3)30C P X C ===.所以随机变量X 的分布列为随机变量X 的数学期望为01236210305EX =⨯+⨯+⨯+⨯=.………………….13分17.〔本小题总分值14分〕解:〔Ⅰ〕因为//,AB CD AB ⊄平面,CDE CD ⊂平面CDE ,所以//AB 平面CDE ,同理,//AF 平面CDE , 又,AB AF A =所以平面//ABF 平面CDE ,因为BF ⊂平面,ABF 所以//BF 平面CDE . ……………….4分〔Ⅱ〕因为平面ADEF 平面ABCD ,平面ADEF平面ABCD =AD ,CDAD ,CD 平面ABCD ,所以CD 平面ADEF .又DE平面ADEF ,故CDED .而四边形ADEF 为正方形,所以AD DE 又AD CD ,以D 为原点,DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz -.设1AD =,则(0,0,0),(1,1,0),(1,0,1),(0,2,0),(0,0,1)D B F C E , 取平面CDE 的一个法向量(1,0,0)DA =, 设平面BDF 的一个法向量(,,)x y z =n ,则00DB DF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即00x y x z+=⎧⎨+=⎩,令1x =,则1y z ==-, 所以(1,1,1)=--n .设平面BDF 与平面CDE 所成锐二面角的大小为θ,则cos|cos,|DAθ=<>==n. ……………….9分所以平面BDF与平面CDE.(Ⅲ)假设M与C重合,则平面()BDM C的一个法向量(0,0,1)m,由〔Ⅱ〕知平面BDF的一个法向量(1,1,1)n,则10m n=,则此时平面BDF与平面BDM不垂直. 假设M与C不重合,如图设EMECλ=01λ,则(0,2,1)Mλλ-,设平面BDM的一个法向量000(,,)x y z=m,则DBDM⎧⋅=⎪⎨⋅=⎪⎩mm,即00002(1)0x yy zλλ+=⎧⎨+-=⎩,令1x=,则0021,1y zλλ=-=-,所以2(1,1,)1λλ=--m,假设平面BDF⊥平面BDM等价于0⋅=m n,即2110,1λλ+-=-所以[]10,12λ=∈.所以,EC上存在点M使平面BDF⊥平面BDM,且12EMEC=.……………….14分18. 〔本小题总分值13分〕解:〔Ⅰ〕函数()f x的定义域为{}0x x>.当1a=-时,2()ln2xf x x=-+.211(1)(1)()x x xf x xx x x-+-'=-+==.由(1)(1)x xx+->0x解得1x>;由(1)(1)x xx+-<0x解得01x<<.所以()f x在区间(0,1)单调递减, 在区间(1,)+∞单调递增.所以1x=时,函数()f x取得最小值1(1)2f=. ……………….5分〔Ⅱ〕(1)()()x x a f x x--'=,0x >. 〔1〕当0a ≤时,(0,1)x ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在1x =时取得最小值1(1)2f a =--. 〔ⅰ〕当0a =时,2()2x f x x =-,由于0x >,令()0f x ,2x ,则()f x 在(0,)+∞上有一个零点;〔ⅱ〕当12a =-时,即(1)0f =时,()f x 有一个零点;〔ⅲ〕当12a <-时,即(1)0f >时,()f x 无零点.〔ⅳ〕当102a -<<时,即(1)0f <时,由于0x →〔从右侧趋近0〕时,()f x →+∞;x →+∞时,()f x →+∞, 所以()f x 有两个零点.(2)当01a <<时,(0,)x a ∈时,()0f x '>,()f x 为增函数; (,1)x a ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在x a =处取极大值,()f x 在1x =处取极小值. 21()ln (1)2f a a a a a a =+-+21ln 2a a a a =--.当01a <<时,()0f a <,即在(0,1)x ∈时,()0f x <.而()f x 在(1,)x ∈+∞时为增函数,且x →+∞时,()f x →+∞,所以此时()f x 有一个零点.(3)当1a =时,2(1)()0x f x x-'=≥在()0,+∞上恒成立,所以()f x 为增函数.且0x →〔从右侧趋近0〕时,()f x →-∞;x →+∞时,()f x →+∞. 所以()f x 有一个零点.综上所述,01a ≤≤或12a =-时()f x 有一个零点;12a <-时,()f x 无零点;102a -<<()f x 有两个零点.……………….13分19.〔本小题总分值14分〕 解:〔Ⅰ〕由题意可得2222,,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a,b =, 故椭圆的方程为22162x y +=. …….4分〔Ⅱ〕当直线l 斜率不存在时,A B的坐标分别为,(2,,||MN =,四边形AMBN 面积为1||||42AMBN S MN AB =⋅=. 当直线l 斜率存在时,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,点,M N 到直线l 的距离分别为12,d d ,则四边形AMBN 面积为121||()2AMBN S AB d d =+. 由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 则21221213k x x k +=+,212212613k x x k-=+,所以||AB==. 因为121224(4)13ky y k x x k -+=+-=+, 所以AB 中点22262(,)1313k kD k k -++.当0k时,直线OD 方程为30x ky +=,由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得333,x ky =-232213y k =+. 所以121||()2AMBN S AB d d =+12=+====< 当0k =时,四边形AMBN 面积的最大值26243AMBNS .综上四边形AMBN 面积的最大值为 …………………………14分20.〔本小题总分值13分〕 解:〔Ⅰ〕假设11b =,因为数列{}n a 单调递增,所以211a ≤,又1a 是自然数,所以10a =或1. ………2分 〔Ⅱ〕因为数列{}n a 的每项都是自然数,假设2101a =≤,则11b ≥,与11a b =矛盾;假设12a ≥,则因{}n a 单调递增,故不存在21n a ≤,即10b =,也与11a b =矛盾. 当11=a 时,因{}n a 单调递增,故2≥n 时,1>n a ,所以11b =,符合条件, 所以,11a =. ………6分 〔Ⅲ〕假设2(1,2,)n a n n ==,则数列n a 单调递增,显然数列m b 也单调递增,由2n a m ≤,即22n m ≤,得212n m ≤,所以,m b 为不超过212m 的最大整数,当21m k k N 时,因为222211222222122k k m k k k k -<=-+<-+,所以222m b k k =-; 当2mk kN 时,22122m k =,所以,22m b k =. 综上,2222,21(2,2(mk k m k k b k mk kN )N ),即当0m且m 为奇数时,212mm b ;当0m 且m 为偶数时,22mm b . 假设数列{}n a 是数列{}m b 的生成数列,且{}m b 生成{}n a 的控制函数为()g n , 则m b 中不超过()g n 的项数恰为n a ,即m b 中不超过()g n 的项数恰为2n ,所以221()n n b g n b +≤<,即222222n pn qn r n n ≤++<+对一切正整数n 都成立,即22(2)0(2)(2)0p n qn r p n q n r ⎧-++≥⎪⎨-+-->⎪⎩对一切正整数n 都成立,故得2p =,且0(2)0qn r q n r +≥⎧⎨-->⎩对一切正整数n 都成立,故02q ≤≤,q Z ∈.又常数r Z ∈,当0q =时,02(1)r n n ≤<≥,所以0r =,或1r =; 当1q =时,(1)n r n n -≤<≥,所以0r =,或1r =-; 当2q =时,20(1)n r n -≤<≥,所以2r =-,或1r =-;所以2()2g n n =,或221n +,或221n n +-,或22n n +,或2222n n +-,或2221n n +-(nN ). ………13分。
2015年北京市朝阳区高三第一学期期末数学(理)试题及答案
北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学试卷(理工类) 2015.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.设i 为虚数单位,则复数1iiz +=在复平面内对应的点所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 过抛物线24y x =的焦点F 的直线l 交抛物线于,A B 两点.若AB 中点M 到抛物线准线的距离为6,则线段AB 的长为 A .6 B .9 C .12 D .无法确定 3.设函数()sin(2)3f x x π=-的图象为C ,下面结论中正确的是 A .函数()f x 的最小正周期是2πB .图象C 关于点(,0)6π对称C .图象C 可由函数()sin 2g x x =的图象向右平移3π个单位得到 D .函数()f x 在区间(,)2ππ-12上是增函数 4.某三棱锥的三视图如图所示,则该三棱锥的全面积是A .4+ B .8 C .4+ D.5.αβ,表示不重合的两个平面,m ,l 表示不重合的两条直线.若m αβ=,l α⊄,l β⊄,则“l ∥m ”是“l ∥α且l ∥β”的 A .充分且不必要条件 B .必要且不充分条件 C .充要条件 D .既不充分也不必要条件6.在ABC ∆中,π4B =,则sin sin A C ⋅的最大值是 AB .34 CD7.点O 在ABC ∆的内部,且满足24OA OB OC ++=0,则ABC ∆的面积与AOC ∆的面积之比是A.72 B. 3 C.52D.28.设连续正整数的集合{}1,2,3,...,238I =,若T 是I 的子集且满足条件:当x T ∈时,7x T ∉,则集合T 中元素的个数最多是( ) A.204 B. 207 C. 208 D.209第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(1,2)P ,则sin(π)α-的值是 .10.双曲线22:C x y λ-=(0λ>)的离心率是 ;渐近线方程是 .11.设不等式组240,0,0x y x y +-≤⎧⎪≥⎨⎪≥⎩表示平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .12.有一口大钟每到整点就自动以响铃的方式报时,1点响1声,2点响2声,3点响3声,……,12点响12声(12时制),且每次报时时相邻两次响铃之间的间隔均为1秒.在一次大钟报时时,某人从第一声铃响开始计时,如果此次是12点的报时,则此人至少需等待 秒才能确定时间;如果此次是11点的报时,则此人至少需等待 秒才能确定时间. 13.在锐角AOB 的边OA 上有异于顶点O 的6个点,边OB 上有异于顶点O 的4个点,加上点O ,以这11个点为顶点共可以组成 个三角形(用数字作答).14.已知函数1sin π()()ππx xxf x x -=∈+R .下列命题:①函数()f x 既有最大值又有最小值;②函数()f x 的图象是轴对称图形;③函数()f x 在区间[π,π]-上共有7个零点;④函数()f x 在区间(0,1)上单调递增.其中真命题是 .(填写出所有真命题的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”, [60,80]为“老年人”.(Ⅰ)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;(Ⅱ)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中随机抽取3人,记抽到“老年人”的人数为X ,求随机变量X 的分布列和数学期望.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAB ⊥底面ABCD , PA AB =,点E 是PB 的中点,点F 在边BC 上移动.(Ⅰ)若F 为BC 中点,求证:EF //平面PAC ;(Ⅱ)求证:AE PF ⊥;F 在边BC 上的位置,并说明理由.17.(本小题满分13分)若有穷数列1a ,2a ,3,,m a a (m 是正整数)满足条件:1(1,2,3,,)i m i a a i m -+==,则称其为“对称数列”.例如,1,2,3,2,1和1,2,3,3,2,1都是“对称数列”.(Ⅰ)若}{n b 是25项的“对称数列”,且,13b ,14b 15,b ,25b 是首项为1,公比为2的等比数列.求}{n b 的所有项和S ;(Ⅱ)若}{n c 是50项的“对称数列”,且,26c ,27c 28,c ,50c 是首项为1,公差为2的等差数列.求}{n c 的前n 项和n S ,150,n n *≤≤∈N .18.(本小题满分13分)设函数2e (),1ax f x a x =∈+R .(Ⅰ)当35a =时,求函数)(x f 的单调区间;(Ⅱ)设()g x 为()f x 的导函数,当1[,2e]e x ∈时,函数()f x 的图象总在()g x 的图象的上方,求a 的取值范围.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>过点A 的两条斜率乘积为14-的直线分别交椭圆C 于,M N 两点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)直线MN 是否过定点D ?若过定点D ,求出点D 的坐标;若不过,请说明理由. 20.(本小题满分13分)已知函数123()()()()f x x x x x x x =---,1x ,2x ,3x ∈R ,且123x x x <<.(Ⅰ)当10x =,21x =,32x =时,若方程()f x mx =恰存在两个相等的实数根,求实数m 的值;(Ⅱ)求证:方程()0f x '=有两个不相等的实数根;(Ⅲ)若方程()0f x '=的两个实数根是,αβ()αβ<,试比较122x x +与,αβ的大小并说明理由.北京市朝阳区2014-2015学年度高三年级第一学期期末统一考试数学答案(理工类) 2015.1一、选择题(满分40分)二、填空题(满分30分)(注:两空的填空,第一空3分,第二空2分)15.(本小题满分13分)解:(Ⅰ)由题意估算,所调查的600人的平均年龄为: 250.1350.2450.3550.2650.1750.148⨯+⨯+⨯+⨯+⨯+⨯=(岁)….…..4分(Ⅱ)由频率分布直方图可知,“老年人”所占的频率为15.所以从该城市20~80年龄段市民中随机抽取1人,抽到“老年人”的概率为15.依题意,X 的可能取值为0,1,2,3.00331464(0)()()55125P X C ===,1231448(1)()()55125P X C ===,2231412(2)()()55125P X C ===,3303141(3)()()55125P X C ===D P C B FA E 0.02因此,随机变量X 的数学期望64481213()01231251251251255E X =⨯+⨯+⨯+⨯=.……………..13分 16. (本小题满分14分)(Ⅰ)证明:在PBC ∆中,因为点E 是PB 中点,点F 是BC 中点,所以EF //PC .又因为EF ⊄平面PAC ,PC ⊂平面PAC ,所以EF //平面PAC .……………..4分 (Ⅱ)证明:因为底面ABCD 是正方形,所以BC AB ⊥.又因为侧面PAB ⊥底面ABCD ,平面PAB 平面ABCD =AB , 且BC ⊂平面ABCD ,所以BC ⊥平面PAB .由于AE ⊂平面PAB ,所以BC AE ⊥.由已知PA AB =,点E 是PB 的中点,所以AE PB ⊥.又因为=PBBC B ,所以AE ⊥平面PBC .因为PF ⊂平面PBC ,所以AE PF ⊥.………..9分(Ⅲ)点F 为边BC 上靠近B 点的三等分点.因为PA AB =,PB =,所以PA AB ⊥.由(Ⅱ)可知,BC ⊥平面PAB .又BC //AD ,所以AD ⊥平面PAB ,即A D P A ⊥,AD AB ⊥ .所以AD ,AB ,AP 两两垂直.分别以AD ,AB ,AP 为x 轴,y 轴,z 轴,建立空间直角坐标系(如图).不妨设2AB =,BF m =,则(0,0,0)A ,(0,2,0)B ,(0,0,2)P ,(0,1,1)E ,(,2,0)F m .于是(0,1,1)AE =,(,2,0)AF m =.设平面AEF 的一个法向量为(,,)p q r =n ,由0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 20.q r mp q +=⎧⎨+=⎩ 取2p =,则q m =-,r m =,得 (2,,)m m =-n .由于AP AB ⊥,AP AD ⊥,AB AD A =,所以AP ⊥平面ABCD .即平面ABF 的一个法向量为(0,0,2)AP =. 根据题意,11||||4AP AP ⋅==⋅n n ,解得23m =.由于2BC AB ==,所以13BF BC =.即点F 为边BC 上靠近B 点的三等分点.……………..14分17.(本小题满分13分)(Ⅰ)依题意,131,b =142b =,…,1212251322b b =⋅=.则121252b b ==,112242b b ==,...,12142b b ==.则()12121212121()22 (121112)S b b b ⎡⎤-⎢⎥⎣⎦=++++=⨯+-1423=- ……………..6分 (Ⅱ)依题意,502624249c c =+⨯=,因为}{n c 是50项的“对称数列”,所以15049,c c ==24947,c c ==…, 2526 1.c c == 所以当125n ≤≤时,250n S n n =-+;当2650n ≤≤时,251(25)(25)(26)22n S S n n n =+-+⨯--⨯,n S =1250502+-n n .综上,22501255012502650,.n n n n n S n n n n **⎧-+≤≤∈⎪=⎨-+≤≤∈⎪⎩N N ,, ……………..13分 18. (本小题满分13分)(Ⅰ)解:当35a =时,32522e (3103)()5(1)xx x f x x -+'=+.由()0f x '>得231030x x -+>,解得13x <或3x >;由()0f x '<得231030x x -+<,解得133x <<.所以函数)(x f 的单调增区间为1(,)3-∞,(3,)+∞,单调减区间为1(,3)3.…………..5分(Ⅱ)因为222e (2)()()(1)ax ax x a g x f x x -+'==+,又因为函数()f x 的图象总在()g x 的图象的上方,所以()()f x g x >,即2222e e (2)1(1)ax ax ax x a x x -+>++在1[,2e]e x ∈恒成立.又因为2e 01axx >+,所以22(1)2(1)a x x x +-<+,所以2(1)(1)2a x x -+<.又210x +>,所以2211x a x -<+.设22()1x h x x =+,则mi n 1()a h x -< 1([,2e])ex ∈即可.又2222(1)()(1)x h x x -'=+.由2222(1)()0(1)x h x x -'=>+,注意到1[,2e]e x ∈,解得11e x ≤<;由2222(1)()0(1)x h x x -'=<+,注意到1[,2e]e x ∈,解得12e x <≤.所以()h x 在区间1,1e ⎡⎫⎪⎢⎣⎭单调递增,在区间(]1,2e 单调递减.所以()h x 的最小值为1()e h 或(2e)h .因为212e ()e e 1h =+,24e (2e)4e 1h =+,作差可知224e 2e 4e 1e 1<++,所以24e14e 1a -<+. 所以a 的取值范围是224e 4e+1(,)4e 1+-∞+. ……………..13分 19.(本小题满分14分)解:(Ⅰ)由已知得2221314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩.所以椭圆的标准方程为2214x y +=.………..4分 (Ⅱ)直线MN 过定点(0,0)D .说明如下:由(Ⅰ)可知椭圆右顶点(2,0)A .由题意可知,直线AM 和直线AN 的斜率存在且不为0.设直线AM 的方程为(2)y k x =-.由2244(2)x y y k x ⎧+=⎨=-⎩得2222(14)161640k x k x k +-+-=.42225616(14)(41)160k k k ∆=-+-=>成立,所以22164214M k x k -⋅=+.所以228214M k x k -=+. 所以222824(2)(2)1414M M k k y k x k k k --=-=-=++.于是,点222824(,)1414k kM k k--++.因为直线AM 和直线AN 的斜率乘积为14-,故可设直线AN 的方程为1(2)4y x k =--.同理,易得222218()228411414()4N k k x k k---==++-.所以点222284(,)1414k k N k k -++. 所以,当M N x x ≠时,即12k ≠±时,2214MN k k k =-.直线MN 的方程为22224228()141414k k k y x k k k --=-+-+.整理得2214k y x k =-. 显然直线MN 过定点(0,0)D .(点,M N 关于原点对称)当M N x x =,即12k =±时,直线MN 显然过定点(0,0)D .综上所述,直线MN 过定点(0,0)D . ……………..14分 20.(本小题满分13分)(Ⅰ)当10x =,21x =,32x =时,()(1)(2)f x x x x =--.当(1)(2)x x x mx --=时,即()2320x x x m -+-=.依题意,若方程()f x mx =恰存在两个相等的实数根,包括两种情况:(1)若0x =是一元二次方程2320x x m -+-=的一个实数根,则2m =时,方程()2320x x x m -+-=可化为2(3)0x x -=,恰存在两个相等的实数根0(另一根为3).(2)若一元二次方程2320x x m -+-=有两个相等的实数根,则方程2320x x m -+-=的根的判别式94(2)0m ∆=--=,解得14m =-.此时方程()f x mx =恰存在 两个相等的实数根32(另一根为0).所以当14m =-或2m =时,方程()f x mx =恰存在两个相等的实数根.………4分(Ⅱ)证明:由123()()()()f x x x x x x x =---,可得,()()32123121323123()f x x x x x x x x x x x x x x x x =-+++++-,所以()2123121323()320f x x x x x x x x x x x x '=-+++++=.此一元二次方程的判别式21231213234)12()x x x x x x x x x ∆=++-++(,则()()()2221223312x x x x x x ⎡⎤∆=-+-+-⎣⎦.由123x x x <<可得,0∆>恒成立.所以方程()0f x '=有两个不等的实数根. ………8分 (Ⅲ)122x x αβ+<<.说明如下:由()2123121323()320f x x x x x x x x x x x x '=-+++++=,得 12()2x x f +'=()()212123123()+4x x x x x x x +-+++121323x x x x x x ++()()22121212=044x x x x x x +--=-<.即12()2x x f +'=12123()()022x x x x αβ++--<,由αβ<,得122x xαβ+<<. ………13分。
2015~2016学年度第一学期朝阳区高三期末理科定稿
北京市朝阳区2015-2016学年度高三年级第一学期期末统一考试数学试卷(理工类) 2016.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}|11M x x =-<<M N = A .{}|01x x ≤< B .{|01x x << C .{}|0x x ≥ D .{}|10x x -<≤2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的坐标为A .(1,1)B .(1,1)--C .(1,1)-D . (1,1)-3.执行如图所示的程序框图,则输出的i 值为A .3B .4C .5D .6第3题图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~km/h )频率120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有 A .30辆 B .300辆 C .170辆 D .1700辆第4题图5.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知点)0,22(Q 及抛物线24x y =上一动点(,)P x y ,则y PQ +的最小值是A .12B .1C . 2D . 3 7.某四棱锥的三视图如图所示,则该四棱锥的侧面积是A .27B .30C .32D .36第7题图8.设函数()f x 的定义域D ,如果存在正实数m ,使得对任意x D ∈,都有()()f x m f x +>,则称()f x 为D 上的“m 型增函数”.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a ∈R ).若()f x 为R 上的“20型增函数”,则实数a 的取值范围是A .0a >B .5a <C .10a< D .20a <第二部分(非选择题 共110分)侧视图俯视图二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.函数2sin(2)16y x π=++的最小正周期是 ,最小值是 .10.若x ,y 满足约束条件2211x y x y y -⎧⎪+⎨⎪⎩≤,≥,≤,则z x y =+的最大值为 .11.在各项均为正数的等比数列{}n a 中,若22a =,则132a a +的最小值是 . 12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为 .13.已知B A ,为圆9)()(:22=-+-n y m x C (,m n ∈R )上两个不同的点(C 为圆心),且满足||CA CB +=,则=AB .14.已知点O 在ABC ∆的内部,且有xOA yOB zOC ++=0,记,,AOB BOC AOC ∆∆∆的面积分别为AOB BOC AOC S S S ∆∆∆,,.若1x y z ===,则::AOB BOC AOC S S S ∆∆∆= ;若2,3,4x y z ===,则::AOB BOC AOC S S S ∆∆∆= .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率;(Ⅱ)设X 为选出同学中高一(1)班同学的人数,求随机变量X 的分布列和数学期望. 16.(本小题满分13分)如图,在ABC ∆中,点D 在BC 边上,7,42CAD AC π∠==,cos 10ADB ∠=-. (Ⅰ)求sin C ∠的值;(Ⅱ)若5,BD =求ABD ∆的面积.17.(本小题满分13分)ADBC如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且60DAB ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (Ⅰ)求证:AB ∥EF ;(Ⅱ)若PA PD AD ==,且平面PAD ⊥平面ABCD , 求平面PAF 与平面AFE 所成的锐二面角的余弦值.18.(本小题满分14分)已知函数()ln f x ax x =+,其中a ∈R .(Ⅰ)若()f x 在区间[1,2]上为增函数,求a 的取值范 围;(Ⅱ)当e a =-时,(ⅰ)证明:()20f x +≤;19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A ,B 两点. (Ⅰ)求椭圆C 的离心率; (Ⅱ)求证:OA OB ⊥; (Ⅲ)求OAB ∆面积的最大值.20.(本小题满分13分)已知有穷数列:*123,,,,(,3)k a a a a k k ∈≥N 的各项均为正数,且满足条件: ①1k a a =;②11212(1,2,3,,1)n n n n a a n k a a +++=+=- . (Ⅰ)若13,2k a ==,求出这个数列; (Ⅱ)若4k =,求1a 的所有取值的集合; (Ⅲ)若k 是偶数,求1a 的最大值(用k 表示).。
(全优试卷)北京市朝阳区高三下学期第一次综合练习数学(理)试卷 Word版含答案
北京市朝阳区2015届高三下学期第一次综合练习数学(理)试卷第Ⅰ卷一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{1,2,},{1,}A m B m ==,若B A ⊆,则M = A .0 B .2 C .0或2 D .1或22、已知点00(1,)(0)A y y >为抛物线22(0)y px p =>上一点,若点A 到该抛物线焦点的距离为3,则0y =A .2B .2C .22D .4 3、在ABC ∆中,若6,cos ,63A B BC π===,则AC = A .42 B .4 C .23 D .4334、“2,10x R x ax ∀∈++≥成立”是“2a ≤”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5、某商场每天上午10点开门,晚上19点停止进入,在如图所示的 框图中,t 表示整点时刻,()a t 表示时间段[1,)t t -内进入商场的人 次,S 表示面某天某整点时刻前进入商场人次总和,为了统计某天进 入商场的总人次数,则判断框内可以填A .17?t ≤B .19?t ≥C .18?t ≥D .18?t ≤ 6、设123,,x x x 均为实数,且312213223111()log (1),()log (1),()log 333x xx x x x =+=+=,则A .132x x x <<B .321x x x <<C .312x x x <<D .213x x x << 7、在平面直角坐标系中,O 为坐标原点,已知两点(1,0),(1,1)A B ,且090BOP ∠=,设()OP OA kOB k R =+∈u u u r u u u r u u u r,则OP =u u u rA .12BCD .28、设集合22000000{(,)|20,,}M x y x y x Z y Z =+≤∈∈,则M 中元素的个数为A .61B .65C .69D .84第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卷的横线上.. 9、i 为虚数单位,计算121ii-=+ 10、设n S 为等差数列{}n a 的前n 项和,若3833,1a a S +==,则通项公式n a =11、在极坐标系中,设0,02ρθπ>≤<,曲线2ρ=与曲线sin 2ρθ= 焦点的极坐标为 12、已知有身穿两种不同队服的球迷各三人,现将这六人排除一排照相,要求身穿同一种队服的球迷均不能相邻,则不同的排法种数为 (用数字作答)13、设3z x y =+,实数,x y 满足20200x y x y y t +≥⎧⎪-≤⎨⎪≤≤⎩,其中0t >,若z 的最大值为5,则实数t 的值为 ,此时z 的最小值为 .14、将体积为1的四面体第一次挖去以各棱中点为顶点构成的多面体,第二次再讲剩余的每个四面体均挖去以各棱中点为顶点构成的多面体,如此下去,共进行了次,则第一次挖去的几何体的体积是 ;这n 次共挖去的所有几何体的体积和是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 15、(本小题满分12分)已知函数()2cos cos ,f x x x x x R =∈.(1)求()f x 的最小正周期和单调递减区间;(2)设()x m m R =∈是函数()y f x =图像的对称轴,求sin 4m 的值.17、(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的无损,其中,频率分布直方图的分组分布为[)[)[)[)[]50,60,60,70,70,80,80,90,90,100,据此解答如下问题:(1)求全班人数及分数在[]80,100之间的频率;(2)现从分数在[]80,100之间的试卷中任取3份学生失分情况,设抽取的试卷分数在[]90,100的份数为X ,求X 的分布列和数学期望.17、(本小题满分12分) 如图,正方形ADEF与梯形ABCD所在平面互相垂直,已知1//,,2AB CD AD CD AB AD CD ⊥==.(1)求证://BF 平面CDE ;(2)求平面BDF 与平面CDE 所成锐二面角的余弦值; (3)线段EC 上是否存在点M ,使得平面BDM ⊥平面BDF ? 若存在,求出EMEC的值;若不存在,说明理由.18、(本小题满分12分)已知函数()2ln (1),2x f x a x a x a R =+-+∈. (1)当1a =-时,求函数()f x 的最小值; (2)当1a ≤时,讨论函数()f x 的零点个数.20、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为(2,0)F F 的直线与椭圆交于A 、B 两点,线段AB 中点为D ,O 为坐标原点,过的直线交椭圆于M 、N 两点.(1)求椭圆C 的方程;(2)求四边形AMBN 面积的最大值.20、(本小题满分13分)若数列{}n a 中不超过()f m 的项数恰为()m b m N +∈,则称数列{}n b 是数列{}n a 的生成数列,称相应的函数()f m 是{}n a 生成{}n b 的控制函数,设()2f m m =.(1)若数列{}n a 单调递增,且所有项都是自然数,11b =,求1a ; (2)若数列{}n a 单调递增,且所有项都是自然数,11a b =,求1a ;(3)若2(1,2,3,)n a n n ==L ,是否存在{}n b 生成{}n a 的控制函数()2g n pn qn r=++(其中常数,,p q r Z ∈),使得数列{}n a 也是数列{}n b 的生成数列?若存在,求出()g n ;若不存在,说明理由.全优试卷。
辽宁省朝阳市三校协作体2015届高三下学期第一次联合模拟考试数学(理)试题 含解析
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的。
1。
集合⎭⎬⎫⎩⎨⎧>+-=031x x x P ,{}24x y x Q -==,则=Q P ( )A .]2,1(B .]2,1[C .(,3)(1,)-∞-+∞D .)2,1[【答案】A 【解析】考点:1、不等式的解法;2、集合的概念与运算。
2. 等差数列{}na 的前n 项和为nS ,且3S =6,1a =4,则公差d 等于( )A .1B .35 C .2- D .3【答案】C 【解析】考点:等差数列。
3. 在ABC ∆中,3=AB ,1=AC , 30=∠B ,且ABC ∆的面积为23,则=∠C ( )A .30 B .45 C .60 D .75【答案】C 【解析】考点:三角形的面积公式。
4。
下列函数在),0(+∞上为减函数的是( )A .1--=x yB .xe y = C .)1ln(+=x y D .)2(+-=x x y【答案】D 【解析】考点:函数的单调性. 5. 方程2log2=+x x 的解所在的区间为( )A .)1,5.0(B .)5.1,1(C .)2,5.1(D .)5.2,2( 【答案】B 【解析】考点:1、函数的零点与方程的根;2、对数函数。
6。
将函数()()ϕ+=x x f 2sin 的图象向左平移8π个单位,所得到的函数图象关于y 轴对称,则ϕ的一个可能取值为( )A .43π B .4π C .0 D .4π-【答案】B 【解析】当4πϕ=- 时,sin sin sin 00444πππϕ⎛⎫⎛⎫+=-== ⎪ ⎪⎝⎭⎝⎭故选B.考点:三角函数的图象.7. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题:①若α⊂m ,A l =α ,点m A ∉,则l 与m 不共面;② 若m 、l 是异面直线,α//l ,α//m ,且l n ⊥,m n ⊥,则α⊥n ; ③ 若α//l ,β//m ,βα//,则m l //; ④ 若α⊂l ,α⊂m ,A m l = ,β//l ,β//m ,则βα//,其中为真命题的是( )A .①③④B .②③④C .①②④D .①②③ 【答案】C 【解析】考点:空间直线与平面的位置关系. 8.变量x 、y 满足条件⎪⎩⎪⎨⎧->≤≤+-111x y y x ,则22)2(y x +-的最小值为( )A .223 B .5 C .29 D .5【解析】试题分析:不等式组⎪⎩⎪⎨⎧->≤≤+-111x y y x 在直角坐标系中所表示的平面区域如下图中的阴影部分所示,考点:1、二元一次不等式组所表示的平面区域;2、数形结合的思想.9. 如图,AOB ∆为等腰直角三角形,1=OA ,OC 为斜边AB 的高,点P 在射线OC 上,则OP AP ⋅的最小值为( )A .1-B .81- C .41-D .21-AOCBP【解析】考点:1、平面向量基本定理;2、平面向量的数量积. 10. 如图,四棱锥ABCD P -中,90=∠=∠BAD ABC ,AD BC 2=,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 与PB 所成角的大小为( )A .90 B .75 C .60 D .45【答案】A 【解析】试题分析:延长DA 至E ,使AE DA = ,连接,PE BE , 因为90=∠=∠BAD ABC ,AD BC 2=,所以,//DE BC DE BC =所以四边形CBED 为平行四边形,所以,//CD BEBDCPA考点:1、异面直线所成的角;2、余弦定理;3、空间直线的位置关系.11。
数学_2015年北京市朝阳区高考数学一模试卷(理科)(含答案)
2015年北京市朝阳区高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合 A ={1, 2, m 2},B ={1, m}.若B ⊆A ,则m =( )A 0B 2C 0 或2D 1 或22. 已知点A(1, y 0)(y 0>0)为抛物线 y 2=2px( p >0)上一点.若点 A 到该抛物线焦点的距离为 3,则y 0=( )A √2B 2C 2√2D 43. 在△ABC 中,若A =π3,cosB =√63,BC =6,则 AC =( )A 4√2B 4C 2√3D 4√334. “∀x ∈R ,x 2+ax +1≥0成立”是“|a|≤2”的( )A 充分必要条件B 必要而不充分条件C 充分而不必要条件D 既不充分也不必要条件5. 某商场每天上午10 点开门,晚上 19 点停止进入.在如图所示的框图中,t 表示整点时刻,a(t )表示时间段[t −1, t)内进入商场人次,S 表示某天某整点时刻前进入商场人次总和,为了统计某天进入商场的总人次数,则判断框内可以填( )A t ≤17?B t ≥19?C t ≥18?D t ≤18?6. 设x 1,x 2,x 3均为实数,且 (13)x 1=log 2(x 1+1),(13)x 2=log 3x 2,(13)x 3=log 2x 3,则( )A x 1<x 3<x 2B x 3<x 2<x 1C x 3<x 1<x 2D x 2<x 1<x 37. 在平面直角坐标系中,O 为坐标原点,已知两点 A(1, 0),B(1, 1),且∠BOP =90∘.设OP →=OA →+kOB →(k ∈R),则|OP →|=( )A 12B √22C √2D 28. 设集合M ={(x 0, y 0)|x 02+y 02≤20, x 0∈Z, y 0∈Z},则M 中元素的个数为( )A 61B 65C 69D 84二、填空题:本大题共6小题,每小题5分,共30分.9. i为虚数单位,计算1−2i1+i=________.10. 设S n为等差数列{a n}的前n项和.若a3+a8=3,S3=1,则通项公式a n=________.11. 在极坐标系中,设ρ>0,0≤θ<2π,曲线ρ=2与曲线ρsinθ=2交点的极坐标为________.12. 已知有身穿两种不同队服的球迷各三人,现将这六人排成一排照相,要求身穿同一种队服的球迷均不能相邻,则不同的排法种数为________(用数字作答).13. 设z=3x+y,实数x,y满足{2x+y≥02x−y≤00≤y≤t其中t>0,若z的最大值为5,则实数t的值为________,此时z的最小值为________.14. 将体积为1的四面体第一次挖去以各棱中点为顶点构成的多面体,第二次再将剩余的每个四面体均挖去以各棱中点为顶点构成的多面体,如此下去,共进行了n(n∈N∗)次,则第一次挖去的几何体的体积是________;这n次共挖去的所有几何体的体积和是________.三、解答题:本大题共6小题,共80分,解答写出文字说明,演算步骤或证明过程.15. 已知函数f(x)=cos2x+√3sinxcosx,x∈R.(1)求f(x)的最小正周期和单调递减区间;(2)设x=m(m∈R)是函数y=f(x)图象的对称轴,求sin4m的值.16. 如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50, 60),[60, 70),[70, 80),[80, 90),[90, 100),据此解答如下问题.(1)求全班人数及分数在[80, 100]之间的频率;(2)现从分数在[80, 100]之间的试卷中任取3份分析学生失分情况,设抽取的试卷分数在[90, 100]的份数为X,求X的分布列和数学望期.17. 如图,正方形ADEF与梯形ABCD所在平面互相垂直,已知AB // CD,AD⊥CD,AB =AD=12CD.(1)求证:BF // 平面CDE;(2)求平面BDF与平面CDE所成锐二面角的余弦值;(3)线段EC上是否存在点M,使得平面BDM⊥平面BDF?若存在,求出EMEC的值;若不存在,说明理由.18. 已知函数f(x)=alnx +x 22−(a +1)x .(1)若a =−1,求函数f(x)的最小值;(2)当a ≤1时,讨论f(x)零点的个数.19. 已知椭圆C:x 2a 2+y 2b 2=1({a >b >0})的一个焦点为F(2, 0),离心率为 √63.过焦点F 的直线l 与椭圆C 交于 A ,B 两点,线段AB 中点为D ,O 为坐标原点,过O ,D 的直线交椭圆于M ,N 两点.(1)求椭圆C 的方程;(2)求四边形AMBN 面积的最大值.20. 若数列{a n }中不超过 f(m)的项数恰为b m (m ∈N ∗),则称数列{b m }是数列{a n }的生成数列,称相应的函数f(m)是{a n }生成{b m }的控制函数.设f(m)=m 2.(1)若数列{a n }单调递增,且所有项都是自然数,b 1=1,求a 1;(2)若数列{a n }单调递增,且所有项都是自然数,a 1=b 1,求a 1;(3)若a n =2n (n =1, 2, 3),是否存在{b m }生成{a n }的控制函数g(n)=pn 2+qn +r (其中常数p ,q ,r ∈Z ),使得数列{a n }也是数列{b m }的生成数列?若存在,求出g(n);若不存在,说明理由.2015年北京市朝阳区高考数学一模试卷(理科)答案1. C2. C3. B4. A5. D6. A7. B8. C9. −12−32i10. n−1311. (2,π2) 12. 7213. 2,−114. 12,1−(12)n15. f(x)=cos 2x +√3sinxcosx=1+cos2x 2+√3sin2x 2=sin(2x +π6)+12,所以函数的周期为:T=2π2=π.令:π2+2kπ≤2x+π6≤3π2+2kπ(k∈Z),解得:kπ+π6≤x≤kπ+2π3(k∈Z),所以函数的单调递减区间为:[kπ+π6, kπ+2π3](k∈Z).设x=m(m∈R)是函数y=f(x)图象的对称轴,则:2m+π6=kπ+π2(k∈Z).解得:m=kπ2+π6,所以:4m=2kπ+2π3.则:sin4m=√32.16. 由茎叶图知,分数在[50, 60)之间的频数为4,频率为0.0125×10=0.125,∴ 全班人数为40.125人.∴ 分数在[80, 100]之间的频数为32−4−8−10=10,∴ 分数在[80, 100]之间的频率为1032=0.3125;由(1)知,分数在[80, 100]之间有10份,分数在[90, 100]之间有0.0125×10×32=4份.由题意,X的取值为0,1,2,3,则P(X=0)=C63C103=16,P(X=1)=C41C62C103=12,P(X=2)=C42C61C103=310,P(X=3)=C43C103=130,∴ X的分布列为数学期望E(X)=0×16+1×12+2×310+3×130=1.2.17. 证明:∵ AF // DE,AF⊄平面CDE,DE⊂平面CDE,∴ AF // 平面CDE,同理:AB // 平面CDE,又AF∩AB=A∴ 平面ABF // 平面CDE又BF⊂平面ABF,∴ BF // 平面CDE;∵ 正方形ADEF与梯形ABCD所在平面互相垂直,正方形ADEF与梯形ABCD交于AD,CD⊥AD,∴ CD ⊥平面ADEF ,∵ DE ⊂平面ADEF ,∴ CD ⊥ED ,∵ ADEF 为正方形,∴ AD ⊥DE ,∵ AD ⊥CD ,∴ 以D 为原点,DA ,DC ,DE 所在直线分别为x ,y ,z 轴,建立坐标系,则设AD =1,则D(0, 0, 0),B(1, 1, 0),F(1, 0, 1),C(0, 2, 0),E(0, 0, 1), 取平面CDE 的一个法向量DA →=(1, 0, 0),设平面BDF 的一个法向量为n →=(x, y, z),则{x +y =0x +z =0 , 取n →=(1, −1, −1),设平面BDF 与平面CDE 所成锐二面角的大小为θ,则cosθ=cos <DA →,n →>=√33, ∴ 平面BDF 与平面CDE 所成锐二面角的余弦值为√33;若M 与C 重合,则平面BDM(C)的一个法向量为m 0→=(0, 0, 1),由上知平面BDF 的一个法向量为n →=(1, −1, −1),则m 0→⋅n →=−1≠0,此时平面BDM ⊥平面BDF 不成立; 若M 与C 不重合,设EMEC =λ(0≤λ≤1),则M(0, 2λ, 1−λ),设平面BDM 的一个法向量为m →=(a, b, c),则{a +b =02λb +(1−λ)c =0, 取m →=(1, −1, 2λ1−λ),∵ 平面BDM ⊥平面BDF ,∴ m →⋅n →=1+1−2λ1−λ=0,∴ λ=12∈[0, 1],∴ 线段EC 上存在点M ,使得平面BDM ⊥平面BDF ,EM EC =12.18. 解:(1)当a=−1时,f(x)=−lnx+x22,定义域为(0, +∞),f′(x)=−1x +x=(x+1)(x−1)x,令f′(x)>0得x>1,令f′(x)<0得0<x<1,故f(x)在(0, 1)上单调递减,在(1, +∞)上单调递增,故当x=1时,函数f(x)取得最小值f(1)=12.(2)f(x)=alnx+x22−(a+1)x的定义域为(0, +∞),f′(x)=(x−1)(x−a)x,①当a≤0时,f(x)在(0, 1)上单调递减,在(1, +∞)上单调递增,故当x=1时,函数f(x)取得最小值f(1)=−a−12;(i)当a=0时,令f(x)=x22−x=0解得x=2,即f(x)在(0, +∞)上只有一个零点;(ii)当a=−12时,f(1)=0,即f(x)在(0, +∞)上只有一个零点;(iii)当a<−12时,f(1)>0,故f(x)在(0, +∞)上没有零点;(iv)当−12<a<0时,f(1)<0,且limx→0+f(x)=+∞,limx→+∞f(x)=+∞,故f(x)在(0, +∞)上有两个零点;②当0<a<1时,f(x)在(a, 1)上单调递减,在(0, a),(1, +∞)上单调递增,故f(x)极大值=f(a)=alna−12a2−a<0,而limx→+∞f(x)=+∞,故f(x)在(0, +∞)上只有一个零点;③当a=1时,f(x)在(0, +∞)上单调递增,且limx→0+f(x)=−∞,limx→+∞f(x)=+∞,故f(x)在(0, +∞)上只有一个零点.综上所述,当0≤a≤1或a=−12时,f(x)在(0, +∞)上只有一个零点,当a<−12时,f(x)在(0, +∞)上没有零点,当−12<a <0时,f(x)在(0, +∞)上有两个零点. 19. 解:(1)由已知可得:{ c =2,c a=√63,a 2=b 2+c 2,解得a 2=6,b 2=2,∴ 椭圆C 的方程为x 26+y 22=1.(2)当直线l 的斜率不存在时,A(2,√63),B(2,−√63), |MN|=2√6,S AMBN =12|MN||AB|=4.当直线l 的斜率存在时,设直线l 方程为y =k(x −2),A(x 1, y 1),B(x 2, y 2),M(x 3, y 3),N(−x 3, −y 3).点M ,N 到直线l 的距离分别为d 1,d 2.联立{x 26+y 22=1y =k(x −2), 化为(1+3k 2)x 2−12k 2x +12k 2−6=0,∴ x 1+x 2=12k 21+3k 2,x 1x 2=12k 2−61+3k 2.|AB|=√(1+k 2)[(x 1+x 2)2−4x 1x 2]=√(1+k 2)[(12k 21+3k 2)2−4×(12k 2−6)1+3k 2] =2√6(1+k 2)1+3k 2. y 1+y 2=k(x 1+x 2−4)=−4k 1+3k 2,∴ 线段AB 的中点D(6k 21+3k 2,−2k 1+3k 2),∴ 直线OD 的方程为:x +3ky =0(k ≠0).联立{x +3ky =0x 2+3y 2=6, 解得y 32=21+3k 2,x 3=−3ky 3.S 四边形AMBN =12|AB|(d 1+d 2) =12×2√6(1+k 2)1+3k 2×(33√1+k 233√1+k2) =√6√1+k 2|2kx 3−2y 3|1+3k 2=2√6√1+k 2|−3k 2y 3−y 3|1+3k 2=4√3k 2+31+3k 2=4√1+21+3k 2≤4√3,当k =0时,取得等号;综上可得:四边形AMBN 的面积的最大值为4√3.20. 若b 1=1,因为数列{a n }单调递增,所以a 1≤12,又所有项都是自然数,所以a 1=0或1;因为数列{a n }的每项都是自然数,若a 1=0≤12,则b 1≥1,与a 1=b 1矛盾;若a 1≥2,则因数列{a n }单调递增,故不存在a n ≤12,即b 1=0,也与a 1=b 1矛盾; 当a 1=1时,因数列{a n }单调递增,故n ≥2时,a n >1,所以b 1=1,符合条件; 综上,a 1=1.若a n =2n (n =1, 2, 3),则数列{a n }单调递增,显然数列{b n }也单调递增, 由a n ≤m 2,即2n ≤m 2,得n ≤12m 2,所以b m 为不超过12m 2的最大整数, 当m =2k −1(k ∈N ∗)时,因为2k 2−2k <12m 2=2k 2−2k +12<2k 2−2k +1,所以b m =2k 2−2k ; 当m =2k(k ∈N ∗)时,12m 2=2k 2,所以b m =2k 2, 综上,b m ={2k 2−2k,m =2k −1(k ∈N ∗)2k 2,m =2k(k ∈N ∗), 即当m >0且m 为奇数时,b m =m 2−12;当m >0且m 为偶数时,b m =m 22.若数列{a n }是数列{b m }的生成数列,且{b m }生成{a n }的控制函数g(n), 则b m 中不超过 g(n)的项数恰为a n ,即b m 中不超过g(n)的项数恰为2n , 所以b 2n ≤g(n)<b 2n+1,即2n 2≤pn 2+qn +r <2n 2+2n 对一切正整数n 都成立,即{(p −2)n 2+qn +r ≥0(2−p)n 2+(2−q)n −r >0对一切正整数n 都成立, 故得p =2,且{qn +r ≥0(2−q)n −r >0对一切正整数n 都成立,故0≤q ≤2,q ∈Z , 又常数r ∈Z ,当q =0时,0≤r <2n(n ≥1),所以r =0,或r =1;当q =1时,−n ≤r <n(n ≥1),所以r =0,或r =−1;当q =2时,−2n ≤r <0(n ≥1),所以r =−2,或r =−1;所以g(n)=2n 2,或2n 2+1,或2n 2+n −1,或2n 2+n ,或2n 2+2n −2,或2n 2+2n −1(n ∈N ∗).。
2015年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题 (理科)解析版
绝密★启封并使用完毕前试题类型:A(全国新课标1卷) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设复数z 满足1+z1z-=i ,则|z|=( )(A )1 (B )2 (C )3 (D )2【答案】A考点:1.复数的运算;2.复数的模.(2)sin20°cos10°-con160°sin10°=( )(A )3 (B 3 (C )12- (D )12【答案】D 【解析】试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D.考点:诱导公式;两角和与差的正余弦公式(3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为( ) (A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n【答案】C【解析】试题分析:p ⌝:2,2n n N n ∀∈≤,故选C.考点:特称命题的否定(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】试题分析:根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A. 考点:独立重复试验;互斥事件和概率公式(5)已知M (x 0,y 0)是双曲线C :2212x y -=上的一点,F 1、F 2是C 上的两个焦点,若1MF u u u u r •2MF u u u u r<0,则y 0的取值范围是( )(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233)【答案】A考点:向量数量积;双曲线的标准方程(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
北京市朝阳区2015-2016学年度第二学期高三年级一模考试(理科)数学试卷及答案
17. (本小题满分 14 分) 如图, 在直角梯形 AA1 B1 B 中, 直 A1 AB 90 ,A1 B1 // AB ,AB AA1 2 A1 B1 2 . 角梯形 AA1C1C 通过直角梯形 AA1 B1 B 以直线 AA1 为轴旋转得到,且 使得平面 AA1C1C 平面 AA1 B1 B . M 为线段 BC 的中点, P 为线 段 BB1 上的动点. (Ⅰ)求证: A1C1 AP ; (Ⅱ)当点 P 是线段 BB1 中点时,求二面角 P AM B 的余 弦值; (Ⅲ)是否存在点 P ,使得直线 A1C //平面 AMP ?请说明理由. C A M C1 P B A1
含边界), 则实数 n 的取值范围是____. 14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第
i ( i 1, 2,,12 )项能力特征用 xi 表示, xi
0, 如果某学生不具有第i项能力特征, 1, 如果某学生具有第i项能力特征.
若学生 A, B 的十二项能力特征分别记为 A (a1 , a2 ,, a12 ) , B (b1 , b2 ,, b12 ) ,则 A, B 两名学生的不同能力特征项数为 (用 ai , bi 表示) .如果两个
1 x 3 sin x 3 cos 2 2 2 2
1 3 sin x cos x 2 2 sin( x ) . 3 令 2k x 2k , k Z . 2 3 2 x 2k , k Z . 解得 2k 6 6 , 2k ], k Z .……………………7 分 所以 f ( x ) 的单调递增区间是 [2k 6 6
3. “ a b ”是“ e e ”的 A.充分而不必要条件 C.充分必要条件 B.必要而不充分条件 D.既不充分也不必要条件 值为 开始
北京市朝阳区2015届高三下学期第一次综合练习数学(理)试卷 Word版含答案
北京市朝阳区2015届高三下学期第一次综合练习数学(理)试卷第Ⅰ卷一、选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{1,2,},{1,}A m B m ==,若B A ⊆,则M = A .0 B .2 C .0或2 D .1或22、已知点00(1,)(0)A y y >为抛物线22(0)y px p =>上一点,若点A 到该抛物线焦点的距离为3,则0y =A .2 C ..43、在ABC ∆中,若,cos 633A B BC π===,则AC =A ..4 C ..34、“2,10x Rx a x ∀∈++≥成立”是“2a ≤”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、某商场每天上午10点开门,晚上19点停止进入,在如图所示的 框图中,t 表示整点时刻,()a t 表示时间段[1,)t t -内进入商场的人 次,S 表示面某天某整点时刻前进入商场人次总和,为了统计某天进 入商场的总人次数,则判断框内可以填A .17?t ≤B .19?t ≥C .18?t ≥D .18?t ≤ 6、设123,,x x x 均为实数,且312213223111()log (1),()log (1),()log 333x xx x x x =+=+=,则A .132x x x <<B .321x x x <<C .312x x x <<D .213x x x << 7、在平面直角坐标系中,O 为坐标原点,已知两点(1,0),(1,1)A B ,且090BOP ∠=,设()OP OA kOB k R =+∈,则OP =A .12 BC.2 8、设集合22000000{(,)|20,,}M x y x y x Z y Z =+≤∈∈,则M 中元素的个数为A .61B .65C .69D .84第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卷的横线上.. 9、i 为虚数单位,计算121ii-=+ 10、设n S 为等差数列{}n a 的前n 项和,若3833,1a a S +==,则通项公式n a =11、在极坐标系中,设0,02ρθπ>≤<,曲线2ρ=与曲线sin 2ρθ= 焦点的极坐标为 12、已知有身穿两种不同队服的球迷各三人,现将这六人排除一排照相,要求身穿同一种队服的球迷均不能相邻,则不同的排法种数为 (用数字作答)13、设3z x y =+,实数,x y 满足20200x y x y y t +≥⎧⎪-≤⎨⎪≤≤⎩,其中0t >,若z 的最大值为5,则实数t 的值为 ,此时z 的最小值为 .14、将体积为1的四面体第一次挖去以各棱中点为顶点构成的多面体,第二次再讲剩余的每个四面体均挖去以各棱中点为顶点构成的多面体,如此下去,共进行了次,则第一次挖去的几何体的体积是 ;这n 次共挖去的所有几何体的体积和是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 15、(本小题满分12分)已知函数()2cos cos ,f x x x x x R =+∈.(1)求()f x 的最小正周期和单调递减区间;(2)设()x m m R =∈是函数()y f x =图像的对称轴,求sin 4m 的值.17、(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的无损,其中,频率分布直方图的分组分布为[)[)[)[)[]50,60,60,70,70,80,80,90,90,100,据此解答如下问题:(1)求全班人数及分数在[]80,100之间的频率;(2)现从分数在[]80,100之间的试卷中任取3份学生失分情况,设抽取的试卷分数在[]90,100的份数为X ,求X 的分布列和数学期望.17、(本小题满分12分)如图,正方形ADEF 与梯形ABCD 所在平面互相垂直,已知1//,,2AB CD AD CD AB AD CD ⊥==. (1)求证://BF 平面CDE ;(2)求平面BDF 与平面CDE 所成锐二面角的余弦值;(3)线段EC 上是否存在点M ,使得平面BDM ⊥平面BDF ? 若存在,求出EMEC的值;若不存在,说明理由.18、(本小题满分12分)已知函数()2ln (1),2x f x a x a x a R =+-+∈. (1)当1a =-时,求函数()f x 的最小值; (2)当1a ≤时,讨论函数()f x 的零点个数.20、(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(2,0)F F 的直线与椭圆交于A 、B 两点,线段AB 中点为D ,O 为坐标原点,过的直线交椭圆于M 、N 两点. (1)求椭圆C 的方程;(2)求四边形AMBN 面积的最大值.20、(本小题满分13分)若数列{}n a 中不超过()f m 的项数恰为()m b m N +∈,则称数列{}n b 是数列{}n a 的生成数列,称相应的函数()f m 是{}n a 生成{}n b 的控制函数,设()2f m m =. (1)若数列{}n a 单调递增,且所有项都是自然数,11b =,求1a ; (2)若数列{}n a 单调递增,且所有项都是自然数,11a b =,求1a ; (3)若2(1,2,3,)n a n n ==,是否存在{}n b 生成{}n a 的控制函数()2g n pn qn r =++(其中常数,,p q r Z ∈),使得数列{}n a 也是数列{}n b 的生成数列?若存在,求出()g n ;若不存在,说明理由.。
2014-2015朝阳高三期中理科试题答案
北京市朝阳区2014-2015学年度高三年级第一学期期中统一考试数学试卷答案(理工类) 2014.11一、选择题(满分40分) 题号 (1) (2) (3) (4) (5) (6) (7) (8) 答案ACCDBBBD二、填空题(满分30分) (注:两空的填空,第一空3分,第二空2分) 三、解答题(满分80分) (15)(本小题满分13分)解:(Ⅰ)由函数()f x 的图象经过点(,1)3π,则3sincos 133a ππ-=. 解得1a =.因此()3sin cos f x x x =-. ……………………….5分 (Ⅱ)()3sin cos f x x x =-312(sin cos )22x x =- 2sin()6x π=-.所以函数()f x 的最小正周期为2T =π.由2+2262k x k ππ3ππ≤-≤π+,k ∈Z . 可得2+233k x k 2π5ππ≤≤π+,k ∈Z . 因此函数()f x 的单调递减区间为[2+,233k k 2π5πππ+],k ∈Z .……………13分题号91011121314答案22(,)22或22(,)22--34-; 45- 1- 2-;33,2⎛⎫+∞ ⎪⎝⎭1453;(16)(本小题满分13分) (Ⅰ)在△ABC 中, 因为π2,6AB A ==,2BC =, 由正弦定理可得sin sin AB BCACB A=∠,即22222π1sin sin 62ACB ===∠,所以2sin 2ACB ∠=. 因为ACB ∠为钝角,所以3π4ACB ∠=. 所以π4BCD ∠=. ………………………………………………………………6分 (Ⅱ)在△BCD 中,由余弦定理可知2222cos BD CB DC CB DC BCD =+-⋅⋅∠,即222π(2)(31)22(31)cos 4BD =++-⋅⋅+⋅, 整理得2BD =.在△ABC 中,由余弦定理可知2222cos BC AB AC AB AC A =+-⋅⋅, 即222π(2)222cos6AC AC =+-⋅⋅⋅, 整理得22320AC AC -+=.解得31AC =±. 因为ACB ∠为钝角,所以2AC AB <=.所以31AC =-.所以△ABC 的面积11131sin 2(31)2222S AC AB A -=⋅⋅=⨯⨯-⨯=. …………………….13分(17)(本小题满分13分)(Ⅰ)由已知可得,121147(1)8a q a q q ⎧=⎪⎪⎨⎪++=⎪⎩解得2q =或12q =.DCBA由上面方程组可知10a >,且已知数列{}n a 为递减数列,所以12q =. 代入求得112a =, 则12nn a 骣÷ç=÷ç÷ç桫. 111()12211212nnn S 轾? 骣犏臌÷ç==-÷ç÷ç桫- ……………………….6分 (Ⅱ)依题意,22222211(log log )log ()222n n n n n n b b S S S S ++++=+=⋅1222log ()n n S S +=⋅; 121log n n b S ++=,由于函数2log y x =在定义域上为增函数, 所以只需比较122()n n S S +⋅与1n S +的大小关系, 即比较2n n S S +×与21n S +的大小关系,2111122n n +轾轾骣骣犏犏鼢珑--鼢珑犏犏鼢珑桫桫犏犏臌臌=2221111222n n n ++骣骣骣鼢珑 --+鼢 珑 鼢 珑 桫桫桫,21112n +轾骣犏÷ç-÷ç犏÷ç桫犏臌122111222n n ++骣骣鼢珑=-?鼢珑鼢珑桫桫,由于2221112222nn n ++骣骣骣鼢珑 +>鼢 珑 鼢 珑 桫桫桫,即211112222n n n ++骣骣骣鼢珑 +> 鼢 珑 鼢 珑 桫桫桫,所以2111122nn +轾轾骣骣犏犏鼢珑--鼢珑犏犏鼢珑桫桫犏犏臌臌21112n +轾骣犏÷ç<-÷ç犏÷ç桫犏臌.即2n n S S +×21n S +<, 即22n n b b ++1n b +< ……………………….13分18. (本小题满分14分)(Ⅰ) ()f x 的定义域为{}x x a ≠.2(2)()()x x a f x x a -¢=-. (1)当0a =时,()(0),f x x x =≠()1f x ¢=,则(),0x ∈-∞,()0,+∞时,()f x 为增函数;(2)当0a >时,由()0f x ¢>得,2x a >或0x <,由于此时02a a <<,所以2x a >时,()f x 为增函数,0x <时,()f x 为增函数;由()0f x ¢<得,02x a <<,考虑定义域,当0x a <<,()f x 为减函数,2a x a <<时,()f x 为减函数;(3)当0a <时,由()0f x ¢>得,0x >或2x a <,由于此时20a a <<,所以 当2x a <时,()f x 为增函数,0x >时,()f x 为增函数.由()0f x ¢<得,20a x <<,考虑定义域,当2a x a <<,()f x 为减函数,0a x <<时,()f x 为减函数.综上,当0a =时,函数()f x 的单调增区间为(),0- ,()0,+.当0a >时,函数()f x 的单调增区间为(),0x ? ,()2,a + ,单调减区间为()0,a ,(),2a a .当0a <时,函数()f x 的单调增区间为(),2x a ? ,()0,+单调减区间为()2,a a ,(),0a .……………………….7分(Ⅱ)解:(1) 当0a ≤时,由(Ⅰ) 可得,()f x 在(1,2)单调增,且(1,2)x Î时x a ≠. (2) 当021a <≤时,即102a <≤时,由(Ⅰ) 可得,()f x 在()2,a + 单调增,即在(1,2)单调增,且(1,2)x Î时x a ≠.(3)当122a <<时,即112a <<时,由(Ⅰ) 可得,()f x 在(1,2)上不具有单调性,不合题意.(4)当22a ≥,即1a ≥时,由(Ⅰ) 可得,()f x 在()0,a (),,2a a 为减函数,同时需注意()1,2a ∉,满足这样的条件时()f x 在(1,2)单调减,所以此时1a =或2a ≥.综上所述,12a ≤或1a =或2a ≥. ……………………….14分19.(本小题满分14分)(Ⅰ) ()sin 2f x x =+具有性质M .依题意,若存在0x ∈(2,2)-,使0()1f x =,则0x ∈(2,2)-时有0si n 21x +=,即0sin 1x =-,022x k π=π-,k ∈Z .由于0x ∈(2,2)-,所以02x π=-.又因为区间(2,2)-内有且仅有一个02x π=-,使0()1f x =成立,所以()f x 具有性质M …5分 (Ⅱ)依题意,若函数2()221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在(2,2)-上有且只有一个实根.设2()22h x x mx m =++,即2()22h x x mx m =++在(2,2)-上有且只有一个零点. 解法一:(1)当2m -≤-时,即2m ≥时,可得()h x 在(2,2)-上为增函数,只需(2)0,(2)0,h h -<⎧⎨>⎩解得2,2,3m m >⎧⎪⎨>-⎪⎩交集得2m >.(2)当22m -<-<时,即22m -<<时,若使函数()h x 在(2,2)-上有且只有一个零点,需考虑以下3种情况:(ⅰ)0m =时,2()h x x =在(2,2)-上有且只有一个零点,符合题意.(ⅱ)当20m -<-<即02m <<时,需(2)0,(2)0,h h -≤⎧⎨>⎩解得2,2,3m m ≥⎧⎪⎨>-⎪⎩交集得∅.(ⅲ)当02m <-<时,即20m -<<时,需(2)0,(2)0,h h ->⎧⎨≤⎩解得2,2,3m m <⎧⎪⎨≤-⎪⎩交集得223m -<≤-.(3)当2m -≥时,即2m ≤-时,可得()h x 在(2,2)-上为减函数只需(2)0,(2)0,h h ->⎧⎨<⎩解得2,2,3m m <⎧⎪⎨<-⎪⎩交集得2m ≤-.综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m > 或0m =……………………14分解法二: 依题意,(1)由(2)(2)0h h -⋅<得,(42)(64)0m m -+<,解得23m <-或2m >. 同时需要考虑以下三种情况:(2) 由22,0,m -<-<⎧⎨∆=⎩解得0m =.(3)由20,(2)0,m h -<-<⎧⎨-=⎩解得02,2,m m <<⎧⎨=⎩不等式组无解.(4)由02,(2)0,m h <-<⎧⎨=⎩解得20,2,3m m -<<⎧⎪⎨=-⎪⎩解得23m =-. 综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m > 或0m =…………………14分20. (本小题满分13分)(Ⅰ)1,3,1,5; 1,3,2,5;1,3,3,5 ……………………….3分 (Ⅱ)因为2n a tn n =-,11,42t ⎛⎫∈ ⎪⎝⎭所以1(1,2)2t∈. 所以当2n ≥时,总有1n n a a +>. 又11a t =-,393a t =-. 所以31820a a t -=->. 故3n ≥时,总有n n b a =.从而只需比较1a 和2a 的大小.(1) 当1a 2a ≤,即142t t -≤-,即11,32t ⎡⎫∈⎪⎢⎣⎭时,{}n a 是递增数列,此时n n b a =对一切1,2,3,...100n =均成立. 所以112233100100()()()()0b a b a b a b a -+-+-++-=.(2) 当12a a >时,即142t t ->-,即11,43t ⎛⎫∈ ⎪⎝⎭时, 11b a =,21b a =,n n b a =()3n ≥. 所以112233100100()()()()b a b a b a b a -+-+-++-[]0(1)(42)0 0t t =+---+++ 13t =-.综上,原式=1113,,43110,,.32t t t ⎧⎛⎫-∈ ⎪⎪⎪⎝⎭⎨⎡⎫⎪∈⎪⎢⎪⎣⎭⎩……………………….9分(Ⅲ)154.首项为1的数列有6个;首项为2的数列有628+=个;首项为3的数列有64212++=个; 首项为4的数列有666624+++=个;所以,控制阶数为2的所有数列首项之和682123244154+⨯+⨯+⨯=. ……………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区高三年级第一次综合练习数学(理工类)2015.4(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{}21,2,A m =,{}1,B m =.若B A ⊆,则m =A.0B. 2C. 0 或2D. 1或2 2.已知点0(1,)A y 0(0)y >为抛物线22y px =()0p >上一点.若点A 到该抛物线焦点的距离为3,则0y =3.在ABC ∆中,若π3A =,cos B =6BC =,则AC =A.4.“x ∀∈R ,210x ax ++≥成立”是“2a ≤”的 A .充分必要条件 B .必要而不充分条件 C .充分而不必要条件 D.既不充分也不必要条件5.某商场每天上午10点开门,晚上19点停止进入.在 如图所示的框图中,t 表示整点时刻,()a t 表示时间段[1,)t t -内进入商场人次,S 表示某天某整点时刻前进入商场人次总和,为了统计某天进入商场的总人次数,则判断框内可以填A. 17?t ≤ B .19?t ≥ C .18?t ≥ D .18?t ≤6.设123,,x x x 均为实数,且1211log (1)3x x ⎛⎫=+ ⎪⎝⎭,2321log 3x x ⎛⎫= ⎪⎝⎭,3231log 3xx ⎛⎫= ⎪⎝⎭则A. 132x x x <<B. 321x x x <<C. 312x x x <<D. 213x x x <<7.在平面直角坐标系中,O 为坐标原点,已知两点(1,0)A ,(1,1)B ,且90BOP ∠=.设OP OA kOB =+()k ∈R ,则OP =A . 12D.28. 设集合M ={}22000000(,)20,,x y x y x y +≤∈∈Z Z ,则M 中元素的个数为 A.61 B. 65 C. 69 D.84第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.i 为虚数单位,计算12i1i-=+ ______. 10.设n S 为等差数列{}n a 的前n 项和.若383a a +=,31S =,则通项公式n a =______. 11.在极坐标中,设002πρθ>≤<,,曲线2ρ=与曲线sin 2ρθ=交点的极坐标为______. 12.已知有身穿两种不同队服的球迷各有三人,现将这六人排成一排照相,要求身穿同一种队服的球迷均不能相邻,则不同的排法种数为 . (用数字作答)13. 设3z x y =+,实数x ,y 满足20,20,0,x y x y y t +≥⎧⎪-≤⎨⎪≤≤⎩其中0t >.若z 的最大值为5,则实数t 的值为______,此时z 的最小值为______.14.将体积为1的四面体第一次挖去以各棱中点为顶点的构成的多面体,第二次再将剩余的每个四面体均挖去以各棱中点为顶点的构成的多面体,如此下去,共进行了n (n *∈N )次.则第一次挖去的几何体的体积是______;这n 次共挖去的所有几何体的体积和是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()cos cos f x x x x =+,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递减区间;(Ⅱ)设x m =()m ∈R 是函数()y f x =图象的对称轴,求sin4m 的值.16.(本小题满分13分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[)50,60,[)60,70,[)70,80,[)80,90,[90,100].据此解答如下问题.(Ⅰ)求全班人数及分数在[80,100]之间的频率;(Ⅱ)现从分数在[80,100]之间的试卷中任取3份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为X ,求X 的分布列和数学期望.17.(本小题满分14分)如图,正方形ADEF 与梯形ABCD 所在平面互相垂直, 已知//,AB CD AD CD ⊥,12AB AD CD ==.(Ⅰ)求证:BF //平面CDE ;(Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值;(Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面BDF ?若存在,求出EM EC的值;若不存在,说明理由.18.(本小题满分13分)已知函数2()ln (1)2x f x a x a x =+-+,a ∈R .0.0375 0.0125O0.025 A B F E D C(Ⅰ) 当1a =-时,求函数()f x 的最小值; (Ⅱ) 当1a ≤时,讨论函数()f x 的零点个数.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(2,0)F ,离心率为3.过焦点F的直线l 与椭圆C 交于,A B 两点,线段AB 中点为D ,O 为坐标原点,过O ,D 的直线 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求四边形AMBN 面积的最大值.20.(本小题满分13分)若数列{}n a 中不超过()f m 的项数恰为m b ()m ∈*N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是{}n a 生成{}m b 的控制函数.设2()f m m =.(Ⅰ)若数列{}n a 单调递增,且所有项都是自然数,11=b ,求1a ; (Ⅱ)若数列{}n a 单调递增,且所有项都是自然数,,11b a =求1a ;(Ⅲ)若2(1,2,3)n a n n ==,是否存在{}m b 生成{}n a 的控制函数2()g n pn qn r =++(其中常数,,p q r ∈Z )?使得数列{}n a 也是数列{}m b 的生成数列?若存在,求出)(n g ;若不存在,说明理由.北京市朝阳区高三年级第一次综合练习数学答案(理工类) 2015.4(注:两空的填空,第一空3分,第二空2分)三、解答题(满分80分) 15.(本小题满分13分)解:(Ⅰ)由已知,函数2()cos cos f x x x x = 1(1cos2)2x =+2x=π1sin(2)62x ++.函数()f x 的最小正周期为πT =.当ππ3π2π22π262k x k +≤+≤+时(k ∈Z ),即π2ππ+π+63k x k ≤≤时,函数()f x 为减函数.即函数()f x 的单调减区间为π2ππ+,π+63k k ⎡⎤⎢⎥⎣⎦,k ∈Z . ………………….9分(Ⅱ)由x m =是函数()y f x =图象的对称轴,则ππ2=π62m k ++(k ∈Z ),即126m k π=π+,k ∈Z .则423m k 2π=π+.则sin 4m . ………………….13分16. (本小题满分13分)解:(Ⅰ)由茎叶图可知,分布在[50,60)之间的频数为4,由直方图,频率为0.0125100.125⨯=,所以全班人数为4320.125=人. 所以分数在[80,100]之间的人数为32(4810)10人.分数在[80,100]之间的频率为100.312532= ………………….4分 (Ⅱ)由(Ⅰ)知,分数在[80,100]之间的有10份,分数在[90,100]之间的人数有0.01251032=4份,由题意,X 的取值可为0,1,2,3.363101(0)6C P X C ===, 12463101(1)2C C P X C ===,21463103(2)10C C P X C ===, 343101(3)30C P X C ===.所以随机变量X 的分布列为随机变量X 的数学期望为01236210305EX =⨯+⨯+⨯+⨯=.………………….13分17.(本小题满分14分) 解:(Ⅰ)因为//,AB CD AB ⊄平面,CDE CD ⊂平面CDE ,所以//AB 平面CDE ,同理,//AF 平面CDE , 又,AB AF A =所以平面//ABF 平面CDE ,因为BF ⊂平面,ABF 所以//BF 平面CDE . ……………….4分(Ⅱ)因为平面ADEF 平面ABCD ,平面ADEF平面ABCD =AD ,CDAD ,CD 平面ABCD ,所以CD 平面ADEF .又DE平面ADEF ,故CDED .而四边形ADEF 为正方形,所以AD DE 又AD CD ,以D 为原点,DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz -.设1AD =,则(0,0,0),(1,1,0),(1,0,1),(0,2,0),(0,0,1)D B F C E , 取平面CDE 的一个法向量(1,0,0)DA =, 设平面BDF 的一个法向量(,,)x y z =n ,则00DB DF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即00x y x z +=⎧⎨+=⎩,令1x =,则1y z ==-, 所以(1,1,1)=--n .设平面BDF 与平面CDE 所成锐二面角的大小为θ, 则cos |cos ,|DA θ=<>==n . ……………….9分 所以平面BDF 与平面CDE. (Ⅲ)若M 与C 重合,则平面()BDM C 的一个法向量0(0,0,1)m ,由(Ⅱ)知平面BDF的一个法向量(1,1,1)n,则010m n =,则此时平面BDF 与平面BDM 不垂直.若M 与C 不重合,如图设EMECλ=01λ,则(0,2,1)M λλ-,设平面BDM 的一个法向量000(,,)x y z =m ,则00DB DM ⎧⋅=⎪⎨⋅=⎪⎩m m ,即000002(1)0x y y z λλ+=⎧⎨+-=⎩,令01x =,则0021,1y z λλ=-=-,所以2(1,1,)1λλ=--m , 若平面BDF ⊥平面BDM 等价于0⋅=m n ,即2110,1λλ+-=-所以[]10,12λ=∈. 所以,EC 上存在点M 使平面BDF ⊥平面BDM ,且12EM EC =.……………….14分 18. (本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.当1a =-时,2()ln 2x f x x =-+.211(1)(1)()x x x f x x x x x -+-'=-+==. 由(1)(1)0x x x +->0x 解得1x >;由(1)(1)0x x x+-<0x解得01x <<.所以()f x 在区间(0,1)单调递减, 在区间(1,)+∞单调递增.所以1x =时,函数()f x 取得最小值1(1)2f =. ……………….5分 (Ⅱ)(1)()()x x a f x x--'=,0x >. (1)当0a ≤时,(0,1)x ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在1x =时取得最小值1(1)2f a =--. (ⅰ)当0a =时,2()2x f x x =-,由于0x >,令()0f x ,2x ,则()f x 在(0,)+∞上有一个零点;(ⅱ)当12a =-时,即(1)0f =时,()f x 有一个零点;(ⅲ)当12a <-时,即(1)0f >时,()f x 无零点.(ⅳ)当102a -<<时,即(1)0f <时,由于0x →(从右侧趋近0)时,()f x →+∞;x →+∞时,()f x →+∞, 所以()f x 有两个零点.(2)当01a <<时,(0,)x a ∈时,()0f x '>,()f x 为增函数; (,1)x a ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在x a =处取极大值,()f x 在1x =处取极小值. 21()ln (1)2f a a a a a a =+-+21ln 2a a a a =--.当01a <<时,()0f a <,即在(0,1)x ∈时,()0f x <.而()f x 在(1,)x ∈+∞时为增函数,且x →+∞时,()f x →+∞,所以此时()f x 有一个零点.(3)当1a =时,2(1)()0x f x x-'=≥在()0,+∞上恒成立,所以()f x 为增函数.且0x →(从右侧趋近0)时,()f x →-∞;x →+∞时,()f x →+∞. 所以()f x 有一个零点.综上所述,01a ≤≤或12a =-时()f x 有一个零点;12a <-时,()f x 无零点;102a -<<()f x 有两个零点.……………….13分19.(本小题满分14分) 解:(Ⅰ)由题意可得2222,,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a,b =, 故椭圆的方程为22162x y +=. …….4分(Ⅱ)当直线l 斜率不存在时,A B的坐标分别为,(2,,||MN =,四边形AMBN 面积为1||||42AMBN S MN AB =⋅=. 当直线l 斜率存在时,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,点,M N 到直线l 的距离分别为12,d d ,则四边形AMBN 面积为121||()2AMBN S AB d d =+.由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 则21221213k x x k +=+,212212613k x x k -=+,所以||AB==. 因为121224(4)13ky y k x x k -+=+-=+, 所以AB 中点22262(,)1313k kD k k -++.当0k时,直线OD 方程为30x ky +=,由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得333,x ky =-232213y k =+. 所以121||()2AMBN S AB d d =+12=+====< 当0k =时,四边形AMBN 面积的最大值26243AMBNS.综上四边形AMBN 面积的最大值为 …………………………14分20.(本小题满分13分) 解:(Ⅰ)若11b =,因为数列{}n a 单调递增,所以211a ≤,又1a 是自然数,所以10a =或1. ………2分(Ⅱ)因为数列{}n a 的每项都是自然数,若2101a =≤,则11b ≥,与11a b =矛盾;若12a ≥,则因{}n a 单调递增,故不存在21n a ≤,即10b =,也与11a b =矛盾. 当11=a 时,因{}n a 单调递增,故2≥n 时,1>n a ,所以11b =,符合条件, 所以,11a =. ………6分 (Ⅲ)若2(1,2,)n a n n ==,则数列n a 单调递增,显然数列m b 也单调递增,由2n a m ≤,即22n m ≤,得212n m ≤,所以,m b 为不超过212m 的最大整数,当21m k k N 时,因为222211222222122k k m k k k k -<=-+<-+,所以222m b k k =-; 当2mk kN 时,22122m k =,所以,22m b k =. 综上,2222,21(2,2(mk k m k k b k mk kN )N ),即当0m且m 为奇数时,212mm b ;当0m 且m 为偶数时,22mm b . 若数列{}n a 是数列{}m b 的生成数列,且{}m b 生成{}n a 的控制函数为()g n , 则m b 中不超过()g n 的项数恰为n a ,即m b 中不超过()g n 的项数恰为2n ,所以221()n n b g n b +≤<,即222222n pn qn r n n ≤++<+对一切正整数n 都成立,即22(2)0(2)(2)0p n qn r p n q n r ⎧-++≥⎪⎨-+-->⎪⎩对一切正整数n 都成立,故得2p =,且0(2)0qn r q n r +≥⎧⎨-->⎩对一切正整数n 都成立,故02q ≤≤,q Z ∈.又常数r Z ∈,当0q =时,02(1)r n n ≤<≥,所以0r =,或1r =; 当1q =时,(1)n r n n -≤<≥,所以0r =,或1r =-; 当2q =时,20(1)n r n -≤<≥,所以2r =-,或1r =-;所以2()2g n n =,或221n +,或221n n +-,或22n n +,或2222n n +-,或2221n n +-(nN ). ………13分。