用导数求函数的单调区间含参问题
利用导数研究含参函数单调性
利用导数研究含参函数单调性函数的单调性是指函数随着自变量的变化,函数值的增减规律。
利用导数可以研究含参函数的单调性。
考虑含参函数$f(x;a)$,其中$a$是函数的参数。
我们希望研究函数$f$相对于自变量$x$和参数$a$的单调性。
首先,我们来研究函数相对于自变量$x$的单调性。
要研究函数$f(x;a)$的单调性,我们需要计算其导数。
记$f'(x;a)$为函数$f(x;a)$的导数。
根据导数的定义,我们有$$f'(x;a) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x;a) - f(x;a)}{\Delta x}$$这表示了函数$f(x;a)$在$x$处的切线的斜率。
我们可以通过计算导数来研究函数的单调性。
具体来说,当导数$f'(x;a)$在一些区间内始终大于零时,函数$f(x;a)$在该区间内是递增的;当导数$f'(x;a)$在一些区间内始终小于零时,函数$f(x;a)$在该区间内是递减的。
例如,考虑函数$f(x;a) = ax^2 + bx + c$,其中$a,b,c$是参数。
我们可以计算其导数$f'(x;a) = 2ax + b$。
当$a>0$时,$f'(x;a)$在整个实数域上大于零,这表示函数$f(x;a)$是递增的;当$a<0$时,$f'(x;a)$在整个实数域上小于零,这表示函数$f(x;a)$是递减的。
接下来,我们来研究函数相对于参数$a$的单调性。
要研究函数$f(x;a)$相对于参数$a$的单调性,我们需要计算其偏导数。
记$\frac{\partial f}{\partial a}(x;a)$为函数$f(x;a)$相对于参数$a$的偏导数。
根据偏导数的定义,我们有$$\frac{\partial f}{\partial a}(x;a) = \lim_{\Delta a \to 0} \frac{f(x;a+\Delta a) - f(x;a)}{\Delta a}$$类似地,我们可以通过计算偏导数来研究函数相对于参数的单调性。
如何运用导数法判断含参函数的单调性
思路探寻导数法是研究函数单调性的“利器”,判断含参函数的单调性是各类试题中的常见题目.含参函数的单调性问题一般较为复杂,需要灵活运用分类讨论思想和导数法进行求解.下面我们来探讨一下如何运用导数法来判断含参函数的单调性.一般地,运用导数法判断含参函数的单调性有如下几个步骤:1.讨论并确定函数的定义域.2.对函数进行求导,并进行适当的化简.3.求出导函数的零点.若函数的零点中含有参数,需讨论零点的符号.4.用零点将函数的定义域分为几个区间段.5.在各个区间段上讨论导函数与0之间的关系.若导函数大于0,则该函数在该区间上单调递增;若导函数小于0,则该函数在该区间上单调递减.下面举例说明.例1.已知函数f (x )=ln x -(a +1)x ,讨论f (x )的单调性.解:由已知得函数的定义域为(0,+∞),且f '(x )=1-(a +1)x x.①当a ≤-1时,f '(x )>0,f (x )在(0,+∞)上单调递增;②当a >-1时,令f '(x )=0,得x =1a +1.当0<x <1a +1时,f '(x )>0;当x >1a +1时,f '(x )<0.所以f (x )在(0,1a +1)上单调递增,在(1a +1,+∞)上单调递减.综合①②可知,当a ≤-1时,f (x )在(0,+∞)上单调递增;当a >-1时,f (x )在(0,1a +1)上单调递增,在(1a +1,+∞)上单调递减.由此可见,讨论含参函数单调性的关键在于判断导函数与0之间的关系.解答本题的关键在于讨论1-(a +1)x 的符号.在求出导函数的零点后,用零点x =1a +1将函数的定义域分为两个区间段:(0,1a +1)、(1a +1,+∞),再进一步讨论导函数与0之间的关系.例2.已知函数f (x )=ax -1x-ln x ,讨论f (x )的单调性.解:由题意知f '(x )=a +1x 2-1x =ax 2-x +1x 2(x >0).①当a =0时,f '(x )=1-xx2.由f '(x )>0得0<x <1,由f '(x )<0得x >1,即f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.②当a ≠0时,令f '(x )=0,即ax 2-x +1=0,Δ=1-4a .若Δ≤0,即a ≥14,f '(x )≥0,则f (x )在(0,+∞)上单调递增.若Δ>0,即a <0或<14,由f '(x )=0得x 1=,x 2,当14时,x 2x 1>0,所以f (x )在,+∞)上单调递增,在上单调递减.当a <0时,x 1>0>x 2,所以f (x )在上单调递增,在+∞)上单调递减.在求出导函数的表达式后,我们就可以发现,只需讨论ax 2-x +1的符号,就可以确定函数的单调性.由于ax 2-x +1为二次函数,且二次项的系数含有参数,所以需运用分类讨论思想分别对二次项的系数、方程的判别式Δ进行讨论.当Δ>0时,方程有两个根,即导函数有两个零点,若为x 1,x 2,则需先比较两个零点的大小,然后再划分定义域[m ,n ]:m <n <x 1<x 2;x 1<m <n <x 2;x 1<x 2<m <n ;m <x 1<n <x 2;x 1<m <x 2<n ;m <x 1<x 2<n ,结合二次函数的图象判断导函数的符号,得出原函数的单调性.综上所述,运用导数法判断含参函数的单调性,不仅要熟练掌握上述步骤,还要明确分类讨论的对象、标准以及层级,学会灵活运用分类讨论思想,合理对参数进行分类讨论.本文系福建省教育科学“十三五”规划课题2020年度教育教学改革专项课题:学科素养视域下“读思达”教学法的数学课堂应用研究(项目编号:Fjjgzx20-077).(作者单位:福建省莆田第二中学)54 Copyright©博看网 . All Rights Reserved.。
用导数解决含参数的函数的单调性
用导数解决含参数的函数的单调性单调性是数学中一个重要的概念,用于描述函数在特定区间内的增减性质。
在解决含参数的函数的单调性时,我们可以利用导数的概念和性质进行分析和推导。
本文将介绍如何使用导数解决含参数的函数的单调性,并给出相应的示例。
首先,我们来回顾一下导数的定义。
对于函数$f(x)$在点$x=a$处可导,其导数$f'(a)$表示函数曲线在该点处的斜率,可以通过以下公式计算:$$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$其中,$h$为一个无限趋近于0的值。
导数可以帮助我们研究函数的变化趋势、最值以及单调性等性质。
接下来,我们将探讨含参数的函数的单调性。
含参数的函数形式可以表示为$f(x;a)$,其中$a$为参数。
我们的目标是找到使函数单调的参数范围。
解决这个问题的关键是求导。
首先,我们需要计算函数的一阶导数$f'(x;a)$和二阶导数$f''(x;a)$。
一阶导数反映了函数的变化趋势,二阶导数揭示了函数的曲率性质。
接下来,我们需要找出函数的临界点和在其定义域内的驻点。
临界点是导数为0或不存在的点,驻点是导数在该点处为0的点。
当我们求出一阶导数$f'(x;a)$后,我们可以通过求解方程$f'(x;a)=0$来计算临界点和驻点。
这些点将给出函数的极值或拐点。
通过对导数方程进行求解,我们可以找到参数$a$满足$f'(x;a)=0$,从而得到临界点和驻点。
接下来,我们需要进行符号分析,确定函数的区间性质。
具体来说,当一阶导数$f'(x;a)$在一些区间内大于0时,函数$f(x;a)$是递增的;当一阶导数在一些区间内小于0时,函数是递减的;当一阶导数的正负性在一些点发生改变时,该点可能是函数的拐点。
当我们确定函数的单调性时,还应该考虑到函数的定义域。
特别是当参数$a$对函数的定义域有影响时,我们需要对不同的参数范围进行分析,以确定函数的单调性。
(完整版)用导数求函数的单调区间含参问题
用导数求函数的单调区间——含参问题一、问题的提出应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。
其中,学生用导数求单调区间最困难的是对参数分类讨论。
尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类二、课堂简介请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。
例1、 求函数R a a x x x f ∈-=),()(的单调区间。
解:定义域为),0[+∞ ,23)('x ax x f -=令,0)('=x f 得,3a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增;(2) 0>a ,令0)('>x f 得∴>3a x )(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3,0[a 上单调递减,在),3[+∞a 上单调递增。
分类讨论特点:一次型,根3a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。
解:定义域R),1)](1([1)('2---=-+-=x a x a ax x x f令,0)('=x f 得1,121=-=x a x(1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。
(2) 211==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。
(3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。
使用导数来解决含参函数单调性的讨论方法的总结
使用导数来解决含参函数单调性的讨论方法的总结
利用导数来解决含参函数单调性问题,是一个经典的数学问题,也是高数学习者常遇到的一大难题。
要想确定一个参数函数的单调性,就要考虑它的导数变化,这就引出了利用导数来解决含参函数单调性的讨论方法。
首先,我们必须了解如何计算函数的导数。
对于一元函数,可以从原函数中求得导数的定义,即求偏导;也可以使用分部法及牛顿法,直接求出导数;而多元函数的导数一般由偏导方程式求得,其中可利用梯度、相对极值等概念计算函数的偏导数及其导数大小。
之后,可以利用导数把单调性转化为数学上的一种判断,即若一函数的导数大小符合特定条件,则该函数的单调性也得到确定,不断更新函数的参数就可以实现单调性。
如果在更新函数参数的过程中,函数的导数量一直大于0,则函数具有上升的单调性,反之,如果函数的导数量一直小于0,则函数具有下降的单调性。
此外,利用导数来解决含参函数单调性的另一个方面就是,可以根据该函数的导数表达式,计算其函数值的变化与自变量的变化。
当自变量变化时,就可以求取函数的导数值,从而归结出函数某个确定点处的单调性。
总之,利用导数来解决含参函数单调性,总结起来就是这样:首先,计算函数导数,然后根据函数的导数表达式近似计算函数某一确定点处的单调性;最后,根据函数的导数大小,可以判断该函数的单调性,并利用不断更新函数参数的过程来最大程度地实现单调性。
利用导数求含参数的函数单调区间的分类讨论归类
利用导数求含参数的函数单调区间的分类讨论归类一、根据判别式 △=b ²-4ac 讨论↵例1.已知函数. f(x)=x ³+ax ²+x+1(a∈R),求f(x)的单调区间.解: f ′(x )=3x²+2ax +1,判别式△=b ²-4ac=4(a ²-3),(1)当 a >√3或 a <−√3时,则在 (−∞,−a−√a 2−33)和 (−a+√a 2−33,+∞)上,f'(x)>0, f(x)是增函数;在 (−a−√a 2−33,−a+√a 2−33),f ′(x )<0,f(x)是减函数;(2)当 −√3<a <√3时,则对所有x∈R, f'(x)>0, f(x)是(-∞,+∞)上的增函数;↵二、根据判二次函数根的大小讨论↵例2:已知函数. f (x )=(x²+ax −3a²+3a )eˣ(a ∈R 且 a ≠23),求f(x)的单调区间. 解: f ′(x )=[x²+(a +2)x −2a²+4a ]⋅eˣ,f ′(x )=(0得x=-2a 或x=a-2↵(1)当 a >23时,则-2a<a-2,在(-∞,-2a)和(a-2,+∞)上, f'(x)>0, f(x)是增函数;在(-2a,a-2)上, f'(x)<0, f(x)是减函数;(2)当 a <23时,则a-2<-2a,在(-∞,a -2)和(-2a,+∞)上, f'(x)>0, f(x)是增函数;在(a-2,-2a)上, f'(x)<0, f(x)是减函数;题型归纳总结:求导后是二次函数的形式,如果根的大小不确定,应对根的大小讨论确定单调区间.练习2↵三、根据定义域的隐含条件讨论。
例3:已知函数f(x)=lnx-ax(a∈R),求f(x)的单调区间.解: f ′(x )=1x −a (x ⟩0), (1)当a≤0时, f ′(x )=1x −a >0,在(0,+∞)上,f'(x)>0, f(x)是增函数;(2)当a>0时,令 f ′(x )=1x −a =0,得 x =1a ,题型归纳总结:定义域有限制时,定义域与不等式解集的交集为分类标准讨论。
利用导数研究含参函数单调性
利用导数研究含参函数单调性导数是研究函数的一个重要工具,可以用来研究函数的单调性。
含参函数即包含一个或多个参数的函数,我们可以通过对导数的研究来研究含参函数的单调性,下面我们就来详细介绍。
首先,我们先回顾一下导数的定义。
对于含有一个自变量的函数y=f(x),我们可以通过求导来得到函数在其中一点的斜率。
导数的定义为:f'(x) = lim(h->0) {f(x+h)-f(x)} / h其中,f'(x)表示函数f(x)在点x处的导数。
如果函数在其中一点的导数大于0,我们可以认为该点函数是递增的;如果导数小于0,则是递减的。
如果导数恒大于0,则函数是严格递增的;如果导数恒小于0,则函数是严格递减的。
对于含参函数y=f(x,a,b,c...),其中a,b,c...为参数,我们也可以研究其单调性。
我们可以首先将含参函数看作一个关于自变量x的函数,然后求导。
求导后的函数中不再含有参数,其导数的正负号和零点即可以用来研究函数在不同参数取值情况下的单调性。
接下来,我们通过一个具体的例子来说明。
考虑函数y=f(x,a)=ax^2,其中a为参数。
我们可以先固定a的值,然后研究函数关于x的变化情况,再通过参数a的取值来研究函数的单调性。
首先,我们分别求导得到函数关于自变量x的导数:f'(x,a) = 2ax现在我们可以根据导数的正负号来研究函数的单调性。
当a>0时,f'(x,a)恒大于0,即导数恒大于0,说明函数递增;当a<0时,f'(x,a)恒小于0,即导数恒小于0,说明函数递减。
接下来,我们可以通过研究参数a的取值来研究函数的单调性。
当a>0时,函数为开口向上的抛物线,随着a的增大,函数的正值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强;当a<0时,函数为开口向下的抛物线,随着a的减小,函数的负值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强。
利用导数研究含参函数的单调性
1 f ( x )在 ( , 2) 上 为 减 函 数 。 a
综上:
(1)当a 0时 , f ( x)在 (0,2) 上 递 增 , 在 (
2, ) 上 递 减 。
1 (2)当a 时 , f ( x )在 (0, ) 上 为 增 函 数 。 2 1 1 (3)当0 a 时 , f ( x )在 (0, 2) 和 ( ,)上 为 增 函 数 ; 2 a 1 f ( x )在 (2, ) 上 为 减 函 数 。 a 1 1 (4)当a 时 , f ( x )在 (0, ) 和 ( 2,)上 为 增 函 数 ; 2 a
1、能利用导数法判断含参函数的单调性
2、掌握讨论含参函数单调性的几种常见 分类标准
独立自学
1 用导数判断函数单调性的法则 、 :
如果在(a,b)内, f ( x)>0, 则f ( x)在此区间是增函数;
则f ( x)在此区间是减函数。 如果在(a,b)内,f ( x)<0,
2、求函数单调区间的一般步骤是 1、求定义域 2、求导f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0,求出减区间。
课题导入 安徽高考真题展示:
2 (09年)已知函数 f ( x) x a(2 ln x), a 0.讨论 f ( x)的单调性 x
含参数函数的单调性问题是历年高考中的一个重要 考点,同时也是学习中的一个难点。那么我们该如 何应对这一类问题呢?
利用导数研究含参函数的单调性
目标引领
探究: 1、在求导计算前应注意什么问题? 2、导函数中影响符号变化的部分是什么函数? 3、在利用导函数判别单调性时,应如何讨论? 无法确定导函数中二次结构的判别式符号,故应对判别式进行 分类讨论。 归纳总结: 对于二次函数取值正负,当根的情况 不能确定时,要对判别式进行讨论。
用导数研究含参函数的单调性
用导数研究含参函数的单调性导数是研究函数在各个点上的斜率或变化率的工具,可以用来研究含参函数的单调性。
含参函数是指函数中包含一个或多个参数的函数。
研究含参函数的单调性,既可以固定参数的值,将其视为常数,研究含参函数的单调性;也可以将参数值作为变量,研究函数在不同参数取值下的单调性。
一、固定参数的值,研究含参函数的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,固定参数$\theta$的值,将其视为常数。
此时,可将含参函数简化为仅含有变量$x$的函数$f(x)$。
然后利用导数的概念和性质来研究这个简化后的函数$f(x)$的单调性。
具体步骤如下:1.求出函数$f(x)$的导函数$f'(x)$,即计算$f(x)$关于$x$的导数。
这一步可以直接用导数的定义来计算,或者应用常见函数的导数公式,例如幂函数、指数函数、对数函数等的导数公式。
2.求出函数$f'(x)$的零点,即求出方程$f'(x)=0$的解。
这些零点对应于函数$f(x)$的驻点,它们是函数在一些点上的斜率为0的点。
3.利用导数的符号来研究函数$f(x)$的单调性。
若$f'(x)>0$,表示函数$f(x)$在该点处的斜率为正,则函数$f(x)$单调递增;若$f'(x)<0$,表示函数$f(x)$在该点处的斜率为负,则函数$f(x)$单调递减。
4.将求出的零点和函数的特殊点(如端点、奇点等)放在数轴上,根据导数的符号,划分函数$f(x)$的单调区间。
通过以上步骤,可以得到函数$f(x,\theta)$在固定参数$\theta$的取值下,函数$f(x)$的单调性。
二、将参数值作为变量,研究函数在不同参数取值下的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,可以将参数值$\theta$看作是一个变量,通过改变参数值来研究函数的单调性。
这种情况下,可以使用偏导数来研究含参函数的单调性。
含参型函数单调性求解技巧
含参型函数单调性求解技巧单调性是函数在某个定义域上的递增或递减性质。
当一个函数在某个区间上单调递增时,函数的值随着自变量的增大而增大;当一个函数在某个区间上单调递减时,函数的值随着自变量的增大而减小。
要判断一个含参型函数的单调性,可以运用微积分和函数性质的知识。
下面介绍一些常见的求解技巧。
一、求导法1. 单调递增区间如果一个函数在某个区间上的导数大于零,则函数在该区间上单调递增。
即 f'(x) > 0。
2. 单调递减区间如果一个函数在某个区间上的导数小于零,则函数在该区间上单调递减。
即 f'(x) < 0。
判断函数的单调性时,可以求出函数的导数,并根据导数的正负来判断单调性的性质。
例如,对于函数 f(x) = x^2 + 3x + 2,我们可以求出它的导数 f'(x) = 2x + 3。
根据导数 f'(x) 的正负,可以判断函数 f(x) 的单调性。
二、函数性质法有些函数具有特殊的数学性质,可以利用这些性质来判断函数的单调性。
1. 二次函数二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中a, b, c 是常数,并且 a ≠ 0。
当 a > 0 时,二次函数的图像是一个开口向上的抛物线,函数在抛物线开口的两侧上单调递增;当a < 0 时,二次函数的图像是一个开口向下的抛物线,函数在抛物线开口的两侧上单调递减。
例如,对于函数 f(x) = x^2 + 3x + 2,它是一个开口向上的抛物线,函数在整个定义域上单调递增。
2. 反函数如果一个函数在整个定义域上单调递增或单调递减,则它的反函数在整个值域上也单调递增或单调递减。
例如,对于函数f(x) = e^x,它是一个在整个定义域上单调递增的指数函数。
其反函数为f^{-1}(x) = \\ln x,它在整个值域上也单调递增。
三、初等函数的单调性规律对于一些常见的初等函数,也存在一些单调性的规律,可以用来判断函数的单调性。
利用导数研究含参函数单调性
利用导数研究含参函数单调性在数学中,单调性是指函数随着自变量的变化而变化的趋势。
如果函数在区间上递增,那么我们称函数在该区间上是单调递增的;如果函数在区间上递减,那么我们称函数在该区间上是单调递减的。
利用导数研究含参函数的单调性,是一种非常常用且有效的方法。
对于含参函数,其导数是关于自变量的函数,通过研究导数的符号来判断函数的单调性。
具体来说,如果导数在区间上恒大于0,那么函数在该区间上是递增的;如果导数在区间上恒小于0,那么函数在该区间上是递减的。
这可以通过导数的定义和性质来证明。
下面以一个简单的例子来说明如何利用导数研究含参函数的单调性。
假设我们要研究含参函数 f(x;a) = ax^2 的单调性,其中 a 是参数。
首先,我们计算函数f的导数。
由于a是参数,我们将其视为常数。
根据导数的定义,有:f'(x;a) = lim[h->0] (f(x+h;a) - f(x;a)) / h= lim[h->0] (a(x+h)^2 - ax^2) / h= lim[h->0] (2axh + ah^2) / h= lim[h->0] (2ax + ah)= 2ax因此,函数 f 的导数是 f'(x;a) = 2ax。
接下来,我们通过研究导数的符号来判断函数f的单调性。
当 a > 0 时,当 x1 < x2 时,有 2ax1 < 2ax2,即 f'(x1;a) <f'(x2;a)。
因此,函数 f 在区间上是递增的。
当 a < 0 时,当 x1 < x2 时,有 2ax1 > 2ax2,即 f'(x1;a) >f'(x2;a)。
因此,函数 f 在区间上是递减的。
当a=0时,函数f(x;a)=0,因此函数f在任意区间上是常数,既不递增也不递减。
综上所述,当 a > 0 时,函数 f(x;a) = ax^2 在任意区间上都是递增的;当 a < 0 时,函数 f(x;a) = ax^2 在任意区间上都是递减的;当a = 0 时,函数 f(x;a) = ax^2 是常数。
利用导数解决含参的问题(word版含答案和详细解析)
利用导数解决含参的问题(word版含答案和详细解析)高考理科复专题练利用导数解决含参的问题考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
命题规律:利用导数探求参数的范围问题每年必考,有时出现在大题,有时出现在小题中,变化比较多。
不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理。
这也是2018年考试的热点问题。
高考题讲解及变式:利用单调性求参数的范围例1.【2016全国1卷(文)】若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()。
A。
[-1,1]B。
(-1,1)C。
(-∞,-1]∪[1,+∞)D。
(-∞,-1)∪(1,+∞)答案】C解析】因为f(x)在(-∞,+∞)上单调递增,所以f'(x)>0.将f(x)代入f'(x)得f'(x)=1-2sinx+acosx。
要使f'(x)>0,即要使1-2sinx+acosx>0.因为-1≤sinx≤1,所以1-2sinx≥-1.所以acosx>-1,即a>-1/cosx。
因为cosx=1时,a不等于-1;cosx=-1时,a不等于1.所以a∈(-∞,-1]∪[1,+∞),选C。
变式1.【2018XXX高三实验班第一次月考(理)】若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是_______。
答案】k≥1或k≤-1解析】在区间(1,+∞)上,f'(x)=k-1/x。
利用导数研究含参函数的单调性
利用导数研究含参函数的单调性导数是研究函数的重要工具之一,通过对函数的导数进行研究,可以得到函数的单调性信息。
含参函数是指函数中包含一个或多个参数,通过改变参数的取值可以得到一组函数。
接下来,我们将讨论如何利用导数研究含参函数的单调性。
首先,我们先来回顾一下单调性的概念。
若函数在其定义域上单调递增,则函数的值随自变量的增加而增加;若函数在其定义域上单调递减,则函数的值随自变量的增加而减小。
简而言之,单调性描述了函数随自变量变化的趋势。
对于含参函数,我们首先可以将参数视为常数,通过对函数关于自变量的导数进行研究,来探究函数的单调性。
然后,我们再考虑参数的变化对函数单调性的影响。
以一元含参函数为例,设函数为f(x;a),其中x为自变量,a为参数。
我们首先对自变量x求导,得到导函数f'(x;a)。
然后,通过研究导函数的单调性来推导出原函数f(x;a)的单调性。
在研究导函数的单调性时,我们可以采用以下几种方法:1.部分导数法:对于多元含参函数,我们可以先固定参数a,然后对自变量中的一些变量求导,得到该变量的偏导数。
通过研究偏导数的单调性,可以推导出原函数的部分单调性。
然后,再逐个固定其他变量,对其他变量求导,从而得到更完整的原函数的单调性。
2.极值点法:对于导函数f'(x;a),我们可以求出其零点,即f'(x;a)=0的解,也就是导函数的临界点。
通过研究导函数在临界点附近的变化情况,可以推导出原函数的单调性。
具体而言,如果导函数在临界点附近从正变负,那么原函数在临界点左边单调递增,在临界点右边单调递减;反之,如果导函数在临界点附近从负变正,那么原函数在临界点左边单调递减,在临界点右边单调递增。
3.导数符号法:对于导函数f'(x;a),如果在整个定义域上恒大于0或者恒小于0,则可以推导出原函数在整个定义域上单调递增或者单调递减。
具体而言,如果f'(x;a)>0,那么原函数单调递增;如果f'(x;a)<0,那么原函数单调递减。
导数专题:含参函数单调性讨论问题(解析版)
导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。
讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。
三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。
利用导数讨论含参函数的单调性
利用导数讨论含参函数的单调性讨论函数的单调性是研究函数问题的基础,对于函数的最值、极值、零点等性质的研究,都是以函数的单调性为基础展开的。
在此,主要讨论含参函数单调性的讨论方法。
函数的单调性由导函数的正负决定,讨论函数的单调性关键在于研究导函数的正负。
含参函数导函数正负的确定最大的困难在于参数的影响,如何对参数进行分类讨论是问题的关键。
在此,我们将提出三种方法。
一.分离参数、数形结合函数求导后,导函数中的参数可以分离,形如:m x g x f -=)()('的形式,若)(x g 有最小值,则分min )(x g m ≤,min )(x g m >两种情况进行分类讨论。
(1)当min )(x g m ≤时,0)()('≥-=m x g x f ;(2)当min )(x g m >时,若0)()('=-=m x g x f 有一个解,且)(x g 单调,设解为0x ,则0x 将定义域分为两个区间,讨论函数的单调性。
若)(x g 有最大值,则分max )(x g m ≥,max )(x g m <两种情况进行分类讨论。
1.(2012年全国卷文科21题) 设函数2)(--=ax e x f x . (1)求)(x f 的单调区间;解:函数)(x f 的定义域为()+∞∞-,,a e x f x -=)(',①若0≤a ,则0)('>x f ,)(x f 在()+∞∞-,单调递增; ②若0>a ,则由0)('=x f 得a x ln =,当()a x ln ,∞-∈时,0)('<x f ,当()+∞∈,ln a x 时,0)('>x f ; 所以)(x f 的单调减区间是()a ln ,∞-,单调增区间是()+∞,ln a ; 2.(2016年山东文科20题)设x a ax x x x f )12(ln )(2-+-=,R a ∈. (1)令)()('x f x g =,求)(x g 的单调区间. 解:函数)(x f 的定义域为()+∞,0,1221ln )()('-+-+==a ax x x f x g ,a xx g 21)('-=(1)若0≤a ,则0)('>x g ,)(x g 在()+∞,0单调递增;(2)若0>a ,则由0)('=x g 得ax 21=,当⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('>x g ,当⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('<x g ,所以)(x f 在⎪⎭⎫ ⎝⎛a 21,0单调递增,在⎪⎭⎫ ⎝⎛+∞,21a 单调递减.3.(2015年北京卷文科19题)设函数x k x x f ln 2)(2-=.(1)求)(x f 的单调区间和极值;解:函数)(x f 的定义域为()+∞,0,xkx x k x x f -=-=2')(,①若0≤k ,则0)('>x f ,)(x f 在()+∞,0单调递增; ②若0>k ,则由0)('=x f 得k x =,当()k x ,0∈时,0)('<x f ,当()+∞∈,k x 时,0)('>x f所以)(x f 的单调减区间是()k ,0,单调增区间是()+∞,k .4.(2015年全国二卷文科21题) 已知函数)1(ln )(x a x x f -+=. (1)讨论)(x f 的单调性;解:函数)(x f 的定义域为()+∞,0,xaxa x x f -=-=11)(', ①若0≤a ,则0)('>x f ,)(x f 在()+∞,0单调递增;②若0>a ,则由0)('=x f 得ax 1=,当⎪⎭⎫ ⎝⎛∈a x 1,0时,0)('>x f ,当⎪⎭⎫ ⎝⎛∈0,1a x 时,0)('<x f ;所以)(x f 在⎪⎭⎫ ⎝⎛a 1,0单调递增,在⎪⎭⎫ ⎝⎛0,1a单调递减; 5.(2016年四川卷文科21题) 设函数x a ax x f ln )(2--=. (1)讨论)(x f 的单调性; 解:函数)(x f 的定义域为()+∞,0,⎪⎭⎫⎝⎛-=-=-=22'121212)(x a x x ax x ax x f ,①若0≤a ,则0)('<x f ,)(x f 在()+∞,0单调递减;②若0>a ,则由0)('=x f 得ax 21=,当⎪⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('<x f ,当⎪⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('>x f ;所以)(x f 在⎪⎪⎭⎫ ⎝⎛a 21,0单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,21a 单调递增; 若0)()('=-=m x g x f 有两个解,则可以将定义域分为三个区域进行讨论。
利用导数求单调区间的一些大题(含答案)
例1.1.已知函数已知函数321()3f x x ax b =-+在2x =-处有极值处有极值. . (1) 求函数()f x 的单调区间;的单调区间;(2) 求函数()f x 在[]3,3-上有且仅有一个零点,求b 的取值范围。
的取值范围。
例2.已知函数232)1(31)(x k x x f +-=,k x x g -=31)(,且)(x f 在区间),2(+¥上为增函数.函数.(1)、求实数k 的取值范围;的取值范围; (2)、若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.的取值范围.解:解:(1) (1) (1) 由由321()3f x x ax b =-+,得22'()32f x x ax a =--令222a '()320,=-,(0)3f x x ax a x a a =--==>1得x当(),'()x f x f x 变化时,的变化情况如下表:x (,)3a -¥-3a- (,)3a a - a(,)a +¥()f x+_ 0 +'()f x极大值极大值极小值极小值由上述表格可知,32235()=()()()()11333327a a a a f x f a a a -=-----+=+极大值3333()()11f x f a a a a a ==--+=-极大值(2)(2)由(由(由(11)可知()(,)(,)3a f x a -¥-+¥在和上单调递增,在-a(,a ,a))3上单调递减,上单调递减, 当33501,()=()10,()=f(a)=1-a 0327a a f x f a f x <£-=+>³极大值极小值a()-y f x \=¥在(,+)3上最多只有一个实数根,且此零点仅在1a =时取得时取得又()y f x =在(,)3a -¥-上单调递增,且2(1)(1)0f a a a a -=-=-£()--y f x \=¥a在(,)3上最多有一个实数根上最多有一个实数根 于是,当01a <£时,函数()y f x =有1个或2个零点,即函数()y f x =至多有两个实数根。
专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)
导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。
常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。
二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。
利用导数求含参数的函数单调区间的分类讨论归类
利用导数求含参数的函数单调区间的分类讨论归类导数是微积分中的一个重要概念,它可以用来研究函数的变化趋势和性质。
在本文中,我们将利用导数来研究含参数的函数的单调区间,并进行分类讨论。
首先,我们来回顾一下导数的定义。
对于一个函数f(x),它在一些点x处的导数可以用以下极限来定义:f'(x) = lim(h→0) [f(x+h) - f(x)] / h导数表示函数在该点处的变化率,即函数曲线在该点处的切线的斜率。
如果导数大于0,则函数在该点处是递增的;如果导数小于0,则函数在该点处是递减的;如果导数等于0,则函数在该点处是平稳的。
现在我们考虑一个含参数的函数f(x;a),其中a是一个参数。
我们的目标是根据参数a的取值,将函数f(x;a)的单调区间进行分类。
首先,我们要找到函数f(x;a)的导函数f'(x;a)。
对于含参数的函数,导函数通常也会含有参数。
我们可以按照求导的规则来计算导函数,只需将参数a视为常数进行求导。
然后,我们要找到导函数f'(x;a)的零点,即求解方程f'(x;a)=0。
这些零点将会告诉我们函数f(x;a)的驻点,即导函数的零点对应的函数的极值点或拐点。
对于含参数的函数,驻点的位置一般会依赖于参数a的取值。
接下来,我们要找到导函数f'(x;a)的不连续点,即导函数在定义域内的断点。
这些不连续点将会对函数f(x;a)的单调性产生影响。
最后,我们要找到导函数f'(x;a)的正负变化点,即导函数从正数变为负数或从负数变为正数的点。
这些正负变化点将会告诉我们函数f(x;a)的单调区间。
根据以上步骤,我们可以对含参数的函数f(x;a)的单调区间进行分类讨论。
具体的分类讨论可以根据参数a的取值来进行。
例如,我们考虑一个含参数的函数f(x;a) = ax^2 + bx + c,其中a,b,c都是实数。
我们可以按照上述步骤来求解函数f(x;a)的单调区间。
导数的复习——含参单调性的讨论问题
JIETI JIQIAO YU FANGFA解题技巧与方法133数学学习与研究2019.9导数的复习———含参单调性的讨论问题◎靖晶陈艳宝(大庆市第四中学,黑龙江大庆163711)高考中导数问题可谓是学生拉开区分度的分水岭.而含参的单调性的讨论问题是重中之重.单调性的问题讨论清楚了,那么极值最值等问题就可迎刃而解.利用导数求函数单调区间的依据:在定义域范围内,由导数大于0解得的x 的区间为函数的增区间;由导数小于0解得的x 的区间为函数的减区间.常见的分类标准有哪些呢?一般的含参的函数单调性的讨论常见的分类标准有:1.函数类型;2.开口方向;3.判别式;4.导数等于0有根无根;5.两根大小;6.极值点是否在定义域内.通过以下两个例题进行说明.例1讨论函数f (x )=x -1x -a ln x (a ∈R)的单调性.分析根据导数的符号得函数在相应区间上的单调性,先进行求导.函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2分母是恒正的,只需看分子的符号.由f'(x )=0得x 2-ax +1=0.一元二次方程有根无根需看判别式.故而确定了第一个分类讨论的原因:二次函数的判别式.当Δ>0时,a >2或a <-2,方程有两个不等实根.是否需要进一步讨论呢?可以发现此时分子为零的两根记为x 1,x 2,x 1+x 2=a ,x 1x 2=1>0,而定义域为(0,+ɕ),方程的两根符号与a 相同,故而确定第二个分类讨论的标准:方程的根是否在定义域内.解函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2.令f'(x )=0得x 2-ax +1=0.(1)当Δ≤0时,-2≤a ≤2时,f'(x )≥0,f (x )在(0,+ɕ)上单调递增.(2)当Δ>0时,方程有两个不等的实根,x 1=a -a 2槡-42,x 2=a +a 2槡-42.①a >2时,x 1+x 2=a >0,x 1x 2=1>0,ʑx 1>0,x 2>0,ʑf (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.(根据图1)图1②a <-2时,x 1+x 2=a <0,x 1x 2=1>0ʑx 1<0,x 2<0,ʑf (x )在(0,+ɕ)上单调递增.(根据图2)图2综上,当时,f (x )在(0,+ɕ)上单调递增.当a >2时f (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.例2讨论函数f (x )=e-kxx 2+x -1()k(k ∈R)的单调性.分析函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).ȵe -kx >0,ʑf'(x )的符号只需看-kx 2+(2-k )x +2的符号,而x 2的系数含字母,影响函数的类型,故第一类讨论的原因即高次项的系数是否为0.由题意k ≠0.当k ≠0时,其正负影响开口的方向,故第二类分类讨论的原因即开口方向.当k <0时,导数等于0的两根大小不确定,故而第三类分类讨论的原因为两根大小,确定分界点-2.解函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).(1)当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.(2)当k <0时,2k -(-1)=2+kk.①当k <-2时,2k >-1,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.②当k =-2时,2k =-1,f (x )在(-ɕ,+ɕ)单调递增.③当k >-2时,2k <-1,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k ,()-1单调递减.综上,当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.当k <-2时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.解题技巧与方法JIETI JIQIAO YU FANGFA134数学学习与研究2019.9当k =-2时,f (x )在(-ɕ,+ɕ)单调递增.当k >-2时,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k,()-1单调递减.一般涉及含参单调性的讨论问题,我们可按以下步骤进行:1.先求出函数的定义域,再求出导函数,有分母要通分,能因式分解要分解彻底;2.若导函数带分母,通分因式分解彻底后,判断导数分子最高次项系数是否含有参数,有可以讨论该参数得0和不得0,最高次项系数是否为0影响的是函数的类型;3.判断导数等于0是否有根,导数等于0得到的方程若为一元二次方程,可判断其判别式的符号:当判别式小于等于0时,若二次项系数为正,则导数恒大于等于0,函数在定义域内为增函数,若二次项系数为负,则导数恒小于等于0,函数在定义域内为减函数;当判别式大于0时,可以结合韦达定理分析导数等于0的两根与定义域的关系,确定单调区间;4.导数等于0得到的方程不是二次函数时,根据方程的特点判断有根无根,若有根,再判断其与定义域的关系,若根在定义域内,则根为极值点,再判断定义域内极值点分成的各段区间导数的正负从而得到函数的单调性;5.若导数等于0,方程有两个根且均在定义域内,当两根大小不确定时,可通过比较两根大小确定讨论的分界点.(上接132页)度”、有“智慧挑战”,要遵循由易及难,由简到繁,由基本到拓展的发展顺序去安排,让不同水平的学生都练有所得.如“平行四边形面积”一课,学生探讨出计算方法之后,我设计了以下的练习:1.基本性练习:计算下面平行四边形的面积,需要什么条件?这个平行四边形已知高的长度,要求它的面积还需要已知什么条件?学生回答完后教师再补充“底是18分米”,让学生独立完成.2.提高练习:(1)计算右图平行四边形的面积,算式是().(单位:厘米)A.7.5ˑ4B.7.5ˑ6C.6ˑ4(2)下面第()个平行四边形的面积算式是12ˑ8.ABC3.实践性练习:(1)选择条件,求出右边图形的面积.(单位:米)本组练习设计由浅入深,分层训练,逐步形成技能.基本练习在于检查学生是否会运用公式计算平行四边形的面积,加深对公式的巩固.提高练习是让学生明确计算平行四边形面积要选择正确的“底”和“高”.实践练习在于让学生能运用所学的知识解决生活当中的实际问题,培养学生的实践能力.发展性练习目的在于帮助学生深化知识、扩展知识,沟通知识间的内在联系,发展学生思维的广度和深度,培养学生创新的精神.四、总结反思要提炼数学思想方法数学思想方法是处理数学问题的指导思想和基本策略,是数学学习的灵魂,是学生数学素养的核心.刘云章教授认为:“重视对数学思想方法的领悟将能唤起数学学习者潜在的数学天赋,提高其数学素养,从而提高学习效益和质量”.数学思想方法的获得,一方面,需要教师进行有意识的渗透和培养,另一方面,也要靠学生的“悟”———在自身总结反思中提炼.例如,在“平面图形的面积复习”教学中,教师可引导学生思考:平行四边形、三角形、梯形的面积公式是怎样推导的?有什么共同点?学生在总结反思中理解了“转化”的数学思想方法.如学生学习完“三角形内角和”时,我让学生回顾学习过程:先计算直角三角形、等边三角形的内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度.学生回顾思维过程中总结出“归纳”的思想方法.因此,当数学学习结束后,教师要引导学生回顾自己的思维活动,总结反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对所应用的数学思想方法进行概括与提炼,从数学思想方法的高度把握知识的本质,提升课堂教学的价值.“本真数学”课堂教学,主张以“本”为核心,以“真”为重点,遵循“问题情境—探索活动—实践应用—反思提升”的教学程序,经历提出问题、分析问题、解决问题、应用问题的过程,探索数学本质,建构数学模型,提升数学素养.【参考文献】[1]刘加霞.小学数学课堂的有效教学[M ].北京:北京师范大学出版,2008.[2]陈桂香.小学数学课堂教学中应体现“数学味”[J ].教师博览(科研版),2011(11):61.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用导数求函数的单调区间一一含参问题
一、 问题的提出
应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每
年高考的重点,这也是学生学习和复习的一个难点。
其中,学生用导数求单调区间最困难的 是对参数分类讨论。
尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、 准确分类
二、 课堂简介
请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。
例1、 求函数f(x) . x(x a), a R 的单调区间。
解:定义域为[0,)
(1) a 0, f'(x) 0恒成立,f(x)在[0,)上单调递增; a
a a ⑵a 0,令f'(x) 0得x
f (x)在[0,—)上单调递减,在[―,)上单调递增。
3 3 3
所以,当a 0时,f (x)在[0,)上单调递增;当a 0时,f (x)在[0,-)上单调递减,
3 在[a ,)上单调递增。
3 分类讨论特点:一次型,根 a 和区间端点0比较
3 例2、 求函数f (x)
1 3 x 3 1
2 ax (a 2 1)x 1,a R 的单调区间。
解:定义域R
2 f' (x) x ax a
1 [x (a 1)](x 1), 令 f'(x) 0,得 X 1 a 1, x
2 1
(1) a 1 1即a 2,令f'(x) 0得x a 1或x 1 f (x)在(,1)上单调递增,
(1,a 1)上单调递减,(a 1,)上单调递增。
(2) a 1 1即a 2,f'(x) 0恒成立,所以f (x)在R 上单调递增。
⑶a 1 1即a 2,令f'(x) 0得x a 1或x 1 f (x)在(,a 1)上单调递增,
(a 1,1)上单调递减,(1,)上单调递增。
所以,当a 2时,f(x)在(,1)上单调递增,(1,a 1)上单调递减,(a 1,)上单调
f'(x)
f'(x)
0,得x
递增;当a 2时,f(x)在R 上单调递增。
当a 2时,f(x)在(,a 1)上单调递增, (a 1,1)上单调递减,(1,)上单调递增。
解:定义域[0,
三、小结
建构用导数求函数单调区间的思维流程图 分类讨论特点: 两根大小不确定(分成大于,
例3、 求函数 f(x) a lnx x 2 4x, a 0的单调区间。
f'(x) a x 2x
设 g(x) 2x 2 (1) 16 8a ⑵ 16 8a 分类讨论特点:
4x 2x 2
4x a
a ,二次方程g(x) 0的根的情况要看判别式
0, f (x) 0在[0,)上恒成立,所以f (x)在[0, 0,令 f'(x) 0 得
元二次方程解的个数不确定。
16 8a ° )上单调递增
四、牛刀小试
1 a 1
1、(2011年海淀期末理18)已知函数f(x) ln(x 1) ax ,a ,求函数f (x)的
x 1 2
单调区间。
2、求函数f(x) kx ln(x 1),k R的单调性。