高中数学经典高考难题集锦解析版10
10道高中函数难题(详解版)
由 ,则 ,
,当且仅当 时,等式成立.
① 时, , ,
② , , ,
综上: 当且仅当 时等式成立.
【点睛】
本题考查了新定义问题,考查了数学阅读能力,考查了分类讨论问题,考查了数学运算能力.
8.(1) (2)3.
【解析】
【分析】
将绝对值函数写成分段函数形式,分别求出各段的最小值,最小的即为函数的最小值。
【解析】
【分析】
根据函数的奇偶性,以及特殊值即可判断.
【详解】
因为
又定义域关于原点对称,故该函数为奇函数,排除B和D.
又 ,故排除C.
故选:A.
【点睛】
本题考查函数图像的选择,通常结合函数的性质,以及特殊值进行判断即可.
6.(Ⅰ)8;(Ⅱ)(i) ;(ii)详见解析.
【解析】
【分析】
(Ⅰ)对 求导, 可得 , 单调递增,得到 最小值,从而得到 的值.
,
如图所示:
【点睛】
本题考查绝对值函数的图像的画法,绝对值函数需先将绝对值去掉,再分段画出图像.属于基础题.
10.325
【解析】
【分析】
利用 可得 ,再利用等差数列求和公式,即可求出结果.
【详解】
因为 ,
所以
,
……
故答案为:
【点睛】
本题主要考查求抽象函数的函数值,关键是利用已知将 变形转化,属于中档题.
10道高中函数难题突破(详解版)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若存在正实数y,使得 ,则实数x的最大值为( )
A. B. C.1D.4
高三数学总复习专题10 解析几何(答案及解析)
高三数学总复习专题10 解析几何方法点拨1.圆锥曲线中的最值 (1)椭圆中的最值12,F F 为椭圆()222210+=>>x y a b a b的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有: ①[],∈OP b a ; ②[]1,∈-+PF a c a c ;③2212,⎡⎤⋅∈⎣⎦PF PF b a ;④1212∠≤∠F PF F BF . (2)双曲线中的最值12,F F 为双曲线()222210,0-=>>x y a b a b的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有:①≥OP a ;②1≥-PF c a . (3)抛物线中的最值点P 为抛物线()220=>y px p 上的任一点,F 为焦点,则有: ①2≥pPF ;②(),A m n 为一定点,则+PA PF 有最小值. 2.定点、定值问题(1)由直线方程确定定点,若得到了直线方程的点斜式:()00-=-y y k x x ,则直线必过定点()00,x y ;若得到了直线方程的斜截式:=+y kx m ,则直线必过定点()0,m . (2)解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值. 3.圆锥曲线中范围、最值的求解策略(1)数形结合法:利用待求量的几何意义,确定出临界位置后数形结合求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. 4.定点问题的l 过定点问题的解法:设动直线方程(斜率存在)为=+y kx t 由题设条件将t 用k 表示为=t mk ,得()=+y k x m ,故动直线过定点(),0-m .(2)动曲线C 过定点问题的解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(3)从特殊位置入手,找出定点,再证明该点符合题意. 5.求解定值问题的两大途径(1)首先由特例得出一个值(此值一般就是定值)然后证明定值:即将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 6.解决探索创新问题的策略存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.经典试题汇编一、选择题.1.(陕西省渭南市临渭区2021届高三一模)若直线:3=-l y kx 与直线2360+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .ππ,43⎡⎫⎪⎢⎣⎭B .ππ,32⎡⎫⎪⎢⎣⎭C .ππ,42⎛⎫⎪⎝⎭ D .ππ,32⎛⎫⎪⎝⎭2.(安徽省淮北市2020-2021学年高三一模)过圆2216+=x y 上的动点作圆22:4+=C x y 的两条切线,两个切点之间的线段称为切点弦,则圆C 内不在任何切点弦上的点形成的区域的面积为( ) A .πB .32πC .2πD .3π3.(山西省大同市天镇县实验中学2021-2022学年高三一模)圆222440+-+-=x y x y 与直线2140()---=∈R tx y t t 的位置关系为( ) A .相离B .相切C .相交D .以上都有可能4.(吉林省长春市2022届高三一模)已知圆22:(2)(3)2-+-=C x y ,直线l 过点(3,4)A 且与圆C 相切,若直线l 与两坐标轴交点分别为,M N ,则MN =( )A .B .6C .D .85.(河南省联考2021-2022学年高三一模)若点()2,1--P 为圆229+=x y 的弦AB 的中点,则弦AB 所在直线的方程为( )A .250++=x yB .250+-=x yC .250-+=x yD .250--=x y6.(四川省南充市2021-2022学年高三一模)若A ,B 是O :224+=x y 上两个动点,且2⋅=-OA OB ,A ,B 到直线l 40+-=y 的距离分别为1d ,2d ,则12+d d 的最大值是( ) A .3B .4C .5D .67.(湖南省长沙市雅礼中学2021届高三一模)过双曲线2214-=y x 的左焦点1F 作一条直线l 交双曲线左支于P ,Q 两点,若4=PQ ,2F 是双曲线的右焦点,则2△PF Q 的周长是( ) A .6B .8C .10D .128.(四川省成都市2020-2021学年高三一模)已知抛物线24=x y 的焦点为F ,过F的直线l 与抛物线相交于A ,B 两点,70,2⎛⎫⎪⎝-⎭P .若⊥PB AB ,则=AF ( )A .32B .2C .52D .39.(湖南省湘潭市2021-2022学年高三上学期一模)已知抛物2:2C y px =(0>p )的焦点为F ,点T 在C 上,且52=FT ,若点M 的坐标为()0,1,且⊥MF MT ,则C 的方程为( ) A .22=y x 或28=y x B .2=y x 或28=y x C .22=y x 或24=y xD .2=y x 或24=y x10.(河南省联考2021-2022学年高三一模)点F 为抛物线22=y px ()0>p 的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与l 交于点C .已知点B 在线段CF 上,若BF ,AF ,BC 按照某种排序可以组成一个等差数列,则AFBF的值为( ) A .32或3B .2或4C .32或4D .2或311.(贵州省遵义市2021届高三一模)双曲线221927-=x y 上一点P 到右焦点2F 距离为6,1F 为左焦点,则12∠F PF 的角平分线与x 轴交点坐标为( )A .()1,0-B .()0,0C .()1,0D .()2,012.(吉林省长春市2022届高三一模)已知P 是抛物线24=y x 上的一动点,F 是抛物线的焦点,点(3,1)A ,则||||+PA PF 的最小值为( )A .3B .C .4D .13.(多选)(湖南省湘潭市2021-2022学年高三一模)已知双曲线2222:1-=x y C a b(0>a ,0>b )的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若=a b ,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12△PF F 的内切圆圆心的横坐标=x aD .若M 为直线2=a x c(=c 0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 14.(江西省赣州市2021届高三3月一模)已知M 、N 是双曲线()2222:10,0-=>>x y C a b a b上关于原点对称的两点,P 是C 上异于M 、N 的动点,设直线PM 、PN 的斜率分别为1k 、2k .若直线12=y x 与曲线C 没有公共点,当双曲线C 的离心率取得最大值时,且123≤≤k ,则2k 的取值范围是( ) A .11,128⎡⎤⎢⎥⎣⎦B .11,812⎡⎤--⎢⎥⎣⎦ C .11,32⎡⎤⎢⎥⎣⎦D .11,23⎡⎤--⎢⎥⎣⎦15.(四川省成都市2021-2022学年高三一模)已知双曲线()222210,0-=>>x y a b a b的一条渐近线方程为=y ,则该双曲线的离心率为( )A B C .2D .316.(四川省成都市2020-2021学年高三一模)已知平行于x 轴的一条直线与双曲线()222210,0-=>>x y a b a b 相交于P ,Q 两点,4=PQ a ,π3∠=PQO (O 为坐标原点),则该双曲线的离心率为( )A B C D17.(甘肃省嘉谷关市第一中学2020-2021学年高三一模)已知双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点F ,过点F 作一条渐近线的垂线,垂足为M ,若三角形OMF 的面积为2,则双曲线的离心率为( )AB .16C D .4或4318.(四川省乐山市高中2022届一模)已知双曲线()222210,0-=>>x y a b a b,过原点的直线与双曲线交于A ,B 两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若ABF 的面积为22a ,则双曲线的离心率为( )AB C D .219.(四川省达州市2021-2022学年高三一模)双曲线()222210,0-=>>x y a b a b的左顶点为A ,右焦点(),0F c ,若直线=x c 与该双曲线交于B 、C 两点,ABC 为等腰直角三角形,则该双曲线离心率为( )A .2BCD .320.(陕西省汉中市2022届高三一模)已知F 是椭圆2222:1(0)+=>>x y C a b a b 的右焦点,点P 在椭圆C 上,线段PF 与圆22239⎛⎫-+= ⎪⎝⎭c b x y 相切于点Q ,且2=PQ QF ,则椭圆C 的离心率等于( )A B .23C .2D .1221.(广西柳州市2022届高三一模)已知1F ,2F 分别为双曲线C :22221-=x y a b()0,0>>a b 的左,右焦点,以12F F 为直径的圆与双曲线C 的右支在第一象限交于A 点,直线2AF 与双曲线C 的右支交于B 点,点2F 恰好为线段AB 的三等分点(靠近点A ),则双曲线C 的离心率等于( )A B C .3D .12+ 二、填空题.22.(贵州省遵义市2021届高三一模)直线1=-+y kx k 与圆224+=x y 交于,A B 两点,则AB 最小值为________.23.(湖南省长沙市雅礼中学2021届高三一模)若抛物线22=y px 上一点()02,P y 到其准线的距离为4,则抛物线的标准方程为___________.24.(四川省成都市第七中学2021-2022学年高三一模)已知12,F F 为双曲线22:1169-=x y C 的两个焦点,,P Q 为C 上关于坐标原点对称的两点,且12=PQ F F ,则四边形12PF QF 的面积为________.25.(四川省达州市2021-2022学年高三一模)设直线()y kx k =∈R 交椭圆221164+=x y 于A ,B 两点,将x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角,则AB 的取值范围是___________.26.(四川省成都市2021-2022学年高三一模)已知斜率为13-且不经过坐标原点O的直线与椭圆22+197x y =相交于A ,B 两点,M 为线段AB 的中点,则直线OM 的斜率为________. 三、解答题.27.(四川省成都市第七中学2021-2022学年高三一模)已知两圆221:(2)54C x y -+=,222:(2)6C x y ++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点,P 关于x 轴的对称点为R ,求ARQ 面积的最大值.28.(四川省成都市2020-2021学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,且直线1+=x ya b与圆222+=x y 相切. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,△BOP的面积分别为1S ,2S ,求12S S 的取值范围. 29.(陕西省汉中市2022届高三一模)已知椭圆2222:1(0)+=>>x y C a b a b 的离心率为12,左、右焦点分别为12,F F ,O 为坐标原点,点P 在椭圆C 上,且满足2122,3π=∠=PF F PF .(1)求椭圆C 的方程;(2)已知过点(1,0)且不与坐标轴垂直的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点Q ,使得∠=∠MQO NQO ,若存在,求出点Q 的坐标;若不存在,说明理由.30.(四川省南充市2021-2022学年高三一模)已知椭圆()2222:10+=>>x y C a b a b的离心率为2,椭圆C 的下顶点和上顶点分别为1B ,2B ,且122=B B ,过点()0,2P 且斜率为k 的直线l 与椭圆C 交于M ,N 两点.(1)求椭圆C 的标准方程; (2)当1=k 时,求OMN 的面积;(3)求证:直线1B M 与直线2B N 的交点T 的纵坐标为定值.31.(江西省赣州市2021届高三3月一模)设离心率为12的椭圆2222:1(0)+=>>x y E a b a b 的左,右焦点分别为1F ,2F ,点P 在E 上,且满足1260∠=︒F PF ,12△PF F(1)求a ,b 的值;(2)设直线:2(0)=+>l y kx k 与E 交于M ,N 两点,点A 在x轴上,且满足0⋅+⋅=AM MN AN MN ,求点A 横坐标的取值范围.32.(广西柳州市2022届高三一模)已知椭圆C :22221+=x y a b()0>>a b 的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与椭圆C 交于A ,B 两点,AOB 的面积为﹐点P 为椭圆C 的下顶点,2=PF . (1)求椭圆C 的标准方程;(2)椭圆C 上有两点M ,N (异于椭圆顶点且MN 与x 轴不垂直).当OMN 的面积最大时,直线OM 与ON 的斜率之积是否为定值,若是,求出该定值;若不是,请说明理由. 33.(湖南省湘潭市2021-2022学年高三一模)已知圆锥曲线E 上的点M 的坐标(),x y=.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,点P 为()2,1. ①求直线l 在y 轴上的截距的取值范围; ②求证:∠APB 的平分线总垂直于x 轴.34.(四川省乐山市高中2022届一模)如图,从椭圆22221(0)+=>>x y a b a b上一点P 向x轴作垂线,垂足恰为左焦点1F .又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y轴正半轴的交点,且=OP AB k ,13=F A . (1)求椭圆的方程;(2)直线l 交椭圆于M 、Q 两点,判断是否存在直线l ,使点2F 恰为MQB △的重心?若存在,求出直线l 的方程;若不存在,请说明理由.35.(安徽省淮北市2020-2021学年高三一模)已知椭圆2222:1(0)+=>>x y C a b a b的离心率为12,左顶点为A ,右焦点F ,3=AF .过F 且斜率存在的直线交椭圆于P ,N 两点,P 关于原点的对称点为M . (1)求椭圆C 的方程;(2)设直线AM ,AN 的斜率分别为1k ,2k ,是否存在常数λ,使得12λ=k k 恒成立?若存在,请求出λ的值;若不存在,请说明理由.36.(湖南省长沙市雅礼中学2021届高三一模)已知椭圆()222210:x y a b a bC +=>>,连接椭圆上任意两点的线段叫作椭圆的弦,过椭圆中心的弦叫做椭圆的直径.若椭圆的两直径的斜率之积为22-b a,则称这两直径为椭圆的共轭直径.特别地,若一条直径所在的斜率为0,另一条直径的斜率不存在时,也称这两直径为共轭直径.现已知椭圆22:143x y E +=.(1)已知点31,2⎛⎫ ⎪⎝⎭A ,31,2⎛⎫-- ⎪⎝⎭B 为椭圆E 上两定点,求AB 的共轭直径的端点坐标;(2)过点()作直线l 与椭圆E 交于1A 、1B 两点,直线1A O 与椭圆E 的另一个交点为2A ,直线1B O 与椭圆E 的另一个交点为2B .当11A OB 的面积最大时,直径12A A 与直径12B B 是否共轭,请说明理由;(3)设CD 和MN 为椭圆E 的一对共轭直径,且线段CM 的中点为T .已知点P 满足:λ=OP OT ,若点P 在椭圆E 的外部,求λ的取值范围.参考答案一、选择题. 1CACCADDDADDC 13.【答案】ABD【解析】对于A 中,因为=a b ,所以222=a c ,故C的离心率==ce a所以A 正确; 对于B 中,因为()1,0-F c 到渐近线0-=bx ay的距离为==d b ,所以B 正确;对于C 中,设内切圆与12△PF F 的边1221,,F F F P F P 分别切于点1,,A B C , 设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212-=+--=-PF PF PC CF PB BF CF BF1112=-A F A F ()()22=+--==c x c x x a ,解得=x a ,当点P 在双曲线的左支上时,可得=-x a ,所以12△PF F 的内切圆圆心的横坐标=±x a ,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin =∠AF R AMF ,所以当2sin ∠AMF 最大时,R 最小,因为2<a a c,所以2∠AMF 为锐角,故2sin ∠AMF 最大,只需2tan ∠AMF 最大,由对称性,不妨设2,⎛⎫ ⎪⎝⎭a M t c (0>t ),设直线2=a x c 与x 轴的交点为N ,在直角2△NMF 中,可得222tan ==∠-a c NF NM NMF ct , 在直角△NMA 中,可得2tan =-=∠a a NA A NM NM c t,又由2222tan tan tan tan()1tan tan NMF NMAAMF NMF NMA NMF NMA∠-∠∠=∠-∠=∠⋅+∠222222()1c c a ab c a a a a c ct t a a c t a c c t tc t -==≤+-----⨯-+, 当且仅当()22-=ab c a t c t ,即=t 2tan ∠AMF 取最大值, 由双曲线的对称性可知,当=t 2tan ∠AMF 也取得最大值,所以D 正确,故选ABD . 14.【答案】A【解析】因为直线12=y x 与双曲线()2222:10,0-=>>x y C a b a b 没有公共点,所以双曲线C 的渐近线的斜率12=≤bk a ,而双曲线C的离心率====c e a 当双曲线C 的离心率取最大值时,b a 取得最大值12,即12=b a ,即2=a b ,则双曲线C 的方程为222214-=x y b b,设()11,M x y 、()11,--N x y 、()00,P x y ,则2211222200221414⎧-=⎪⎪⎨⎪-=⎪⎩x y b b x y b b , 两式相减得()()()()10101010224+-+-=x x x x y y y y b b ,即1010101014-+⋅=-+y y y y x x x x , 即1214⋅=k k , 又123≤≤k ,211,128⎡⎤∈⎢⎥⎣⎦k ,故选A . 15.【答案】B【解析】双曲线22221-=x y a b 的渐近线方程为=±by x a,因为渐近线方程为=y ,所以=ba故可得====e B . 16.【答案】D【解析】如图,由题可知,△POQ 是等边三角形,4=PQ a ,()2,∴P a ,将点P 代入双曲线可得22224121-=a a a b ,可得224=b a,∴离心率===c e a D .17.【答案】C【解析】抛物线2=x 的交点坐标为(F ,又双曲线22221(0,0)-=>>y x a b a b与抛物线2=x 共焦点,∴双曲线的半焦距=c ,三角形OMF 的面积为2,且=OM a ,=MF b ,∴122=⋅ab ,即4=ab , 有22217+==a b c ,∴1=a 或4=a ,∴双曲线的离心率为=e ,故选C .18.【答案】B【解析】设双曲线的左焦点为'F ,连接'AF ,'BF , 因为以AB 为直径的圆恰好经过双曲线的右焦点(),0F c , 所以⊥AF BF ,圆心为()0,0O ,半径为c , 根据双曲线的对称性可得四边形'AFBF 是矩形,设=AF m ,=BF n ,则222224122⎧⎪-=⎪+=⎨⎪⎪=⎩n m a n m c mn a ,由()2222-=+-n m m n mn ,可得222484-=c a a ,所以223=c a ,所以2223==c e a,所以=e ,故选B .19.【答案】A【解析】联立22222221=⎧⎪⎪-=⎨⎪=+⎪⎩x cxy a b c a b,可得2=±b y a ,则22=b BC a ,易知点B 、C 关于x 轴对称,且F 为线段BC 的中点,则=AB AC ,又因为ABC 为等腰直角三角形,所以2=BC AF ,即()222=+b c a a, 即()222+==-a c a b c a ,所以=-a c a ,可得2=c a , 因此,该双曲线的离心率为2==ce a,故选A . 20.【答案】A【解析】圆22239⎛⎫-+= ⎪⎝⎭c b x y 的圆心为,03⎛⎫ ⎪⎝⎭c A ,半径为3=b r . 设左焦点为1F ,连接1PF ,由于124,33==AF c AF c , 所以12==AF PQAF QF,所以1//AQ PF ,所以12,2==-PF b PF a b , 由于⊥AQ PF ,所以1⊥PF PF , 所以()()()22222224+-==-b a b c a b ,2320,3-==b b a a ,===c e a ,故选A .21.【答案】C【解析】设2=AF x ,则22=BF x ,由双曲线的定义可得1222=+=+AF AF a a x ,12222=+=+BF BF a a x , 因为点A 在以12F F 为直径的圆上,所以190∠=F AB ,所以22211+=AF AB BF ,即()()()2222322++=+a x x a x ,解得23=x a , 在12△AF F 中,1823=+=AF a x a ,223=AF a ,122=F F c , 由2221212+=AF AF F F 可得()22282233⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭a a c ,即22179=a c ,所以双曲线离心率为3===e ,故选C .二、填空题. 22.【答案】【解析】直线1=-+y kx k 过定点过()1,1M , 因为点()1,1M在圆的内部,且OM == 由圆中弦的性质知当直线与OM 垂直时,弦长最短, 此时结合垂径定理可得AB ==故答案为 23.【答案】28=y x【解析】抛物线的准线方程为2=-p x ,点()02,P y 到其准线的距离为22+p , 由题意可得242+=p,解得4=p , 故抛物线的标准方程为28=y x ,故答案为28=y x . 24.【答案】18【解析】由双曲线的对称性以及12=PQ F F 可知,四边形12PF QF 为矩形,所以1222212284100⎧-==⎪⎨+==⎪⎩PF PF a PF PF c ,解得1218=PF PF , 所以四边形12PF QF 的面积为1218=PFPF , 故答案为18.25.【答案】(⎤⎦【解析】设1122(,),(,)A x y B x y ,联立方程组221164=⎧⎪⎨+=⎪⎩y kx x y ,可得22(14)160+-=k x , 可得1212216,014=-+=+x x x x k ,所以221221614==+x x k , 将椭圆x 轴下方半平面沿着x 轴翻折与x 轴上方半平面成直二面角, 分别作,⊥⊥BC x AD x 于点,C D ,如图所示, 则2222=++AB BC CD AD ,又由222222222211,====BC y k x AD y k x ,2222212*********64()2()414=-=+-=+-=+CD x x x x x x x x x x k, 所以222222221226414=++=+++AB BC CD AD k x k x k 2222232648(417)78(1)141414+⋅++===⋅++++k k k k k , 因为∈R k ,所以20≥k ,所以2411+≥k ,所以270741<≤+k ,所以2788(1)6414<⋅+≤+k ,即2864<≤AB,所以8<≤AB ,所以AB的取值范围是(⎤⎦,故答案为(⎤⎦.26.【答案】73【解析】设直线AB 的方程为13=-+y x b ,联立2213197⎧=-+⎪⎪⎨⎪+=⎪⎩y x b x y ,得221()3197-++=x b x ,即22869630-+-=x bx b ,由223632(963)0b b ∆=-->,得-<<b 设11(,)A x y ,22(,)B x y ,00(,)M x y ,则120328+==x x b x ,0011373388=-+=-⨯+=b by x b b , 即37(,)88b bM ,则直线OM 的斜率为0073==y k x ,故答案为73.三、解答题.27.【答案】(1)2212420+=x y ;(2.【解析】(1)依题意,圆1C 的圆心()12,0C,半径1=r 圆2C 的圆心()22,0-C,半径2=r设圆M 的半径为r ,则有11=-MC r r ,22=+MC r r ,因此,1212124+=+=>=MC MC r r C C ,于是得点M 的轨迹是以12,C C为焦点,长轴长2=a 此时,焦距24=c ,短半轴长b 有22220=-=b a c ,所以动圆圆心M 的轨迹C 的方程为2212420+=x y .(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)=+≠x my m ,1122(,),(,)P x y Q x y ,由22356120=+⎧⎨+=⎩x my x y ,消去x 得22(56)30750++-=m x my , 则1226350+=-+m y y m ,1227556=-+y y m , 点P 关于x 轴的对称点11(,)-R x y ,1211|2|||2=⋅⋅-PQRSy x x ,111232=⋅⋅-APRS y x ,如图,显然1x 与2x 在3的两侧,即21-x x 与13-x 同号, 于是得()()()1211121133=-=---=⋅---AQRPQRAPRSSSy x x x y x x x121212275|||75|||3|||||||6565|||==⋅-==⋅==++≤m y x y my my y m m m , 当且仅当65||||=m m ,即=m 时取“=”,因此,当=m 时,max ()=AQR S,所以ARQ 面积的最大值4. 28.【答案】(1)22163+=x y;(2)⎣⎦.【解析】(1)∵椭圆的离心率为2,∴2=c a (c 为半焦距), ∵直线1+=xy ab与圆222+=x y=,又∵222+=c b a ,∴26=a ,23=b ,∴椭圆C 的方程为22163+=x y .(2)∵M 为线段AB 的中点,∴12==AOM BOP OMS S S S OP△△. (ⅰ)当直线l 的斜率不存在时,由⊥OA OB 及椭圆的对称性,不妨设OA 所在直线的方程为=y x ,得22=Ax .则22=Mx ,26=P x,∴123==OM S S OP ; (ⅱ)当直线l 的斜率存在时,设直线():0=+≠l y kx m m ,()11,A x y ,()22,B x y ,由22163=+⎧⎪⎨+=⎪⎩y kx mx y ,消去y ,得()222214260++-=+k x kmx m , ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630-+>k m .∴122421+=-+kmx x k ,21222621-=+m x x k .∵点O 在以AB 为直径的圆上,∴0⋅=OA OB ,即12120+=x x y y , ∴()()221212121210+=++++=x x y y k x x km x x m ,∴()22222264102121-⎛⎫++-+= ⎪++⎝⎭m km k km m k k . 化简,得2222=+m k ,经检验满足0∆>成立, ∴线段AB 的中点222,2121⎛⎫-⎪++⎝⎭km m M k k , 当0=k 时,22=m,此时123==S S ; 当0≠k 时,射线OM 所在的直线方程为12=-y x k, 由2212163⎧=-⎪⎪⎨⎪+=⎪⎩y x k x y ,消去y ,得2221221=+P k x k ,22321=+P y k , ∴==M P OM y OP y ∴12==S S12,33⎛∈ ⎝⎭S S , 综上,12S S的取值范围为⎣⎦.29.【答案】(1)22143+=x y ;(2)存在,()4,0.【解析】(1)在12△PF F 中,1122,2=-=cPF a a ,所以,由余弦定理()224(22)4222=-+--c a a,解得2,==a b ,所以,椭圆方程为22143+=x y .(2)假设存在点(),0Q m 满足条件,设直线l 的方程为()10=+≠x ty t ,设()()1122,,,M x y N x y ,联立()22221,34690143=+⎧⎪++-=⎨+=⎪⎩x ty t y ty x y , 121212221269,,3434--+==+=+++--MQ NQy y t y y y y k K t t x m x m, 又因为∠=∠MQO NQO ,所以0+=MQ NQ K K ,即1212=--y y x m m x , 即()()1211-=-y m x y m x ,将11221,1=+=+x ty x ty 代入化简得()()121212-+=m y y ty y , 即()2261183434---=++t m tt t ,计算得4=m ,所以存在()4,0点使得∠=∠MQO NQO .30.【答案】(1)2212+=x y ;(2)面积不存在;(3)证明见解析.【解析】(1)因为122=B B ,所以22=b ,即1=b ,因为离心率为2,所以2=c a ,设=c m,则=a ,0>m , 又222=-c a b ,即2222=-m m b ,解得1=m 或1-(舍去),所以=a 1=b ,1=c ,所以椭圆的标准方程为2212+=x y .(2)由22122⎧+=⎪⎨⎪=+⎩x y y x ,得()222220++-=x x ,23860++=x x ,284360∆=-⨯⨯<,所以直线与椭圆无交点,故OMN 的面积不存在.(3)由题意知,直线l 的方程为2=+y kx ,设()11,M x y ,()22,N x y ,则22212=+⎧⎪⎨+=⎪⎩y kx x y ,整理得()2221860+++=k x kx ,则()()22122122846120821621Δk k k x x k x x k ⎧=-⨯+>⎪⎪⎪+=-⎨+⎪⎪=⎪+⎩,因为直线和椭圆有两个交点,所以()()22824210k k ∆=-+>,则232>k ,设(),T m n ,因为1B ,T ,M 在同一条直线上,则111111313+++===+y kx n k m x x x , 因为2B ,T ,N 在同一条直线上,则222221111-+-===+y kx n k m x x x , 由于()21212283311213440621⎛⎫⋅- ⎪++-+⎝⎭+⋅=+=+=+k x x n n k k k m m x x k ,所以12=n , 则交点T 恒在一条直线12=y 上,故交点T 的纵坐标为定值12.31.【答案】(1)2=a,=b (2)6⎡⎫-⎪⎢⎪⎣⎭. 【解析】(1)设椭圆短轴的端点为B ,则21sin 2∠=OBF ,所以26π∠=OBF ,123π∠=F BF ,所以点P 即为点B,所以12122=⋅⋅==△PF F S c b bc ,又12=c a ,222=-a b c ,所以2=a,=b(2)设(,0)A m ,()11,M x y ,()22,N x y ,MN 的中点()00,H x y ,由2223412=+⎧⎨+=⎩y kx x y ,得()22431640+++=k x kx , 所以()()222(16)164348410k k k ∆=-+=->, 又0>k ,所以12>k ,所以1221643+=-+kx x k , 所以12028243+==-+x x k x k ,0026243=+=+y kx k ,即2286,4343⎛⎫- ⎪++⎝⎭k H k k , 因为()20⋅+⋅=+⋅=⋅=AM MN AN MN AM AN MN AH MN , 所以⊥AH MN ,所以226143843+=---+k k k mk ,得2223434=-=-++k m k k k , 因为12>k,所以34+≥k k,当且仅当=k =”号,所以⎡⎫∈⎪⎢⎪⎣⎭m , 故点A的横坐标的取值范围是6⎡⎫-⎪⎢⎪⎣⎭. 32.【答案】(1)22184+=x y ;(2)12-,理由见解析.【解析】(1)由题意可得:在2OPF Rt 中,22222+=OP OF PF ,即)222+=b c ,所以=b c ,椭圆C :22221+=x y a b 中,令=x c 可得2422221⎛⎫=-= ⎪⎝⎭c b y b a a,所以2=±b y a ,可得22=b AB a,所以22122=⋅⋅==AOBb bc Sc a a所以2=b c ,因为=b c ,222=+a b c,所以34====b b , 可得24=b ,所以2==c b ,2228=+=a b c ,所以椭圆C 的标准方程为22184+=x y .(2)设直线MN 的方程为=+y kx t ,()11,M x y ,()22,N x y ,由22184=+⎧⎪⎨+=⎪⎩y kx tx y ,可得()222214280+++-=k x ktx t , ()()222216421280k t k t ∆=-+->,即2284<+t k ,122412-+=+ktx x k,21222812-=+t x x k , 所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t()()22222222222228124812121212-+-=-+=++++k t k t k t t k k k k k,12=-=MN x==, 点()0,0O 到直线=+y kx t的距离=d所以OMN的面积为1122⋅==MN d222284212+-+≤=+t k t k, 当且仅当22284=-+t k t 即2224-=t k 时等号成立,2222222122222128128241122828282-+--+⋅==⨯===-+---OM ONy y t k k t k t t k k x x k t t t , 所以当OMN 的面积最大时,直线OM 与ON 的斜率之积是12-.33.【答案】(1)E是以(),)为焦点,长轴长为22163+=x y ;(2)①(3,-;②证明见解析. 【解析】(1)圆锥曲线E是以(),)为焦点,长轴长为的椭圆,其标准方程为22163+=x y .(2)①设直线l :=+y x m ,()11,A x y ,()22,B x y ,由22163⎧+=⎪⎨⎪=+⎩x y y x m ,消去y ,得2234260++-=x mx m , 由题意,有()()22122124432604032603m m mx x m x x ∆⎧=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3-<<m , 所以直线l 在y轴上的截距的取值范围为(3,-.②因为点P 在椭圆上,若直线l 过点P ,即点A (或点B )与P 重合,则l 与E 的另一个交点为25,33⎛⎫--⎪⎝⎭,不合题意,所以点A (或点B )与P 不重合; 若AP 或BP 的斜率不存在,则直线l 过点()2,1-,此时,l 与E 只有一个交点, 所以AP 与BP 的斜率都存在,设直线AP 的斜率为1k ,直线BP 的斜率为2k , 因为A ,B 在轴的右侧,结合图象,可知,要证∠APB 的平分线总垂直于x 轴,只要证120=+k k , 因为11112-=-y k x ,22212-=-y k x ,也即证()()()()122112120--+--=y x y x ,而()()()()()()()()1221122112121212--+--=+--++--y x y x x m x x m x()()()2121241242344344033-⎛⎫=+-+-+=+---+= ⎪⎝⎭m m x x m x x m m m 成立, 故∠APB 的平分线总垂直于x 轴.34.【答案】(1)22143+=x y ;(2)存在,:80--=l y .【解析】(1)由题可知,(,0)A a ,(0,)B b ,2,⎛⎫- ⎪⎝⎭b P c a ,因为=OP AB k,则200--=---b b a c a,解得=b ,故有2223+=⎧⎪=⎨⎪+=⎩a cb bc a ,解得2=a,=b椭圆方程为22143+=x y .(2)法一:假设存在,易知直线l 的斜率存在, 设直线l 的方程为=+y kx m ,()11,M x y ,()22,Q x y ,联立22143=+⎧⎪⎨+=⎪⎩y kx mx y ,得()2223484120+++-=k x kmx m , 则122212283441234⎧+=-⎪⎪+⎨-⎪=⎪+⎩km x x k m x x k , 因为2F 为MQB △的重心,则121201303++⎧=⎪⎪⎨++⎪=⎪⎩x x y y,解得12123+=⎧⎪⎨+=⎪⎩x x y y则122128334⎧+=-=⎪+⎨⎪+++=⎩km x x k kx m kx m,化简得228334634⎧=-⎪⎪+⎨⎪=⎪+⎩km k m k,解得⎧=⎪⎪⎨⎪=⎪⎩k m ,所以直线:80--=l y .法二:设()11,M x y ,()22,Q x y ,因为2F 为MQB △的重心,则120130++⎧=⎪⎪=x x,解得12123+=⎧⎪⎨+=⎪⎩x x y y设MQ 的中点R,则3,2⎛ ⎝⎭R , 因为M ,Q 在椭圆22143+=x y 上,则22112222143143⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减得34⋅=-MQ OR k k,即=MQ k所以直线:80--=l y .35.【答案】(1)22143+=x y ,(2)3λ=.【解析】(1)因为离心率为12,所以12==c e a , 又3=AF ,所以3+=a c ,解得2=a ,1=c , 又222=-c a b ,所以23=b ,所以椭圆方程为22143+=x y .(2)由(1)知()1,0F ,()2,0-A ,设直线PN 的方程为1=+x my ,()11,P x y ,()22,N x y , 因为M 与P 关于原点对称,所以()11,--M x y , 所以1112=-y x k ,2222=+yk x , 若存在λ,使得12λ=k k 恒成立,所以121222λ=-+y yx x , 所以()()122122λ+=-y x y x ,两边同乘1y 得()()21221122λ+=-y x y y x ,又因为()11,P x y 在椭圆上,所以2211143+=x y ,所以()()2112113223144-+⎛⎫=-= ⎪⎝⎭x x x y ,所以()()()()112211322224λ-++=-x x x y y x ,当12≠x 时,则()()12213224λ-++=x x y y , 所以()21212136124λ--+-=x x x x y y ①; 当12=x 时,M 与A 重合,联立方程221143=+⎧⎪⎨+=⎪⎩x my x y ,消元得()2234690++-=m y my ,所以212212934634-⎧=⎪⎪+⎨-⎪+=⎪+⎩y y m m y y m ,所以()212128234+=++=+x x m y y m ,()222121212412134-=+++=+m x x m y y m y y m ,代入①得22221236489124343434λ-+--+-=+++m m m m , 整理得10836λ-=-,解得3λ=. 36.【答案】(1)2-⎭和2⎛ ⎝⎭;(2)直径12A A 与直径12B B 共轭,理由见解析;(3)λ>λ< 【解析】(1)由题设知32=AB k ,设所求直线方程为=y kx ,则34⋅=-AB k k ,则12=-k , 故共轭直径所在直线方程为12=-y x .联立椭圆与12=-y x ,即2212143⎧=-⎪⎪⎨⎪+=⎪⎩y x x y 可得23=x,=x故端点坐标为⎭和⎛ ⎝⎭.(2)由题设知,l 不与x 轴重合,故设l:=x my ()111,A x y 、()122,B x y ,联立方程()22223430143⎧=⎪⇒+--=⎨+=⎪⎩x my m y x y ,则12234+=+y y m ,122334-=+y y m ,2122121234-=+m x x m ,122223434=-=⋅=++S y mm 63=≤=,当且仅当2313+=m ,即223=m 时取等号, 此时121221222123312124-⋅===-=--A A B By y b k k x x m a,故直径12A A 与直径12B B 共轭. (3)设点()11,C x y ,()22,M x y ,当CD 不与坐标轴重合时,设CD l :=y kx ,则MN l :34=-y x k, 联立2222211221212,3434143=⎧⎪⇒==⎨+++=⎪⎩y kx k x y x y k k , 同理可得22221634=+k x k ,222934=+y k. 由椭圆的对称性,不妨设C 在第一象限,则M 必在第二象限或第四象限,则1=x1=y若M在第二象限,则2=x2=y ,从而 ⎪⎝⎭T ,则⎫⎪⎪⎪ ⎪⎝⎭P .又P在椭圆外,则223412⎫⎪⎪+>⎪ ⎪ ⎪⎝⎭⎝⎭, 化简可得22λ>,即λ>λ<若M 在第四象限,同理可得22λ>,即λ>λ<当CD 与x 轴垂直或重合时,由椭圆的对称性,不妨取()2,0C,(M ,则λ⎛⎫⎪ ⎪⎝⎭P . 又P 在椭圆外,则2223341224λλλ+⋅>⇒>,即λ>λ<综上:λ>λ<。
第10讲 恒成立能成立3种常见题型(解析版)-2024高考数学常考题型
第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(11)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln xg x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()x e g x x =,则2(1)()x e x g x x '-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,e B .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e2e g =+,所以()()22max2e 2e g x g ==+,则222e a -≥+,则222e a ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,(ln +1f x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.当()0,1∈x 时,()0h x '<,()h x 在()0,1上单调递减;当()1,x ∈+∞时,()0h x '>,()h x 在()1,+∞上单调递增.所以()()min 14h x h ==,即4a ≤,故a 的取值范围是(],4-∞.4.(2022·内蒙古赤峰·三模(文))已知函数()()ln 1f x x x =+.(1)求()f x 的最小值;(2)若()()212-++-≥x m x x f 恒成立,求实数m 的取值范围.【答案】(1)min 21()e f x =-(2)(],3-∞【解析】【分析】(1)求出函数的导数,利用导数求函数在定义域上的最值即可;(2)由原不等式恒成立分离参数后得2ln m x x x ++,构造函数()2ln h x x x x=++,利用导数求最小值即可.(1)由已知得()ln 2f x x '=+,令()0f x '=,得21ex =.当210,e x ⎛⎫∈ ⎪⎝⎭时,()()0,f x f x '<在210,e ⎛⎫ ⎪⎝⎭上单调递减;当21,e x ⎡⎫∈+∞⎪⎢⎣⎭时,()()0,f x f x '在21,e ⎡⎫+∞⎪⎢⎣⎭上单调递增.故min 2211()e e f x f ⎛⎫==- ⎪⎝⎭.(2)()()212-++-≥x m x x f ,即2ln 2++≤x x x mx ,因为0x >,所以xx x m 2ln ++≤在()+∞,0上恒成立.令()2ln h x x x x =++,则()()()min 222112(),1x x m h x h x x x x +-=+-'=,令()0h x '=,得1x =或2x =-(舍去).当()0,1x ∈时,()()0,h x h x '<在()0,1上单调递减;当[)1,x ∞∈+时,()0>'x h ,()x h 在[)1,+∞上单调递增.故()min ()13h x h ==,所以3≤m ,即实数m 的取值范围为(],3-∞.5.【2020年新高考1卷(山东卷)】已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)若不等式()1f x ≥恒成立,求a 的取值范围.【答案】(1)21e -(2)[1,)+∞【解析】【分析】(1)利用导数的几何意义求出在点()()1,1f 切线方程,即可得到坐标轴交点坐标,最后根据三角形面积公式得结果;(2)方法一:利用导数研究函数()f x 的单调性,当a =1时,由()10f '=得()()11min f x f ==,符合题意;当a >1时,可证1()(1)0f f a''<,从而()f x '存在零点00x >,使得01001()0x f x ae x -'=-=,得到m in ()f x ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得()1f x ≥恒成立;当01a <<时,研究()1f .即可得到不符合题意.综合可得a 的取值范围.【详解】(1)()ln 1x f x e x =-+Q ,1()xf x e x'∴=-,(1)1k f e '∴==-.(1)1f e =+Q ,∴切点坐标为(1,1+e ),∴函数()f x 在点(1,f (1)处的切线方程为1(1)(1)y e e x --=--,即()12y e x =-+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e --,∴所求三角形面积为1222||=211e e -⨯⨯--.(2)[方法一]:通性通法1()ln ln x f x ae x a -=-+Q ,11()x f x ae x-'∴=-,且0a >.设()()g x f x =',则121()0,x g x ae x -'=+>∴g(x )在(0,)+∞上单调递增,即()f x '在(0,)+∞上单调递增,当1a =时,()01f '=,∴()()11min f x f ==,∴()1f x ≥成立.当1a >时,11a <,111a e <∴,111()(1)(1)(1)0a f f a e a a -''∴=--<,∴存在唯一00x >,使得01001()0x f x ae x -'=-=,且当0(0,)x x ∈时()0f x '<,当0(,)x x ∈+∞时()0f x '>,0101x ae x -∴=,00ln 1ln a x x ∴+-=-,因此01min 00()()ln ln x f x f x ae x a-==-+001ln 1ln 2ln 12ln 1a x a a a x =++-+≥-+=+>1,∴()1,f x >∴()1f x ≥恒成立;当01a <<时,(1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立.综上所述,实数a 的取值范围是[1,+∞).[方法二]【最优解】:同构由()1f x ≥得1e ln ln 1x a x a --+≥,即ln 1ln 1ln a x e a x x x +-++-≥+,而ln ln ln x x x e x +=+,所以ln 1ln ln 1ln a x x e a x e x +-++-≥+.令()m h m e m =+,则()10m h m e +'=>,所以()h m 在R 上单调递增.由ln 1ln ln 1ln a x x e a x e x +-++-≥+,可知(ln 1)(ln )h a x h x +-≥,所以ln 1ln a x x +-≥,所以max ln (ln 1)a x x ≥-+.令()ln 1F x x x =-+,则11()1xF x x x-'=-=.所以当(0,1)x ∈时,()0,()F x F x '>单调递增;当(1,)x ∈+∞时,()0,()F x F x '<单调递减.所以max [()](1)0F x F ==,则ln 0a ≥,即1a ≥.所以a 的取值范围为1a ≥.[方法三]:换元同构由题意知0,0a x >>,令1x ae t -=,所以ln 1ln a x t +-=,所以ln ln 1a t x =-+.于是1()ln ln ln ln 1x f x ae x a t x t x -=-+=-+-+.由于()1,ln ln 11ln ln f x t x t x t t x x ≥-+-+≥⇔+≥+,而ln y x x =+在,()0x ∈+∞时为增函数,故t x ≥,即1x ae x -≥,分离参数后有1x x a e -≥.令1()x x g x e -=,所以1112222(1)()x x x x x e xe e x g x e e -------=='.当01x <<时,()0,()'>g x g x 单调递增;当1x >时,()0,()g x g x '<单调递减.所以当1x =时,1()x x g x e -=取得最大值为(1)1g =.所以1a ≥.[方法四]:因为定义域为(0,)+∞,且()1f x ≥,所以(1)1f ≥,即ln 1a a +≥.令()ln S a a a =+,则1()10S a a='+>,所以()S a 在区间(0,)+∞内单调递增.因为(1)1S =,所以1a ≥时,有()(1)S a S ≥,即ln 1a a +≥.下面证明当1a ≥时,()1f x ≥恒成立.令1()ln ln x T a ae x a -=-+,只需证当1a ≥时,()1T a ≥恒成立.因为11()0x T a ea-=+>',所以()T a 在区间[1,)+∞内单调递增,则1min [()](1)ln x T a T e x -==-.因此要证明1a ≥时,()1T a ≥恒成立,只需证明1min [()]ln 1x T a e x -=-≥即可.由1,ln 1x e x x x ≥+≤-,得1,ln 1x e x x x -≥-≥-.上面两个不等式两边相加可得1ln 1x e x --≥,故1a ≥时,()1f x ≥恒成立.当01a <<时,因为(1)ln 1f a a =+<,显然不满足()1f x ≥恒成立.所以a 的取值范围为1a ≥.【整体点评】(2)方法一:利用导数判断函数()f x 的单调性,求出其最小值,由min 0f ≥即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法二:利用同构思想将原不等式化成ln 1ln ln 1ln a x x e a x e x +-++-≥+,再根据函数()m h m e m =+的单调性以方法三:通过先换元,令1x ae t -=,再同构,可将原不等式化成ln ln t t x x +≥+,再根据函数ln y x x =+的单调性以及分离参数法求出;方法四:由特殊到一般,利用(1)1f ≥可得a 的取值范围,再进行充分性证明即可.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数()3233f x x x a =-+-,若存在[]01,1x ∈-,使得()00f x >,则实数a的取值范围为()A .(),1-∞-B .(),1-∞C .()1,3-D .(),3-∞【答案】D【分析】根据题意,将问题转化为求解函数()f x 的最大值问题,先通过导数方法求出函数()f x 的最大值,进而求出答案.【详解】因为()3233f x x x a =-+-,所以()()[]23632,1,1f x x x x x x =-∈-'-=.由题意,只需max ()0f x >.当x ∈[1,0)-时,()0f x '>,当(0,1]x ∈时,()0f x '<,所以()f x 在[1,0)-上单调递增,在(0,1]上单调递减,所以()max 0()30f f x a ==->,故实数a 的取值范围为(),3-∞.故选:D.【例2】已知函数()326f x ax bx x c =+++,当1x =-时,()f x 的极小值为5-,当2x =时,()f x 有极大值.(1)求函数()f x ;(2)存在[]013x ∈,,使得()202f x t t ≤-成立,求实数t 的取值范围.【答案】(1)()3233622f x x x x =-++-;(2)(,1][3,)-∞-+∞ .【解析】【分析】(1)求导后,根据()()120f f ''-==和()15f -=-,解得,,a b c 即可得解;(2)转化为()2min 2f x t t ≤-,再利用导数求出函数()f x 在[]13,上的最小值,然后解不等式223t t -≥可得结果.(1)∵()2326f x ax bx '=++,由()()120f f ''-==,得3260a b -+=且12460a b ++=,解得1a =-,32b =,又()15f -=-,∴32c =-,经检验1a =-,32b =时,()3233622f x x x x =-++-满足题意,∴()3233622f x x x x =-++-;(2)存在[]013x ∈,,使得()202f x t t ≤-,等价于()2min 2f x t t ≤-,∵()()()2336321f x x x x x '=-++=--+,当[1,2)x ∈时,()0f x '>,当(2,3]x ∈时,()0f x '<,∴()f x 在(2,3]上递减,在[1,2)上递增,又()15f =,()33f =,∴()f x 在[]13,上的最小值为()33f =,∴223t t -≥,解得1t ≤-或3t ≤,所以t 的取值范围是(,1][3,)-∞-+∞ .【例3】(2022·辽宁·高二阶段练习)已知0a >,若在(1,)+∞上存在x 使得不等式e ln x a x x a x -≤-成立,则a 的最小值为______.【题型专练】1.已知函数()()222ln f x x a x =++.(1)当5a =-时,求()f x 的单调区间;(2)若存在[]2,e x ∈,使得()2242a f x x x x+->+成立,求实数a 的取值范围.【答案】(1)单调递减区间为()0,2,单调递增区间为()2,+∞;(2)2e e 2,e 1∞⎛⎫-++⎪-⎝⎭.【解析】【分析】(1)当5a =-时,()28ln f x x x =-,得出()f x 的定义域并对()f x 进行求导,利用导数研究函数的单调性,即可得出()f x 的单调区间;(2)将题意等价于()24222ln 0a x a x x ++-+<在[]2,e 内有解,设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,对()h x 进行求导,令()0h x '=,得出2x a =+,分类讨论2a +与区间[]2,e 的关系,并利用导数研究函数()h x 的单调和最小值,结合()min 0h x <,从而得出实数a 的取值范围.(1)解:当5a =-时,()28ln f x x x =-,可知()f x 的定义域为()0,+∞,则()28282,0x f x x x x x-'=-=>,可知当()0,2x ∈时,()0f x ¢<;当()2,x ∈+∞时,()0f x ¢>;所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞.(2)解:由题可知,存在[]2,e x ∈,使得()2242a f x x x x+->+成立,等价于()24222ln 0a x a x x++-+<在[]2,e 内有解,可设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,()()()()()()()22222122422222242x x a a a x a x a h x x xx x ⎡⎤+-+++-+-+⎣⎦∴=--==',令()0h x '=,即()()120x x a ⎡⎤+-+=⎣⎦,解得:2x a =+或1x =-(舍去),当2e a +≥,即e 2a ≥-时,()0h x '<,()h x 在[]2,e 上单调递减,()()min24e 2e+220e a h x h a +∴==--<,得2e e 2e 1a -+>-,又2e e 2e 2e 1-+>-- ,所以2e e 2e 1a -+>-;当22a +≤时,即0a ≤时,()0h x '>,()h x 在[]2,e 上单调递增,()()()min 2622ln 20h x h a a ∴==+-+<,得6ln 40ln 41a ->>-,不合题意;当22e a <+<,即0e 2a <<-时,则()h x 在[]2,2a +上单调递减,在[]2,e a +上单调递增,()()()()min 22622ln 2h x h a a a a ∴=+=+-++,()ln 2ln 2ln e 1a <+<= ,()()()22ln 222ln 2222a a a a ∴+<++<+,()()()22622ln 226224h a a a a a a ∴+=+-++>+--=,即()min 4h x >,不符合题意;综上得,实数a 的取值范围为2e e 2,e 1∞⎛⎫-++⎪-⎝⎭.【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题:(1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.2.(2022·河北深州市中学高三阶段练习)已知函数()ln 21f x x ax =-+.(1)若1x =是()f x 的极值点,确定a 的值;(2)若存在0x >,使得()0f x ≥,求实数a 的取值范围.所以,函数()f x 在1x =处取得极大值,合乎题意,故2a =.(2)解:存在0x >,使得()ln 210f x x ax =-+≥可得ln 12x a x+≤,构造函数()ln 1x g x x+=,其中0x >,则()2ln x g x x '=-,当01x <<时,()0g x '>,此时函数()g x 单调递增,当1x >时,()0g x '<,此时函数()g x 单调递减,则()()max 11g x g ==,所以,21a ≤,解得12a ≤,因此,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.3.已知函数()ln xf x x=,设()f x 在点()1,0处的切线为m (1)求直线m 的方程;(2)求证:除切点()1,0之外,函数()f x 的图像在直线m 的下方;(3)若存在()1,x ∈+∞,使得不等式()()1f x a x >-成立,求实数a 的取值范围【答案】(1)y =x ﹣1;(2)见详解;(3)(﹣∞,1).【解析】【分析】(1)求导得21ln ()xf x x -'=,由导数的几何意义k 切=f ′(1),进而可得答案.(2)设函数h (x )=f (x )﹣(x ﹣1)=ln xx﹣x +1,求导得h ′(x ),分析h (x )的单调性,最值,进而可得f (x )﹣(x ﹣1)≤0,则除切点(1,0)之外,函数f (x )的图象在直线的下方.(3)若存在x ∈(1,+∞),使得不等式a <ln (1)x x x -成立,令g (x )=ln (1)xx x -,x >1,只需a <g (x )max .【详解】(1)221ln 1ln ()x xx x f x x x ⋅--'==,由导数的几何意义k 切=f ′(1)=1,所以直线m 的方程为y =x ﹣1.(2)证明:设函数h (x )=f (x )﹣(x ﹣1)=ln xx﹣x +1,2221ln 1ln ()1x x x h x x x ---'=-=,函数定义域为(0,+∞),令p (x )=1﹣lnx ﹣x 2,x >0,p ′(x )=﹣1x﹣2x <0,所以p (x )在(0,+∞)上单调递减,又p (1)=0,所以在(0,1)上,p (x )>0,h ′(x )>0,h (x )单调递增,在(1,+∞)上,p (x )<0,h ′(x )<0,h (x )单调递减,所以h (x )max =h (1)=0,所以h (x )≤h (1)=0,所以f (x )﹣(x ﹣1)≤0,若除切点(1,0)之外,f (x )﹣(x ﹣1)<0,所以除切点(1,0)之外,函数f (x )的图象在直线的下方.(3)若存在x ∈(1,+∞),使得不等式f (x )>a (x ﹣1)成立,则若存在x ∈(1,+∞),使得不等式()1f x x ->a 成立,即若存在x ∈(1,+∞),使得不等式a <ln (1)xx x -成立,令g (x )=ln (1)xx x -,x >1,g ′(x )=221(1)(21)ln (1)x x x xxx x ⋅----=221(21)ln (1)x x xx x ----,令s (x )=x ﹣1﹣(2x ﹣1)lnx ,x >1s ′(x )=1﹣2lnx ﹣(2x ﹣1)•1x 2ln 212ln 1x x x x x x x x x--+--+==,令q (x )=﹣x ﹣2xlnx +1,x >1q ′(x )=﹣1﹣2lnx ﹣2=﹣3﹣2lnx <0,所以在(1,+∞)上,q (x )单调递减,又q (1)=0,所以在(1,+∞)上,q (x )<0,s ′(x )<0,s (x )单调递减,所以s (x )≤s (1)=0,即g ′(x )≤0,g (x )单调递减,又111ln lim lim 1(1)21x x x x x x x →→==--,所以a <1,所以a 的取值范围为(﹣∞,1).4.已知函数()ln 1f x x x ax =-+.(1)若()f x 在点(1,(1))A f 处的切线斜率为2-.①求实数a 的值;②求()f x 的单调区间和极值.(2)若存在0(0,)x ∈+∞,使得()00f x <成立,求a 的取值范围.【答案】(1)①3a =;②减区间为2(0,)e ,增区间为2(,)e +∞,极小值为21e -,无极大值;(2)(1,)+∞.【解析】【分析】(1)求得函数的导数()ln 1f x x a '=+-,①根据题意得到()2f x '=-,即可求得a 的值;②由①知()ln 2,0f x x x '=->,结合导数的符号,以及极值的概念与计算,即可求解;(2)设()1ln g x x x=+,根据存在0(0,)x ∈+∞,使得()00f x <成立,得到()min a g x >成立,结合导数求得函数()g x 的单调性与最小值,即可求解.【详解】(1)由题意,函数()ln 1f x x x ax =-+的定义域为(0,)+∞,且()ln 1f x x a '=+-,①因为()f x 在点(1,(1))A f 处的切线斜率为2-,可得()12f x a '=-=-,解得3a =.②由①得()ln 2,0f x x x '=->,令()0f x '>,即ln 20x ->,解得2x e >;令()0f x '<,即ln 20x -<,解得20x e <<,所以函数()f x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增,当2x e =时,函数()f x 取得极小值,极小值为()221f e e =-,无极大值,综上可得,函数()f x 的减区间为2(0,)e ,增区间为2(,)e +∞,极小值为21e -,无极大值.(2)因为()ln 1f x x x ax =-+,由()00f x <,即000ln 10x x ax -+<,即00000ln 11ln x x a x x x +>=+,设()1ln ,0g x x x x=+>根据题意知存在0(0,)x ∈+∞,使得()00f x <成立,即()min a g x >成立,由()1ln ,0g x x x x =+>,可得()22111x g x x x x-'=-=,当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,函数()g x 取得最小值,最小值为()11g =,所以1a >,即实数a 的取值范围是(1,)+∞.5.已知函数()ln (R)f x x ax a =+∈.(1)当a =1时,求曲线()y f x =在x =1处的切线方程;(2)求函数()f x 的单调区间;(3)若存在0x ,使得()00f x >,求a 的取值范围.【答案】(1)210x y --=;(2)0a ≥时,()f x 在()0,∞+单增;0a <,()f x 在10,a ⎛⎫- ⎪⎝⎭单增,在1,a ⎛⎫-+∞ ⎪⎝⎭单减;(3)1a e>-.【解析】【分析】(1)求出函数导数,将切线横坐标代入得到斜率,再求出切点纵坐标,最后写出切线方程;(2)求导后,通分,分0,0a a ≥<两种情况讨论得到单调区间;(3)当0a ≥时,代特值验证即可,当0a <时,函数最大值大于0,解出即可.【详解】由题意,()1(1)1,1,f f x x'==+所以()12,f '=所以切线方程为:()121210y x x y -=-⇒--=.(2)110,()ax x f x a x x+'>=+=,若0a ≥,则()0f x '>,()f x 在()0,∞+单增;若0a <,则10,x a ⎛⎫∈- ⎪⎝⎭时,()0f x '>,()f x 单增;1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<,()f x 单减.(3)由(2),若0a ≥,则(2)ln 220f a =+>,满足题意;若0a <,()max 111(ln 10f x f a a a e ⎛⎫=-=-->⇒>- ⎪⎝⎭,则10a e -<<,综上:1a e>-.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x xf x xg x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为()A .0B .1eC .1D .e【例2】已知函数2()ln (R),()22f x ax x a g x x x =+∈=-+.(1)当12a =-时,求函数()f x 在区间[1,e]上的最大值和最小值;(2)若对任意的1[1,2]x ∈-,均存在2(0,)x ∈+∞,使得()()12g x f x <,求a 的取值范围.【答案】(1)最大值为ln 21-,最小值为12-;(2)61(,)e -+∞.【解析】【分析】(1)利用导数研究()f x 的区间单调性,进而确定端点值和极值,比较它们的大小,即可得最值;(2)将问题转化为1[1,2]x ∈-、2(0,)x ∈+∞上1max 2max ()()g x f x <,利用二次函数性质及导数求函数最值,即可得结果.(1)由题设()ln 2x f x x =-,则2()2x f x x-'=,所以在[1,2)上()0f x '>,()f x 递增,在(2,e]上()0f x '<,()f x 递减,则1(1)2f =-<e (e)12f =-,极大值(2)ln 21f =-,综上,()f x 最大值为ln 21-,最小值为12-.(2)由22()22(1)1g x x x x =-+=-+在[1,2]x ∈-上max ()(1)5g x g =-=,根据题意,只需max max ()()g x f x <即可,由1()f x a x'=+且,()0x ∈+∞,当0a ≥时,()0f x '>,此时()f x 递增且值域为R ,所以满足题设;当0a <时,1(0,)a-上()0f x '>,()f x 递增;1(,)a -+∞上()0f x '<,()f x 递减;所以max 1()()1ln()f x f a a =-=---,此时1ln()5a --->,可得61ea >-,综上,a 的取值范围61(,)e -+∞.【点睛】关键点点睛:第二问,将问题转化为1[1,2]x ∈-、2(0,)x ∈+∞上1max 2max ()()g x f x <求参数范围.【例3】已知函数()sin cos f x x x x =+.(1)当()0,πx ∈时,求函数()f x 的单调区间;(2)设函数2()2=-+g x x ax .若对任意[]1π,πx ∈-,存在2[0,1]x ∈,使得()()1212πf xg x ≤成立,求实数a 的取值范围.【答案】(1)当x ()0,π∈时,函数()f x 的单调递增区间为π0,2⎛⎫⎪⎝⎭,函数()f x 的单调递减区间为π,π2⎛⎫ ⎪⎝⎭;(2)1[,)2+∞.【解析】【分析】(1)首先对函数求导,根据x 的取值情况判断()f x '的正负情况,进而得到()f x 的增减情况;(2)对任意[]1π,πx ∈-,存在2[0,1]x ∈,使得12()()h x g x ≤成立,等价于max max ()()h x g x ≤,然后对a 进行讨论,分别求函数的最值,进而得到结论.(1)因为()sin cos f x x x x =+,所以()sin cos sin cos f x x x x x x x '=+-=.当x ()0,π∈时,()'f x 与()f x 的变化情况如表所示:xπ0,2⎛⎫ ⎪⎝⎭π2π,π2⎛⎫ ⎪⎝⎭()'f x +0-()f x 单调递增π2单调递减所以当x ()0,π∈时,函数()f x 的单调递增区间为π0,2⎛⎫⎪⎝⎭,函数()f x 的单调递减区间为π,π2⎛⎫⎪⎝⎭.(2)当[]π,πx ∈-时,()()f x f x -=,所以函数()f x 为偶函数.所以当[]π,πx ∈-时,函数()f x 的单调递增区间为ππ,2⎛⎫-- ⎪⎝⎭,π0,2⎛⎫ ⎪⎝⎭,函数()f x 的单调递减区间为π,02⎛⎫- ⎪⎝⎭,π,π2⎛⎫⎪⎝⎭,所以函数()f x 的最大值为πππ222f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭.设()()12πh x f x =,则当[]π,πx ∈-时,()max 1π12π24h x =⋅=.对任意[]1π,πx ∈-,存在2[0,1]x ∈,使得12()()h x g x ≤成立,等价于max max ()()h x g x ≤.当0a ≤时,函数()g x 在区间[0,1]上的最大值为(0)0g =,不合题意.当01a <<时,函数()g x 在区间[0,1]上的最大值为2()g a a =,则214a ≥,解得12a ≥或12a ≤-,所以112a ≤<.当1a ≥时,函数()g x 在区间[0,1]上的最大值为(1)21g a =-,则1214a -≥,解得58a ≥,所以1a ≥.综上所述,a 的取值范围是1[,)2+∞.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数()ln xf x x=,2()ln(1)2g x x ax =++,若211,e x ∀⎡⎤∈⎣⎦,()20,1x ∃∈使得12()()f x g x >成立,则实数a 的取值范围是()A .ln 2,2⎛⎫-∞- ⎪B .ln 2,2⎛⎤-∞-⎥C .1,e⎛⎫-∞- ⎪⎝⎭D .ln 2,e 2⎛⎤-∞- ⎥故选:A【例5】(2023·全国·高三专题练习)已知函数()3331,0422112,122x x x f x x x ⎧-+≤≤⎪⎪=⎨⎪+<≤⎪⎩,()e xg x ax =-()R a ∈,若存在[]12,0,1x x ∈,使得()()12f x g x =成立,则实数a 的取值范围是()A .(],1-∞B .(],e 2-∞-C .5,e4⎛⎤-∞- ⎥D .(],e -∞≤【题型专练】1.(2022·河南·南阳中学高三阶段练习(理))已知函数()33f x x x a =-+,()211x g x x +=-.若对任意[]12,2x ∈-,总存在[]22,3x ∈,使得()()12f x g x ≤成立,则实数a 的最大值为()A .7B .5C .72D .32.(2022·福建宁德·高二期末)已知()()11e x f x x -=-,()()21g x x a =++,若存在1x ,2R x ∈,使得()()21f x g x ≥成立,则实数a 的取值范围为()A .1,e ∞⎡⎫+⎪⎢⎣⎭B .1,e ∞⎛⎤- ⎥⎝⎦C .()0,e D .1,0e ⎡⎫-⎪⎢3.(2022·河南安阳·高二阶段练习(理))已知函数ln ()x f x x=,2()ln(1)2g x x ax =++,若211,e x ∀⎡⎤∈⎣⎦,2(0,1]x ∃∈使得()()12f x g x >成立,则实数a 的取值范围是()A .ln 2,2⎛⎫-∞- ⎪B .ln 2,2⎛⎤-∞-⎥C .1,e⎛⎫-∞- ⎪⎝⎭D .ln 2,e 2⎛⎤-∞- ⎥4.已知函数2()21)2ln ()2f x ax a x x a R =-++∈((1)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值与函数()f x 的单调区间;(2)设2()(2)e =-x g x x x ,若对任意(]10,2x ∈,均存在(]20,2x ∈,使得12()()f x g x <,求a 的取值范围.【答案】(1)2=3a ,单调递增区间为3(0,),(2,)2+∞,单调递减区间为3(,2)2(2)ln 21a >-【解析】【分析】(1)求出()'f x ,由(1)(3)f f ''=得a ,再利用由()0f x '>、()0f x '<可得答案;(2)转化为(]0,2x ∈时,max max ()()f x g x <,容易求出max ()(0)(2)0g x g g ===,所以只须max ()0f x <,()()12()ax x f x x='--,讨论12a ≤、12a >可得答案.(1)21()(21),(1)1,(3)3f x ax a f a f a x '''=-++=-+=-,由(1)(3)f f ''=得23a =,()()232272()333x x f x x x x--=-+=',由()0f x '>得()30,2,2x ∞⎛⎫∈⋃+ ⎪⎝⎭,由()0f x '<得3,22x ⎛⎫∈ ⎪⎝⎭,所以函数()f x 的单调递增区间为()30,,2,2∞⎛⎫+ ⎪⎝⎭,单调递减区间为3,22⎛⎫⎪⎝⎭.(2)若要命题成立,只须当(]0,2x ∈时,max max ()()f x g x <,由()()22e xg x x '=-可知当(]0,2x ∈时max ()(0)(2)0g x g g ===,所以只须max ()0f x <对()f x 来说,()()122()(21)ax x f x ax a x x--=-++'=,(1)当12a ≤时,在(]0,2上有10-≤ax ,∴()0f x '≥这时max ()(2)222ln 2f x f a ==--+,由max ()0f x <得1ln 212a -<≤;(2)当12a >时,max 11()2ln 22f x f a a a ⎛⎫==--- ⎪⎝⎭,设1()2ln 22h a a a =---,则2221214()022a h a a a a -'=-=<,∴()h a 在1,2⎛⎫+∞ ⎪⎝⎭递减,1()2ln 2302h a h <=-<⎝⎭,∴当12a >时,max ()0f x <,综上所述,满足题意的ln 21a >-.【点睛】本题考查了对任意1x D ∈,均存在2x E ∈,使得12()()f x g x <,转化为max max ()()f x g x <求参数的取值范围的问题,考查了学生的思维能力、运算能力.5.已知函数()()ln xf x ax a x=-+∈R ,'为()f x 的导函数.(1)求()f x 的定义域和导函数;(2)当2a =时,求函数()f x 的单调区间;(3)若对21e,e x ⎡⎤∀∈⎣⎦,都有()11f x ≥成立,且存在32e,e x ⎡⎤∈⎣⎦,使()2102f x a '+=成立,求实数a 的取值范围.【答案】(1)()()0,11,+∞ ,()()2ln 1ln x f x a x -'=-+(2)()f x 在()0,1单减,()1,+∞也单减,无增区间(3)2110,2e a ⎡⎤∈-⎢⎥⎣⎦【解析】【分析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对21e,e x ⎡⎤∀∈⎣⎦,都有()11f x ≥成立,即1111ln x ax x -+≥,即1111ln a x x ≤-+,令()11ln h x x x=-+,2e,e x ⎡⎤∈⎣⎦,只要()min a h x ≤即可,利用导数求出函数()11ln h x x x=-+的最小值即可求出a 的范围,()()2222ln 11122ln x f x a a x -'+=-,()()2ln 112ln x g x a x -=-,求出函数()g x 的值域,根据存在32e,e x ⎡⎤∈⎣⎦,使()2102f x a '+=成立,则0在函数()g x 的值域中,从而可得出a 的范围,即可得解.(1)解:()f x 的定义域为()()0,11,+∞ ,()()2ln 1ln x f x a x -'=-+;(2)解:当2a =时,()()()()()22222172ln 2ln ln 1ln 1482ln ln ln x x x x f x x x x ⎛⎫-+⎪-+-⎝⎭'=-+=-=-,()0f x ¢<恒成立,所以()f x 在()0,1和()1,+∞上递减;(3)解:若对21e,e x ⎡⎤∀∈⎣⎦,都有()11f x ≥成立,即1111ln x ax x -+≥,即1111ln a x x ≤-+,令()11ln h x x x =-+,2e,e x ⎡⎤∈⎣⎦,则()()()()22222ln 11ln ln x x h x x x x x x -'=-=,对于函数())ln 0x x x ϕ=>,()122x x xϕ'==,当04x <<时,()0ϕ'>x ,当4x >时,()0ϕ'<x ,所以函数()ln x x ϕ=()0,4上递增,在()4,+∞上递减,所以()()ln 4204x ϕϕ≤=-<,当2e,e x ⎡⎤∈⎣⎦时,ln 0x >,所以ln x <()2ln x x <,故()0h x '<恒成立,()h x 在2e,e x ⎡⎤∈⎣⎦为减函数,所以()()2min e h x h ==211e 2-+,所以211e 2a ≤-+,由(1)知,()()2ln 1ln x f x a x -'=-+,所以()()2222ln 11122ln x f x a a x -'+=-,记()()2ln 112ln x g x x -=-,令1ln t x =,1,13t ⎡⎤∈⎢⎥⎣⎦,则原式()211,123g x t t a t ⎛⎫⎡⎤=-+-∈ ⎪⎢⎥⎣⎦⎝⎭的值域为1,242a a ⎡⎤--⎢⎥⎣⎦,因为存在32e,e x ⎡⎤∈⎣⎦,使()2102f x a '+=成立,所以02a -≤,1042a -≥,所以102a ≤≤,综上,2110,2a e ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查了函数的定义域及导数的四则运算,考查了利用导数求函数的单调区间,考查了不等式恒成立问题,考查了计算能力及数据分析能力,对不等式恒成立合理变形转化为求最值是解题关键.。
高中数学经典高考难题集锦(解析版)
考点 :直 线与圆的位置关系;二阶矩阵;绝对值不等式的解法.
专题 :计 算题;压轴题;转化思想.
分析: ( 1)由矩阵的线性变换列出关于 x 和 y 的一元二次方程组,求出方程组的解集即可
得到点 A 的坐标;可设出矩阵 M 的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵
M
的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到
或
,于是 r2=2b2=2,
所求圆的方程是:
(
x+1
)
2
+
(
y+1
)
2=2,或(
x﹣
1)
2+(
y﹣
1)
2
=2
.
点评: 本 小题主要考查轨迹的思想, 考查综合运用知识建立曲线方程的能力, 是一道中档题.
4.( 2013?柯城区校级三模) 已知抛物线的顶点在坐标原点, 焦点在 y 轴上, 且过点 ( 2,1).
专题 :压 轴题;圆锥曲线的定义、性质与方程. 分析: ( Ⅰ) 设抛物线方程为 x 2=2py ,把点( 2, 1)代入运算求得
线的标准方程.
p 的值,即可求得抛物
6 / 22
( Ⅱ) 由直线与圆相切可得
.把直线方程代入抛物线方程
并整理,由 △ >0 求得 t 的范围.利用根与系数的关系及
,求得
M的
逆矩阵;
( 2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的
距离公式求出圆心到直线的距离 d 与半径 r 比较大小得到直线与圆的位置关系,即可
得到交点的个数;
( 3)分三种情况 x 大于等于 ,x 大于等于 0 小于 和 x 小于 0,分别化简绝对值后,
高考向量难题精选及详解
1.设D 、E 、F 分别是△的三边、、上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直2.设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b +=3.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若OP AB PA PB ⋅≥⋅,则实数λ的取值范围是A 112λ≤≤ B 11λ≤≤ C 112λ≤≤+11λ≤≤+ 4.已知向量a ≠e ,e =1,对任意t ∈R ,恒有|a -e ≥|a -e |,则A a ⊥eB a ⊥(a -e )C e ⊥(a -e )D (a +e )⊥(a -e )5..已知非零向量与满足(+)·=0且·= , 则△为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形6.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的A 重心 外心 垂心B 重心 外心 内心C 外心 重心 垂心D 外心 重心 内心7. 已知==2,(a +2b )·(a -b )=-2,则a 与b 的夹角为( )8.平面向量a =(1,2),b =(4,2),c =+b(m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .29.若向量a ,b 满足:=1,(a +b)⊥a ,(2a +b)⊥b ,则=( )A .2C .110. 已知向量a ,b 满足=1,b =(2,1),且λ a+b =0(λ∈R),则|λ|=.11.如图,在△中,为边上的中线,=2,若∥,且=+λ(λ∈R),则λ的值为.12.在△所在的平面上有一点P 满足++=,则△与△的面积之比是.答案1.由定比分点的向量式得:212,1233AC AB AD AC AB +==++ 12,33BE BC BA =+12,33CF CA CB =+以上三式相加得 1,3AD BE CF BC ++=-所以选A. 2.选A .由OA 与OB 在OC 方向上的投影相同,可得:OA OC OB OC ⋅=⋅即 4585a b +=+,453a b -=.3. (1)(1,),(1)(1,1),(,)AP AB OP OA OB PB AB AP AB AP AB λλλλλλλλλλλ=⇒=-+=-=-=-=--==-解得: 11λ≤≤+,因点P 是线段AB 上的一个动点,所以01λ≤≤,即满足条件的实数λ的取值范围是112λ-≤≤,故选择答案B. 4.由|a -e ≥|a -e |得|a -e 2≥|a -e |2展开并整理得222210,,(2)480t aet ae t R ae ae -+-≥∈=-+-≤由得,得()0e a e -=,即()a a e ⊥-,选(C)5. 已知非零向量与满足(||||AB AC AB AC +)·=0,即角A 的平分线垂直于,∴ ,又cos A =||||AB AC AB AC ⋅= ,∠3π,所以△为等边三角形,选D .6. 解析:,0由知为的外心;由知,为的重心;OA OB OC O ABC NA NB NC O ABC==∆++=∆7. 解析由(a+2b)·(a-b)=2+a·b-22=-2,得a·b=2,即〈a,b〉=2,〈a,b〉=.故〈a,b〉=.答案B8.解析∵a=(1,2),b=(4,2),∴c=m(1,2)+(4,2)=(m+4,2m+2).又∵c与a 的夹角等于c与b的夹角,∴〈c,a〉=〈c,b〉.∴=.即=,解得m=2.答案D9 ∵(a+b)⊥a,=1,∴(a+b)·a=0,∴2+a·b=0,∴a·b=-1.又∵(2a+b)⊥b,∴(2a+b)·b=0.∴2a·b+2=0.∴2=2.∴=,选B.10. ==,由λa+b=0,得b=-λa,故=|-λ=|λ,所以|λ|===.答案11.因为∥,所以存在实数k,使得==-=+(λ-1),又由是△的边上的中线,=2,得点G为△的重心,所以=(+),所以+(λ-1)=(+),由平面向量基本定理可得解得λ=.答案12. 因为++=,所以+++=0,即=2,所以点P是边上靠近A点的一个三等分点,故==.答案。
高中数学经典高考难题集锦
《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。
解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。
然后,将这些值组成集合A。
2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。
3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出属于集合A或集合B的元素,即求出集合A∪B。
二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。
解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。
因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。
2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。
解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。
我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。
当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。
3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。
解答思路:函数的极值是指函数在其定义域内的最大值或最小值。
我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。
当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。
高中数学重难点第10讲 函数的单调性、奇偶性、对称性、周期性10大题型(解析版)(新高考专用
重难点第10讲函数的单调性、奇偶性、对称性、周期性10大题型【命题趋势】函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。
第1天认真研究满分技巧及思考热点题型【满分技巧】一、单调性定义的等价形式:1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.2、验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立.3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.三、常见奇、偶函数的类型1、()x x f x a a -=+(00a a >≠且)为偶函数;2、()x x f x a a -=-(00a a >≠且)为奇函数;3、()2211x x x x xx a a a f x a a a ----==++(00a a >≠且)为奇函数;4、()log a b xf x b x-=+(00,0a a b >≠≠且)为奇函数;5、())log af x x =(00a a >≠且)为奇函数;6、()f x ax b ax b =++-为偶函数;7、()f x ax b ax b =+--为奇函数;四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ;(2)若()()+=-f x a f x a ,则2=T a ;(3)若()()+=-f x a f x ,则2=T a ;(4)若()()1+=f x a f x ,则2=T a ;(5)若()()1+=-f x a f x ,则2=T a ;(6)若()()+=+f x a f x b ,则=-T a b (≠a b );2、函数对称性的常用结论(1)若()()+=-f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=-f x f a x ,则函数图象关于=x a 对称;(3)若()()+=-f a x f b x ,则函数图象关于2+=a bx 对称;(4)若()()22-=-f a x b f x ,则函数图象关于(),a b 对称;3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=-f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=-f x f x ,函数为偶函数,即偶函数为特殊的线对称函数;(2)若函数()f x 满足()()22-=-f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()-=-f x f x ,函数为奇函数,即奇函数为特殊的点对称函数;4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2-b a ;(2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2-b a ;(3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4-b a .5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a .(2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a .(3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a .(4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。
专题10-2 二项式定理-2023年高考数学一轮复习热点题型(全国通用)(解析版)
【详解】 x 2 10 的展开式中,通项公式: Tr1 C1r0 x10r 2 r ,
令 10−r=7,解得 r=3.
∴x7 的系数为 C130 2 3 = 8C170 ,
故选:C.
2..
1 2
x
2
y
5
的展开式中
x2
y3
的系数为_____.
【答案】-20 分析:首先利用二项展开式的通项公式写出该二项展开式的通项,之后令相应的幂指数与题中所给的项的
k
1 项 Tk1
Ckn
x3 nk
x3 k Ckn x3n6k
令 3n 6k 0 则 n 2k ( k Z )
所以 n 为偶数。故选:A
【题型四】给通项求参数
【典例分析】
已知
ax
b x
6
的展开式中
x
3 2
项的系数为
160,则当
a
0
,
b
0
时,
a
b
的最小值为(
)
A.4
B. 2 2
C.2
D. 2
当 r 3 时, T4 253C53x53 y 3 40x2 y3 ,此时只需乘以第一个因式 x 2 y 中的 x 即可,得到 40x3 y3 ;
当 r 2 时,T3 252 C52 x52 y 2 80x3 y2 ,此时只需乘以第一个因式 x 2 y 中的 2 y 即可,得到 160x3 y3 ;
故选:D.
3. x 2 y 2x y 5 的展开式中的 x3 y3 系数为(
)
A. 200
B. 120
C.120
D.200
【答案】A
【分析】由题意首先确定 (2x y)5 展开式的通项公式,再采用分类讨论法即可确定 x3 y3 的系数.
高中数学经典高考难题集锦(解析版)
2015年10月18日姚杰的高中数学组卷一.选择题(共11小题)1.(2014•湖南)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x12.(2005•天津)若函数f(x)=log a(x3﹣ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是()A.B.C.D.3.(2009•上海)函数的反函数图象是()A.B.C.D.4.(2008•天津)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()A.{a|1<a≤2}B.{a|a≥2} C.{a|2≤a≤3}D.{2,3}5.(2005•山东)0<a<1,下列不等式一定成立的是()A.|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|>2;B.|log(1+a)(1﹣a)|<|log(1﹣a)(1+a)|;C.|log(1+a)(1﹣a)+log(1﹣a)(1+a)|<|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|;D.|log(1+a)(1﹣a)﹣log(1﹣a)(1+a)|>|log(1+a)(1﹣a)|﹣|log(1﹣a)(1+a)|6.(2005•天津)设f﹣1(x)是函数f(x)=(a x﹣a﹣x)(a>1)的反函数,则使f﹣1(x)>1成立的x的取值范围为()A.(,+∞)B.(﹣∞,)C.(,a)D.[a,+∞)7.(2004•天津)函数(﹣1≤x<0)的反函数是()A.B.C.D.8.(2004•江苏)设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f (x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3 B.C.D.9.(2006•天津)已知函数y=f(x)的图象与函数y=a x(a>0且a≠1)的图象关于直线y=x 对称,记g(x)=f(x)[f(x)+f(2)﹣1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A.[2,+∞)B.(0,1)∪(1,2)C.D.10.(2011•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=()A.5太贝克B.75In2太贝克C.150In2太贝克D.150太贝克11.(2014•湖南)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C. D.﹣1二.填空题(共12小题)12.(2013•北京)函数的值域为.13.(2011•湖北)里氏震级M的计算公式为:M=lgA﹣lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A0为0.001,则此次地震的震级为级;9级地震的最大的振幅是5级地震最大振幅的倍.14.(2007•上海)函数的反函数是.15.(2006•江苏)不等式的解集为.16.(2005•北京)设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③;④.其中正确的命题序号是.17.(2004•广东)函数的反函数f﹣1(x)= .18.(2011秋•岳阳楼区校级期末)已知0<a<1,0<b<1,如果<1,那么x的取值范围为.19.(2005•天津)设,则的定义域为.20.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为.21.(2002•上海)已知函数y=f(x)(定义域为D,值域为A)有反函数y=f﹣1(x),则方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要条件是y=f﹣1(x)满足.22.(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0= .23.(2004•湖南)若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是.三.解答题(共7小题)24.(2014秋•沙河口区校级期中)21、设的大小,并证明你的结论.25.解不等式26.(2006•重庆)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.27.如果正实数a,b满足a b=b a.且a<1,证明a=b.28.(2011•上海模拟)已知n为自然数,实数a>1,解关于x的不等式.29.(2010•荔湾区校级模拟)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.30.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题(共11小题)1.(2014•湖南)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x1,由导数判断其在(.2.(2005•天津)若函数f(x)=log a(x3﹣ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是()A.B.C.D.(﹣(解答:解:设g(x)=x3﹣ax,g(x)>0,得x∈(﹣,0)∪(,+∞),g′(x)=3x2﹣a,x∈(﹣,0)时,g(x)递减,x∈(﹣,﹣)或x∈(,+∞)时,g(x)递增.∴当a>1时,减区间为(﹣,0),不合题意,当0<a<1时,(﹣,0)为增区间.∴﹣≥﹣.∴a∈[,1)故选B.3.(2009•上海)函数的反函数图象是()A.B.C.D.先画出条件中函数式的图象,如图,的反函数图象是:4.(2008•天津)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()解:易得,5.(2005•山东)0<a<1,下列不等式一定成立的是()A.|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|>2;B.|log(1+a)(1﹣a)|<|log(1﹣a)(1+a)|;C.|log(1+a)(1﹣a)+log(1﹣a)(1+a)|<|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|;,<=>6.(2005•天津)设f﹣1(x)是函数f(x)=(a x﹣a﹣x)(a>1)的反函数,则使f﹣1(x)>1成立的x的取值范围为()A.(,+∞)B.(﹣∞,)C.(,a)D.[a,+∞)(y=,y+x+x+,∴x+由此解得:7.(2004•天津)函数(﹣1≤x<0)的反函数是()A.B.C.D.,根据解:函数,可得,∴所以函数(﹣1≤x<)的反函数是:8.(2004•江苏)设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f (x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3 B.C.D.AB×OP,求得AB×OP=×.9.(2006•天津)已知函数y=f(x)的图象与函数y=a x(a>0且a≠1)的图象关于直线y=x 对称,记g(x)=f(x)[f(x)+f(2)﹣1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A.[2,+∞)B.(0,1)∪(1,2)C.D.)在区间,要求对称轴)在区间,要求对称轴,,10.(2011•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=(),0××11.(2014•湖南)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C. D.﹣11+x=﹣二.填空题(共12小题)12.(2013•北京)函数的值域为(﹣∞,2).;所以函数13.(2011•湖北)里氏震级M的计算公式为:M=lgA﹣lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A0为0.001,则此次地震的震级为 6 级;9级地震的最大的振幅是5级地震最大振幅的10000 倍..14.(2007•上海)函数的反函数是.,y≥1,y=((故答案为:15.(2006•江苏)不等式的解集为.由不等式<故答案:16.(2005•北京)设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③;④.其中正确的命题序号是①③④.=+,所以对于②不成立,,则,则17.(2004•广东)函数的反函数f﹣1(x)= e2x+2e x (x∈R).求原函数的反函数,即从原函数式18.(2011秋•岳阳楼区校级期末)已知0<a<1,0<b<1,如果<1,那么x的取值范围为(3,4).,如果19.(2005•天津)设,则的定义域为(﹣4,﹣1)∪(1,4).有意义建立方程组,解答解得要确保两个式子都要有意义,则20.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为{2} .=c21.(2002•上海)已知函数y=f(x)(定义域为D,值域为A)有反函数y=f﹣1(x),则方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要条件是y=f﹣1(x)满足f﹣﹣1(0)=a,且f﹣﹣1(x)<x(x∈A)/y=f﹣﹣1(x)的图象在直线y=x的下方,且与y轴的交点为(0,a)….22.(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0= 2 .23.(2004•湖南)若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是0<a<.<.<三.解答题(共7小题)24.(2014秋•沙河口区校级期中)21、设的大小,并证明你的结论.与的大小,再由对数函数的单调性可得到答案.时,由基本不等式可得时,是单调减函数,∴>即25.解不等式可以转化为故原不等式可转化为不等式组.解:原不等式等价于时,上述不等式组变成时,上述不等式组变成所以原不等式解集为26.(2006•重庆)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.)知时,是奇函数.(Ⅱ)由(Ⅰ)知从而判别式<﹣27.如果正实数a,b满足a b=b a.且a<1,证明a=b.,考虑函数,它的导数是.然后根据,从而考虑函数,即,即,但因,而,这也与矛盾,,28.(2011•上海模拟)已知n为自然数,实数a>1,解关于x的不等式.+12++n故原不等式可化为log>>{x|<,{x|{x|29.(2010•荔湾区校级模拟)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.,等价于>﹣30.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.,|==,)>(,则≤2<,)≤1+1+﹣<|。
高考数学必考难题试题答案
高考数学必考难题试题答案一、选择题1. 若函数f(x) = ax^2 + bx + c在x=1和x=-1处取得相同的值,且a<0,那么a、b、c之间的关系是()。
A. a = -b + cB. a + b + c = 0C. b = -2a - cD. 2a + b + c = 0答案:C解析:由题意可知,f(1) = f(-1),即a + b + c = a - b + c,化简得2b = 0,所以b = 0。
又因为a < 0,所以c = -a。
代入b = 0,得c = -a,进一步得出b = -2a - c。
2. 已知数列{an}满足a1 = 1,an = (1/2)^(n-1) * (an-1 + 1),若bn = an - 1,则求证:数列{bn}是等比数列。
答案:证明如下:由题意,an = (1/2)^(n-1) * (an-1 + 1),可得:bn = an - 1 = (1/2)^(n-1) * (an-1 + 1) - 1将n-1代入,得:bn-1 = (1/2)^(n-2) * (an-2 + 1) - 1将两个式子相除,得:bn / bn-1 = [(1/2)^(n-1) * (an-1 + 1) - 1] / [(1/2)^(n-2) * (an-2 + 1) - 1] = 1/2所以bn / bn-1 = 1/2为常数,故数列{bn}是首项为b1 = a2 - 1 = (1/2) * (a1 + 1) - 1 = 1/2,公比q = 1/2的等比数列。
二、填空题1. 已知圆的方程为(x-2)^2 + (y-3)^2 = 16,点P(5,0)到圆心的距离为______。
答案:√13解析:圆心坐标为(2,3),点P(5,0),根据两点间距离公式,有:d = √[(5-2)^2 + (0-3)^2] = √[3^2 + (-3)^2] = √(9 + 9) =√18 = √13三、解答题1. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,在x∈[-2,3]上的最大值为7,求函数在该区间上的最小值。
高考数学:专题10 函数图像的判断(解析版)
【高考地位】函数图像作为高中数学一个“重头戏”,是研究函数性质、方程、不等式重要武器,已经成为各省市高考命题一个热点。
在高考中经常以几类初等函数图像为基础,结合函数性质综合考查,多以选择、填空题形式出现。
【方法点评】方法一 特值法使用情景:函数()f x 解析式已知情况下解题模板:第一步 将自变量或者函数值赋以特殊值;第二步 分别一一验证选项是否符合要求; 第三步 得出结论.例1 函数x x x y sin cos +=图象大致为( )【答案】C考点:函数图像【点评】特值法是解决复杂函数图像问题方法之一,其将复杂问题简单化,且操作性简单可行。
【变式演练1】函数()2ln y x x =+图象大致为( )A .B .C .D .【答案】A【解析】试题分析:解:令()2ln y x x =+0=,解得1,1,2--=x ,∴该函数有三个零点,故排除B ;当2-<x 时,02<+x ,2>x ,02ln ln >>∴x ,∴当2-<x 时,()2ln y x x =+0<,排除C 、D .故选A .考点:函数图象.【变式演练2】函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)图象可能为( )【答案】D 【解析】考点:1.函数基本性质;2.函数图象. 【变式演练3】现有四个函数:①②③④图象(部分)如下,则按照从左到右将图象对应函数序号安排正确一组是( )A .④①②③ B.①④③② C.①④②③ D.③④②① 【答案】C【解析】试题分析:因为,所以是偶函数,图象关于轴对称,即与左1图对应,故排除选项A 、D ,因为当时,,故函数图象与左3图对应,故排除选项B ;故选C .【方法点睛】本题考查通过函数解析式和性质确定函数图象,属于中档题;已知函数解析式确定函数图象,往往从以下几方面考虑:定义域(确定图象是否连续),奇偶性(确定图象对称性),单调性(确定图象变化趋势),最值(确定图象最高点或最低点),特殊点函数值(通过特殊函数值排除选项),其主要方法是排除法.考点:1.函数奇偶性;2.函数图象.【变式演练4】函数xe x y )1(2-=图象大致是( )【答案】C 【解析】考点:偶函数图象性质.方法二 利用函数基本性质判断其图像使用情景:函数()f x 解析式已知情况下解题模板:第一步 根据已知函数解析式分析其变化特征如单调性、奇偶性、定义域和值域等;第二步 结合简单基本初等函数图像特征如对称性、周期性等进行判断即可; 第三步 得出结论.例2 函数()(1)ln ||f x x x =-图象大致为( )【答案】A 【解析】考点:1、导数在研究函数单调性中应用;2、函数图像.【思路点睛】本题主要考查了导数在研究函数单调性中应用和函数图像,具有一定综合性,属中档题.其解题一般思路为:首先观察函数表达式特征如0)1(=f ,然后运用导数在研究函数单调性和极值中应用求出函数单调区间,进而判断选项,最后将所选选项进行验证得出答案即可.其解题关键是合理地分段求出函数单调性.【变式演练5】如图,周长为1圆圆心C 在y 轴上,顶点()01A ,,一动点M 从A 开始逆时针绕圆运动一周,记走过弧长AM x =,直线AM 与x 轴交于点()0N t ,,则函数()t f x =图象大致为( )A .B .C .D .【答案】D 【解析】试题分析:由圆对称性可知,动点N 轨迹关于原点对称,且在原点处,21=x ,0=y ;当点M 位于左半圆时,随着弧AM 长递增,t 值递增,且变化由快到慢,由给定图象可知选D . 考点:函数图象.【变式演练6】如图可能是下列哪个函数图象( )A .221xy x =-- B .2sin 41x xy x =+C .ln x y x=D .2(2)xy x x e =- 【答案】D 【解析】考点:函数图象和性质.【变式演练7】如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆,垂直于x 轴直线:(0)l x t t a =≤≤经过原点O 向右平行移动,l 在移动过程中扫过平面图形面积为y (图中阴影部分),若函数()y f x =大致图像如图,那么平面图形形状不可能是( )【答案】C【解析】试题分析:由函数图象可知,几何体具有对称性,选项A ,B ,D ,l 在移动过程中扫过平面图形面积为y ,在中线位置前,都是先慢后快,然后相反.选项C ,后面是直线增加,不满足题意. 考点:函数图象与图形面积变换关系. 【变式演练8】函数()21x f x e-=(e 是自然对数底数)部分图象大致是( )【答案】C 【解析】【变式演练9】函数2ln x x y x=图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象对称性可知应选D. 考点:函数图象性质及运用.【变式演练10】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭图象大致形状是( ) A . B .C .D .【答案】B 【解析】考点:函数奇偶性及函数图象. 【变式演练11】若函数()2(2)m xf x x m-=+图象如图所示,则m 范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,2 【答案】D考点:1.函数奇偶性;2.函数单调性;3.导数应用.【高考再现】1. 【2016高考新课标1卷】函数22xy x e =-在[]2,2-图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中识图题多次出现在高考试题中,也可以说是高考热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中难点,解决这类问题方法一般是利用间接法,即由函数性质排除不符合条件选项.2.【2015高考安徽,理9】函数()()2ax bf x x c +=+图象如图所示,则下列结论成立是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】 C【考点定位】1.函数图象与应用.【名师点睛】函数图象分析判断主要依据两点:一是根据函数性质,如函数奇偶性、单调性、值域、定义域等;二是根据特殊点函数值,采用排除方法得出正确选项.本题主要是通过函数解析式判断其定义域,并在图形中判断出来,另外,根据特殊点位置能够判断,,a b c 正负关系.3.【2015高考新课标2,理10】如图,长方形ABCD 边2AB =,1BC =,O 是AB 中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 函数()f x ,则()y f x =图像大致为( )(D)(C)(B)(A)yπ4π23π4ππ3π4π2π4yyπ4π23π4ππ3π4π2π4yDPCOAx【答案】B【考点定位】函数图象和性质.【名师点睛】本题考查函数图像与性质,表面看觉得很难,但是如果认真审题,读懂题意,通过点P 运动轨迹来判断图像对称性以及特殊点函数值比较,也可较容易找到答案,属于中档题.4.【2015高考北京,理7】如图,函数()f x 图象为折线ACB ,则不等式()()2log 1f x x +≥解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =图象向左平移一个单位得到2log (1)y x =+图象1x =时两图象相交,不等式解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)图象,要求正确画出画出图象,利用数形结合写出不等式解集.5.【2014年.浙江卷.理7】在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=图像可能是( )答案: D考点:函数图像.【名师点睛】本题主要考查了函数指数与对数函数图像和性质,属于常见题目,难度不大;识图常用方法:(1)定性分析法:通过对问题进行定性分析,从而得出图象上升(或下降)趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量计算来分析解决问题;(3)函数模型法:由所提供图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 【2014福建,理4】若函数log (0,1)a y x a a =>≠且图像如右图所示,则下列函数图像正确是( )13OxyDC BAy=log a (-x)y=(-x)ay=x ay=a -x-1-3113OO OO1y x1xy1xyxy【答案】B 【解析】考点:函数图象.【名师点睛】本题主要考查函数图像识别问题及分析问题解决问题能力,求解此题首先要根据图像经过特殊点,确定参数值,然后利用函数单调性确定正确选项,解决此类问题要重视特殊点及单调性应用.【反馈练习】1. 【2017届河北武邑中学高三上周考8.14数学试卷,文5】函数111y x =--图象是( )【答案】B 【解析】试题分析:将1y x =-图象沿x 轴向右平移1个单位得到11y x =--图象,再沿y 轴向上平移1个单位得到111y x =--图象.故选B . 考点:函数图象平移变换.2. 【2017届广东华南师大附中高三综合测试一数学试卷,文10】函数2ln xy x=图象大致为( )A .B .C .D .【答案】B3. 【2017届广东佛山一中高三上学期月考一数学试卷,理6】函数22x y x -=图象大致是( )【答案】A 【解析】试题分析:当1x <-时,22x x <,即220x x -<,排除C 、D ,当3x =时,322310y =-=-<,排除B ,故选A .考点:函数图象.4. 【2016-2017学年山西榆社中学高一10月月考数学试卷,理7】已知函数()f x 定义域为[],a b ,函数()y f x =图象如图甲所示,则函数(||)f x 图象是图乙中( )【答案】B 【解析】考点:函数图象与性质.5. 【2016-2017学年河北徐水县一中高一上月考一数学试卷,理5】下列图中,画在同一坐标系中,函数2y ax bx =+与y ax b =+(0a ≠,0b ≠)函数图象只可能是( )【答案】B【解析】试题分析:()2f x ax bx =+图象是抛物线,()g x ax b =+图象是直线.A 选项()f x 开口向上,说明0a >,直线应斜向上,故A 错误.D 选项()f x 开口向下,说明0a <,直线应斜向下,故D 错误. C 选项()f x 图象不过原点,错误.故选B. 考点:函数图象与性质.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】已知函数()y f x =大致图象如图所示,则函数()y f x =解析式应为( )A .()ln x f x e x =B .()ln(||)xf x ex -=C .()ln(||)xf x e x = D .||()ln(||)x f x e x = 【答案】C 【解析】考点:函数性质.7. 【2017届湖南长沙长郡中学高三上周测十二数学试卷,文8】函数22()(44)log x x f x x -=-图象大致为( )【答案】A 【解析】试题分析:因为22()(44)log x x f x x -=-,()2222()(44)log (44)log x x x x f x x x f x ---=-=--=-,所以22()(44)log x x f x x -=-是奇函数,排除B 、C ,又因为0x →时,0y →,所以排除D ,故选A.考点:1、函数图象;2、函数奇偶性.8. 【2017届重庆市第八中学高三上适应性考试一数学试卷,理10】如图1,圆O 半径为1,A 是圆上定点,P 是圆上动点,角x 始边为射线OA ,终边为射线OP ,过点P 作直线OA 垂线,垂足为M ,将点M 到直线OP 距离与O 到M 距离之和表示成x 函数()f x ,则()y f x =在[]0,π上图象大致是( )A .B .C .D .【答案】B 【解析】考点:函数实际应用.9.【 2017届河南新乡一中高三9月月考数学试卷,文7】设曲线2()1f x x =+在点(,())x f x 处切线斜率为()g x ,则函数()cos y g x x =部分图象可以为( )【答案】A 【解析】试题分析:()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=,()cos y g x x ∴=为奇函数,排除B ,D ,令0.1x =时0y >,故选A .考点:1、函数图象及性质;2、选择题“特殊值”法.10. 【2017届湖北襄阳五中高三上学期开学考数学试卷,文6】已知函数)(x f 是定义在R 上增函数,则函数1|)1(|--=x f y 图象可能是( )A .B .C .D .【答案】B 【解析】考点:函数图象,图象变换.。
高中数学经典高考难题集锦(解析版)(10)
2015年10月18日姚杰的高中数学组卷一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=.8.(2011•浙江)若数列中的最大项是第k项,则k=.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=,((a n)+)+=.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为;第2009棵树种植点的坐标应为.14.(2008•天津)已知数列{a n}中,,则=.15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=.16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f (a n)﹣2005|取得最小值时,n=.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.二.解答题(共13小题)18.(2008•安徽)设数列{a n}满足a1=a,a n+1=ca n+1﹣c,n∈N*,其中a,c为实数,且c≠0 (Ⅰ)求数列{a n}的通项公式;(Ⅱ)设N*,求数列{b n}的前n项和S n;(Ⅲ)若0<a n<1对任意n∈N*成立,证明0<c≤1.19.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c﹣.(Ⅰ)设c=,b n=,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)25.(2010•湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.26.(2009•广东)已知点(1,)是函数f(x)=a x(a>0,且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=(n≥2).(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{}前n项和为T n,问满足T n>的最小正整数n是多少?27.(2009•江西)数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n.(1)求S n;(2)b n=,求数列{b n}的前n项和T n.28.(2009•重庆)已知,(Ⅰ)求b1,b2,b3的值;(Ⅱ)设c n=b n b n+1,S n为数列{c n}的前n项和,求证:S n≥17n;(Ⅲ)求证:.29.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.30.(2007•福建)等差数列{a n}的前n项和为S n,,.(1)求数列{a n}的通项a n与前n项和为S n;(2)设(n∈N+),求证:数列{b n}中任意不同的三项都不可能成为等比数列.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.考点:等差数列的性质.专题:压轴题.分析:由a1,a3,a9成等比数列求得a1与d的关系,再代入即可.解答:解:∵a1,a3,a9成等比数列,∴(a1+2d)2=a1•(a1+8d),∴a1=d,∴=,故答案是:.点评:本题主要考查等差数列的通项公式及等比数列的性质.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为12.考点:等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n项和.专题:等差数列与等比数列.分析:设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.解答:解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12点评:本题考查等比数列的求和公式和一元二次不等式的解法,属中档题.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.考点:数列的求和;数列的函数特性.专题:压轴题;等差数列与等比数列.分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.解答:解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.考点:数列的应用;数列的函数特性.专题:压轴题;新定义.分析:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.解答:解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011时,b i+1=0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,前面有偶数个1时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题;压轴题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,a4n+1+a4n+3=(a4n+3+a4n+2)﹣(a4n+2﹣a4n+1)=2,a4n+2+a4n+4=(a4n+4﹣a4n+3)+(a4n+3+a4n+2)=16n+8,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣1+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.考点:数列与函数的综合.专题:综合题;压轴题.分析:根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.解答:解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:点评:本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=1006.考点:数列与不等式的综合;等差数列的性质.专题:综合题;压轴题.分析:设,,由,根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012)=2(2a1006)=4a1006,由此能求出结果.﹣n解答:解:设,,∵,∴根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012﹣n)=2(2a1006)=4a1006,当且仅当a n=a2012﹣n时,b n取到最大值,此时n=1006,所以k=1006.故答案为:1006.点评:本题考查数列与不等式的综合应用,具体涉及到等差数列的通项公式、基本不等式的性质等基本知识,解题时要认真审题,仔细解答,注意合理地进行等价转化.8.(2011•浙江)若数列中的最大项是第k项,则k=4.考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:求数列的最大值,可通过做差或做商比较法判断数列的单调性处理.解答:解:令,假设=≥1,则2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,又n是整数,即n≤3时,a n+1>a n,当n≥4时,a n+1<a n,所以a4最大.故答案为:4.点评:本题考查数列的最值问题,利用做差或做商比较法判断数列的单调性是求数列最值的常用方式.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=4.考点:等比数列的前n项和;等比数列的性质.专题:等差数列与等比数列.分析:首先用公比q和a1分别表示出S n和S2n,代入T n易得到T n的表达式.再根据基本不等式得出n0解答:解:==因为≧8,当且仅当=4,即n=4时取等号,所以当n0=4时T n有最大值.故答案为:4.点评:本题主要考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题.本题的实质是求T n取得最大值时的n值,求解时为便于运算可以对进行换元,分子、分母都有变量的情况下通常可以采用分离变量的方法求解.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于2;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为17.考点:数列的求和;交集及其运算.专题:压轴题;新定义.分析:(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.解答:解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足P i+P i+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n﹣2.∴子集Q的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1.则Q={a1,a4,a7,…,a100}则P∩Q的元素为a1,a7,a13,…,a91,a97.∵97=1+(17﹣1)×6,∴共有17相同的元素.故答案分别为2,17.点评:正确理解“特征数列”的定义是解题的关键.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=2,((a n)+)+=n2.考点:数列的应用.专题:计算题;压轴题;新定义.分析:根据题意,若a m<5,而a n=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((a n)+)+=n2.解答:解:∵a m<5,而a n=n2,∴m=1,2,∴(a5)+=2.∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1,(a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2,(a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3,∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,猜想:((a n)+)+=n2.答案:2,n2.点评:本题考查数列的性质和应用,解题时要认真审题.仔细解答.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.考点:数列递推式;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.解答:解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为点评:本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).考点:数列的应用.专题:压轴题;规律型.分析:由题意可知,数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…;数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…由此入手能够得到第6棵树种植点的坐标和第2009棵树种植点的坐标.解答:解:∵组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即y n的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).点评:本题考查数列的性质和应用,解题时要注意创新题的灵活运用.14.(2008•天津)已知数列{a n}中,,则=.考数列的求和;极限及其运算.点:计算题;压轴题.专题:分首先由求a n可以猜想到用错位相加法把中间项消去,即析:可得到a n的表达式,再求极限即可.解解:因为答:所以a n是一个等比数列的前n项和,所以,且q=2.代入,所以.所以答案为此题主要考查数列的求和问题,用到错位相加法的思想,需要注意.点评:15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=1.考点:数列的极限.专题:综合题;压轴题.分析:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),则能推导出S n=,由此能导出.解答:解:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量=,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn=,则=1.点评:本题考查数列的极限和运算,解题时要注意三角函数的灵活运用.16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f (a n)﹣2005|取得最小值时,n=110.考点:数列的函数特性;等差数列的通项公式.专题:压轴题.分析:要使|f(a n)﹣2005|取得最小值,可令|f(a n)﹣2005|=0,即20.1n+log20.1n=2005,对n值进行粗略估算可得答案.解答:解:|f(a n)﹣2005|=|f(0.n)﹣2005|=|20.1n+log20.1n﹣2005|,(1)要使(1)式取得最小值,可令(1)式等于0,即|20.1n+log20.1n﹣2005|=0,20.1n+log20.1n=2005,又210=1024,211=2048,则当n=100时,210=1024,log210≈3,(1)式约等于978,当n=110时,211≈2048,log211≈3,(1)式约等于40,当n<100或n>110式(1)式的值会变大,所以n=110,故答案为:110.点评:本题考查数列的函数特性、指数函数对数函数的性质,考查学生灵活运用知识解决问题的能力.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.考数列的求和;极限及其运算.点:计算题;压轴题;探究型.专题:分析:通过观察可得=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕=1﹣+﹣=+﹣.进而可得.解:第一个空通过观察可得.解答:==(1+﹣1)+()+(+﹣)+(+﹣)+…+(+﹣)+(+﹣)=(1+++…+)+(++++…+)﹣2(++…+)=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕 =1﹣+﹣ =+﹣所以=.答案:.点评: 本题考查数列的性质和应用,解题时要认真审题,仔细解答.二.解答题(共13小题) 18.(2008•安徽)设数列{a n }满足a 1=a ,a n+1=ca n +1﹣c ,n ∈N*,其中a ,c 为实数,且c ≠0 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设N*,求数列{b n }的前n 项和S n ;(Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c ≤1.考点:数列的求和;数列的函数特性. 专题:压轴题. 分析: (Ⅰ)需要观察题设条件进行恒等变形,构造a n ﹣1=c (a n ﹣1﹣1)利用迭代法计算出数列的通项公式;(Ⅱ)由(Ⅰ)的结论求出数列的通项,观察知应用错位相减法求和;(Ⅲ)由(Ⅰ)的结论知a n =(a ﹣1)c n ﹣1+1.接合题设条件得出,.然后再用反证法通过讨论得出c 的范围.解答: 解:(Ⅰ)由题设得:n ≥2时,a n ﹣1=c (a n ﹣1﹣1)=c 2(a n ﹣2﹣1)=…=c n ﹣1(a 1﹣1)=(a﹣1)c n ﹣1. 所以a n =(a ﹣1)c n ﹣1+1.当n=1时,a 1=a 也满足上式.故所求的数列{a n }的通项公式为:a n =(a ﹣1)c n ﹣1+1. (Ⅱ)由(Ⅰ)得:.,∴.∴所以∴.(Ⅲ)证明:由(Ⅰ)知a n =(a ﹣1)c n ﹣1+1.若0<(a ﹣1)c n ﹣1+1<1,则0<(1﹣a )c n ﹣1<1. 因为0<a 1=a <1,∴.由于c n ﹣1>0对于任意n ∈N +成立,知c >0. 下面用反证法证明c ≤1.假设c >1.由函数f (x )=c x 的图象知,当n →+∞时,c n ﹣1→+∞,所以不能对任意n ∈N +恒成立,导致矛盾.∴c ≤1.因此0<c ≤1点评: 本题主要考查数列的概念、数列通项公式的求法以及不等式的证明等;考查运算能力,综合运送知识分析问题和解决问题的能力.第三问中特值法与反证法想接合,对做题方向与方法选取要求较高.是一个技能性较强的题.19.(2011•广东)设b >0,数列{a n}满足a 1=b ,a n =(n ≥2)(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n ,2a n ≤b n+1+1.考点: 数列递推式;数列与不等式的综合. 专题: 等差数列与等比数列. 分析: (1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的. 解答:解:(1)∵(n ≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.考点:等差数列的通项公式;等比数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n =,②①﹣②得S n=1+2(++…+)﹣,则===.点本题主要考查等差数列的通项公式和用错位相减法求和.评:21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c ﹣.(Ⅰ)设c=,b n =,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.考点:数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)令c=代入到a n+1=c ﹣中整理并令b n =进行替换,得到关系式b n+1=4b n+2,进而可得到{}是首项为﹣,公比为4的等比数列,先得到{}的通项公式,即可得到数列{b n}的通项公式.(2)先求出n=1,2时的c的范围,然后用数学归纳法分3步进行证明当c>2时a n <a n+1,然后当c>2时,令α=,根据由可发现c >时不能满足条件,进而可确定c的范围.解答:解:(1),,即b n+1=4b n +2,a1=1,故所以{}是首项为﹣,公比为4的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1得c>2.用数学归纳法证明:当c>2时a n<a n+1.(ⅰ)当n=1时,a2=c﹣>a1,命题成立;(ii)设当n=k时,a k<a k+1,则当n=k+1时,故由(i)(ii)知当c>2时,a n<a n+1当c>2时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c的取值范围是(2,].点评:本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.考点:等比数列的前n项和;对数的运算性质;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)设{a n}的公比为q,当q=1时根据S n•S n+2﹣S n+12求得结果小于0,不符合;当q≠1时利用等比数列求和公式求得S n•S n+2﹣S n+12<0,进而推断S n•S n+2,<S n+12.根据对数函数的单调性求得lg(S n•S n+2)<lgS n+12,原式得证.(2)要使.成立,则有进而分两种情况讨论当q=1时根据(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2求得﹣a12<0不符合题意;当q≠1时求得(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2=﹣a1q n[a1﹣c(1﹣q)],进而推知a1﹣c(1﹣q)=0,判断出0<q<1,但此时不符合题意,最后综合可得结论.解答:(1)证明:设{a n}的公比为q,由题设a1>0,q>0.(i)当q=1时,S n=na1,从而S n•S n+2﹣S n+12=na1•(n+2)a1﹣(n+1)2a12=﹣a12<0(ⅱ)当q≠1时,,从而S n•S n+2﹣S n+12==﹣a12q n<0.由(i)和(ii)得S n•S n+2,<S n+12.根据对数函数的单调性,知lg(S n•S n+2)<lgS n+12,即.(2)解:不存在.要使.成立,则有分两种情况讨论:(i)当q=1时,(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2=(na1﹣c)[(n+2)a1﹣c]﹣[(n+1)a1﹣c]2=﹣a12<0.可知,不满足条件①,即不存在常数c>0,使结论成立.(ii)当q≠1时,若条件①成立,因为(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2==﹣a1q n[a1﹣c(1﹣q)],且a1q n≠0,故只能有a1﹣c(1﹣q)=0,即此时,因为c>0,a1>0,所以0<q<1.但0<q<1时,,不满足条件②,即不存在常数c>0,使结论成立.综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使.点评:本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.考点:数列的求和;等比关系的确定.专题:压轴题.分析:(1)求直线倾斜角的正弦,设C n的圆心为(λn,0),得λn=2r n,同理得λn+1=2r n+1,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即{r n}中r n+1与r n 的关系,证明{r n}为等比数列;(2)利用(1)的结论求{r n}的通项公式,代入数列,然后用错位相减法求和.解答:解:(1)将直线y=x的倾斜角记为,则有tanθ=,sinθ=,设C n的圆心为(λn,0),则由题意得知,得λn=2r n;同理λn+1=2r n+1,从而λn+1=λn+r n+r n+1=2r n+1,将λn=2r n代入,解得r n+1=3r n故|r n|为公比q=3的等比数列.(Ⅱ)由于r1=1,q=3,故r n=3n﹣1,从而,记,则有S n=1+2•3﹣1+3•3﹣2+…+n•31﹣n①﹣②,得=,∴点评:本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象概括能力以及推理论证能力.对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项a n与a n+1之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n项和S n乘以公比,然后错位相减解决.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)考点:数列的求和;等比数列的性质. 专题:综合题;压轴题. 分析: (1)根据表1,表2,表3的规律可写出表4,然后求出各行的平均数,可确定等比数列的首项和公比,进而推广到n .(2)先求出表n 的首项的平均数,进而可确定它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列,进而得到表中最后一行的数b n =n •2n ﹣1,再化简通项,最后根据裂项法求和.解答: 解:(I )表4为 13 5 74 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列将这一结论推广到表n (n ≥3),即 表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.(II )表n 的第1行是1,3,5,…,2n ﹣1,其平均数是=n由(I )知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中数的平均数是n •2k ﹣1),于是,表中最后一行的唯一一个数为b n =n •2n ﹣1. 因此====(k=1,2,…,n )故++…+=(﹣)+(﹣)+…+[﹣]=﹣=4﹣.点评: 本题主要考查数列求和和等比数列的性质.数列求和是高考的必考点,一般有公式法、裂项法、错位相减法等,都要熟练掌握.25.(2010•湖北)已知数列{a n }满足:,a n a n+1<0(n ≥1),数列{b n }满足:b n =a n+12﹣a n 2(n ≥1). (Ⅰ)求数列{a n },{b n }的通项公式(Ⅱ)证明:数列{b n }中的任意三项不可能成等差数列.考点: 数列递推式;数列的概念及简单表示法;等差数列的性质. 专题: 计算题;应用题;压轴题. 分析:(1)对化简整理得,令c n =1﹣a n 2,进而可推断数列{c n }是首项为,公比为的等比数列,根据等比数列通项公式求得c n ,则a 2n 可得,进而根据a n a n+1<0求得a n .(2)假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }为等比数列,于是有b r >b s >b t ,则只有可能有2b s =b r +b t 成立,代入通项公式,化简整理后发现等式左边为2,右边为分数,故上式不可能成立,导致矛盾. 解答:解:(Ⅰ)由题意可知,令c n =1﹣a n 2,则又,则数列{c n }是首项为,公比为的等比数列,即,故,又,a n a n+1<0故因为=,故(Ⅱ)假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列, 由于数列{b n }是首项为,公比为的等比数列,。
十年高考真题分类汇编2010-2019数学专题10立体几何Word版含解析
∴cos θ=
|
1· 1||
t1 t1|
=
2 2× 5
=
5.
5
∴异面直线
AD1
与
DB1
所成角的余弦值为
5.
5
13.(2018·全国 2·文 T9)在正方体 ABCD-A1B1C1D1 中,E 为棱 CC1 的中点,则异面直线 AE 与 CD 所成角的正切值
为( )
A. 2
2
【答案】C
B. 3
2
C. 5
A.158
B.162
C.182
D.324
【答案】B
【解析】由三视图得该棱柱的高为 6,底面五边形可以看作是由两个直角梯形组合而成,其中一个上底为 4,
下底为 6,高为 3,另一个的上底为 2,下底为 6,高为 3,则该棱柱的体积为 2+6×3+4+6×3 ×6=162.
2
2
2.(2019·全国 1·理 T12)已知三棱锥 P-ABC 的四个顶点在球 O 的球面上,PA=PB=PC,△ABC 是边长为 2 的正
11.(2018·全国 1·文 T10)在长方体 ABCD-A1B1C1D1 中,AB=BC=2,AC1 与平面 BB1C1C 所成的角为 30°,则该长方 体的体积为( )
A.8 【答案】C
B.6 2
C.8 2 D.8 3
【解析】在长方体 ABCD-A1B1C1D1 中,AB⊥平面 BCC1B1,连接 BC1,则∠AC1B 为 AC1 与平面 BB1C1C 所成的角,∠
∴BM,EN 是相交直线,排除选项 C、D.
作 EO⊥CD 于点 O,连接 ON.
作 MF⊥OD 于点 F,连接 BF.
高中数学经典高考难题集锦(解析版)
2015年10月18日姚杰的高中数学组卷一.解答题(共10小题)1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;(Ⅱ)求S的最大值,并求取得最大值时k的值.3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.4y轴上,且过点(2,1).M,N,当∠MON为钝角5M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆(:((3)解不等式|2x﹣1|<|x|+1.6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣直线l与直线相交于N,与圆C相交于P,Q两点,M(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y轴上且与圆C外切,圆D与y轴交于A、B两点,定点P的坐标为(﹣3,0).(1)若点D(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P(0,2)且斜率为k 的直线与圆Q相交于不同的两点A,B.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.解答题(共10小题)1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;)证明:点(是直角坐标系原点,即E(0,0).的方程是.则.知,圆心C在Rt△AEB斜边AB上,其面积的垂直平分线,,2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x+y=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;的距离为(弦长面积(﹣(Ⅱ)令,∴t=时,时,的距离为.求该圆的方程.轴所得的弦长为的距离为,所以=由此有或解方程组得或,于是4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角(Ⅱ)由直线与圆相切可得.把直线方程代入抛物线方程并整理,由的范围.利用根与系数的关系及,求得直线的距离,从而求得,由此函数在()单调递增,故有因为直线与圆相切,所以..到直线的距离为,易证在(,故不存在直线,当∠5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数;大于等于,小于解得,所以的逆矩阵为,则?=,即,,解得的逆矩阵为=<≥[,时,原不等式变为:)6.(2009?东城区一模)如图,已知定圆C:x+(y﹣3)=4,定直线m:x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.由于弦长t=.再用两根直线方程联立,去找.从而确定t=(Ⅰ)由已知,由于.由,解得,,)则,,故.即,,=.又由,.t=.,得(由相交弦定理得7.(2009?天河区校级模拟)已知圆C:(x+4)+y=4,圆D的圆心D在y轴上且与圆C外切,圆D与y轴交于A、B两点,定点P的坐标为(﹣3,0).(1)若点D(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不,==.由,得,即此时有故存在8.(2007?海南)在平面直角坐标系xOy中,已知圆x+y﹣12x+32=0的圆心为Q,过点P(0,2)且斜率为k 的直线与圆Q相交于不同的两点A,B.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.的表达式,进而根据以与共线可推知(解得,则②所以共线等价于(.由(Ⅰ)知9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC 的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.的长为,半径,考虑,∴)DC=sin,∴∴.t=y′x?x′t=时,的速度.,因为,代入上式得整理即可.要注意范围.的中点,所以,代入上式得两端乘以,得)这是一个一点为中心,以﹣;最值为:)②根与系数的关系.若△≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1?x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;例题:y=2x2+x﹣3那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f(﹣)=﹣,;△=1+24=25>0,故方程2x2+x ﹣3=0有两个根,其满足x1+x2=﹣;x1?x2=﹣;另外,方程可以写成(y+)=2(x+)2,当沿x轴向右,在向下平移时,就变成y=2x2;【命题方向】重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.2.向量的共线定理共线向量又叫平行向量,指的是方向相同或方向相反的向量.【定理】假设向量=(1,2),向量=(2,4),则=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=(x1,y1)与向量=(x2,y2)平行时,有x1?y2﹣x2?y1=0,这也是两向量平行的充要条件.【例题解析】例:设与是两个不共线的向量,且向量与共线,则λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k()∴2=k.﹣1=λk解得,λ=﹣0.5故答案为﹣0.5.共线,就能得到含λ的等式,解出λ即可.3(±)=2?+2(﹣+﹣2③(≠(??①“mn=nm”类比得到“”②“(m+n)t=mt+nt”类比得到“()?=③“t≠0,mt=nt?m=n”类比得到“?”;④“|m?n|=|m|?|n|”类比得到“||=||?||”;⑤“(m?n)t=m(n?t)”类比得到“()?=”;⑥“”类比得到.以上的式子中,类比得到的结论正确的是①②.解:∵向量的数量积满足交换律,∴“mn=nm”类比得到“”,即①正确;∵向量的数量积满足分配律,∴“(m+n)t=mt+nt”类比得到“()?=”,∵向量的数量积不满足消元律,∴“t≠0,mt=nt?m=n”不能类比得到“?”,即③错误;∵||≠||?||,∴“|m?n|=|m|?|n|”不能类比得到“||=||?||”;即④错误;∵向量的数量积不满足结合律,∴“(m?n)t=m(n?t)”不能类比得到“()?=”,即⑤错误;∵向量的数量积不满足消元律,∴”即“””)?=”“|||?||,故“||=||?||”足结合律,故“(m?n)t=m(n?t)”不能类比得到“()?=”故”不能类比得到.【考点分析】本知识点应该所有考生都要掌握,这个知识点和三角函数联系比较多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.4.直线的一般式方程【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.5.轨迹方程【知识点的认识】1.曲线的方程和方程的曲线在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对(x,y)表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标(x,y)中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.一般地,在直角坐标系中,如果某曲线C(看做适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.2.求曲线方程的一般步骤(直接法)(1)建系设点:建立适当的直角坐标系,用(x,y)表示曲线上任一点M的坐标;(2)列式:写出适合条件p的点M的集合{M|p(M)};(3)代入:用坐标表示出条件p(M),列出方程f(x,y)=0;(4)化简:化方程f(x,y)=0为最简形式;(5)证明:证明以化简后的方程的解为坐标的点都是在曲线上的点【常用解法】(1)直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间的距离公式、点到直线的距离公式、夹角公式等)进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.(2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.关键是条件的转化,即转化为某一基本轨迹的定义条件.(3)相关点法:用所求动点P的坐标(x,y)表示已知动点M的坐标(x0,y0),即得到x0=f(x,y),y0=g(x,y),再将x0,y0代入M满足的条件F(x0,y0)=0中,即得所求.一般地,定比分点问题、对称问题可用相关→化简.(((612(①相交:d<r②相切:d=r③相离:d>r(2由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.7.直线和圆的方程的应用【知识点的知识】1、直线方程的形式:2、圆的方程:(1)圆的标准方程:(x﹣a)2+(y﹣b)2=r2(r>0),其中圆心C(a,b),半径为r.特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0)其中圆心(﹣,﹣),半径r=.8.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y2=2px,焦点在x轴上,焦点坐标为F(,0),(p可为正负)(2)x2=2py,焦点在y轴上,焦点坐标为F(0,),(p可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.(,)﹣﹣由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n 列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的(i,j)元.以数a ij为(i,j)元的矩阵可简记作(a ij)或(a ij)m×n.矩阵A也记作A m×n.注意:①矩阵的记号是在数表外加上括弧,与行列式的记号(在数表外加上双竖线)是不同的,这是两个不同的概念.②矩阵的行数和列数不一定相等.2.二阶矩阵由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或(aij)表示(其中i,j分别为元素aij所在的行和列).2.矩阵的乘法行矩阵[a11a12]与列矩阵的乘法规则为,二阶矩阵与列矩阵的乘法规则为=.矩阵乘法满足结合律,不满足交换律和消去律.10.绝对值不等式的解法【知识点的认识】绝对值不等式的解法数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a ﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.。
【习题】高考数学试题解析:十大重难点习题详解,提升解题能力!
习题简介高考数学试题对许多考生来说是一座大山,但只要我们掌握了解题技巧和常见难点,就能轻松应对。
本文将详细解析高考数学试题中的十大重难点习题,帮助你提升解题能力。
一、绝对值等式和不等式1.1 绝对值等式绝对值等式是高考数学中的常见难点之一。
考生通常会遇到形如 |x-a|=b 的等式,解决这类等式的关键是分情况讨论。
例如,对于等式 |x-2|=3 来说,我们可以将其分为两种情况来解决: - 当 x-2≥0 时,|x-2|=x-2,将等式转化为 x-2=3,解得 x=5; - 当 x-2<0 时,|x-2|=-(x-2),将等式转化为-(x-2)=3,解得 x=-1。
1.2 绝对值不等式绝对值不等式也是高考数学中的常见难点之一。
考生通常会遇到形如 |x-a|1。
综合两种情况,我们可以得到不等式的解集为 10 时,f(x) 单调递增;当f'(x)<0 时,f(x) 单调递减;当 f'(x)=0 时,求解得到极值点 x=3/2。
2.2 方程组的解法方程组是高考数学中的一个重要考点。
解决方程组需要使用代入法、消元法、加减法等技巧。
例如,对于方程组 { 2x+y=5 { 3x-2y=1我们可以使用消元法来解决这个方程组。
首先,将第一个方程乘以2得到4x+2y=10,然后将第二个方程的系数也乘以2得到 6x-4y=2。
接着,将两个方程相加得到 10x=12,解得 x=12/10=6/5。
将 x 的值代入第一个方程,得到 2*(6/5)+y=5,解得 y=3/5。
因此,这个方程组的解为 x=6/5,y=3/5。
三、几何与三角函数3.1 勾股定理勾股定理是高考数学中的一个基本定理,它用于求解直角三角形的边长和角度。
例如,对于一个直角三角形 ABC,其中∠C=90°,已知 a=3,b=4,求 c。
根据勾股定理,我们有 c2=a2+b^2,将已知的值代入方程,得到c2=32+4^2=9+16=25,解得 c=5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年10月18日姚杰的高中数学组卷一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=.8.(2011•浙江)若数列中的最大项是第k项,则k=.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=,((a n)+)+=.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为;第2009棵树种植点的坐标应为.14.(2008•天津)已知数列{a n}中,,则=.15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=.16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f(a n)﹣2005|取得最小值时,n=.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.二.解答题(共13小题)18.(2008•安徽)设数列{a n}满足a1=a,a n+1=ca n+1﹣c,n∈N*,其中a,c为实数,且c≠0(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设N*,求数列{b n}的前n项和S n;(Ⅲ)若0<a n<1对任意n∈N*成立,证明0<c≤1.19.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c﹣.(Ⅰ)设c=,b n=,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)25.(2010•湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.26.(2009•广东)已知点(1,)是函数f(x)=a x(a>0,且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=(n≥2).(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{}前n项和为T n,问满足T n>的最小正整数n是多少?27.(2009•江西)数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n.(1)求S n;(2)b n=,求数列{b n}的前n项和T n.28.(2009•重庆)已知,(Ⅰ)求b1,b2,b3的值;(Ⅱ)设c n=b n b n+1,S n为数列{c n}的前n项和,求证:S n≥17n;(Ⅲ)求证:.29.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.30.(2007•福建)等差数列{a n}的前n项和为S n,,.(1)求数列{a n}的通项a n与前n项和为S n;(2)设(n∈N+),求证:数列{b n}中任意不同的三项都不可能成为等比数列.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.考点:等差数列的性质.专题:压轴题.分析:由a1,a3,a9成等比数列求得a1与d的关系,再代入即可.解答:解:∵a1,a3,a9成等比数列,∴(a1+2d)2=a1•(a1+8d),∴a1=d,∴=,故答案是:.点评:本题主要考查等差数列的通项公式及等比数列的性质.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n 的最大正整数n的值为12.考点:等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n 项和.专题:等差数列与等比数列.分析:设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.解答:解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12点评:本题考查等比数列的求和公式和一元二次不等式的解法,属中档题.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.考点:数列的求和;数列的函数特性.专题:压轴题;等差数列与等比数列.分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.解答:解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.考点:数列的应用;数列的函数特性.专题:压轴题;新定义.分析:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.解答:解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011时,b i+1=0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,前面有偶数个1时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题;压轴题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,a4n+1+a4n+3=(a4n+3+a4n+2)﹣(a4n+2﹣a4n+1)=2,a4n+2+a4n+4=(a4n+4﹣a4n+3)+(a4n+3+a4n+2)=16n+8,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣1+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.考点:数列与函数的综合.专题:综合题;压轴题.分析:根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.解答:解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:点评:本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f (a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k= 1006.考点:数列与不等式的综合;等差数列的性质.专题:综合题;压轴题.分设,,由,根析:据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012﹣n)=2(2a1006)=4a1006,由此能求出结果.解答:解:设,,∵,∴根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012﹣n)=2(2a1006)=4a1006,当且仅当a n=a2012﹣n时,b n取到最大值,此时n=1006,所以k=1006.故答案为:1006.点评:本题考查数列与不等式的综合应用,具体涉及到等差数列的通项公式、基本不等式的性质等基本知识,解题时要认真审题,仔细解答,注意合理地进行等价转化.8.(2011•浙江)若数列中的最大项是第k项,则k=4.考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:求数列的最大值,可通过做差或做商比较法判断数列的单调性处理.解答:解:令,假设=≥1,则2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,又n是整数,即n≤3时,a n+1>a n,当n≥4时,a n+1<a n,所以a4最大.故答案为:4.点评:本题考查数列的最值问题,利用做差或做商比较法判断数列的单调性是求数列最值的常用方式.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=4.考点:等比数列的前n项和;等比数列的性质.专题:等差数列与等比数列.分析:首先用公比q和a1分别表示出S n和S2n,代入T n易得到T n的表达式.再根据基本不等式得出n0解答:解:==因为≧8,当且仅当=4,即n=4时取等号,所以当n0=4时T n有最大值.故答案为:4.点评:本题主要考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题.本题的实质是求T n取得最大值时的n值,求解时为便于运算可以对进行换元,分子、分母都有变量的情况下通常可以采用分离变量的方法求解.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于2;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为17.考点:数列的求和;交集及其运算.专题:压轴题;新定义.分析:(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.解答:解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足P i+P i+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n﹣2.∴子集Q的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1.则Q={a1,a4,a7,…,a100}则P∩Q的元素为a1,a7,a13,…,a91,a97.∵97=1+(17﹣1)×6,∴共有17相同的元素.故答案分别为2,17.点评:正确理解“特征数列”的定义是解题的关键.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=2,((a n)+)+=n2.考点:数列的应用.专题:计算题;压轴题;新定义.分析:根据题意,若a m<5,而a n=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((a n)+)+=n2.解答:解:∵a m<5,而a n=n2,∴m=1,2,∴(a5)+=2.∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1,(a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2,(a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3,∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,猜想:((a n)+)+=n2.答案:2,n2.点评:本题考查数列的性质和应用,解题时要认真审题.仔细解答.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.考点:数列递推式;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.解答:解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为点本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考评:查了同学们综合运用知识解决问题的能力.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).考点:数列的应用.专题:压轴题;规律型.分析:由题意可知,数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…;数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…由此入手能够得到第6棵树种植点的坐标和第2009棵树种植点的坐标.解答:解:∵组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即y n的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).点评:本题考查数列的性质和应用,解题时要注意创新题的灵活运用.14.(2008•天津)已知数列{a n}中,,则=.考点:数列的求和;极限及其运算.专题:计算题;压轴题.分析:首先由求a n可以猜想到用错位相加法把中间项消去,即可得到a n的表达式,再求极限即可.解答:解:因为所以a n是一个等比数列的前n项和,所以,且q=2.代入,所以.所以答案为此题主要考查数列的求和问题,用到错位相加法的思想,需要注意.点评:15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=1.数列的极限.考点:综合题;压轴题.专题:分设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),则能推析:导出S n=,由此能导出.解解:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),答:若向量=,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn=,则=1.本题考查数列的极限和运算,解题时要注意三角函数的灵活运用.点评:16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f(a n)﹣2005|取得最小值时,n=110.数列的函数特性;等差数列的通项公式.考点:专压轴题.题:分要使|f(a n)﹣2005|取得最小值,可令|f(a n)﹣2005|=0,即20.1n+log20.1n=2005,析:对n值进行粗略估算可得答案.解答:解:|f(a n)﹣2005|=|f(0.n)﹣2005|=|20.1n+log20.1n﹣2005|,(1)要使(1)式取得最小值,可令(1)式等于0,即|20.1n+log20.1n﹣2005|=0,20.1n+log20.1n=2005,又210=1024,211=2048,则当n=100时,210=1024,log210≈3,(1)式约等于978,当n=110时,211≈2048,log211≈3,(1)式约等于40,当n<100或n>110式(1)式的值会变大,所以n=110,故答案为:110.点评:本题考查数列的函数特性、指数函数对数函数的性质,考查学生灵活运用知识解决问题的能力.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.考点:数列的求和;极限及其运算.专题:计算题;压轴题;探究型.分析:通过观察可得=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕=1﹣+﹣=+﹣.进而可得.解答:解:第一个空通过观察可得.==(1+﹣1)+()+(+﹣)+(+﹣)+…+(+﹣)+(+﹣)=(1+++…+)+(++++…+)﹣2(++…+)=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕=1﹣+﹣=+﹣所以=.答案:.点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.二.解答题(共13小题)18.(2008•安徽)设数列{a n}满足a1=a,a n+1=ca n+1﹣c,n∈N*,其中a,c为实数,且c≠0(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设N*,求数列{b n}的前n项和S n;(Ⅲ)若0<a n<1对任意n∈N*成立,证明0<c≤1.考点:数列的求和;数列的函数特性.专题:压轴题.分析:(Ⅰ)需要观察题设条件进行恒等变形,构造a n﹣1=c(a n﹣1﹣1)利用迭代法计算出数列的通项公式;(Ⅱ)由(Ⅰ)的结论求出数列的通项,观察知应用错位相减法求和;(Ⅲ)由(Ⅰ)的结论知a n=(a﹣1)c n﹣1+1.接合题设条件得出,.然后再用反证法通过讨论得出c的范围.解答:解:(Ⅰ)由题设得:n≥2时,a n﹣1=c(a n﹣1﹣1)=c2(a n﹣2﹣1)=…=c n﹣1(a1﹣1)=(a﹣1)c n﹣1.所以a n=(a﹣1)c n﹣1+1.当n=1时,a1=a也满足上式.故所求的数列{a n}的通项公式为:a n=(a﹣1)c n﹣1+1.(Ⅱ)由(Ⅰ)得:.,∴.∴所以∴.(Ⅲ)证明:由(Ⅰ)知a n=(a﹣1)c n﹣1+1.若0<(a﹣1)c n﹣1+1<1,则0<(1﹣a)c n﹣1<1.因为0<a1=a<1,∴.由于c n﹣1>0对于任意n∈N+成立,知c>0.下面用反证法证明c≤1.假设c>1.由函数f(x)=c x的图象知,当n→+∞时,c n﹣1→+∞,所以不能对任意n∈N+恒成立,导致矛盾.∴c≤1.因此0<c≤1点评:本题主要考查数列的概念、数列通项公式的求法以及不等式的证明等;考查运算能力,综合运送知识分析问题和解决问题的能力.第三问中特值法与反证法想接合,对做题方向与方法选取要求较高.是一个技能性较强的题.19.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.考点:数列递推式;数列与不等式的综合.专题:等差数列与等比数列.分析:(1)由题设形式可以看出,题设中给出了关于数列a n的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.解答:解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.考点:等差数列的通项公式;等比数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则==点评:本题主要考查等差数列的通项公式和用错位相减法求和.21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c﹣.(Ⅰ)设c=,b n=,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.考点:数列递推式;数学归纳法.专题:综合题;压轴题.分(1)令c=代入到a n+1=c﹣中整理并令b n=进行替换,得到关系式析:b n+1=4b n+2,进而可得到{}是首项为﹣,公比为4的等比数列,先得到{}的通项公式,即可得到数列{b n}的通项公式.(2)先求出n=1,2时的c的范围,然后用数学归纳法分3步进行证明当c>2时a n <a n+1,然后当c>2时,令α=,根据由可发现c>时不能满足条件,进而可确定c的范围.解答:解:(1),,即b n+1=4b n+2,a1=1,故所以{}是首项为﹣,公比为4的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1得c>2.用数学归纳法证明:当c>2时a n<a n+1.(ⅰ)当n=1时,a2=c﹣>a1,命题成立;(ii)设当n=k时,a k<a k+1,则当n=k+1时,故由(i)(ii)知当c>2时,a n<a n+1当c>2时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c的取值范围是(2,].点评:本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.考点:等比数列的前n项和;对数的运算性质;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)设{a n}的公比为q,当q=1时根据S n•S n+2﹣S n+12求得结果小于0,不符合;当q≠1时利用等比数列求和公式求得S n•S n+2﹣S n+12<0,进而推断S n•S n+2,<S n+12.根据对数函数的单调性求得lg(S n•S n+2)<lgS n+12,原式得证.(2)要使.成立,则有进而分两种情况讨论当q=1时根据(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2求得﹣a12<0不符合题意;当q≠1时求得(S n ﹣c)(S n+2﹣c)﹣(S n+1﹣c)2=﹣a1q n[a1﹣c(1﹣q)],进而推知a1﹣c(1﹣q)=0,判断出0<q<1,但此时不符合题意,最后综合可得结论.解答:(1)证明:设{a n}的公比为q,由题设a1>0,q>0.(i)当q=1时,S n=na1,从而S n•S n+2﹣S n+12=na1•(n+2)a1﹣(n+1)2a12=﹣a12<0(ⅱ)当q≠1时,,从而S n•S n+2﹣S n+12==﹣a12q n<0.由(i)和(ii)得S n•S n+2,<S n+12.根据对数函数的单调性,知lg(S n•S n+2)<lgS n+12,即.(2)解:不存在.要使.成立,则有分两种情况讨论:(i)当q=1时,(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2=(na1﹣c)[(n+2)a1﹣c]﹣[(n+1)a1﹣c]2=﹣a12<0.可知,不满足条件①,即不存在常数c>0,使结论成立.(ii)当q≠1时,若条件①成立,因为(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2==﹣a1q n[a1﹣c(1﹣q)],且a1q n≠0,故只能有a1﹣c(1﹣q)=0,即此时,因为c>0,a1>0,所以0<q<1.但0<q<1时,,不满足条件②,即不存在常数c>0,使结论成立.综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使.点评:本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.考点:数列的求和;等比关系的确定.专压轴题.题:分析:(1)求直线倾斜角的正弦,设C n的圆心为(λn,0),得λn=2r n,同理得λn+1=2r n+1,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即{r n}中r n+1与r n的关系,证明{r n}为等比数列;(2)利用(1)的结论求{r n}的通项公式,代入数列,然后用错位相减法求和.解答:解:(1)将直线y=x的倾斜角记为,则有tanθ=,sinθ=,设C n的圆心为(λn,0),则由题意得知,得λn=2r n;同理λn+1=2r n+1,从而λn+1=λn+r n+r n+1=2r n+1,将λn=2r n代入,解得r n+1=3r n故|r n|为公比q=3的等比数列.(Ⅱ)由于r1=1,q=3,故r n=3n﹣1,从而,记,则有S n=1+2•3﹣1+3•3﹣2+…+n•31﹣n①﹣②,得=,∴点评:本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象概括能力以及推理论证能力.对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项a n与a n+1之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n项和S n乘以公比,然后错位相减解决.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)考点:数列的求和;等比数列的性质.专题:综合题;压轴题.分析:(1)根据表1,表2,表3的规律可写出表4,然后求出各行的平均数,可确定等比数列的首项和公比,进而推广到n.(2)先求出表n的首项的平均数,进而可确定它的各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列,进而得到表中最后一行的数b n=n•2n﹣1,再化简通项,最后根据裂项法求和.解答:解:(I)表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.(II)表n的第1行是1,3,5,…,2n﹣1,其平均数是=n由(I)知,它的各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列(从而它的第k行中数的平均数是n•2k﹣1),于是,表中最后一行的唯一一个数为b n=n•2n﹣1.因此====(k=1,2,…,n)故++…+=(﹣)+(﹣)+…+[﹣]=﹣=4﹣.点评:本题主要考查数列求和和等比数列的性质.数列求和是高考的必考点,一般有公式法、裂项法、错位相减法等,都要熟练掌握.25.(2010•湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.考点:数列递推式;数列的概念及简单表示法;等差数列的性质.专题:计算题;应用题;压轴题.分析:(1)对化简整理得,令c n=1﹣a n2,进而可推断数列{c n}是首项为,公比为的等比数列,根据等比数列通项公式求得c n,则a2n可得,进而根据a n a n+1<0求得a n.(2)假设数列{b n}存在三项b r,b s,b t(r<s<t)按某种顺序成等差数列,由于数列{b n}为等比数列,于是有b r>b s>b t,则只有可能有2b s=b r+b t成立,代入通项公式,化简整理后发现等式左边为2,右边为分数,故上式不可能成立,导致矛盾.解答:解:(Ⅰ)由题意可知,令c n=1﹣a n2,则又,则数列{c n}是首项为,公比为的等比数列,即,故,又,a n a n+1<0故因为=,故(Ⅱ)假设数列{b n}存在三项b r,b s,b t(r<s<t)按某种顺序成等差数列,由于数列{b n}是首项为,公比为的等比数列,于是有2b s=b r+b t成立,则只有可能有2b r=b s+b t成立,∴化简整理后可得,2=()r﹣s+()t﹣s,由于r<s<t,且为整数,故上式不可能成立,导致矛盾.故数列{b n}中任意三项不可能成等差数列.点评:本题主要考查了数列的递推式.对于用递推式确定数列的通项公式问题,常可把通过吧递推式变形转换成等差或等比数列.26.(2009•广东)已知点(1,)是函数f(x)=a x(a>0,且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=(n≥2).。