聚合物的粘弹性

合集下载

第7章 聚合物的粘弹性

第7章  聚合物的粘弹性

• 例2: : • 对于作为防震材料,要求在常温附 对于作为防震材料, 近有较大的力学损耗( 近有较大的力学损耗(吸收振动能 并转化为热能) 并转化为热能) • 对于隔音材料和吸音材料,要求在 对于隔音材料和吸音材料, 音频范围内有较大的力学损耗( 音频范围内有较大的力学损耗(当 然也不能内耗太大,否则发热过多, 然也不能内耗太大,否则发热过多, 材料易于热态化) 材料易于热态化)
第7 章
聚合物的粘弹性
• 实际材料同时显示弹性和粘性,即所谓粘弹性。 • 由服从虎克定律的线性弹性行为和服从牛顿流动定律的线性粘性 行为的组合来描述,则称之为线性粘弹性;否则,称之为非线性 粘弹性。 • ①在一定温度和恒定应力作用下,观察试样应变随时间增加 而逐渐增大的蠕变现象; • ②在一定温度和恒定应变条件下,观察试样内部的应力随时 间增加而逐渐衰减的应力松弛现象; • ③在一定温度和循环(交变)应力作用下,观察试样应变滞后 于应力变化的滞后现象。 • 以上3种现象统称聚合物的力学松弛现象。根据应力或应变是 否是交变的,蠕变、应力松弛属于静态粘弹性,滞后现象属于动 态粘弹性。
7.1.3 滞后现象与内耗
• 对硫化的天然橡胶试条, 对硫化的天然橡胶试条, 如果用拉力机在恒温下尽 可能地慢慢拉伸后又慢慢 回复,其应力—应变曲线 回复,其应力 应变曲线 • 发生滞后现象时,拉伸曲 线上的应变达不到与其应 力相对应的平衡应变值, 回缩曲线上的应变大于与 其应力相对应的平衡应变 值。
• 例1:对于作轮胎的橡胶,则希望它有最 :对于作轮胎的橡胶, 小的力学损耗才好 • 顺丁胶:内耗小,结构简单,没有侧基, 顺丁胶:内耗小,结构简单,没有侧基, 链段运动的内摩擦较小 • 丁苯胶:内耗大,结构含有较大刚性的 丁苯胶:内耗大, 苯基, 苯基,链段运动的内摩擦较大 • 丁晴胶:内耗大,结构含有极性较强的 丁晴胶:内耗大, 氰基, 氰基,链段运动的内摩擦较大 • 丁基胶:内耗比上面几种都大,侧基数 丁基胶:内耗比上面几种都大, 目多, 目多,链段运动的内摩擦更大

聚合物的粘弹性

聚合物的粘弹性
聚合物的粘弹性
3.粘弹性:聚合物材料组合了固体的弹性和液体的粘性两者的特 征,这种行为叫做粘弹性。粘弹性的表现: 力学松弛 4.线性粘弹性: 组合了服从虎克定律的理想弹性固体的弹性和 服从牛顿流动定律的理想液体的粘性两者的特征,就是线性粘 弹性。否则为非线性粘弹性. 5.力学松弛:聚合物的力学性质随时间变化的现象,叫力 学松弛。力学性质受到,T, t,的影响,在不同条件下, 可以观察到不同类型的粘弹现象。
动态 粘弹性
滞后现象
力学损耗 (内耗)
在一定温度和和交变应力下,应变滞后于应力 变化.
的变化落后于的变化,发生滞后现象,则每一 个循环都要消耗功
3
聚合物的粘弹性
7.3.1 高聚物的线性粘弹性 静态粘弹性
(1)蠕变 在恒温下施加较小的恒定外力时,材料的形变随时间而
逐渐增大的力学松弛现象。 如挂东西的塑料绳慢慢变长。

t2 )
0 (t→)
E2-高弹模量 特点:高弹形变是逐渐回复的.
8
(t)
聚合物的粘弹性
无化学交联的线性高聚物,发生分 子间的相对滑移,称为粘性流动.
t (t)
t1 t2
t
图3 理想粘性流动蠕变
(t)=
0 (t<t1)
0 3
t (t1

t

t2 )
0 3
t2 (t

t2 )
3-----本体粘度
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即回复,形变直线下降 •通过构象变化,使熵变造成的形变回复 •分子链间质心位移是永久的,留了下来
11
聚合物的粘弹性
理想交联聚合物(不存在粘流态):形变: 1+2

第四节 聚合物的粘弹性

第四节 聚合物的粘弹性


Company Logo
Logo
普通粘、弹概念
一、基本概念
弹:外力→形变→应力→储存能量
外力撤除→能量释放→形变恢复
能量完全以弹性能的形式储存,然后又全
部以动能的形式释放,没有能量的损耗。
粘:外力→形变→应力→应力松弛→能量耗散
外力撤除→形变不可恢复
Company Logo
(7 2)
t1 t2
t
Company Logo
Logo (3)粘性流动(e3): •受力时分子间无交联的线形聚合物,则会产生分子 间的相对滑移,它与时间成线性关系,外力除去后, 粘性形变不能恢复,是不可逆形变
e3
s0 e3 t
t1

(7 3)
t2
Company Logo
Logo
(3)如果温度接近Tg(附近几十度),应力 松弛可以较明显地被观察到,如软PVC丝,用 它来缚物,开始扎得很紧,后来就会慢慢变 松,就是应力松弛比较明显的例子。 (4)只有交联聚合物应力松弛不会减到零 (因为不会产生分子间滑移),而线形聚合 物的应力松弛可减到零。
Company Logo
Logo
7.1.2 应力松弛
在恒定温度、恒定应变的条件下,聚合物内部的应
力随时间的增加而逐渐减小的现象。 例如:拉伸一块未交联的橡 胶到一定长度,并保持长度不 变,随着时间的增加,这块橡 胶的回弹力会逐渐减小,这是 因为里面的应力在慢慢减小, 最后变为0。因此用未交联的 橡胶来做传动带是不行的。

Company Logo
Logo
(1)在一定温度和恒定应力作用下,观察试样 应变随时间增加而逐渐增大的蠕变现象; (2)在一定温度和恒定应变条件下,观察试样 内部的应力随时间增加而逐渐衰减的应力松 弛现象; (3)在一定温度和循环(交变)应力作用下, 观察试样应变滞后于应力变化的滞后现象。 以上3种现象统称聚合物的力学松弛现象。蠕 变、应力松弛属于静态粘弹性,滞后现象属 于动态粘弹性。

聚合物的粘弹性

聚合物的粘弹性

t
0e
τ——松弛时间
应力松驰的原因:
当聚合物一开始被拉长时,其中分子处于不平衡的构象, 要逐渐过渡到平衡的构象,也就是链段要顺着外力的方向运 动,因而产生内部应力,与外力相抗衡。通过链段热运动调 整分子构象,使缠结点散开,分子链相互滑移,逐渐恢复蜷 曲的原状,内应力逐渐减少或消除。
聚合物的粘弹性说课

t2
t
1.3 弹性与粘性比较
弹性
粘性
能量储存 形变回复 虎克固体
E
E(,,T)
模量与时间无关
能量耗散
永久形变
牛顿流体
.
d
dt
E (,,T,t)
模量与时间有关
理想弹性体的应力取决于 ,理想粘性体的应力取决于 。
二. 粘弹性
聚合物
牛顿流体
非牛顿流体应变速率与 应力的关系
聚合物 虎克固体
t
与理想弹性体有区别
让学生 亲自经历运用科 学方法进行探索 。
让学生在实验过 程中自己摸索, 从而发现“新” 的问题或探索出 “新”的规律。
六、教学设计
提出问题 导入新课
提供条件 学生思考
引导分析 提出新疑
讨论问题 得出结论
布置作业 能力迁移
七、说课综述
在教学的过程中,我始终努力贯彻以教师为主导, 以学生为主体,以问题为基础,以能力、方法为主线, 有计划培养学生的思维能力、解决问题的能力。并且 从实际出发,充分利用各种教学手段来激发学生的学 习兴趣,体现了对学生创新意识的培养。
聚合物的粘弹性
一. 粘、弹基本概念 弹 – 由于物体的弹性作用使之射出去。
粘 – 象糨糊或胶水等所具有的、能使一个
物质附着在另一个物体上的性质。

高分子物理--聚合物的粘弹性ppt课件

高分子物理--聚合物的粘弹性ppt课件
ε(t)﹦ε0 sin(ωt﹣δ)
粘弹体的应力与应变的相位关系
一、 粘弹性现象 (二) 动态粘弹性
力学损耗:由于滞后,周期性应力应变变化过程将伴随能量消耗, 称之为力学损耗。 损耗的大小同滞后角有关,常以tanδ 表示
橡胶拉伸与回缩的应力-应变关系示意图
一、 粘弹性现象 (二) 动态粘弹性
聚合物的内耗与频率的关系
表示在复平面上的复模量 E* D* ﹦1
一、 粘弹性现象 (三) 粘弹性参数
G*﹦G1+iG2
J* ﹦ J1 - iJ2
tan δ ﹦ E2 / E 1
﹦ D2 / D 1 ﹦ G2 / G 1 ﹦ J2 / J 1
链段运动的松弛时间同 作用频率(速率)相匹 配时(ω ~ 1/τ ),粘 弹性现象最显著。
二、 粘弹性的数学描述
(一) Boltzmann叠加原
在Δ σ31 、、
u2 、 ……
u3 、 Δ σn
……
un时刻,对试样加应力Δ σ1 、 Δ σ2 、
ε(t)﹦ ∑Δσi D(t-ui)
i: 1→ n
连续对试样加应力,变化率为? σ (u)/? u
t﹥ un
ε(t)﹦ ∫ D(t-u)(? σ (u)/? u) du u:- ∞ → t
ηs*﹦ηs1-ηs2 ηs1 ﹦(σ0/γ0 ω)sinδ ηs2 ﹦(σ0/γ0 ω)cosδ
ηs1 ﹦G2/ω
ηs2 ﹦G 1/ω
二、 粘弹性的数学描述
(一) Boltzmann叠加原
1. 数理学表达式
在零时刻,对试样加应力σ0 ε0 (t)﹦σ0 D(t)
在u1时刻,对试样加应力σ1 ε1 (t)﹦σ1 D(t-u1)
粘性响应 理想液体

粘弹性

粘弹性

外力的方向运动以减小或者消除内部应力,如果T很高(>>Tg),链运动摩擦
阻力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段 运动能力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围
内应力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
21
第8章 聚合物的粘弹性
0
玻璃态 高弹态 粘流态 t
2 0
0 0
sin tcost - dt
W 0 0sin
又称为力学损耗角,常用tan表示内耗的大小
33
第8章 聚合物的粘弹性
③内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
27
第8章 聚合物的粘弹性
③滞后现象与哪些因素有关?
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温度很低, 也无滞后.在Tg附近的温度下,链段既可运动又不太容易,此 刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞 后现象很小. 外力作用频率不太高时,链段可以运动,但是跟不上外力的变 化,表现出明显的滞后现象.
外力作用频率很高时,链段根本来不及运动,聚合物好像 一块刚性的材料,滞后很小
28
第8章 聚合物的粘弹性
2.内耗:
①内耗产生的原因: 当应力与形变的变化相一致时,没有滞后现象,每次形变所 作的功等于恢复形变时所作的功,没有功的消耗
如果形变的变化跟不上应力的变化,发生滞后现象,则每 一次循环变化就会有功的消耗(热能),称为力学损耗,也叫内 耗. 外力对体系所做的功:一方面用来改变链段的构象(产生 形变),另一方面提供链段运动时克服内摩擦阻力所需要的能量 .

聚合物的粘弹性

聚合物的粘弹性

第7章聚合物的粘弹性7.1基本概念弹:外力→形变→应力→储存能量→外力撤除→能量释放→形变恢复粘:外力→形变→应力→应力松驰→能量耗散→外力撤除→形变不可恢复理想弹性:服从虎克定律σ=E·ε应力与应变成正比,即应力只取决于应变。

理想粘性:服从牛顿流体定律应力与应变速率成正比,即应力只取决于应变速率。

总结:理想弹性体理想粘性体虎克固体牛顿流体能量储存能量耗散形状记忆形状耗散E=E(σ.ε.T) E=E(σ.ε.T.t)聚合物是典型的粘弹体,同时具有粘性和弹性。

E=E(σ.ε.T.t)但是高分子固体的力学行为不服从虎克定律。

当受力时,形变会随时间逐渐发展,因此弹性模量有时间依赖性,而除去外力后,形变是逐渐回复,而且往往残留永久变形(γ∞),说明在弹性变形中有粘流形变发生。

高分子材料(包括高分子固体,熔体及浓溶液)的力学行为在通常情况下总是或多或少表现为弹性与粘性相结合的特性,而且弹性与粘性的贡献随外力作用的时间而异,这种特性称之为粘弹性。

粘弹性的本质是由于聚合物分子运动具有松弛特性。

7.2聚合物的静态力学松弛现象聚合物的力学性质随时间的变化统称为力学松弛。

高分子材料在固定应力或应变作用下观察到的力学松弛现象称为静态力学松弛,最基本的有蠕变和应力松弛。

(一)蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。

理想弹性体:σ=E·ε。

应力恒定,故应变恒定,如图7-1。

理想粘性体,如图7-2,应力恒定,故应变速率为常数,应变以恒定速率增加。

图7-3 聚合物随时间变化图聚合物:粘弹体,形变分为三个部分;①理想弹性,即瞬时响应:则键长、键角提供;②推迟弹性形变,即滞弹部分:链段运动③粘性流动:整链滑移注:①、②是可逆的,③不可逆。

总的形变:(二)应力松弛在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象称为应力松弛。

理想弹性体:,应力恒定,故应变恒定聚合物:由于交联聚合物分子链的质心不能位移,应力只能松弛到平衡值。

7 粘弹性

7 粘弹性
图7

t
18
第7章 聚合物的黏弹性
2、应力松弛 Stress Relaxation
• 在恒定温度和形变下,维持此形变所需的应力随时间增加而逐渐衰减
0e

0
t
松弛时间 交联高分子 应力衰减至某一平衡值
Crosslinked polymer
Linear polymer
0
t
未交联高分子 应力最终衰减至零
4
第7章 聚合物的黏弹性
5. 力学松弛 聚合物的力学性质随时间变化的现象,叫力学松弛。 包括蠕变及其回复,应力松弛和动态力学实验等。 蠕变 静态的黏弹性 力学松弛 动态黏弹性 力学损耗(内耗)
5
应力松弛 滞后现象
第7章 聚合物的黏弹性
二、静态黏弹性 应力或应变恒定,不同时间时,聚合物材料所表现出来 的黏弹现象。
恒值 (t>t2)

t1
t2
t
3-----本体粘度
分子间滑移,不可恢复
11
图3 理想粘性流动蠕变
第7章 聚合物的黏弹性
当聚合物受力时,以上三种形变同时发生,聚合物的总形变 方程:
2+3 1
1 2 3
t
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
32
tanδ由小到大的顺序:
第7章 聚合物的黏弹性
内耗受温度影响较大
Tg以下,高聚物受外力作用后形变很小, 仅键长、键角变化,速度快,几乎跟得上 应力变化,内耗小
Tg Tf
T Tan
温度升高,高分子向高弹态过渡。链段开始运动,而体系粘度还很大, 链段运动时受到摩擦阻力比较大,高弹形变显著落后于应力的变化,内 耗也大 温度进一步升高,链段运动比较自由,内耗变小 因此,在玻璃化转变区域出现内耗峰 温度继续升高,高分子向粘流态过渡。由于分之间互相滑移,内耗急剧 增加

《聚合物的粘弹性》课件

《聚合物的粘弹性》课件

《聚合物的粘弹性》PPT 课件
聚合物是一类重要的材料,本课件将深入探讨聚合物的粘弹性及其应用。让 我们一起来揭开这个精彩的科学领域吧!
I. 聚合物概述
定义和分类
聚合物是由许多重复单元组成的大分子化合物,可分为线性、交联和支化等不同类型。
聚合过程及特点
聚合过程是单体分子结合形成高分子链的化学反应,聚合物具有高分子量、可塑性和可再生 等特点。
3
色散力谱技术
色散力谱技术结合了动态力学和谱学的原理,可精确测量聚合物的粘弹性参数。
V. 聚合物的粘弹性对应用的影响
1 聚合物加工
了解聚合物的粘弹性特性有助于优化聚合物加工过程,提高产品质量和生产效率。
2 材料性能预测
粘弹性参数可以用于预测聚合物在不同应力和环境条件下的性能,指导材料设计和选择。
3 涂层和粘合剂
应用领域和意义Biblioteka 聚合物在塑料、纤维、涂料等众多领域有着广泛的应用,对现代社会的发展起着重要作用。
II. 粘弹性基础知识
1 弹性和黏性
弹性是物体恢复原状的能力,而黏性则描述了物体抵抗形变的能力,聚合物同时具备这 两种特性。
2 变形与应力的关系
聚合物的变形与施加的应力成正比,其应力-应变曲线可用来描述聚合物的力学性质。
聚合物的粘弹性特性对于涂层和粘合剂的粘附性和耐久性具有重要影响。
VI. 新颖的聚合物复合材料
粘弹性调控
通过调控聚合物复合材料的粘 弹性,可以实现材料性能的改 良和特定应用的实现。
复合材料制备及性能
聚合物复合材料结合了不同材 料的优点,具有良好的力学性 能和多样化的用途。
未来发展方向
聚合物复合材料在领域中的应 用潜力巨大,未来将继续研究 新的材料和创新的应用。

第七章聚合物的粘弹性

第七章聚合物的粘弹性

二、Kelvin模型
——由弹性模量为E的弹簧和粘度为η的粘壶并联
受到应力σ作用后两部分应变相同:
ε=ε1 =ε2
E
η
总应力等于两部分的应力之和: σ=σ1 +σ2 σ1 = Eε; σ2 =ηdε/dt ; Kelvin模型的运动方程式为: σ= Eε +ηdε/dt
σ
1.恒定应变观察应力随时间变化——应力松弛
令τ =η /E —— 松弛时间
or ( t ) e o
E t

(t)观察应变随时间的变化——蠕变
dσ/dt = 0, Maxwell 运动方程变为: 解该微分方程的边界条件是:
(t )
σ(t)=σo dε/dt = σo/η,
t
o (t) o t
应力由两部分组成: 1)与应变同相位的应力σoCosδSinωt
——弹性形变的动力
2)与应变相差90度相位的应力σoSinδCosωt ——消耗在克服内摩擦阻力上的力(内耗)
定义两个模量 储存模量E’——同相位的应力与应变的比值:
损耗模量E”——相差90度相位的应力振幅与应变振 幅的比值: o E sin
3)温度——温度太高,链段运动很快,完全可 以跟上应力的变化,无滞后现象。温度太低, 链段运动很慢,形变完全来不及发展,滞后 现象不明显。只有在Tg附近几十度的温度范 围内,链段能够充分运动但又跟不上应力的 变化,才会出现明显的滞后现象。
力学损耗
聚合受到交变应力作用时如果不发生滞后,每 一次形变过程外力所做的功都可以以弹性储能的形 式完全释放出来,用来恢复原来的形状,在一个应 力交变循环过程中没有能量损耗。
影响滞后的因素
1)聚合物的链结构——刚性链聚合物由于链段根本 无法运动,所以滞后现象不明显;柔性链聚合物 链段的运动很容易发生,滞后现象比较严重。

聚合物的粘弹性

聚合物的粘弹性

7.1.2 应力松弛 定义: 材料在一定温度下,受到某一恒定的外力(形 变),保持这一形变所需随时间的增加而逐渐减小的现象 生活中的形变: 松紧带子 密封件 在受外力时,密封效果逐渐变差(密封的重要问题)
线性和交联聚合物的应力松弛曲线
7.1.2 应力松弛
应力松弛的影响因素
1.交联: 由于交联的存在,分子链之间不能产生相对 位移,高聚物不能产生塑性形变,故应力只能衰 减到一平衡值而不能松驰到零。所以,和蠕变一 样,交联也是克服应力松驰的重要措施。为此, 橡胶制品需要交联处理
时温等效原理:升高温度与延长时间对分子是等效的,对聚合 物的粘弹行为也是等效的。 降低频率与延长观察时间是等效的,增加频率与缩短观察时间 是等效的。 WLF方程:
l (T Tg )

17.44(T Tg ) 51.6 (T Tg )
7.4 粘弹性的研究方法
7.4.2 动态粘弹谱仪和动态热机械分析仪
粘弹谱仪属强迫振动非共振法,该法直接收集在试
样上的应力和试样应变的大小和相位,然后按照最基 本的关系求得 E ' 、E " 和 Tg 值
动态粘弹谱仪(Rheovibron)常用以测量片状样品,
还可测量纤维状样品。
近年来,动态热机械分析仪发展十分迅速,它也属于
柔顺性越大,蠕变越快;刚性大,蠕变速度慢 常用:PVC薄膜
b.分子量:
分子量越大,蠕变越慢
c交联度:
交联的发生,蠕变变慢 在橡胶交联中应用
蠕变与温度和外力的关系
d分子运动能力增加,蠕变变快
7.1.1 蠕变 影响蠕变的因素: e 结晶,蠕变变慢 f 外力变大,蠕变变快
g 热处理,蠕变减小(热处理 消除橡胶的内应力)

聚合物的粘弹性

聚合物的粘弹性
20
第7章 聚合物的粘弹性
思考题:
1.交联聚合物的蠕变曲线?
1 t
图7
2.雨衣在墙上为什么越来越长?(增塑PVC) PVC的Tg=80℃,加入增塑剂后,玻璃化温度大大下降, 成为软PVC做雨衣,此时处于高弹态,很容易产生蠕变.
21
第7章 聚合物的粘弹性
(二)应力松弛Stress Relaxation
26
第7章 聚合物的粘弹性
0
2
图10
60Km/h ~300Hz t
t
27
第7章 聚合物的粘弹性
t 0sint t 0sint -
0 某处所受的最大应力 外力变化的角频率 在受到正弦力的作用时应变落后于应力的相位差
问题
对弹性材料:( t) 0 sin wt形变与时间t无关,与应力同相位
力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段运动能
力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围内应力松
弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
23
第7章 聚合物的粘弹性
0
玻璃态
高弹态 粘流态
t
图9 不同温度下的应力松弛曲线
高分子链的构象重排和分子链滑移是导致材料 蠕变和应力松弛的根本原因。
0 0
sin
36
第7章 聚合物的粘弹性
应力的表达式
实数模量是储能模量,虚
(t) 0E'sint 0E''cost 数模量为能量的损耗.
E
E'iE''
0 0
(cos
isin
)
E”
tan E"
E'

聚合物的粘弹性

聚合物的粘弹性

不同温度下的曲线的平移量 lgαT 不同,对于大多数非晶高聚物,lgαT 与 T 的关系符合经验的 WLF
方程
lgαT

− C1(T C2 +T
− T0 ) − T0
式中:C1、C2为经验常数。
为了是C1和C2有普适性,参考温度往往是特定值。经验发现,若以聚合物的 Tg 作为参考温度,C1=
17.44,C2=51.6(这是平均值,实际上对各种聚合物仍有不小的差别)。
图 tgδ ~T 上会出现多个内耗峰。习惯上把最高温度出现的内耗峰称α 松弛(即玻璃化转变),随后依次 称为 β 、 γ 、 δ 松弛。低于玻璃化转变的松弛统称为次级松弛(又称多重转变,又见第 6 章)。
β 松弛常归因于较大的侧基、杂原子链节的运动或短链段的局部松弛模式。 γ 松弛常归因于 4 个以
图 7-8 利用时温等效原理将不同温度下测得的聚异丁烯应力松弛数据换成 T=25℃的数据(右上插图
给出了在不同温度下曲线需要移动的量)
表 7-1 力学性质四参量之间的关系
力学行为曲线
σ
ε
T
t
所研究的关系
热机械曲线
固定
改变
改变
固定
ε = f (T )σ ,t
应力-应变曲线
改变
改变
固定
固定
σ = f (ε )T ,t
蠕变曲线
固定
改变
固定
改变
ε = f (t)σ ,T
应力松弛曲线
改变
固定
固定
改变
σ = f (t)ε ,T
蠕变(creep)和应力松弛(stress relaxation)就是本章研究的静态黏弹性现象。 所谓蠕变,就是在一定温度和较小的恒定应力下,聚合物形变随时间而逐渐增大的现象。所谓应力松 弛,就是在固定的温度和形变下,聚合物内部的应力随时间增加而逐渐减弱的现象。 影响蠕变和应力松弛的因素有: (1)结构(内因):一切增加分子间作用力的因素都有利于减少蠕变和应力松弛,如增加相对分子质 量,交联,结晶,取向,引入刚性基团,添加填料等。 (2)温度或外力(外因):温度太低(或外力太小),蠕变和应力松弛慢且小,短时间内观察不到; 温度太高(或外力太大),形变发展很快,形变以黏流为主,也观察不到。只有在玻璃化转变区才最明显。 2.动态黏弹性现象 动态黏弹性现象是在交变应力或交变应变作用下,聚合物材料的应变或应力随时间的变化。主要讨论 滞后(retardation)和力学损耗(内耗,internal friction)两种现象。 所谓滞后,是在交变应力的作用下,应变随时间的变化一直跟不上应力随时间的变化的现象。所谓内 耗,是存在滞后现象时,每一次拉伸-回缩循环中所消耗的功,消耗的功转为热量被释放。

聚合物的线性粘弹性

聚合物的线性粘弹性

t0
(t) E( 0 , t)
t0
J (t) (t) / 0 剪切蠕变柔量
D(t) E( 0 , t) / 0 拉伸蠕变柔量
15
ห้องสมุดไป่ตู้
• 蠕变柔量 • 粘弹性固体
平衡柔量 瞬时剪切柔量
16
lim
t 0
J
(t)
J0
lim
t
J
(t)
Je
J (t) J0 (t)
J0 为瞬时剪切柔量或玻璃
Ø 对于粘弹性体, 0 (t) J (t) 0
1(t) J (t 1) 0 2 (t) J (t 2 ) 0 在某个时刻旳应变,不但决定于该时刻旳应力, 还决 定于此时刻之前所受应力旳情况(应力史)。
4
二步应力史
5
1(t) J (t 1)1 2 (t) J (t 2 ) 2
t 1 t 2
J ( ) J ( T ) J (T )
T表达回复时间。 30
粘弹性固体 假如θ很长,粘弹性固体到达平衡态时,J(θ)=Je,成
为长蠕变;反之,为短蠕变。 假如回复时间长,即T>>0, 则 (t) 0[J () J ()] 0
即粘弹性固体完全回复了。
对于长蠕变:R(,T ) J () J () J (T ) J (T )
(t)
(t) G(t )d ( )
0
(t) t G(t ) d ( )d
d
11
5.2 静态粘弹性
应变史(Strain history), ε(t) 应力史(Stress history), σ(t)
• 蠕变:固体材料在保持应力不变旳条件下, 应变随时间延长而增长旳现象。
• 应力松弛:材料在恒定变形条件下,应力随 时间旳延续而逐渐降低旳现象。

7聚合物的粘弹性

7聚合物的粘弹性
– 例如需要在室温条件下几年甚至上百年完成的 应力松弛实验实际上是不能实现的,但可以在 高温条件下短期内完成; – 或者需要在室温条件下几十万分之一秒或几百 万分之一秒中完成的应力松弛实验,实际上也 是做不到的。但可以在低温条件下几个小时甚 至几天内完成。
静态黏弹性实验
动态黏弹性实验
力学阻尼
– 玻璃化转变、次级松弛、晶态聚合物的分子运动 等都十分敏感。
P187 图7-9
ω≤1/τ
ω~1/τ
ω≥1/τ
粘弹性的数学描述
Maxwell模型 Kelvin模型
弹簧与黏壶串联
弹簧与黏壶并联
• WLF方程有着重要的实际意义。 • 有关材料在室温下长期使用寿命以及超瞬 间性能问题,实验是无法进行测定的,但 可以通过时温等效原理来解决。
①熔融
②晶型转变
③晶区内部运动, 缺陷、侧基
β:支化引起的 非晶区内的松弛
• RBZ理论从分子结构出发建立了松弛时间与 结构之间的关联。但是对于复杂的分子运 动,该模型仍然过于简单。 • 不断的进行修正…….
粘弹谱仪属强迫振动非共振 法,直接收集加在试样上的 应力和应变的大小和相位, 按照基本关系求得E’、E”和 tgδ值。
• 聚合物的动态力学行为对其玻璃化转 变、结晶、增塑、交联、相分离以及 玻璃态(区)和晶态的分子运动等都 十分敏感,因此,可以用来获得有关 分子结构和分子运动的许多信息。
n≥4,曲柄运动
普弹柔量
主链具有芳杂环的刚性链聚合物,具有较好的抗蠕变性能,工程塑料。
(2)应力松弛
• 所谓应力松弛,就是在恒定温度和形变保 持不变的情况下,聚合物内部的应力随时 间增加而逐渐衰减的现象。
l
未交联橡胶
• 具体说,在外力作用下,高分子链段不得 不顺着外力方向被迫舒展,因而产生内部 应力,以与外力抗衡。 • 但是,通过链段热运动调整分子构象,以 致缠结点散开,分子链产生相对滑移,逐 渐恢复其蜷曲的原状,内应力逐渐消除, 与之相平衡的外力当然也逐渐衰减,以维 持恒定的形变。 • 交联聚合物整个分子不能产生质心位移的 运动,故应力只能松弛到平衡值。

聚合物的粘弹性-第七章

聚合物的粘弹性-第七章

① 普弹形变ε1:
键长和键角发生变化而引起的,形变量很小,瞬间响应。
示意图
1
1
E1
t1
t2
t
σ:应力;E1:普弹形变模量
②高弹形变ε2: 链段运动使分子链逐渐伸展发生构象变化而引起 :
2
2
E2
(1 e t / )
t
t1 t2 τ :松弛时间,与链段运动的粘度η2和高弹模量E2有关, τ=η2/ E2。
2. 温度
高 链段运动很容易,应变几乎不滞后于应力的变化; 低
链段运动速度很慢,在应力变化的时间内形变来不 及发展,也无所谓滞后; Tg附近 链段既可以运动,但受到的粘滞阻力又较大,此时 滞后现象严重。
滞后现象发生的原因
链段在运动时要受到内摩擦阻力的作用。 内摩擦阻力越大,δ也就越大。
δ又称为力学损耗角。 为了方便常用tanδ来 表示内耗大小。
(t) o sint
(t) o sin(t )
相位差δ在0-π/2之间。
影响滞后现象的因素:
1.外力变化的频率 低 链段运动能跟得上外力的变化,滞后现象就很小; 高 链段根本来不及运动,高聚物就像一块刚硬的固体,滞
后现象也很小; 适中
链段既可以运动,但又跟不上应力的变化,才出现 较明显的滞后现象。
E′、E″及tgδ都是温度和频率的函数。 动态力学频率谱: 在一定T时,以lgE′、lgE″和tgδ对lgω作图 动态力学温度谱: 在一定频率时,以lgE′、lgE″和tgδ对T作图
当<<1/
运动单元完全跟得上外力作用的变化, E′与无关,E″和tgδ几乎为零
表现橡胶的高弹态。
当≈1/
运动单元运动,但又不能完全跟上外应力的变化

聚合物的高弹性和粘弹性

聚合物的高弹性和粘弹性

高分子物理课内实践——聚合物的高弹性和黏弹性一、高弹性:非晶态聚合物在玻璃化温度以上时处于高弹态。

高弹态的高分子链段有足够的自由体积可以活动,当它们受到外力后,柔性的高分子链可以伸展或蜷曲,能产生很大的形变,甚至超过百分之几百,但不是所有的聚合物都如此。

如果将高弹态的聚合物进行化学交联,形成交联网络,它的特点是受外力后能产生很大的形变,但不导致高分子链之间产生滑移,因此外力除去后形变会完全回复,这种大形变的可逆性称为高弹性。

它是相对于普弹性而言的。

所谓普弹性就是金属或其他无机材料的属性,即在力场作用下,应力与应变成正比,服从胡克定律,且形变量甚小,仅为千分之几或更小。

高弹态高聚物的弹性形变则数值很大,可达百分之几或更大,在绝热拉伸或压缩过程中,处于高弹态的高聚物(如橡胶)的温度能上升,金属的温度则下降。

在平衡状态时,橡胶的弹性模量与温度成正比,而金属的模量则与温度成反比。

高弹态是聚合物特有的基于链段运动的一种力学状态,高弹性是高分子材料极其重要的性能,其中尤以橡胶类物质的弹性最大。

它有如下特征:1.弹性模量很小而形变量很大。

由于热运动的作用,这种分子会不断的改变着自己的形状,就会显示出形变量比较大的特点,当外力作用对抗回缩力的时候形变就会自发回复,造成形变的可逆性,由于回缩力不大,在外力不大的时候就会可能发生比较大的形变,所以其弹性的模量表现比较小;2.弹性模量随温度的升高而增加。

在外力的作用下,这种回缩力与温度也有很大关系,会随着温度的升高,分子的热运动就会出现加强,回缩力也就会增大,弹性模量也就出现增加,弹性形变就会变小;3.泊松比大;4.形变需要时间。

由于在受到压力压缩的时候,形变就会总是随着时间的发展达到最大,随着压力的下降而消失。

不管是克服分子之间的作用力以及内摩擦力,还是从一种平衡的状态过渡到外力相适应的平衡状态,形变都是在外力作用之后所引起的,所以发生形变是需要时间的;5.形变时有热效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章聚合物的粘弹性一、概念1、蠕变在一定温度、一定应力的作用下,聚合物的形变随时间的变化称为蠕变。

2、应力松弛在固定的温度和形变下,聚合物的内部应力随时间的增加而衰减的现象称为应力松弛。

3、滞后现象与力学内耗滞后现象:聚合物在交变应力作用下,应变落后于应力的现象。

力学内耗:由于发生滞后现象,在每一循环变化中作为热损耗掉的能量与最大储存能量之比成为力学内耗。

4、时温等效原理从分子运动的松驰性质可知,同一力学松驰现象,既可在较高的温度下,较高的时间内观察到,也可以在较低的温度下,较长时间内观察到。

因此,升高温度与延长时间对分子运动是等效的,对聚合物的粘弹性也是等效的,这就是时温等效原理。

适用范围Tg ~ Tg+1005、Blotzmann叠加原理高聚物的力学松驰行为是其整个历史上诸松驰过程的线性加和的结果。

对于蠕变过程,每个负荷对高聚物的变形的贡献是独立的,总的蠕变是各个负荷起的蠕变的线性加和,对于应力松驰过程,每个应变对高聚物的应力松驰的贡献也是独立的,高聚物的总应力等于历史上诸应变引起的应力松驰过程的线性加和。

二、选择答案1、粘弹性是高聚物的重要特征,在适当外力作用下,(B )有明显的粘弹性现象。

A、T g以下很多B、T g附近C、T g以上很多D、f附近2、关于WLF方程,说法不正确的为(A )。

A、严格理论推导公式B、T g参考温度,几乎对所有聚合物普遍适用C、温度范围为T g~T g+100℃D、WLF方程是时温等效原理的数学表达式3、(C )模型基本上可用于模拟交联聚合物的蠕变行为。

A、Flory,B、Huggins,C、Kelvin,D、Maxwell4、(D )模型可以用于模拟线性聚合物的应力松弛行为。

A、Flory,B、Huggins,C、Kelvin,D、Maxwell三、填空题1、Maxwell模型可模拟线性聚合物的应力松弛现象,而Kelvin模型基本上可用来模拟交联聚合物的蠕变行为。

2、WLF方程若以T g为参考温度,则lg a T= -C1(T-T g)/[C2+(T-T g)] ,WLF方程可定量描述时-温等效原理。

根据时-温等效原理,提高试验拉伸速率,力学损耗将向高温方向移动。

3、聚合物的静态粘弹性主要表现为应力松弛和蠕变。

4、一硫化橡胶试样在周期性交变拉伸作用下,应变落后于应力变化的现象称为滞后现象,对应于同一应力值,回缩时的应变大于拉伸时的应变,其原因是高分子链段运动受限于内摩擦力、应变跟不上应力变化。

拉伸曲线下的面积表示外力对橡胶所做的拉伸功,回缩曲线下的面积表示橡胶对外所做的回缩功,两个面积之差表示一个拉伸-回缩循环中所损耗的能量。

5、聚合物在交变应力下应变落后于应力的现象称为滞后现象。

在每一循环变化中,热损耗掉的能量与最大储能量之比称为力学损耗。

四、回答下列问题1、写出麦克斯韦尔模型、开尔文模型的运动方程。

这两种模型可以模拟什么样的聚合物的何种力学松弛行为?麦克斯韦尔模型的运动方程开尔文模型的运动方程kelvin 模型基本上可以摸拟交联聚合物的蠕变行为(但无开始普弹形变)Maxwell 模型可以模拟线形聚合物的应力松驰行为(定性)2、“聚合物的应力松弛是指维持聚合物一恒定应变所需的应力逐渐衰减到零的现象”,这句话对吗?为什么?不对。

因为应力松弛是指在固定的温度和形变下,聚合物的内部应力随时间的增加而衰减的现象。

对于线型大分子而言,聚合物的内部应力可以衰减到零,但是对于交联聚合物而言,应力不能衰减到零。

3、画出固定试验温度下,聚合物的内耗与外力频率的关系曲线,并以松弛的观点加以解释和说明。

由于发生滞后现象,在每一循环变化中,作为热损耗掉的能量与最大储存能量之比称为力学内耗。

①当外力作用比运动单元的松驰时间的倒数高得多时,即w>>τ1,该运动单元基本上来不及跟随交变的外力而发生运动E ’与w 无关,E ’’和lg δ几乎为零(表现刚性玻璃态)。

②当w<<τ1,运动单元的运动完全跟得上,作用为的变化,E ’与w 无关,E ’’和tg δ几乎为零,表现橡胶的高弹态。

③只有当w ≈τ1,运动单元运动跟上,但又不能完全跟上外应力的变化△E1变化大,E ’’和tg δ出现极大值(内耗峰),表现明显的粘弹性。

4、示意画出聚合物动态粘弹性的温度谱,说明温度对聚合物内耗大小的影响。

①Tg 以下,聚合物应变仅为键长的改变,应变量很小,几乎同应力变化同步进行,tg δ很小。

②温度升高,玻璃态自橡胶态转变,链段开始运动,体系粘度大,运动摩擦阻力大,tg δ较大,(玻璃化转变区,出现内耗峰)。

③温度进一步升高,虽应变值较大,但链段运动阻力减小,tg δ减小。

④在末端流动区,分子间质的位移运动,内摩擦阻力再次升高,内耗急剧增加。

5、什么是时温等效原理和WLF 方程?它们有何意义?从分子运动的松驰性质可知,同一力学松驰现象,既可在较高的温度下,较高的时间内观察到,也可以在较低的温度下,较长时间内观察到。

因此,升高温度与延长时间对分子运动是等效的,对聚合物的粘弹性也是等效的,这就是时温等效原理。

适用范围 Tg ~ Tg+100参考温度 T0经验常数 c1 c2WLF 方程: 意义:在室温下几年几百年的应力松驰是不能实现的,可在高温条件下短期内完成或在室温下几十万分之一秒完成的应力松驰,可在低温条件下几小时完成。

五、计算题1、根据WLF 方程预计玻璃化温度测量所用频率提高或降低一个数量级时,测得的T g 将变化多少度?TTWLF 方程:lga T =)(6.51)(44.178g T T T T -+-- a T =10w w o =ττA.测量频率提高一个数量级时,即w 1=10w 0, lg0.1=)(6.51)(44.178g T T T T -+--=-1 得到:T -Tg=3.14o 测得的T g 将升高3.14度。

B. 测量频率降低一个数量级时,即w 1=0.1w 0, lg10=)(6.51)(44.178g T T T T -+--=1 得到:T -Tg=-2.8o 测得的T g 将降低2.8度。

2、在频率为1Hz 条件下进行聚苯乙烯试样的动态力学性能实验,125℃出现内耗峰。

请计算在频率1000Hz 条件下进行上述实验,出现内耗峰的温度。

(已知聚苯乙烯T g =100℃)解: a T =oo t t ττ=① WLF 方程:lga T =)()(281g T T C T T C -+-- ②③ 松驰时间τ=,出现内耗峰作用时间)(1ϖ125℃ lga T1=lg )100125(6.51)100125(44.171-+--=oττ④ τ1=s 111= lga T2=lg )100(6.51)100(44.172-+--=T T o ττ⑤ τ2=ε001.010001= ④-⑤=lg ο1513)100(6.51)100(44.17256.511544.1721=⇒=+=-+-+⨯-T T T ττ C3、聚合物试样,25℃时应力松弛到模量为105N/m 2需要10hr 。

试计算-20℃时松弛到同一模量需要多少时间?(已知该聚合物的T g = -70℃)解:由WLF 方程:lga T =)(6.51)(44.178g T T T T -+-- a T =o ττ25℃时 lga T1=lg )7025(6.51)7025(44.171+++-=oττ=-11.3 -20℃时 lga T2=lg )7020(6.51)7020(44.172+-++--=oττ=-8.58 lg )7020(6.51)7020(44.17)7025(6.51)7025(44.1721--+----+---=ττ=-2.72∴2τ=5248(h)∴-20℃时松弛到同一模量需要5248小时。

4、聚苯乙烯试样,已知160o C 时粘度为103Pa·s ,试估算T g (100o C )时和120o C 时的粘度。

解:由WLF 方程:lga T =)(6.51)(44.178g T T T T -+-- a T =o ηηlg )100160(6.51)100160(44.17100160-+--=ηη=-9.38 ∴100η=2.4×1012 (Pa·s) lg )100120(6.51)100120(44.17100120-+--=ηη=-4.87 ∴120η=3.2×107 (Pa·s)5.以某一聚合物材料作为两根管子接口法兰的密封垫圈,假设材料的力学行为可以用Maxwell 模型描述。

已知垫圈压缩应变为0.2,初始模量为3×106 N /m 2,材料应力松弛时间为300d ,管内流体的压力为0.3×106N/m 2,试问多少天后接口处发生泄漏?解:Maxwell 模型描述应力松驰时间的方程σ(t)=σ(o)e τt -;;σ(o)=E ε=3×106×0.2=6×105N /m 2τ=300d;;;当σ(t)=0.3×106N/m 2开始泄漏则e2121)()(ln 300/300⋅=-⇒==-t o t t σσ;;;)(2082ln 300d t ==⇒。

相关文档
最新文档